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Abstract

A prominent strand of work in formal seman-
tics investigates the ways in which human lan-
guages quantify over the elements of a set, as
when we say “All A are B”, “All except two
A are B”, “Only a few of the A are B” and so
on. Our aim is to build Natural Language Gen-
eration algorithms that mimic humans’ use of
quantified expressions. To inform these algo-
rithms, we conducted on a series of elicitation
experiments in which human speakers were
asked to perform a linguistic task that invites
the use of quantified expressions. We discuss
how these experiments were conducted and
what corpora they gave rise to. We conduct
an informal analysis of the corpora, and of-
fer an initial assessment of the challenges that
these corpora pose for Natural Language Gen-
eration. The dataset is available at: https:
//github.com/a-quei/qtuna.

1 Introduction

A long tradition of research in the formal seman-
tics of natural language asks how speakers quan-
tify, as when we say “Some A are B”, “All ex-
cept two A are B”, “Only a few of the A are B”
and so on. This area of work is known as the the-
ory of “Generalised Quantifiers” (GQ) (Peters and
Westerstahl, 2006, GQ), because it generalises the
idea of quantification beyond the standard logical
quantifiers of ∀ and ∃, even including quantifiers
like “most” or “many”, which are not expressible
in First-Order Logic (Mostowski, 1957; Barwise
and Cooper, 1981; Van Benthem et al., 1986; Pe-
ters and Westerstahl, 2006). Since definite NPs
can also be understood in these terms, GQ theory
comprises, at least in principle, all Noun Phrases
(NPs): the study of quantifiers in natural language
is essentially the study of Noun Phrases.

There exists some work that can help to give this
theoretical work an empirical basis. For example,

there is psycholinguistic work on people’s use of
vague quantifiers (Moxey and Sanford, 1993), and
work that investigates the links between quanti-
fiers’ logical types and human processing of quan-
tified expressions (Szymanik and Zajenkowski,
2010; Szymanik et al., 2016, QEs). Yet there is
a dearth of knowledge about human usage of QEs.
For instance, what QEs, and what combinations
of QEs, are uttered by a speaker in a given situa-
tion, to accomplish a given task? And, if a given
NP is uttered, what information does it convey?
Some questions are starting to be addressed, for
example, Sorodoc et al. (2016) looked at speak-
ers’ choice between “all”, “some”, and “no” (see
also Grefenstette (2013) and Herbelot and Vecchi
(2015)). Yildirim et al. (2013) studied speakers’
use (and hearers’ interpretation) of the quantifiers
“some” and “many”, as in “Many of the candies
are green”. Barr et al. (2013) investigated refer-
ring expressions in which a quantifier is embed-
ded (e.g., “the square with 11 black dots”, “the
square with lots of dark dashes”). Yet there has
been few attempts to chart how the wider class of
generalised quantifiers are used by human speak-
ers. The present paper lies the basis for such a
study, with the ultimate aim of modelling the hu-
man production of quantifiers computationally.

In the computational modelling of language
production, one class of NPs has been studied
widely, namely referring NPs (Krahmer and van
Deemter, 2012), and van Deemter (2016). One
line of work focuses on corpora of referring ex-
pressions (REs) that were elicited under exper-
imentally controlled conditions (e.g., the TUNA

corpus (Gatt et al., 2007; van Deemter et al.,
2012a)). Such corpora were used as a gold stan-
dard for a sequence of evaluation campaigns in
which generation algorithms that produce refer-
ring expressions were compared with the gold
standard (Gatt and Belz, 2010). This systematic

https://github.com/a-quei/qtuna
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Figure 1: Examples from (a) the n = 4 experiment; (b) the n = 9 experiment.

comparison allowed researchers to know which al-
gorithms worked best, and to develop new algo-
rithms that match human language production. In-
spired by this line of work on referring expres-
sions, but aiming this time to gain insights into
quantified NPs, we conducted a new series of elici-
tation experiments, called the QTUNA experiments
(where Q stands for quantification). We report on
these elicitation experiments, on the resulting cor-
pus, and on an initial analysis of the corpus.

We set up the experiments in such a way that
they would tell us how quantified NPs are em-
ployed to describe an abstract visual scene. We
were curious what NPs would be used, what they
meant, and how they were used (e.g., how cor-
rectly and how completely did speakers manage to
describe the different scenes?). We were keen to
look at tasks of different difficulty levels, curious
how these levels affected the use of quantifiers.

2 The QTUNA Experiment

We wanted to find out how a wide range of quan-
tified NPs are used as part of a wider communica-
tive task. So, instead of showing our subjects a
scene and asking them how they would describe
the number of so-and-so’s (e.g., circles) that are
red (e.g., “Many circles are red”), we asked them
to describe the scene as a whole, hoping that they
would use quantifiers to do this. Moreover, we
made the scenes complex enough that one simple
Quantified Expression would never suffice. Let’s
explain in more detail how we proceeded.

Each participant presented with a series of ab-
stract visual scenes. We asked them to try to pro-
duce a description that would allow a reader to re-
construct the situation, except for the location of

We’d like you to describe each situation in one or
more grammatically correct English sentences. (...)

1 Based on your description, a reader will try to
“reconstruct” the situation. We use the word
“reconstruct” loosely here, because the only
thing that matters is the different types of ob-
jects that the sheet contains. Therefore, please
do not say *where* in the grid a particular ob-
ject is located (e.g., “top left”, “in the mid-
dle”, “on the diagonal”).

2 Each object is a circle or a square, and either
red or blue. Your reader knows this.

3 Please do not “enumerate the different types
of objects. For example, do not say “There is
a red circle, two blue circles, and ...”.

4 Every situation contain four objects. Your
reader knows this in advance, and he/she will
take this information into account when inter-
preting your description.

Figure 2: The sketch of how a instruction looks like,
taking n = 4 as an example. A full version of the
instruction can be found in the supplementary material.

the objects. Each scene contains a certain number
of objects, which is either a circle or a square and
either red or blue. In order to gain insight into the
question of how domain size impacts the produc-
tion of QEs, we conducted three experiments, with
domain size (n) of 4, 9, and 20 respectively, each
containing 10 different scenes. Figure 1(a) and
Figure 1(b) show two examples from the n = 4
and n = 9 experiment respectively; Figure 2 de-
picts how the instruction looks like.

We conducted a number of pilot experiments
for each of the three experiments. These taught
us that if no further instructions were offered,
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n = 4 There are 4 squares. Every object is blue.
n = 4 More than half of the objects are blue squares. Less than half are blue circles.
n = 4 There is one red square and the rest are blue circles.
n = 4 All possible objects are shown.
n = 9 Most of the items are red circles, but there are a couple of blue squares.
n = 9 Most of the objects are blue squares. A few objects are blue circles.
n = 20 All the objects in the picture are circles and majority of them is blue.
n = 20 Both circles and squares appear in either red or blue.

Table 1: List of example descriptions from QTUNA corpus; n indicates domain size.

then only a small range of existentially quanti-
fied sentence patterns would be used. For exam-
ple, for Figure 1(a), a description like “There are
two blue squares, one red square and one red cir-
cle.” would tend to be given. To nudge partici-
pants into using a wider range of quantified state-
ments, we asked participants not to use enumera-
tions, followed by an example. This request may
have diminished the ecological validity (Schmuck-
ler, 2001) of our experiment, but we believe that
this is more than outweighed by the increased rich-
ness of the resulting descriptions.

Participants were students at the Computing de-
partment of Utrecht University. Data from 66, 63,
and 58 participants were collected for the three ex-
periments. We manually filtered out all descrip-
tions from subjects who showed a misunderstand-
ing of the task by committing at least 3 (what we
considered to be) errors, namely by writing gib-
berish, by using enumerations, or by expressing
locations (e.g., “.. in the top left”). The resulting
corpus contains 656, 380, and 378 valid descrip-
tions for the three domain sizes. Examples are
shown in Table 1. The larger the domain size, the
smaller was the proportion of valid descriptions in
it, presumably because the difficulty of producing
descriptions increases with domain size.

We annotated each description with a formula
that encodes its semantic content. Following Bar-
wise and Cooper (1981), we used a form in which
each k-ary quantifier is a relation between 2 or
more set terms as arguments. For example, “All
the objects are blue. Half of them are squares.” is
labelled as All(O,B) ∧ Half(O,S), where O, B,
and S stand for the set of all objects in the situa-
tion, blue objects, and squares, respectively.

3 Analysis

The corpus was analysed on the basis of hypothe-
ses formulated before we looked into the corpus.

Annotations were done by the first two authors,
who discussed their initial judgements and made
final decisions together. All hypotheses focus on
generation, that is, on the choices that speakers
made between different possible utterances.
Vague quantifiers. The larger a domain, the
harder it is to see at a glance how many objects
there are in each of its set-theoretic regions (A,
B, A ∪ B, A ∩ B, A − B, B − A, and the
domain of objects O as a whole). We therefore
hypothesised (H1) that, as our 3 domains grew
larger, more vague quantifiers would occur. To test
this idea, we counted the number of QEs that use
vague quantifiers (e.g., many, and few, which per-
mit so-called borderline cases, where it is unclear
whether the QE is true or false, see e.g., Keefe and
Smith (1996)) in each sub-corpus.1 The number of
vague QEs was compared with the total number of
QEs (Table 2). Chi-Square suggests an affirmative
answer (χ2(2) = 471.55, p < .001).2

How often do speakers describe a situation
completely and correctly?
We considered a description to be complete if the
described situation was the only one (modulo lo-
cation) that fits the description. Since produc-
ing a complete description requires more work in
a larger domain, we hypothesised that larger do-
mains would give rise to a smaller proportion of
complete descriptions than smaller ones.

This hypothesis is challenging to test because
speakers frequently relied on inference when de-
scribing a scene. Consider “half of the objects
are blue”. Given there are only two colours (blue
and red), we infer that the other half are red. Or
consider, “Everything is blue. Most things are

1A list of all the vague quantifiers in our corpora can be
found in the supplementary material.

2As we had 6 hypotheses, all the p-values reported in this
paper are those after Bonferroni correction, i.e., multiplicated
by 6.
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Hypothesis n = 4 n = 9 n = 20

H1: #(Vague Quantifier)/#(QE) 57/1401 201/638 234/543
H2: #(Incompleteness)/#(Description) 46/656 137/380 261/378
H3: #(Wrong Description)/#(Description) 7/656 11/380 29/378
H4: #(Word) per description 13.02 12.75 9.53
H4: #(QE) per description 2.13 1.67 1.43

Table 2: Statistics with respected to some of the hypotheses in §3, where #(·) means “the number of”.

square”. If “most” means not just “more than
half” but also “not all”, then the above descrip-
tion completely describes a situation with 3 blue
squares and 1 blue circle, despite not saying this
explicitly. Instead of relying on our formalisation
of the meaning of quantifiers,3 we tackled the is-
sue by asking annotators to say directly, for each
description in each sub-corpus, whether they con-
sidered the description to be logically complete.

We likewise hypothesised (H2) that smaller do-
mains would give rise to a larger proportion of log-
ically complete descriptions (because this is easier
in a smaller domain). The results in Table 2 con-
firm (χ2(2) = 443.60, p < .001) this.

For the same reason, we expected (H3) that,
in larger domains, there will be more descriptions
that convey incorrect information, because count-
ing mistakes becomes more likely. For example,
we would mark a description “all objects are blue”
as incorrect if it describes a situation where all ob-
jects are actually red. Chi-square shows an over-
all association between domain size and error fre-
quency (χ2(2) = 32.85, p < .001). The associ-
ation also held between each subsequent level of
size, but although the proportion of errors went up
from n = 9 to n = 20 (χ2(1) = 8.65, p < .01),
from n = 4 to n = 9 it fell, perhaps because vague
QEs are used (as is frequently the case in n = 9
and n = 20, but not in n = 4). This reduces
the proportion of QEs that are downright incorrect
(e.g., annotators in most situations will have been
understandably reluctant to describe a QEs of the
form “many/few A are B” as incorrect).
Are larger scenes described more elaborately?
We expected (H4) participants to produce longer
descriptions in larger scenes, because there is
more to describe. To test this, we calculated the
length, as defined by both the number of words
and the number of QEs, of each description. The

3See e.g. Coventry et al. (2010) for problems assessing
the meaning of “most”.

First Later

Shape 489 121
Colour 112 514

Table 3: The number of QEs that put shape/colour in
the first/later place.

results in Table 2 show the opposite of what we
expected: the length of descriptions decreased
with domain size. A plausible explanation lies in
the fact that (hypothesis H2), speakers produced
fewer complete descriptions in larger domains.

Ordering of QEs. We noticed during our pi-
lots that speakers tended to employ two discourse
structures. The first starts by describing the whole
scene, e.g., “all objects are blue”, followed by a
more detailed statement, e.g., “half of them are
squares”. The second discourse structure cuts the
set of objects into two parts, each of which is de-
scribed separately. We hypothesised (H5) that
when a scene is described in two parts, where
one part is larger than the other, then the larger
part if described before the smaller part, because
this strategy lets more important information be
followed by less important information. For in-
stance, “3/4 of A are B, 1/4 are C.” occurs more
often than “1/4 of A are C, 3/4 are B.”. We
counted the number of descriptions that describe
the larger part first, and those that describe the
smaller part first, obtaining the numbers of 367
and 136 descriptions respectively. This confirmed
(χ2(1) = 212.17, p < .001) the hypothesis.

Differences between colour and shape. Given
the well-documented primacy of colour over shape
in referring expressions (Pechmann, 1989; van
Deemter et al., 2012b), it seemed plausible to us
that colour and shape play different roles in quan-
tification too. Based on our pilot experiments, our
last hypothesis (H6) was: in k-ary QEs (i.e., QEs
with quantifiers that describe relations between k
sets), shape occurs more often in the first argument
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place (i.e., the A position in Q(A,B)) and colour
in the second argument place (theB position). For
example, we expect to see sentences like “all cir-
cles are blue” more often than ones like “all blue
objects are circular”. The results in Table 3 con-
firm this hypothesis (χ2(1) = 479.59, p < .001).

4 Discussion

The corpus also gave rise to a number of interest-
ing post hoc observations. For example, we found
a substantial number of 3-ary quantifiers, such as
“half of A are B, and the other half are C”, which
should not be confused with “half of A are B and
half of A are C”; the latter allows B and C have
a non-empty intersection, while the former means
1/2 of A are B and (A − B) ⊆ C. A similar ex-
ample is “Most A are B, the others are C”

Another unanticipated feature is the existence
of higher-order quantifiers. For instance, in the
n = 4 experiment, when all the objects were dif-
ferent, many participants used QEs such as “All
possible types of objects are shown”, a strikingly
brief and complete description which quantifies
over the Cartesian product of the colours and the
shapes.

In future, two issues will be addressed: 1) What
descriptions will be produced if the domain size
is further increased? One might expect that, sim-
ilar to the findings of this paper, the participants
would produce even more vague quantifiers, more
incompleteness, etc.; 2) What types of QEs are
produced in other languages? We are particu-
larly curious about Chinese, since previous cor-
pus study for machine translation suggests there
is much more variations in QEs in Chinese than in
English (Wang and Piao, 2007).

Computational modelling of the human produc-
tion of QEs is one major goal of building QTUNA

corpus. The idea is to work analogously to the
generation of referring expressions, where corpora
of experimentally elicited descriptions (such as the
TUNA corpus (Gatt et al., 2007)) have guided the
construction and evaluation of Referring Expres-
sions Generation algorithms. In the same way,
the QTUNA corpus can guide the construction of
algorithms that mimic the human production of
quantified descriptions. (For example, the corpus
can help us understand which quantifiers and QE
patterns are most frequently used, and how elabo-
rate a description needs to be – for example, when
should the generator stop adding further QEs, be-

cause it has provided enough information already,
whether or not the scene has been described com-
pletely.) Examples of such a generation algorithm,
based on the corpus of the present paper, can be
found in Chen et al. (2019).
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