
Aarno Lehtola

Sitra Foundation

P.O.Box 329, SF-00121 Helsinki

DPL - A COMPUTATIONAL METHOD FOR DESCRIBING GRAMMARS

AND MODELLING PARSERS

a b s t r a c t DPL, Dependency Parser Language, is a special

definition language for describing natural language

grammars. It is based on functional dependency. A

DPL-grammar consists of (1) definition of used metrics

ie. property names and values (2) definition of binary

dependency relations and grammatical functions between

constituent-pairs (ie. words or recognized phrase

constructs) and (3) description of constituent

surroundings in the form of two-way automata. The

compilation of DPL-grammars results in e>;ecutable codes

of corresponding parsers.

To ease the modelling of grammars there exists a

linguistically oriented programming environment, which

contains e.g. tracing facility for the parsing process,

grammar—sensitive lexical maintenance programs, and

routines for the interactive graphic display of parse

trees and grammar definitions. Translator routines are

also available for the transport of compiled code

between various LISP-dialects. The DPL-compiler and

associated tools can be used under INTERLISP and

FRANZLISP- This paper focuses on knowledge engineering

issues. Linguistic argumentation we have presented in

73/ and 74/- The detailed syntax of DPL with examples

can be found in 727.

I INTRODUCTION

Our initial objective was to build a parser for Finnish to work

in real production applications. We were faced with both
_ 1 s 1 _

DPL - a computational method for describing grammars and modelling parsers
Aarno Lehtola
Proceedings of NODALIDA 1985, pages 151-159

linguistic and computational problems: (1) so far there was no

formal description of the Finnish grammar, (2) there was no

parser formalism that seemed specially suitable for highly

inflectional and relatively free word order languages, (3) our

computational solutions should be portable, efficient and

general. In addition we wanted to have linguistic knowledge and

processing mechanisms separated in our system. It is important

that linguists may ignore the computational details of the

parsing processes while the computer professionals may purely

concentrate on computational issues.

The parser system we have developped is based on functional

dependency. Grammar is specified by a family of two-way finite

automata and by dependency function and relation definitions.

These are expressed via DPL and compiled automatically to

executable parsers. The flexible programming environment makes

it easy to tune up parsers. The architecture of DPL-environment

is described schematical 1y in Figure 1. The main parts are

highlighted by heavy lines. Single arrows represent data

transfer; double arrows indicae the production of data

structures. The realisations do not rely on specifics of

underlying LISP-environments.

f analyzed I
I input
Vpordsy

information
txtraction sysltm

w ith
graphic output

= 7 -------

Figurt i. The architecture of the DPL-eeviroeaMt

-152-

152Proceedings of NODALIDA 1985

II DPL-DESCRIPIIQNS

The main data object in DPL is a constituent. A grammar

specification opens with the structural descriptions of

constituents and the allowed property names and property values.

User may specify simple properties, features or categories- The

structures of the lexical entries are also defined at the

beginning- All properties of constituents may be referred in a

uniform manner using their values straight. The system

automatically takes into account the computational details

associated to property types. For example, the system is

automatically tuned to notice the inheritance of properties in

their hierarchies. Extensive support to multidimensional

analysis has been one of the central objectives in the design of

the DPL—formalism. Patterning can be done in multiple

dimensions and the property set associated to constituents can

easily be extended.

The binary grammatical functions and relations are defined as

special and—or—expressions which contain both property

predications and search directing information. A DPL-function

returns as its value the binary construct built from the so

called current constituent and its dependent candidate, or it

returns NIL. DPL-relations return as their values the pairs of

constituents that have passed the predicate filter. A user may

vary a predication between simple equality and equality with

ambiguity elimination. As their side effects predications may

also replace and insert properties-

In the level of two-way automata the working storage consists of

two constituent stacks and of a register which holds the current

constituent. The two stacks hold the right and left contexts of

the current constituent- The basic decision for the automaton

associated with the current constituent is to accept or reject a

neighbor via a valid syntactico-semantic subordinate relation.

Successfully called DPL-function subordinates the neighbor, and

it disappears from the stack. The structure of an input

sentence will be the outcome of a series of such binary

constructions- Dynamic local control is realized by permitting

the automata activate one another-

-153-

153Proceedings of NODALIDA 1985

I l l IHE_DPLrCQMPILER

A compilation results in executable code of a parser- The

compiler produces highly optimized lisp code /!/. In the

generated code only a small set of basic lisp functions is used.

In bench marking was found that specialized higher level

functions often consume more time than corresponding functions

composed of open compilable basic functions. For instance many

type checks can be avoided when the actual situation of use is

known. In addition the chosen set makes it easier to transfer

parsers to other computers. The low-level lisp code may be

compiled to machine language level by normal lisp compilers.

Internally data structures are only partly dynamic for the

reason of fast information fetch. Ambiguities are expressed

locally to minimize redundant search- The principle of

structure sharing is followed whenever new data structures are

built. In the manipulation of constituent structures there

exists a special service routine for each combination of

property and predication types. These routines take special

care of time and memory consumption. For instance with regard

to replacements and insertions the copying includes physically

only the path from the root of the list structure to the changed

sublist. The logically shared parts will be shared also

physically. This principle of structure sharing minimizes

memory usage.

In the state transition network level the search is done depth

first. To handle ambiguities DPL-functions and -relations

process all alternative interpretations in parallel. In fact

the alternatives are stored in the stacks and in the current

constituent register as trees of alternants-

As a general time consuming strategy iteration is preferred to

recursion whenever possible. Boolean expressions are optimized

to avoid unnecessary nesting. The same affects also nested

’conds’ and ’ifs'. Local memory reservation is minimized by

taking into account control paths.

-15^-

154Proceedings of NODALIDA 1985

In the -first version of the DPL—compi 1 er the generation rules

were intermixed with the compiler code. The maintenance o-f the

compiler grew harder when we experimented with new computational

characteristics. We therefore developed a metacompiler in which

compilation is defined by rules.

Our parsers were aimed to be practical tools in real production

applications- It was hence important to make the produced

programs transferable. As of now we have a rule-based

translator which converts parsers between LISP-dialects. The

translator accepts currently INTERLISP, FRANZLISP and COMMON

LISP.

IV l e x i c o n _a n d _i i s _m a i n i e n a n ^

The environment has a special maintenance program for lexicons.

The program uses video graphichs to ease updating and it

performs various checks to guarantee the consistency of the

lexical entries. It also co-operates with the information

extraction facility to help the user in the selection of

properti es.

V Ih e _i r a c i n g _f a c i l i i y

The tracing facility is a convenient tool for grammar debugging.

For example, in Figure 2 appears the trace of the parsing of the

sentence "Poikani tuli illalla kentalta heittamasta kiekkoa."

(i.e. "My son came back in the evening from the stadium where

he had been throwing the discus."). Each row represents a state

of the parser before the control enters the state mentioned on

the right—hand column. The thus—far found constituents are

shown by the parenthesis. An arrow head points from a dependent

candidate (one which is subjected to dependency tests) towards

the current constituent.

-155-

155Proceedings of NODALIDA 1985

383 consaa
.03 svconda
0.0 ■•condB, garbaga collactlon tia*
PARSED
PATH O

_<T POIKANI TULI ILLALLA KENTÄLTX «ITTXMX3TX KIEKKOA .)

-> (POIKA) <TULLA> (ILTA) (KENTTX) (HEITTJU)
(POIKA) <- (TULLA) (ILTA) (KENTT*) (HEITTXX)
-> (POIKA) (TULLA) (ILTA) (KENTTX) (HEITTXX)
(•«> (POIKA) (TULLA) (ILTA) (KENTTX) (HEITTXX)
(POIKA) •> (TULLA) (ILTA)
-> ((POIKA) TULLA) (ILTA)
((POIKA) TULLA) <- (iLTA)
((POIKA) TULLA)
((POIKA) TULLA)
((POIKA) TULLA)
((POIKA) TULLA)
((POIKA) TULLA

-> (ILTA)
(ILTA) <-
-> (ILTA)
<- (ILTA)

(ILTA))
((POIKA) TULLA (ILTA))
((POIKA) TULLA (ILTA))
((POIKA) TULLA (ILTA))
((POIKA) TULLA (ILTA))

(KENTTX)
(KENTTX)
(KENTTX)
(KENTTX)
(KENTTX)
(KENTTX)
(KENTTX)

<- (KENTTX)
-> OCEKTTTX)
OCENTTX) <-
-> (KENTTX)
<- (KENTTX)

((POIKA) TULLA (ILTA) (KENTTX)) <-
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX))
((POIKA) TULLA (ILTA) (KENTTX) (HEITTXX (KIEKKO)))
-> ((POIKA) TULLA (ILTA) (KENTTX) (HEITTXX (KIEKKO)))
((POIKA) TULLA (ILTA) (KENTTX) (HEITTXX (KIEKKO))) <-
((POIKA) TULLA (ILTA) (KENTTX) (HEITTXX (KIEKKO))) <-
DONE

Figure 2. A trace of parsing process

(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)
(HEITTXX)

<- (HEITTXX)
-> (HEITTXX)
(HEITTXX) <-
(HEITTXX) ->
(HEITTXX)
(HEITTXX)
(HEITTXX)

(KIEKKO) 7N
(KIEKKO) N7
(KIEKKO) TNFinal
(KIEKKO) NIL

(KIEKKO) TV
(KIEKKO) TVS
(KIEKKO) VST
(KIEKKO) TN
(KIEKKO) NT
(KIEKKO) TNFinal
(KIEKKO) VST

(KIEKKO) VST
TN(KIEKKO)

(KIEKKO)
(KIEKXO)
(KIEKKO)
(KIEKKO)
(KIEKKO)

<- (KIEKKO) VT
-> (KIEKKO) TN
(KIEKKO) <- NT
-> (KIEKKO) TNF
<• (KIEKKO) VT

(HEITTXX (KIEKKO)) <- VOT
-> (HEITTXX (KIEKKO)) TVFl

(HEITTXX (KIEKKO)) VST

TNFinal
VST
VST

al

VST
TVFinal
HalnSantT
MainSantT OK

The tracing -facility gives also the consumed CPU-time and two

quality indicators: search e-f-ficiency and connection

ef-ficiency. Search e-fficiency is lOO'/., if no useless state

transitions took place in the search. This figure is

meaningless when the system is parameterized to full search

because then all transitions are tried- Connection efficiency

is the ratio of the number connections remaining in a result to

the total number of connections attempted for it during the

search.

There exists also automatic book-keeping of all sentences input

to the system. These are divided to into two groups: parsed

and not parsed- The first group constitutes growing test

material to ensure monotonic improvement of grammars.

VI THE INFORMATION_EXIRACIION_FACILIlY

In an actual working situation there may be thousands of

linguistic symbols in the work space. To make such a complex

manageable, we have implemented an information system that for a

-156-

156Proceedings of NODALIDA 1985

given symbol pret t y—pr i nts all in-formation associated with it.

The environment has routines tor the graphic display ot parsing

results. A user can select information by pointing with the

cursor- The example in Figure 3 demonstrates the use of this

facility. The command SHOW() inquires the results of the

parsing process described in Figure 2- The system replies by

first printing the start state and then the found result(s) in

compressed form. The cursor has been moved on top of this parse

and CTRL-G has been typed. The system now draws the picture of

the tree structure. Subsequently one of the nodes has been

opened. The properties of the node POIKA appear pretty-printed.

The user has furthermore asked information about the property

type ConstFeat-

-157-

157Proceedings of NODALIDA 1985

VII CONCLUSION

The parsing strategy applied for the DPL-formalism was

originally viewed as a cognitive model . It has proved to

result practical and efficient parsers as well. Experiments

with a non—trivial set of Finnish sentence structures have been

performed both on DEC-2060 and on VAX-11/780 systems.

Experiments with a non—trivial set of Finnish sentence

structures have been performed both on DEC-2060 and on

VAX-11/780 systems. The time behaviour on DEC-2060 has been

described in Figure 4- In those test runs only main sentences

were used. The analysis of an eight word sentence, for

instance, takes between 20 to 600 ms of DEC CPU-time in the

INTERLISP-version depending on whether one wants only the first

or, through complete search, all parses for structurally

ambiguous sentences. The MACLISP—version of the parser runs

about 20*/. faster on the same computer. The NIL-version (COMMON

LISP compatible) is about 5 times slower on VAX.

The whole environment has been transferred also to FRANZLISP on

VAX. We have not yet focused on optimality issues in grammar

descriptions. We believe that by reordering expectations in the

-158-

158Proceedings of NODALIDA 1985

automata and by introducing more heuristics to reduce

parallelism improvement in efficiency ensues.

BiEiRENQiS

1. Lehtola, A., Compilation and Implementation of 2-way Tree

Automata for the Parsing of Finnish. M.S. Thesis, Helsinki

University of Technology, Department of Technical Physics, 1984,

120 p. (in Finnish)

2. Lehtola, A., Jappinen, H. and Nelimarkka, E.,

Language-based Environment for Natural Language Parsing. Proc.

of the 2nd Conf. of the European Chapter of the Association for

Computational Linguistics, Geneva, 1905, pp. 98-106.

3. Nelimarkka, E., Jappinen, H. and Lehtola, A., Two-way

Finite Automata and Dependency Theory: A Parsing Method for

Inflectional Free Word Order Languages. Proc. C0LING84/ACL,

Stanford, 1984, pp. 389-392.

4. Nelimarkka, E., Jappinen, H. and Lehtola, A., Parsing an

Inflectional Free Word Order Language with Two-way Finite

Automata. Proc. of the 6th European Conference on Artificial

Intelligence, Pisa, 1984, pp. 167-176.

5. Winograd, T., Language as a Cognitive Process. Volume I:

Syntax. Addison-Wesley Publishing Company, Reading, 1983, 640

P-

-159-

159Proceedings of NODALIDA 1985

