
Proceedings of The 12th International Conference on Natural Language Generation, pages 1–10,
Tokyo, Japan, 28 Oct - 1 Nov, 2019. c©2019 Association for Computational Linguistics

1

Talking about what is not there:
Generating indefinite referring expressions in Minecraft

Arne Köhn and Alexander Koller
Department of Language Science and Technology

Saarland University
{koehn|koller}@coli.uni-saarland.de

Abstract

When generating technical instructions, it is
often necessary to describe an object that does
not exist yet. For example, an NLG system
which explains how to build a house needs to
generate sentences like “build a wall of height
five to your left” and “now build a wall on
the other side.” Generating (indefinite) refer-
ring expressions to objects that do not exist yet
is fundamentally different from generating the
usual definite referring expressions, because
the new object must be distinguished from an
infinite set of possible alternatives. We for-
malize this problem and present an algorithm
for generating such expressions, in the context
of generating building instructions within the
Minecraft video game.

1 Introduction

Everyone who has ever had to assemble a piece of
furniture knows the importance of clearly worded
technical instructions. Ideally, such instructions
should be personalized to the current user and their
level of expertise, and should be rephrased if the
user has trouble with some instruction.

In this paper, we explore the challenge of auto-
matically generating personalized building instruc-
tions in the context of the video game “Minecraft”.
Minecraft is a game in which players can explore
an open world, mine materials, and build complex
structures such as houses and technical devices.
By situating the NLG task in Minecraft, we retain
the challenge of generating complex technical in-
structions, within the context of a fully observable
virtual environment. Minecraft is an extremely pop-
ular game, with 50 million active users, which facil-
itates access to experimental subjects for evaluation.
There are currently about 130 million Minecraft-
related videos on YouTube, many of which have
humans explain how to construct complex objects;

thus there is a clear interest in building instructions
for Minecraft.

One challenge in generating building instruc-
tions for Minecraft is to refer to objects that do
not exist yet. For instance, in order to instruct
the player to build the left railing of the bridge in
Fig. 2c, the NLG system might say “build a railing
on the left side of the bridge”. When this instruction
is uttered, there is no left railing yet; thus one uses
the indefinite referring expression (RE) in italics to
refer to a non-existing object. Generating such in-
definite NPs is a fundamentally different task than
the more established task of generating definite
NPs, in which the target referent only needs to be
distinguished from a finite set of distractors. In gen-
erating indefinite REs, the target referent needs to
be distinguished from an infinite set of alternatives,
such as railings of different lengths and in different
locations. This makes it infeasible to use existing
generation algorithms for definite REs.

In this paper, we show how to generate indef-
inite REs for objects in Minecraft which do not
exist yet. We proceed in two steps. First, we will
show how to generate definite and indefinite REs
to individual blocks in Minecraft, in a way which
makes it possible to generate REs for locations in
the environment, in addition to REs for objects. We
will then build a method for generating definite and
indefinite REs to complex objects (such as railings)
upon this. The basic idea is to precompute possi-
ble sets of features which will uniquely identify
the complex object by specifying all of its rele-
vant attributes. We implement our RE generation
method in terms of Semantically Interpreted Gram-
mars (SIGs) (Koller and Engonopoulos, 2017) and
use their chart-based sentence generator to perform
the actual RE generation.

Plan of the paper. We will introduce the task
and discuss some related work in Section 2 and

mailto:koehn@coli.uni-saarland.de
mailto:koller@coli.uni-saarland.de


2

build-bridge-with-railings(x1, z1, x2, z2)

build-railing
(x2, z1, x2, z2)

. . .

build-railing
(x1, z1, x1, z2)

. . .

build-bridge
(x1, z1, x2, z2)

put-block
(x2, z2)

. . .put-block
(x1, z1)

Figure 1: A construction plan.

sketch chart generation with SIGs in Section 3. We
will then show how to refer to individual blocks
in Section 4 and to complex objects in Section 5.
Section 6 concludes and discusses future work.

2 Background

There is an extensive literature on the generation
of definite REs to objects which exist in the envi-
ronment. These algorithms typically aim to dis-
tinguish the target referent from the other existing
objects, and can thus assume that the denotations
of all properties are subsets of the (finite) set of
existing objects. They then intersect denotations of
properties in some way, keeping track of the (finite)
set of possible referents in the intersection, until
the set of referents becomes singleton. The classi-
cal reference for this approach is the Incremental
Algorithm of Dale and Reiter (1995); other meth-
ods for generating definite REs follow the same
perspective (Krahmer et al., 2003). See (Krahmer
and van Deemter, 2012; van Deemter, 2016) for
an overview. To our knowledge, there is no ac-
cepted method for systematically generating indefi-
nite REs.

There is also an extensive literature on the mean-
ing of indefinites in theoretical semantics. Classi-
cal theories (Heim, 1982; Kamp and Reyle, 1993)
focus on the ability of indefinites to update the dis-
course context with new referents; their ability to
refer to objects in the world is only a byproduct of
this. von Heusinger (2000) describes the referential
potential of indefinites in terms of choice functions,
i.e. the referent of “a bridge” is an arbitrary bridge.
In either case, there is no requirement that an in-
definite noun phrase should refer uniquely, as we
require in Minecraft building instructions.

2.1 Instruction generation in Minecraft
Generating indefinite referring expressions is a sub
problem of instruction generation, for which we

first sketch the overall setting. In the instruction
giving task, an architect observes the actions of a
(human) builder and sends real-time instructions
to the builder. The architect has to solve several
tasks: First, it needs to generate a construction plan
which describes the actions the player needs to take
in the Minecraft environment in order to construct
the goal object (see Wichlacz et al. (2019)). For
instance, a possible construction plan for the bridge
in Fig. 2 is shown in Fig. 1. Observe that the con-
struction plan is hierarchical: Higher-level actions
such as “build bridge with railings” are recursively
decomposed into lower-level actions; this hierar-
chical decomposition is present an most instruction
giving tasks. At the lowest level of abstraction,
each action consists of the placement of individual
blocks. As the actions become more fine-grained,
so do the types of objects they manipulate (the com-
plete bridge down to the individual blocks). This
construction plan can be computed by a hierarchi-
cal planner.

The architect then decides at which level of
abstraction each construction step should be de-
scribed; for instance, it might decide to describe
the construction in terms of the individual blocks,
or it might decide to instruct the player to build
a bridge and then the two railings. This decision
depends on whether the architect can assume that
the builder understands the concept “railing” in the
same way the architect intends it: as a single row of
blocks along the bridge. The result is an instruction
plan. Finally, a sentence generator translates each
step of the instruction plan to a natural-language
sentence. For instance, it might map the instruction
step ’build-railing(x2, z1, x2, z2)’ to the sentence
“build a railing on the other side of the bridge”. This
paper is concerned with this sentence generation
task – more precisely, with the referring expression
part.

2.2 Reference in the Minecraft environment
We distinguish two types of objects in a Minecraft
environments: individual blocks and complex ob-
jects (COs) such as bridges, railings, or houses.
Each type of object has a set of features: bridges
for example can be described by the features
(type, corner1, corner2, corner3, corner4, width,
length), where the corners define the coordinates
of each corner in space and type defines what kind
of object this is (in this case, a bridge). A concrete
object has a specific value for each feature and we



3

a) b)

c) d)

Figure 2: Instructing a user to build a bridge. Left: current state, right: target state. For the first task, the user could
be instructed by saying “build a bridge from the blue block to the red block”, for the second by “build a railing on
the other side of the bridge”.

will call a value associated with a feature a prop-
erty. Each object – whether it already exists or not
– has a property p(f) for each feature f of its type.1

For instance, a block b at the location (1, 1, 1)
has the two properties [position = (1, 1, 1)] and
[type = block].

These properties are not necessarily independent:
the width and length of a bridge are determined
uniquely by the positions of the corners. Features
are modeled in such a way that there is only one
possible object of each type with a certain prop-
erty tuple, and we identify the objects with their
property tuples.

We follow the mainstream literature on RE gen-
eration by assuming that the purpose of a referring
expression is to uniquely distinguish an object from
all alternatives. Technically, we assume a set P of
properties; each property p ∈ P denotes a subset
R(p) of objects in the world. For example, the
property [width = 3] denotes only those objects
whose width is 3; the property [type = bridge]
only those objects which are bridges; and so on.
When generating a referring expression, we can
keep track of which features are specified by de-
scribing the corresponding property of the target
object. While it might seem unintuitive to keep

1Note that type itself is also a feature to distinguish objects
of different types.

track of the features and not of the corresponding
properties, but this approach will come in handy
when generating indefinite REs. We denote the
properties of an object o corresponding to a spe-
cific set of features F as Po(F ). For the block b
introduced above, Pb({location, type}) would be
{[position = {1, 1, 1}], [type = block]}. When
trying to refer to an object o, we need to find a set
of features which together distinguish this object
from all other objects. We say that a finite set F
of features is distinguishing for a specific target
object t if t is the only object with all the properties
D = Pt(F ), i.e.

⋂
p∈DR(p) = {t}.

2.3 Referring to objects that do not exist
The starting point of this paper is the observation
that indefinite reference to objects which do not ex-
ist yet differs fundamentally from definite reference
to existing objects. In the extensive literature on
generation of definite REs, it is customary to limit
the denotation of each property to objects which
already exist in the environment. This makes these
denotations finite, and thus a definite RE can be
computed by keeping explicit track of (finite) sets
of possible referents and intersecting properties
until the set becomes singleton.

By contrast, a unique indefinite RE to an object
which does not exist yet must distinguish it from



4

type distinguishing features

bridge {type, corner1, corner3}
{type, corner1,width, length}

railing {type, corner1, corner2}
{type, corner1, length, orientation}

Figure 3: Examples for distinguishing feature sets.

the entire infinite set of other objects which do not
exist yet. For instance, in the example of Fig. 2a,
it would be insufficient to say “build a bridge”:
There are infinitely many places at which a bridge
could be built, and it could potentially point in an
arbitrary direction2. Thus, algorithms which are
based on intersecting denotations of properties will
not generalize to indefinites.

We therefore choose a different approach. We
predefine, for each type of object, a number of
distinguishing sets of features (see Figure 3). By
definition, if an RE realizes such a feature set
by describing the corresponding properties of
the target object, the target referent will be de-
scribed uniquely, even among a potentially infi-
nite set of alternative referents. For instance, “a
bridge from the blue block to the red block” is
a unique RE because it expresses the feature set
{type, corner1, corner3}, which is distinguishing.
Similarly, “a bridge of width three and length five,
starting at the blue block” is also a unique RE.

There is one way in which generating indefi-
nite REs is easier than generating definite ones:
Because there is always an infinite set of alterna-
tive referents, no matter what the actual Minecraft
world looks like, the distinguishing feature sets are
always the same. Thus, unlike in definite RE gener-
ation, we do not have to recalculate which feature
sets are distinguishing for each world, but can sim-
ply reuse feature sets as in Fig. 3. This makes it
feasible to shift some of the complexity of generat-
ing an indefinite RE from intersecting properties at
sentence generation time to a preprocessing mod-
ule.

2Even when considering saliency for an object’s properties
(bridges are usually built over water, walls on the ground),
there is still no straight-forward way to distinguish the (possi-
bly finite) set of plausible property tuples from the implausible
ones.

3 Semantically Interpreted Grammars

In this paper, we build upon the chart generation
algorithm of (Koller and Engonopoulos, 2017) for
Semantically Interpreted Grammars (SIGs, (En-
gonopoulos and Koller, 2014)). SIGs are syn-
chronous grammars which compositionally relate
natural-language expressions with their possible
referents; they are a special case of IRTGs (Koller
and Kuhlmann, 2011). The K&E algorithm per-
forms surface realization together with the gener-
ation of definite REs; we extend it to indefinites
here.

top

blue

Figure 4: Derivation tree
t for “The block on top of
the blue block”.

At the core of a SIG
is a regular tree gram-
mar (RTG, (Comon
et al., 2007)) which
generates a language of
derivation trees. These
derivation trees rep-
resent the underlying
structure of the referring expression; Fig. 4 shows
such a derivation tree. Derivation trees are built
by repeatedly replacing nonterminal symbols
using the production rules of the RTG (see the
first lines in the toy grammar in Fig. 5), starting
from a designated start symbol. For instance,
the rule RefBlock → top(RefBlock) replaces an
occurrence of the nonterminal RefBlock by a node
which has the label top and a child labeled with
the nonterminal RefBlock. This new nonterminal
occurrence will again be replaced by the right-hand
side of a production rule, and so on until no
nonterminals are left. We write LS(G) for the set
of derivation trees which can be derived from the
start symbol S. If we assume that RefBlock is the
start symbol, the tree in Fig. 4 is in the language
LRefBlock(G) of the toy grammar.

Interpretations SIGs describe k-ary relations by
taking the derivation trees t described by the RTG
and interpreting each t in k different ways. Techni-
cally, if the derivation trees have node labels in the
ranked signature Σ, we say that an interpretation I
consists of a domain ∆I , a set of functions ΣI over
this domain (∆n

I → ∆I), and a homomorphism
from Σ to these functions. By evaluating these
functions recursively along t, we obtain a value
JtKI ∈ ∆I of t in the interpretation I.

String interpretation Basic SIGs focus on two
specific interpretations. The string interpretation S
generates natural-language expressions from t. The



5

RefBlock→ top(RefBlock)
IS(top)(A) = The block on top of •A
IR(top)(A) = [topof ∩2 A]1
IF (top)(A) = {location} ∪A

RefBlock→ blue
IS(blue) = the blue block
IR(blue) = uniq(blue)
IF (blue) = {location}

Figure 5: A grammar for referring to a block. The ex-
ample is greatly simplified, see Figures 7 and 9 and En-
gonopoulos and Koller (2014) for more realistic gram-
mars.

domain ∆S consists of strings such as “the” and
“the block”. The functions Σs only use string con-
catenation • and string literals. In our toy example,
JtKS is computed by first obtaining a value for blue:
IS(blue) = “the blue block” and based on that ob-
taining the value of the whole tree: IS(top)(“the
blue block”) = “the block on top of” • “the blue
block” = “the block on top of the blue block”.

Referential interpretation Second, the referen-
tial interpretationR maps (partial) derivation trees
t to sets of objects to which t might refer.

The definition of the referential interpretation
relies on a model m of the current world state. We
take a model to be a relational structure which
maps names of relations to n-ary relations over
some universe W . For the toy example, let’s
assume a model with two relations: the unary
relation blue ⊆ W 1 and the binary relation
topof ⊆ W 2; we will work with the model m =
{blue : {(b1)}; topof : {(b2, b1)}}.

The domain of the referential interpretation is
the set of tuples of objects in the universe, i.e. W ∗.
The functions Σr perform set operations utilizing
the model of the world. Constants such as blue
denote the corresponding set of tuples of the model.
uniq(A) returns A if the set A contains exactly one
tuple, and the empty set otherwise. Its use in the
second rule ensures that one can only say “the blue
block” to refer to a block if there is exactly one
blue block in the world: JblueKR = uniq(blue) =
uniq({(b1)}) = {(b1)}.

A ∩2 B filters A: A ∩i B := {a ∈ A : (a[i]) ∈
B}, i. e. only those tuples of A are retained for

which the i-th element is an element of B. The
operator [A]i projects all tuples of A to their i-th
element: [A]i := {(a[i]) | a ∈ A}. The interpreta-
tion of t is thus

JtKR = [topof ∩2 {(b1)}]1
= [{(b2, b1)} ∩2 {(b1)}]1
= [{(b2, b1)}]1
= {(b2)}

Note that because t denotes a singleton set of
objects, it represents a unique RE for b2.

The language of a SIG A SIG G uses a string
and a referential interpretation to define a relation
between natural-language expressions and the ob-
jects they may denote. Given a start symbol S, we
define

L(G,S) = {(JtKS , JtKR) | t ∈ LS(G)}.

In the example outlined above, L(G,RefBlock)
contains, among others, the pair
(“the block on top of the blue block”, {b2}).

In an NLG scenario, we assume that we are given
a target referent b for which we should generate
an RE. We can restrict the language to trees that
evaluate to a specific value in certain interpretations
and in this way define the language of derivation
trees which refer to b:

L(G,S,R:{b}) = {t ∈ LS(G) | {JtKR = {b}}}.

In the example, L(G,RefBlock,R:{b2}) con-
tains e.g. the derivation tree t in Fig. 4. We can
read off the actual referring expression JtKS via
the string interpretation. The chart generation al-
gorithm of Koller and Engonopoulos (2017) effi-
ciently computes a compact representation of the
language L(G,S,R:{b}).

Feature interpretation In this paper, we add a
third interpretation to SIGs, which maps derivation
trees t to the set of features for which t determines
a property value. In the toy example, there is only
one feature: location. The domain of F are sets
of features, and ΣF are functions performing set
union. For our toy example, this yields

JtKF = {location} ∪ JblueKF
= {location} ∪ {location}
= {location}



6

b1b2
atat

topoftopof

loc-1-1loc-0-1

loc-1-0loc-0-0

Figure 6: A small world model. The blocks are in an
at relation to the locations, the locations are linked via
spatial relations such as topof

Thus, we know that t expresses the location of
its referent (it is on top of the blue button). We can
extend the above definition to the set of derivation
trees which refer to a given b and express a given
set F of features:

L(G,S,R:{b},F :F ) =

{t ∈ LS(G) | JtKR = {b} ∧ JtKF = F}.

The chart generation algorithm generalizes eas-
ily to computing L(G,S,R:{b},F :F ) for a given
G, b, and F .

4 Referring expressions for locations

When we want to instruct a user to place a block at
the location loc-1-1 in Fig. 6, we can say

(1) put a block on top of the blue block

which is a straightforward description of the in-
tended action. This instruction uses the ditransitive
verb “put” and the second argument to it subcate-
gorizes a location, which is also the referring part
of the instruction. In this section we will discuss
how to generate these referring expressions to loca-
tions. However, the expressions still need to work
with blocks to anchor the expression. We therefore
model the world using a duality between blocks and
locations; both blocks and locations are entities of
the world. Consider these referring expressions in
the world depicted in Figure 6:

(2) the blue block

(3) left of the blue block

DetRefBlock→ drb(RefBlock)
IS(drb)(RefBlock) = the •RefBlock
IR(drb)(RefBlock) = uniq(RefBlock)
IF (drb)(RefBlock) = {location} ∪RefBlock

RefBlock→ blue(RefBlock)
IS(blue)(RefBlock) = blue •RefBlock
IR(blue)(RefBlock) = blue ∩ RefBlock
IF (blue)(RefBlock) = RefBlock ∪ color

RefBlock→ block
IS(block) = block
IR(block) = block
IF (block) = {type}

RefLoc→ top(DetRefBlock)
IS(top)(A) = on top of •A
IR(top)(A) = [topof ∩2 [at ∩1 A]2]1
IF (top)(A) = {location, type}

RefBlock→ blockloc(RefLoc)
IS(blockloc)(A) = block •A
IR(blockloc)(A) = [at ∩2 A]1
IF (blockloc)(A) = {type}

Figure 7: A subset of the block laying grammar.

(4) the block left of the blue block

Sentence 2 refers to the blue block b1, Sentence 3 to
the location loc-0-0 to the left of b1, and Sentence 4
to the block at the location loc-0-0.

Locations are connected with spatial relations
such as topof and blocks are anchored in the world
by defining at which location they are using the at
relation. While Figure 6 shows only a small 2D
slice of a Minecraft world, the principles extend to
a 3D Minecraft world and all these relations can be
captured from a Minecraft world state.

4.1 Formalizing the block laying instruction
Section 3 introduced a simple SIG to refer to blocks
in the world. To generate sentences such as the one
in examples 1 to 4, the grammar has to encode
the duality between blocks and locations. Fig-
ure 7 shows a subset of the grammar to gener-
ate these REs. The grammar reflects the duality
of blocks and locations through the non-terminals
DetRefBlock (which derive referring expressions
to blocks) and RefLoc (which derive referring ex-
pressions to locations). This duality between loca-
tions and blocks is encoded in the at relation, as



7

can be seen in the last two rules of the grammar in
Fig. 7: [at ∩1 b]2 obtains the location of the block
b and [at ∩2 l]1 obtains the block at the location l.

We will illustrate how this grammar works by
generating a RE to refer to loc-1-1 in the world
shown in Figure 6. A model is sketched with ar-
rows in Figure 6; the relevant subset of the model
is {at : {(b1, loc-1-0)}; block : {(b1)}; topof :
{(loc-1-1, loc-1-0)}}. With this model, a RE
to loc-1-1 can be obtained with the derivation
tree t = top(drb(blue(block))) because it is in
L(G,RefLoc,R:{loc-1-1}):

JblockKR = {(b1), (b2)}

Jblue({(b1), (b2)})KR = blue ∪ {(b1), (b2)}
= {(b1)}

Jdrb({(b1)})KR = uniq({(b1)})
= {(b1)}

Jtop({(b1)})KR = [topof ∩2 [at ∩1 {(b1)}]2]1
= [topof ∩2 [{(b1,loc-1-0)}]2]1
= [topof ∩2 {(loc-1-0)}]1
= [{(loc-1-1, loc-1-0)}]1
= {(loc-1-1)}

The referring expression to loc-1-1 is obtained
by computing JtKS , which is “on top of the blue
block”. On the feature interpretation, the features
being described are collected. Note that when using
a relation such as topof to switch the referent, the
features from the sub-expression are discarded.

5 Indefinite REs to complex objects

Now we extend the RE generation to complex ob-
jects. The first step is to convert the coordinate-
based representation which can be easily obtained
from the 3D world to relations between the objects
of the world similar to the one in the previous sec-
tion. This step is more complex than for simple
blocks as COs have no one-to-one correspondence
to locations. To generate the instruction for build-
ing the second railing in Figure 2d, we want to
generate the following model, with it denoting the
salient object, i. e. the one that can be referred to as
“it”:

{bridge : {(b)};
it : {(r1)};

railing : {(r1), (r2)};
block : {(bb), (rb)};
from : {(b, bb)}};

to : {(b, rb)}};
sameshape : {(r1, r2)}};
otherside : {(r1, b, r2)}};

The object are the blocks rb (the red block) and
bb (the blue one), the railings r1 and r2 (r2 is the
railing that should be built) and the bridge b If
the target object is a CO that does not exist yet, it
is added to the objects from which the model is
built so that relations between the target and the
other objects are generated; this can be seen in the
relations above containing r2.

We can assume that the input to the NLG sys-
tem are descriptions of the COs in some fitting 3D
description because the NLG system is embedded
into an architect which reasons about construction
plans containing these COs (compare Figure 1).
Each object is described using properties in 3D
space: the bridge b in Figure 2, for example, is
described using the coordinates of its corners. In
contrast to the simple block laying in Section 4,
the relations can also be between several objects
and not only between an object and a location. The
type of relations expressed can be rather diverse:
Besides basic spatial relations such as “left of” and
unary relations such as the color, more complex
relations were expressed when asked humans to
instruct other humans in the Minecraft domain (Os-
melak, 2018), such as “other side of” (with respect
to an unnamed anchor object) or “same shape as” to
express the shape of an object, modulo orientation.

To extract these relations from 3D space, a pre-
processor iterates over all tuples of objects and
checks which of these should be part of one or
several relations. For example, each object is added
to the unary relation with the name of its type;
otherside is filled with all triples〈o1, o2, o3〉 where
o1 and o3 are on opposite sides of o2 and both touch
o2. In our example, this is (r1, b, r2) because the
two corners of r1 are right above the left corners
of b and the corners of r2 are right above the right
ones of b.



8

{type,corner1,corner3}

{type,corner1,corner3}

{color, type}

{type}

{type,corner1}

{color, type}

{type}

{type}

np

to

red

block

from

blue

block

bridge

{(br)}

{(br)}

{(rb)}

{(rb), (bb)}

{(br)}

{(bb)}

{(rb), (bb)}

{(br)}

F R

Figure 8: Derivation tree generating “a bridge from the blue block to the red block” (middle), values of the feature
interpretation (left) and the referential interpretation (right). The model corresponds to the setting in Figure 2 a),
br = bridge, bb = blue block, rb = red block.

5.1 Indefinite reference
As discussed in Section 2, when generating a refer-
ring expression for a given object, our aim is to find
a set of features which distinguish this object from
all other objects we currently could but do not want
to refer to; for indefinite referents, this set is pre-
computed (cmp. Figure 3 and Section 2.2). With
these distinguishing features setsD, the feature sets
that are admissible to be described are all supersets
of each of these sets: D̂ = {x|∃d ∈ D.x ⊇ d},
and the derivation trees for the indefinite REs to a
target object o are:

Lo =
⋃
d∈D̂

L(G, IndefNP,R:{(o)},F :d)

Internally, the languages do not have to be com-
puted independently; the underlying SIG formal-
ism allows to define a disjunction of target values
for interpretations. As before, the REs describing o
are the string interpretations of the derivation trees
of Lo. Figure 8 shows a derivation tree to generate
a RE to the bridge b to generate an instruction from
Figure 2 a) to b).

In the SIG (Figure 9), the feature interpretation
F keeps track of which features have been cov-
ered: in each rule, the feature interpretation per-
forms a union of the currently described feature
with the other features described in child nodes of
the derivation tree. Therefore, in the interpretations
for from, the features from the child noun node
are incorporated, but not the features expressed for
the blocks used as anchor, as can be seen in Fig-
ure 8 (left). F keeps track about which features
are described but not whether their values actu-
ally correspond to the target object. Therefore, the
referential interpretation R keeps track of what a

IndefNP→ np(N)
IS(np)(N) = a •N
IR(np)(N) = N
IF (np)(N) = N

DefNP→ dnp(N)
IS(np)(N) = the •N
IR(np)(N) = uniq(N)
IF (np)(N) = N

N→ from(N,DetRefBlock)
IS(from)(N,B) = N • from •B
IR(from)(N,B) = [from ∩2 B]1 ∩ N
IF (from)(N,B) = N ∪ {corner1}

N→ to(N,DetRefBlock)
IS(to)(N,B) = N • to •B
IR(to)(N,B) = [to ∩2 B]1 ∩ N
IF (to)(N,B) = N ∪ {corner3}

N→ otherside(N,DefNP)
IS(width)(N,P ) = N • on the other side of • P
IR(width)(N,P ) = [(otherside∩2P)∩3 it]1∩N
IF (width)(N,P ) = N ∪ {corner1, corner2}

N→ bridge
IS(bridge) = bridge
IR(bridge) = bridge
IF (bridge) = {type}

N→ railing
IS(railing) = railing
IR(railing) = railing
IF (railing) = {type}

Figure 9: Excerpt of a grammar to describe a bridge or
a railing.



9

sub-expression refers to when referring to objects
in the world (i.e. when generating definite referring
expressions such as “the blue block”) and evaluates
to the indefinite object if it describes a property of
that object. On the referential interpretation, all
sets of objects are intersected. If the referential in-
terpretation of a derivation tree t is the target object
(JtKR = {(o)}), we can be sure that each feature
described was a property of o as otherwise the in-
terpretation would be empty. This can be observed
in Figure 8 (right).

Finally, the RE to instruct the user to build the
second railing (Figure 2 c) to d)) is defined by the
following derivation tree:

t = np(otherside(railing, dnp(bridge)))

It refers to the correct object (JtKR = {(r2)}) and
describes a distinguishing set of features: JtKF =
{type, corner1, corner2}. The resulting RE is
JtKS = “a railing on the other side of the bridge”.

6 Conclusion

We have introduced a formalization for indefinite
referring expressions and exemplified it in the
Minecraft instruction giving domain. This formal-
ization is able to generate definite referring expres-
sions for locations and for objects, as well as indef-
inite referring expressions, which contain definite
referring sub-expressions. For this, we have ex-
tended a system for generating REs based on SIGs
to produce relational definite REs for objects in
the world and uses these as building blocks for in-
definite REs, as they anchor the target object into
the world. The method proposed allows to both
keep track of the properties described for the target
object to generate indefinite REs and to generate
definite REs by intersecting sets of possible refer-
ents until only one object is left.

The grammar itself only defines which REs are
legal, it does not define any preferences. It is possi-
ble to define functions scoring certain rules appli-
cations and we implemented a preference for the
smallest derivation tree, but this is clearly not suffi-
cient. For example, “twenty blocks left of the blue
block” and “to the right of the red block” might de-
note the same target and their derivation trees have
the same size but using the first RE is probably less
likely to succeed than one using the second. These
differences can be captured by a scoring model for
the grammar (Garoufi and Koller, 2014) and we

will work on learning one from interactions with
players.

Our grammar and code is available at
https://minecraft-saar.github.io.

Acknowledgments We would like to thank
Paula Stadnikowa for working on early versions
of these ideas. This work was supported by the
German Research Foundation (DFG), SFB/CRC
1102 “Information density and linguistic encoding”
(Project A7).

References
Hubert Comon, Max Dauchet, Rémi Gilleron, Flo-

rent Jacquemard, Denis Lugiez, Sophie Tison, Marc
Tommasi, and Christof Löding. 2007. Tree Au-
tomata techniques and applications. published on-
line - http://tata.gforge.inria.fr/.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the gricean maxims in the gener-
ation of referring expressions. Cognitive Science,
19(2):233 – 263.

Kees van Deemter. 2016. Computational Models of Re-
ferring: A study in cognitive science. MIT Press.

Nikos Engonopoulos and Alexander Koller. 2014. Gen-
erating effective referring expressions using charts.
In Proceedings of the 8th International Conference
on Natural Language Generation (INLG), Philadel-
phia.

Konstantina Garoufi and Alexander Koller. 2014. Gen-
eration of effective referring expressions in situated
context. Language, Cognition, and Neuroscience,
29(8):986–1001.

Irene Heim. 1982. The semantics of definite and in-
definite noun phrases. Ph.D. thesis, University of
Massachusetts, Amherst.

Klaus von Heusinger. 2000. The reference of indefi-
nites. In Klaus von Heusinger and Urs Egli, editors,
Reference and Anaphoric Relations, pages 247–265.
Springer Netherlands, Dordrecht.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic. Springer.

Alexander Koller and Nikos Engonopoulos. 2017. Inte-
grated sentence generation with charts. In Proceed-
ings of the 10th International Conference on Natu-
ral Language Generation (INLG), Santiago de Com-
postela.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Proceed-
ings of the 12th International Conference on Parsing
Technologies (IWPT), Dublin.

https://minecraft-saar.github.io
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://doi.org/https://doi.org/10.1016/0364-0213(95)90018-7
https://doi.org/https://doi.org/10.1016/0364-0213(95)90018-7
https://doi.org/https://doi.org/10.1016/0364-0213(95)90018-7
http://www.coli.uni-saarland.de/~koller/papers/chart-gre- 14.pdf
http://www.coli.uni-saarland.de/~koller/papers/chart-gre- 14.pdf
http://www.coli.uni-saarland.de/~koller/papers/mscrisp-lcp- 13.pdf
http://www.coli.uni-saarland.de/~koller/papers/mscrisp-lcp- 13.pdf
http://www.coli.uni-saarland.de/~koller/papers/mscrisp-lcp- 13.pdf
https://doi.org/10.1007/978-94-011-3947-2_13
https://doi.org/10.1007/978-94-011-3947-2_13
http://www.coli.uni-saarland.de/~koller/papers/crisp-charts- 17.pdf
http://www.coli.uni-saarland.de/~koller/papers/crisp-charts- 17.pdf
http://www.coli.uni-saarland.de/~koller/papers/irtg-11.pdf
http://www.coli.uni-saarland.de/~koller/papers/irtg-11.pdf


10

Emiel Krahmer and Kees van Deemter. 2012. Compu-
tational generation of referring expressions: A sur-
vey. Computational Linguistics, 38(1):173–218.

Emiel Krahmer, Sebastiaan van Erk, and André Verleg.
2003. Graph-based generation of referring expres-
sions. Computational Linguistics, 29(1):53–72.

Doreen Osmelak. 2018. Human experiments in
minecraft. Master’s thesis, Universität des Saarlan-
des.

Julia Wichlacz, Alvaro Torralba, and Jörg Hoffmann.
2019. Construction-planning models in minecraft.
In Proceedings of ICAPS workshop on Hierarchical
Planning.

https://doi.org/10.1162/COLI_a_00088
https://doi.org/10.1162/COLI_a_00088
https://doi.org/10.1162/COLI_a_00088
https://doi.org/10.1162/089120103321337430
https://doi.org/10.1162/089120103321337430

