
Proceedings of The 12th International Conference on Natural Language Generation, pages 141–146,
Tokyo, Japan, 28 Oct - 1 Nov, 2019. c©2019 Association for Computational Linguistics

141

An Encoder with non-Sequential Dependency for
Neural Data-to-Text Generation

Feng Nie1∗ Jinpeng Wang2 Rong Pan1 Chin-Yew Lin2

1Sun Yat-Sen University 2Microsoft Research Asia
1fengniesysu@gmail.com, 1panr@sysu.edu.cn

2{jinpwa, cyl}@microsoft.com

Abstract
Data-to-text generation aims to generate de-
scriptions given a structured input data (i.e.,
a table with multiple records). Existing neu-
ral methods for encoding input data can be di-
vided into two categories: a) pooling based
encoders which ignore dependencies between
input records or b) recurrent encoders which
model only sequential dependencies between
input records. In our investigation, although
the recurrent encoder generally outperforms
the pooling based encoder by learning the se-
quential dependencies, it is sensitive to the or-
der of the input records (i.e., performance de-
creases when injecting the random shuffling
noise over input data). To overcome this prob-
lem, we propose to adopt the self-attention
mechanism to learn dependencies between ar-
bitrary input records. Experimental results
show the proposed method achieves compara-
ble results and remains stable under random
shuffling over input data.

1 Introduction

Data-to-text generation, one classic task of natu-
ral language generation, aims to produce a piece
of texts that adequately and fluently describes its
structured input data (i.e., tables) (Kukich, 1983;
Reiter and Dale, 1997; Barzilay and Lapata, 2005;
Angeli et al., 2010; Kim and Mooney, 2010;
Perez-Beltrachini and Gardent, 2017). Tradition-
ally, it is divided into two subtasks: content selec-
tion (i.e., what to say) and the surface realization
(i.e., how to say) (Reiter and Dale, 1997; Gatt and
Krahmer, 2018). Recent neural generation sys-
tems ignore the distinction of these two subtasks
using a single encoder-decoder model (Sutskever
et al., 2014) with attention mechanism (Bahdanau
et al., 2015; Mei et al., 2016; Dušek and Jurcicek,
2016; Kiddon et al., 2016; Chisholm et al., 2017).

∗Contribution during internship at Microsoft.

Input
Birth name Johnny Allen Hendrix

Born November 27, 1942
Seattle, Washington, U.S.

Genres Rock, psychedelic rock,
hard rock, blues, R&B

Occupation Musician, songwriter, producer
Instruments Guitar, vocals
Reference
James Marshall Hendrix ... was an American rock
guitarist, singer and songwriter.

Table 1: An example of generating descriptions from
the input data.

The encoder-decoder architecture first encodes
the input data (e.g., a table) into a dense represen-
tation, where the input contains a set of records.
Then descriptions are produced based on the input
representation. The appropriate encoding method
of input structured data remains an open ques-
tion. Existing encoding methods for an input table
can be decomposed into two stages: 1) converting
each record in the table to a record vector, 2) com-
bining the record vectors using a pooling method
or a recurrent neural network (RNN) to represent
the input table. In this paper, we investigate these
two types of neural encoding methods over several
data-to-text datasets. The empirical results show
that RNN based methods outperform simple pool-
ing methods in terms of BLEU evaluation.

The major difference between pooling and RNN
based methods lies in the fact that pooling meth-
ods treat records in the input table independently
while RNN based methods model the relationships
among the records by treating the input records as
a sequence. As a result, it is common that two
records in the input data are relevant. For exam-
ple, as shown in Table 1, the input record “Instru-
ments: Guitar, vocals” is related to “Occupation:
Musician, songwriter, producer”.

The improvements of RNN based methods over



142

pooling methods suggest that capturing dependen-
cies among the input records is helpful. How-
ever, RNN based methods capture only the se-
quential relationships among the input data, which
is sensitive to its input order. Given an input
table, intuitively, permutations over the records
should make no change to input representations,
while we observe large performance decrease of
RNN based methods when injecting the random
shuffling noise over input data. To address this
undesired nature of RNN, we propose using a
self-attention mechanism to capture the depen-
dency and enable the encoding to be less sensi-
tive to any permutation noise. The experimen-
tal results on several datasets show self-attention
based encoder achieves comparable results than
RNN based methods and is more robust handling
the input shuffling noise.

2 Method

The neural data-to-text generation is based on the
encoder-decoder architecture. As shown in Fig-
ure 1 , there are multiple choices of table encod-
ing that affect the generation decoder. We briefly
introduce the backbone of the neural generation
method in Section 2.1 and then introduce the de-
tails of three types of table encoders in Section 2.2.

2.1 Base Model

Given a set of records S = {rj}Kj=1, the goal of
data-to-text generation is to produce a description
y = y1, ..., yT . Usually, the encoder-decoder ar-
chitecture consist of a table encoder and a recur-
rent neural network based decoder segmented with
attention (Bahdanau et al., 2015) and conditional
copy (See et al., 2017) mechanism. Firstly, each
input record rj is encoded into a hidden vector hj

using a specified table encoder, which is the focus
of this paper and three encoders will be introduced
in Section 2.2. Then, for the generated description
y, the decoder generates the word yt at the t-th
time step based on the previously generated words
y<t and the input hidden vectors H = {hj}Kj=1.
Specifically,

P (yt|y<t,H) = softmax(f(dt, yt−1, ct)) (1)

where f(.) is a tanh function and dt =
LSTM(dt−1, yt−1, , ct−1) is the hidden state of
the decoder at step t. ct in Eq. 1 is the context
vector at timestep t, computed as a weighted sum

Figure 1: Overview of encoder-decoder architecture
with different encoding methods.

of input hidden vectors hj :

ct =
K∑
j=1

αt,jhj (2)

where we use the attention model introduced in
(Bahdanau et al., 2015) to compute the attention
weight αt,j .

2.2 Table Encoder
Record Vectors: The input table can be viewed as
a set of field-value records, where values are se-
quences of words corresponding to a certain field
(Liang et al., 2009; Lebret et al., 2016; Yang et al.,
2017). For instance, in the Table 1, the word
“William” has the field “Birth name” and it is the
first word in this field. Every word in the field is a
record r and is presented as triple (rv, rf , rpos),
where rv, rf and rpos refer to the value (e.g.,
William), the field name (e.g., Birth name), the
relative position in its field (e.g., 0). We map
each record r ∈ S into a vector r by concatenat-
ing the embedding of rv, rf and rpos, denoted as
r = [ev, ef , epos], where ev, ef , epos are trainable
word embeddings of rv, rf and rpos.
Pooling Based Encoders: The pooling based en-
coder treats input records independently, there-
fore, it first applies a feed forward neural network
layer over every record vector rj and yields the
input hidden vector hj = tanh(W rj), where W
is a trainable parameter. The initial context vec-
tor c0 in Eq. 1 is calculated by the following max-
pooling layer.

c0 = max([h0, ...,hT ]
T ) (3)

Recurrent Encoders: Different from pooling
based encoder, the recurrent encoder captures the



143

E2E WIKIBIO
#Train 42061 582695

#Validation 4672 72831
#Test 4693 72831

Average field number 5.4 19.7
Average input length 20.1 53.1

Table 2: Statistics of two datasets.

dependency among the records by treating the set
of record vectors r1, ..., rT as a sequence. The se-
quence of records are fed into a RNN yielding a se-
quence of input hidden vectors h1, ...hT . We adopt
a bidirectional LSTM by following (Mei et al.,
2016). The initial context vector is set as the last
hidden vector of the sequence c0 = hT .

Self-Attention Encoders: For data-to-text gen-
eration, input records are order invariant as in-
put data should convey the same information re-
gardless of the order of input records. The input
records is a set, while the recurrent encoder makes
strong hypothesis and treats it as a sequence.

Therefore an ideal table encoder has two de-
sired properties: a) enable to capture relationships
among the input records and b) is also order invari-
ant. Recently proposed self-attention mechanism
(Vaswani et al.; Wang et al., 2017) is able to learn
interactions between arbitrary records and there-
fore is also irrelevant to the order of the records.
For this purpose, we adapt the multi-layer self-
attention mechanism for the encoding. Each layer
has two sub-layers: one layer is for multi-head
self-attention and the other one is a position wise
feed-forward neural network with layer normal-
ization (Vaswani et al.). Specifically,

si,j =
Ql

ih
l
i(K

l
jh

l
j)

T

√
dk

;βi,j =
esi,j∑T
n=1 e

si,n
(4)

hl
i =

T∑
j=0

βi,j(V
l
j hl

j);hl+1
i = f(hl

i + g(hl
i)) (5)

where Ql, K l, V l are trainable parameters for
layer l, dk is the dimension of K, and the first
layer of the hidden vector h0

i refers to the record
vector ri. To represent the full table, we apply
max-pooling in Eq.3 using the last layer of hidden
vectors similarly.

Method E2E WIKIBIO
Template - 19.8

StructAware - 44.89
Slug2Slug 66.19 -
MaxEnc 66.05 43.19
RnnEnc 66.11 44.93
SelfAtt 66.29 45.02

Table 3: Experimental results of different encoding
methods and other systems over three datasets.

3 Experiments

3.1 Datasets and Evaluation Metrics

We conduct experiments on two datasets.
E2E (Novikova et al., 2017) is a dataset for task-
oriented language generation in the restaurant
domain with 50,000 samples, the validation and
test data are multi-reference; WIKIBIO (Lebret
et al., 2016) contains 728,321 articles from En-
glish Wikipedia. It uses the first sentence of each
article as the description of the corresponding
infobox. The detailed statics of two datasets are
listed in Table 2.

For evaluation metrics, we use BLEU-4 (Pap-
ineni et al., 2002) to assess the generation quality
automatically.

3.2 Implementation Details

We tune all hyper-parameters according to the per-
formance on the separated validation set. The di-
mension of trainable embeddings and hidden units
in LSTMs are all set to 600. For the multi-layer
and multi-head architecture, 3 layers and 4 multi-
attention heads are used. During training, we reg-
ularize all layers with a dropout 0.1. For optimiza-
tion, we use Adam with learning rate 0.0002. The
gradient is truncated by 1. All experiments use
beam size of 5 in decoding. We use pytorch ver-
sion of OpenNMT (Klein et al., 2017) for imple-
mentation.

3.3 Performance

The results of different input encoding methods
along with other competing systems on the test
sets of three datasets are shown in Table 3. We
compare three types of encoders (i.e., Pooling
based encoders refer to MaxEnc, Recurrent en-
coders refer to RnnEnc, and self-attention en-
coders refer SelfAtt) introduced in Section
2.2 with the following generation systems: (1)



144

Methods Training
E2E WIKIBIO

Original Shuffle Original Shuffle

MaxEnc
Original 66.05 66.05 43.19 43.19
Shuffle 66.17 66.17 43.21 43.21

RnnEnc
Original 66.11 42.74 44.93 28.56
Shuffle 64.08 65.40 43.95 43.59

SelfAtt
Original 66.29 66.29 45.02 45.02
Shuffle 66.29 66.29 44.47 44.47

Table 4: Experimental results of different encoding methods trained and tested on different input settings

Template is a method that replaces the words
occurring in both the table and the training sen-
tences with a special token reflecting its field. (2)
StructAware (Liu et al., 2018) is a structure-
aware encoder-decoder architecture which using
a modified LSTM unit and a specific attention
mechanism to incorporate the attribute informa-
tion. (3) Slug2Slug is an ensemble neural
method that re-ranks several neural outputs during
inference.

From table 3, the results show that three
encoders achieves comparable results on E2E
dataset, as the input of E2E is relatively short and
simple. For WIKIBIO, the simple max-pooling
encoder MaxEnc performs worse than the bidi-
rectional LSTM encoder RnnEnc. The proposed
method SelfAtt which capture the dependen-
cies between arbitrary records yields better re-
sults compared to MaxEnc, and achieves compa-
rable results with respect to RnnEnc. The result
suggests modeling the dependencies among input
records can yield better performance when the in-
put is long and complex. More importantly, re-
current encoders only capture sequential depen-
dencies, which is sensitive to the order of input
records. To investigate the robustness of differ-
ent table encoders, we design random shuffling
noise over input data. For example, the original
order of the input is “Birth name; Genres; Occupa-
tion; Associated Acts”, and the order after random
shuffling can be “’Geners; Birth name; Associated
Acts; Occupation’. Note that we do not change the
order of content inside a field. We apply such ran-
dom shuffling noise on both training and testing
stages. For model training, there are two choices:
training on original input data Original or data
with input random shuffling noise Shuffle. For
testing, the trained model can be applied to the
original input data or the shuffled version.

From the Table 4, We observe that the per-

MaxEnc RnnEnc SelfAtt ReSAtt
ESPN 14.01 16.32 13.93 16.43

Table 5: Results of different encoding methods over
ESPN dataset

formance of RnnEnc drops dramatically when
the input ordering information during training is
different from the testing (i.e., the model trained
on the original drops more than 15 BLEU scores
when testing on input with random shuffling
noise). In a slight difficult setting compared to
original input, where both the input of training
and testing are randomly shuffled, the perfor-
mance of RnnEnc also decreases (i.e., 0.71 and
1.34 BLEU score decrease on E2E and WIKIBIO
respectively). On the contrary, both MaxEnc
and SelfAtt are less sensitive to the change of
record ordering information, and the performance
of both models under different shuffling noise are
more stable than RnnEnc. The experimental re-
sults further confirms that using order invariant en-
coding SelfAtt is stable and suitable for table
encoder.

3.4 Limitations of Self-Attention Mechanism
The self-attention table encoder achieves compa-
rable performance with respect to recurrent table
encoders on E2E and WIKIBIO datasets. How-
ever, the input of these two datasets are relatively
short. To investigate the performance of self-
attention mechanism on capturing long range de-
pendencies, we conduct SelfAtt on a recently
proposed NBA dataset ESPN (Nie et al., 2018),
where the average input length 165.9 and aver-
age field number is 134.2. The results on ESPN
are shown in Table 5. The SelfAtt has dif-
ficulty in learning such long range dependencies
and performs worse than RnnEnc. When ap-
plying a restricted self-attention ReSAtt (Wang



145

et al., 2018), where we limit the self-attention
mechanism to capture dependencies within a fixed
window size (set to 10 in the experiments), the re-
sult of ReSAtt performs comparable with respect
to RnnEnc, despite this type of method is not or-
der invariant. Handling long range dependencies
for input data that is non-sensitive to the order of
input data is a potential future work.

4 Conclusion

In this paper, we analyze several existing encod-
ing methods for neural data-to-text generation.
We find that modeling the dependency among
the input records can yield better generation re-
sults. However, current recurrent table encoders
can only model the sequential dependencies which
is sensitive to the input order. We propose using
self-attention for table encoder that can capture the
dependencies and remains stable at the same time.
In the future, we will analyze the explicit depen-
dencies that lies in the input data, and improve the
performance of encoding methods.

5 Acknowledgement

We thank the anonymous reviewers for helpful
comments. The contact author of this paper, ac-
cording to the meaning given to this role by Sun
Yat-Sen University, is Rong Pan.

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach
to generation. In EMNLP, pages 502–512.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR.

Regina Barzilay and Mirella Lapata. 2005. Collective
content selection for concept-to-text generation. In
EMNLP, pages 331–338.

Andrew Chisholm, Will Radford, and Ben Hachey.
2017. Learning to generate one-sentence biogra-
phies from wikidata. CoRR, abs/1702.06235.

Ondřej Dušek and Filip Jurcicek. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In ACL.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Intell.
Res., 61:65–170.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neu-
ral checklist models. In EMNLP, pages 329–339.

Joohyun Kim and Raymond J. Mooney. 2010. Gen-
erative alignment and semantic parsing for learning
from ambiguous supervision. In COLING, pages
543–551.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proc. ACL.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In ACL, pages 145–150.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with
application to the biography domain. In EMNLP,
pages 1203–1213.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In ACL, pages 91–99.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation by
structure-aware seq2seq learning. In AAAI, pages
4881–4888. AAAI Press.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? selective gener-
ation using lstms with coarse-to-fine alignment. In
NAACL, pages 720–730.

Feng Nie, Jinpeng Wang, Jin-Ge Yao, Rong Pan, and
Chin-Yew Lin. 2018. Operation-guided neural net-
works for high fidelity data-to-text generation. In
EMNLP, pages 3879–3889. Association for Compu-
tational Linguistics.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th
Annual Meeting of the Special Interest Group on
Discourse and Dialogue, Saarbrücken, Germany.
ArXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

Laura Perez-Beltrachini and Claire Gardent. 2017.
Analysing data-to-text generation benchmarks. In
INLG, pages 238–242.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL, pages 1073–1083. As-
sociation for Computational Linguistics.



146

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Process-
ing Systems 30.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 189–198. Associa-
tion for Computational Linguistics.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward fast and accurate neural discourse segmen-
tation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 962–967. Association for Computational
Linguistics.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2017. Reference-aware language models. In
EMNLP, pages 1850–1859.


