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Introduction

Welcome to the Proceedings of the 1st Workshop on Interactive Natural Language Technology for
Explainable Artificial Intelligence (NL4XAI 2019)!

In the era of the Internet of Things and Big Data, Artificial Intelligence (AI) techniques allow us to
automatically extract knowledge from data. This workshop focuses on the automatic generation of
interactive explanations in natural language (NL), as humans naturally do, and as a complement to
visualization tools. NL technologies, both NL Generation (NLG) and NL Processing (NLP) techniques,
are expected to enhance knowledge extraction and representation through human-machine interaction
(HMI). As remarked in the last challenge stated by the USA Defense Advanced Research Projects
Agency (DARPA), "even though current AI systems offer many benefits in many applications, their
effectiveness is limited by a lack of explanation ability when interacting with humans". Accordingly,
users without a strong background on AI, require a new generation of Explainable AI systems. They
are expected to naturally interact with humans, thus providing comprehensible explanations of decisions
automatically made. The ultimate goal is building trustworthy AI that is beneficial to people through
fairness, transparency and explainability. To achieve it, not only technical but also ethical and legal
issues must be carefully considered.

The workshop will be held as part of the International Conference on Natural Language Generation
(INLG2019), which is supported by the Special Interest Group on NLG of the Association for
Computational Linguistics. INLG 2019 is to be held in Tokyo (Japan), 29 October - 1 November, 2019.
This is the first of a series of workshops to be organized in the next years in the context of the European
project NL4XAI (https://nl4xai.eu/).

This half-day workshop goes a step ahead of the workshop 2IS&NLG that we co-organized with
Mariët Theune at INLG2018. We have narrowed the workshop topic to become a specialized event on
Explainable AI. In this sense, the workshop follows the line started with the workshop XCI at INLG2017.
Moreover, this workshop follows a series of thematic special sessions in international conferences such
as Advances on Explainable AI at FUZZ-IEEE2019, Advances on Explainable AI at IPMU2018, and
many other related sessions at IFSA-EUSFLAT 2009, ISDA 2009, WCCI 2010, WILF 2011, ESTYLF
2012, WCCI 2012, EUSFLAT 2013, IFSA-EUSFLAT2015, and FUZZ-IEEE2017.

Thus, the aim of this workshop is to provide a forum to disseminate and discuss recent advances on
Explainable AI. We expect to identify challenges and explore potential transfer opportunities between
related fields, generating synergy and symbiotic collaborations in the context of Explainable AI, HMI
and Language Generation.

We received 10 submissions (8 regular papers and 2 demos). 4 regular submissions were accepted after
a double blind peer review, whereas 2 demos have been included in the program. In addition, NL4XAI
2019 included an invited talk by Dr. Saad Mahamood (trivago) to talk about the potential of XAI within
industry; and a round table to strengthen the open discussion on the challenges, involving Claire Gardent,
Albert Gatt, Ehud Reiter and Jose M. Alonso as panelists.

We would like to thank to all authors for submitting their contributions to our workshop. We thank
the program committee members for their work at reviewing the papers and their support during the
organization.

Jose M. Alonso and Alejandro Catala
NL4XAI 2019 Organizers
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Invited talk

Explainable Artificial Intelligence and its potential
within Industry

Saad Mahamood
saad.mahamood@trivago.com

trivago N.V., Düsseldorf, Germany

Abstract

The age of Big Data has enabled the creation of artificial intelligence solutions that has allowed systems
to better respond to their users requests and needs. Applications such as recommender systems,
automated content generation systems, etc. are increasingly leveraging such large amounts of data to
make better informed decisions about how to tailor their output appropriately. However, the opaqueness
of these AI systems in how they derive their decisions or outputs has led to an increasing call for
transparency with increasing concerns for the potential of bias to occur in areas such as finance and
criminal law. The culmination of these calls have lead to tentative legislative steps. For example,
the "Right to explanation" as part of the recently enacted European Union’s General Data Protection
Regulation.

Natural Language Generation (NLG) has been used in successfully in many data-to-text applications
allowing users to gain insights from their data sets. Whilst NLG technology has a strong role to play in
generating explanations for AI models there still remains inherit challenges in developing and deploying
text generation systems within a commercial context.

In this talk I will explore the role and potential that Natural Language Explainable AI can have within
trivago and the wider industry. trivago is a leading accommodation meta-search engine that enables
users find the right hotel or apartment at the right price. In particular, this talk will describe the work we
have done to apply natural language solutions within trivago and the challenges of applying AI solutions
from a commercial perspective. Finally, this talk will also explore the potential applications of where
explainable AI approaches could be used within trivago.
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Natural Language Generation Challenges for Explainable AI

Ehud Reiter
University of Aberdeen

e.reiter@abdn.ac.uk

Abstract

Good quality explanations of artificial intelli-
gence (XAI) reasoning must be written (and
evaluated) for an explanatory purpose, tar-
geted towards their readers, have a good narra-
tive and causal structure, and highlight where
uncertainty and data quality affect the AI out-
put. I discuss these challenges from a Natu-
ral Language Generation (NLG) perspective,
and highlight four specific “NLG for XAI” re-
search challenges.

1 Introduction

Explainable AI (XAI) systems (Biran and Cotton,
2017; Gilpin et al., 2018) need to explain AI rea-
soning to human users. If the explanations are pre-
sented using natural languages such as English,
then it is important that they be accurate, useful,
and easy to comprehend. Ensuring this requires
addressing challenges in Natural Language Gen-
eration (NLG) (Reiter and Dale, 2000; Gatt and
Krahmer, 2018).

Figure 1 gives an example of a human-written
explanation of the likelihood of water or gas be-
ing close to a proposed oil well; I chose this at
random from many similar explanations in a Dis-
covery Evaluation Report (Statoil, 1993) produced
for an oil company which was deciding whether to
drill a well. Looking at this report, it is clear that

• It is written for a purpose (helping the
company decide whether to drill a well),
and needs to evaluated with this purpose
in mind. For example, the presence of a
small amount of water would not impact the
drilling decision, and hence the explanation
is not “wrong” if a small amount of water is
present.

• It is written for an audience, in this case
specialist engineers and geologists, by us-

It is also unlikely that a water or gas contact is
present very close to the well. During the DST
test, the well produced only minor amounts of wa-
ter. No changes in the water content or in the GOR
of the fluid were observed. However, interpreta-
tion of the pressure data indicates pressure barriers
approximately 65 and 250m away from the well
[...] It is therefore a possibility of a gas cap above
the oil. On the other hand, the presence of a gas
cap seems unlikely due to the fact that the oil itself
is undersaturated with respect to gas (bubble point
pressure = 273 bar, reservoir pressure = 327.7 bar)

Figure 1: Example of a complex explanation

ing specialist terminology which is appropri-
ate for this group, and also by using vague
expressions (e.g., “minor amount”) whose
meaning is understood by this audience. A
report written about oil wells for the gen-
eral public (such as NCBPDeepwaterHori-
zonSpill (2011)) uses very different phrasing.

• It has a narrative structure, where facts are
linked with causal, argumentative, or other
discourse relations. It is not just a list of ob-
servations.

• It explicitly communicates uncertainty, using
phrases such as “possibility” and “unlikely”,

If we want AI reasoning systems to be able to
produce good explanations of complex reasoning,
then these systems will also need to adapt expla-
nations to be suitable for a specific purpose and
user, have a narrative structure, and communicate
uncertainty. These are fundamental challenges in
NLG.
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2 Purpose and Evaluation

A core principle of NLG is that generated texts
have a communicative goal. That is, they have
a purpose such as helping users make decisions
(perhaps the most common goal), encouraging
users to change their behaviour, or entertaining
users. Evaluations of NLG systems are based on
how well they achieve these goals, as well as the
accuracy and fluency of generated texts. Typically
we either directly measure success in achieving
the goal or we ask human subjects how effective
they think the texts will be at achieving the goal
(Gkatzia and Mahamood, 2015).

Real-world explanations of AI systems simi-
larly have purposes, which include

• Helping developers debug their AI systems.
This is not a common goal in NLG, but
seems to be one of the most common goals
in Explainable AI. The popular LIME model
(Ribeiro et al., 2016), for example, is largely
presented as a way of helping ML develop-
ers choose between models, and also improve
models via feature engineering.

• Helping users detect mistakes in AI reason-
ing (scrutability). This is especially impor-
tant when the human user has access to ad-
ditional information which is not available
to the AI system, which may contradict the
AI recommendation. For example, a medi-
cal AI system which only looks at the med-
ical record cannot visually observe the pa-
tient; such observations may reveal problems
and symptoms which the AI is not aware of.

• Building trust in AI recommendations. In
medical and engineering contexts, AI sys-
tems usually make recommendations to doc-
tors and engineers, and if these professionals
accept the recommendations, they are liable
(both legally and morally) if anything goes
wrong. Hence systems which are not trusted
will not be used.

The above list is far from complete, for example
Tintarev and Masthoff (2012) also include Trans-
parency, Effectiveness, Persuasiveness, Efficiency,
and Satisfaction in their list of possible goals for
explanations.

Hence, when we evaluate an explanation sys-
tem, we need to do so in the context of its purpose.

As with NLG in general, we can evaluate explana-
tions at different levels of rigour. The most pop-
ular evaluation strategy in NLG is to show gener-
ated texts to human subjects and ask them to rate
and comment on the texts in various ways. This is
leads to my first challenge

• Evaluation Challenge: Can we get reliable
estimates of scrutabilty, trust (etc) by sim-
ply asking users to read explanations and es-
timate scrutability (etc)? What experimen-
tal design (subjects, questions, etc) gives the
best results? Do we need to first check expla-
nations for accuracy before doing the above?

Other challenges include creating good experi-
mental designs for task-based evaluation, such as
the study Biran and McKeown (2017) did to as-
sess whether explanations improved financial de-
cision making because of increased scrutability;
and also exploring whether automatic metrics such
as BLEU (Papineni et al., 2002) give meaningful
insights about trust, scrutability, etc.

3 Appropriate Explanation for Audience

A fundamental principle of NLG is that texts are
produced for users, and hence should use appro-
priate content, terminology, etc for the intended
audience (Paris, 2015; Walker et al., 2004). For
example, the Babytalk systems generated very dif-
ferent summaries from the same data for doctors
(Portet et al., 2009), nurses (Hunter et al., 2012),
and parents (Mahamood and Reiter, 2011).

Explanations should also present information in
appropriate ways for their audience, using fea-
tures, terminology, and content that make sense to
the user (Lacave and Dı́ez, 2002; Biran and McKe-
own, 2017). For example, a few years ago I helped
some colleagues evaluate a system which gener-
ated explanations for an AI system which clas-
sified leaves (Alonso et al., 2017). We showed
these explanations to a domain expert (Professor
of Ecology at the University of Aberdeen), and
he struggled to understand some explanations be-
cause the features used in these explanation were
not the ones that he normally used to classify
leaves.

Using appropriate terminology (etc) is proba-
bly less important if the goal of the explanation
is debugging, and the user is the machine learn-
ing engineer who created the AI model. In this
case, the engineer will probably be very familiar
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with the features (etc) used by the model. But if
explanations are intended to support end users by
increasing scrutability or trust, then they need to
be aligned with the way that users communicate
and think about the problem.

This relates to a number of NLG problems, and
I would like to highlight the below as my second
challenge:

• Vague Language Challenge: People naturally
think in qualitative terms, so explanations
will be easier to understand if they use vague
terms (Van Deemter, 2012) such as “minor
amount” (in Figure 1) when possible. What
algorithms and models can we use to guide
the usage of vague language in explanations,
and in particular to avoid cases where the
vague language is interpreted by the user in
an unexpected way which decreases his un-
derstanding of the situation?

There are of course many other challenges in this
space. At the content level, it would really help
if we could prioritise messages which are based
on features and concepts which are familiar to the
user. And at the lexical level, we should try to
select terminology and phrasing which make sense
to the user.

4 Narrative Structure

People are better at understanding symbolic rea-
soning presented as a narrative than they are at
understanding a list of numbers and probabilities
(Kahneman, 2011). “John smokes, so he is at risk
of lung cancer” is easier for us to process than “the
model says that John has a 6% chance of develop-
ing lung cancer within the next six years because
he is a white male, has been smoking a pack a
day for 50 years, is 67 years old, does not have
a family history of lung cancer, is a high school
graduate [etc]”. But the latter of course is the
way most computer algorithms and models work,
including the one I used to calculate John’s can-
cer risk1. Indeed, Kahneman (2011) points out
that doctors have been reluctant to use regression
models for diagnosis tasks, even if objectively the
models worked well, because the type of reason-
ing used in these models (holistically integrating
evidence from a large number of features) is not
one they are cognitively comfortable with.

1https://shouldiscreen.com/English/lung-cancer-risk-
calculator

The above applies to information communi-
cated linguistically. In contexts that do not involve
communication, people are in fact very good at
some types of reasoning which involve holistically
integrating many features, such as face recogni-
tion. I can easily recognise my son, even in very
noisy visual contexts, but I find it very hard to de-
scribe him in words in a way which lets other peo-
ple identify him.

In any case, linguistic communication is most
effective when it is structured as a narrative. That
is, not just a list of observations, but rather a se-
lected set of key messages which are linked to-
gether by causal, argumentative, or other discourse
relations. For example, the most accurate way of
explaining a smoking risk prediction based on re-
gression or Bayesian models is to simply list the
input data and the models result.

“John is a white male. John has been
smoking a pack a day for 50 years. John
is 67 years old. John does not have a
family history of lung cancer. John is
a high school graduate. John has a 6%
chance of developing lung cancer within
the next 6 years.”

But people will probably understand this explana-
tion better if we add a narrative structure do it, per-
haps by identifying elements which increase or de-
crease risks, and also focusing on a small number
of key data elements (Biran and McKeown, 2017).

“John has been smoking a pack a day for
50 years, so he may develop lung cancer
even though he does not have a family
history of lung cancer.”

This is not the most accurate way of describing
how the model works (the model does not care
whether each individual data element is “good” or
“bad”), but it probably is a better explanation for
narrative-loving humans.

In short, creating narratives is an important
challenge in NLG (Reiter et al., 2008), and its
probably even more important in explanations.
Which leads to my third challenge

• Narrative Challenge: How can we present
the reasoning done by a numerical non-
symbolic model, especially one which holis-
tically combines many data elements (e.g.,
regression and Bayesian models) as a narra-
tive, with key messages linked by causal or
argumentative relations?
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5 Communicating Uncertainty and Data
Quality

People like to think in terms of black and white,
yes or no; we are notoriously bad at dealing with
probabilities (Kahneman, 2011). One challenge
which has received a lot of attention is communi-
cating risk (Berry, 2004; Lundgren and McMakin,
2018); despite all of this attention, it is still a strug-
gle to get people to understand what a 13% risk
(for example) really means. Which is a shame, be-
cause effective communication of risk in an expla-
nation could really increase scrutability and trust.

Another factor which is important but has re-
ceived less attention than risk is communicating
data quality issues. If we train an AI system on
a data set, then any biases in the data set will be
reflected in the system’s output, For example, if
we train a model for predicting lung cancer risks
purely on data from Americans, then that model
may be substantially less accurate if it is used on
people from very different cultures. For instance,
few Americans grow up malnourished or in hyper-
polluted environments; hence a cancer-prediction
model developed on Americans may not accu-
rately estimate risks for a resident of Delhi (one of
the most polluted city in the world) who has been
malnourished most of her life. Any explanation
produced in such circumstances should highlight
training bias and any other factors which reduce
accuracy.

Similarly, models (regardless of how they are
built) may produce inaccurate results if the in-
put data is incomplete or incorrect. For exam-
ple, suppose someone does not know whether he
has a family history of lung cancer (perhaps he
is adopted, and has no contact with his birth par-
ents). A lot of AI models are designed to be robust
in such cases and still produce an answer; how-
ever, their accuracy and reliability may be dimin-
ished. In such cases, I think explanations which
are scrutable and trustworthy need to highlight this
fact, so the user can take this reduced accuracy into
consideration when deciding what to do.

There has not been much previous research in
data quality in NLG (one exception is Inglis et al.
(2017)), which is a shame, because data quality
can impact many data-to-text applications, not just
explanations. But this does lead to my fourth chal-
lenge

• Communicating Data Quality Challenge:
How can we communicate to users that the

accuracy of an AI system is impacted either
by the nature of its training data, or by incom-
plete or incorrect input data?

Of course, communicating uncertainty in the sense
of probabilities and risks is also a challenge for
both NLG in general and explanations specifi-
cally!

6 Conclusion

If we want to produce explanations of AI reason-
ing in English or other human languages, then we
will do a better job if we address the key natu-
ral language generation issues of evaluation, user-
appropriateness, narrative, and communication of
uncertainty and data quality. I have in this paper
highlighted four specific challenges within this ar-
eas which I think are very important in generating
good explanations:

• Evaluation: Develop “cheap but reliable”
ways of estimating scrutability, trust, etc.

• Vague Language: Develop good models for
the use of vague language in explanations.

• Narrative: Develop algorithms for creating
narrative explanations.

• Data Quality: Develop techniques to let
users know how results are influenced by data
issues.

All of these are generic NLG challenges which are
important across the board in NLG, not just in ex-
plainable AI.
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Miruna A. Clinciu and Helen F. Hastie
Edinburgh Centre for Robotics

Heriot-Watt University, Edinburgh, EH14 4AS, UK
{mc191, H.Hastie}@hw.ac.uk

Abstract

The field of Explainable Artificial Intelligence
attempts to solve the problem of algorithmic
opacity. Many terms and notions have been
introduced recently to define Explainable AI,
however, these terms seem to be used inter-
changeably, which is leading to confusion in
this rapidly expanding field. As a solution to
overcome this problem, we present an analysis
of the existing research literature and examine
how key terms, such as transparency, intelli-
gibility, interpretability, and explainability are
referred to and in what context. This paper,
thus, moves towards a standard terminology
for Explainable AI.

Keywords— Explainable AI, black-box, NLG, The-
oretical Issues, Transparency, Intelligibility, Inter-
pretability, Explainability

1 Introduction

In recent years, there has been an increased in-
terest in the field of Explainable Artificial Intel-
ligence (XAI). However, there is clear evidence
from the literature that there are a variety of terms
being used interchangeably such as transparency,
intelligibility, interpretability, and explainability,
which is leading to confusion. Establishing a set of
standard terms to be used by the community will
become increasingly important as XAI is man-
dated by regulation, such as the GDPR and as stan-
dards start to appear such as the IEEE standard in
transparency (P7001). This paper works towards
this goal.

Explainable Artificial Intelligence is not a new
area of research and the term explainable has ex-
isted since the mid-1970s (Moore and Swartout,
1988). However, XAI has come to the forefront
in recent times due to the advent of deep machine
learning and the lack of transparency of “black-
box” models. We introduce below, some descrip-
tions of XAI collected from the literature:

• “Explainable AI can present the user with an
easily understood chain of reasoning from the
user's order, through the AI's knowledge and
inference, to the resulting behaviour” (van
Lent et al., 2004).

• “XAI is a research field that aims to make AI
systems results more understandable to hu-
mans” (Adadi and Berrada, 2018).

Thus, we conclude that XAI is a research field that
focuses on giving AI decision-making models the
ability to be easily understood by humans. Natural
language is an intuitive way to provide such Ex-
plainable AI systems. Furthermore, XAI will be
key for both expert and non-expert users to enable
them to have a deeper understanding and the ap-
propriate level of trust, which will hopefully lead
to increased adoption of this vital technology.

This paper firstly examines the various notions
that are frequently used in the field of Explainable
Artificial Intelligence in Section 2 and attempts to
organise them diagrammatically. We then discuss
these terms with respect to Natural Language Gen-
eration in Section 3 and provide conclusions.

2 Terminology

In this section, we examine four key terms found
frequently in the literature for describing various
techniques for XAI. These terms are illustrated in
Figure 1, where we organise them as a Venn dia-
gram that describes how a transparent AI system
has several facets, which include intelligibility, ex-
plainability, and interpretability. Below, we dis-
cuss how intelligibility can be discussed in terms
of explainability and/or interpretability. For each
of these terms, we present the dictionary defini-
tions extracted from modern and notable English
dictionaries, quotes from the literature presented
in tables and discuss how they support the pro-
posed structure given in Figure 1. In every table,
we emphasise related words and context, in order
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to connect ideas and build up coherent relation-
ships within the text.

In this paper, the first phase of the selection cri-
teria of publications was defined by the relevance
of the paper and related key words. The second
phase was performed manually by choosing the
papers that define or describe the meaning of the
specified terms or examine those terms for ways in
which they are different, alike, or related to each
other.

Figure 1: A Venn Diagram of the relationship between
frequently used terms, that offers a representation of
the authors' interpretation for the field, excluding post-
hoc interpretation.

Transparency

Dictionary definitions: The word “transparent”
refers to something that is “clear and easy to
understand” (Cambridge Dictionary, 2019d); or
“easily seen through, recognized, understood, de-
tected; manifest, evident, obvious, clear” (Oxford
English Dictionary, 2019d); or “language or infor-
mation that is transparent is clear and easy to un-
derstand” (The Longman Dictionary of Contem-
porary English, 2019c).

Conversely, an opaque AI system is a system
with the lowest level of transparency, known as a
“black-box” model. A similar definition is given
by Tomsett et al. (2018) in Table 1.

Tintarev and Masthoff (2007) state that trans-
parency “explains how the system works” and it is
considered one of the possible explanation facili-
ties that could influence good recommendations in
recommender systems.

In the research paper by Cramer et al. (2008),
transparency aims to increase understanding and
entails offering the user insight as to how a system
works, for example, by offering explanations for
system choices and behaviour.

“Transparency clearly describing the model
structure, equations, parameter values, and
assumptions to enable interested parties to
understand the model” (Briggs et al., 2012).
Tomsett et al. (2018) defined transparency as a
“level to which a system provides information
about its internal workings or structure” and
both “explainability and transparency are im-
portant for improving creator-interpretability”.

“Informally, transparency is the opposite of
opacity or blackbox-ness. It connotes some
sense of understanding the mechanism by
which the model works. We consider trans-
parency at the level of the model (simulata-
bility), at the level of individual components
(e.g. parameters) (decomposability), and at
the level of the training algorithm (algorithmic
transparency)” (Lipton, 2016).

Table 1: Various notions of Transparency presented in
recent research papers

Intelligibility

Dictionary definitions: An “intelligible” system
should be “clear enough to be understood” accord-
ing to Cambridge Dictionary (2019b); or “capa-
ble of being understood; comprehensible” (Ox-
ford English Dictionary, 2019b); or “easily un-
derstood” (The Longman Dictionary of Contem-
porary English, 2019d).

The concept of intelligibility was defined by
Bellotti and Edwards (2001) from the perspective
of “context-aware systems that seek to act upon
what they infer about the context must be able to
represent to their users what they know, how they
know it, and what they are doing about it” (Bellotti
and Edwards, 2001).

As illustrated in Table 2, it is challenging to
define how intelligible AI systems could be de-
signed, as they would need to communicate very
complex computational processes to various types
of users (Weld and Bansal, 2018). Per the Venn di-
agram in Figure 1, we consider that an AI system
could become intelligible in a number of ways,
but also through explanations (e.g. in natural lan-
guage) and/or interpretations. We discuss both of
these in turn below.
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“It remains remarkably hard to specify what
makes a system intelligible; The key challenge
for designing intelligible AI is communicating
a complex computational process to a human.
Specifically, we say that a model is intelligi-
ble to the degree that a human user can predict
how a change to a feature” (Weld and Bansal,
2018).
“Intelligibility can help expose the inner work-
ings and inputs of context-aware applications
that tend to be opaque to users due to their
implicit sensing and actions” (Lim and Dey,
2009).

Table 2: Various notions of Intelligibility presented in
recent research papers

Interpretability

Dictionary Definitions: According to Cambridge
Dictionary (2019c), the word “interpret” defini-
tion is “to decide what the intended meaning
of something is”; or “to expound the meaning
of (something abstruse or mysterious); to render
(words, writings, an author, etc.) clear or explicit;
to elucidate; to explain” (Oxford English Dictio-
nary, 2019c); or “to explain the meaning of some-
thing” (The Longman Dictionary of Contempo-
rary English, 2019b).

Considering a “black-box” model, we will try to
understand how users and developers could define
the model interpretability. A variety of definitions
of the term interpretability have been suggested in
recent research papers, as presented in Table 3.

Various techniques have been used to give in-
sights into an AI model through interpretations,
such as Feature Selection Techniques (Kim et al.,
2015), Shapley Values (Sundararajan and Najmi,
2019); the interpretation of the AI model inter-
pretation e.g. Hybrid AI models (Wang and Lin,
2019), by combining interpretable models with
opaque models, and output interpretation (e.g.
Evaluation Metrics Interpretation (Mohseni et al.,
2018), and Visualisation Techniques Interpretation
(Samek et al., 2017; Choo and Liu, 2018)). Thus
in our model in Figure 1, we define interpretability
as intersecting with explainability as some mod-
els may be interpretable without needing explana-
tions.

“In model-agnostic interpretability, the
model is treated as a black-box. Interpretable
models may also be more desirable when
interpretability is much more important than
accuracy, or when interpretable models trained
on a small number of carefully engineered
features are as accurate as black-box models”.
(Ribeiro et al., 2016)
“An explanation can be evaluated in two ways:
according to its interpretability, and according
to its completeness” (Gilpin et al., 2018).

“We define interpretable machine learning
as the use of machine-learning models for
the extraction of relevant knowledge about do-
main relationships contained in data...” (Mur-
doch et al., 2019).

Table 3: Various notions of Interpretability presented
in recent research papers

Explainability

Dictionary Definitions: For the word “explain”
were extracted the following definitions: “to make
something clear or easy to understand by describ-
ing or giving information about it” Cambridge
Dictionary (2019a); or “to provide an explanation
for something. to make plain or intelligible” (Ox-
ford English Dictionary, 2019a); or “to tell some-
one about something in a way that is clear or easy
to understand. to give a reason for something or to
be a reason for something” (The Longman Dictio-
nary of Contemporary English, 2019a).

Per these definitions, providing explanations is
about improving the user’s mental model of how a
system works. Ribera and Lapedriza (2019) con-
sider that we do not have a concrete definition for
explanation in the literature. However, according
to these authors, every definition relates “expla-
nations with “why” questions or causality reason-
ings”. Given the nature of the explanations, Rib-
era and Lapedriza (2019) proposed to categorise
the explainees in three main groups, based on their
goals, background, and relationship with the prod-
uct, namely: developers and AI researchers, do-
main experts, and lay users. Various types of ex-
planations have been presented in the literature
such as “why” and “why not” (Kulesza et al.,
2013) or Adadi and Berrada (2018)’s four types
of explanations that are used to “justify, control,
discover and improve”. While it is out of scope
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to go into detail here, what is clear is that in most
uses of the term explainability, it means providing
a way to improve the understanding of the user,
whomever they may be.

“Explanation is considered closely related to
the concept of interpretability” (Biran and
Cotton, 2017).

“Transparent design: model is inherently in-
terpretable (globally or locally)” (Lucic et al.,
2019).
“I equate interpretability with explainabil-
ity” (Miller, 2018).
“Systems are interpretable if their operations
can be understood by a human, either through
introspection or through a produced explana-
tion” (Biran and Cotton, 2017).
In the paper (Poursabzi-Sangdeh et al., 2018),
interpretability is defined as something “that
cannot be manipulated or measured, and could
be defined by people, not algorithms”.

Table 4: Various notions of Explainability presented in
recent research papers

3 The Role of NLG in XAI

An intuitive medium to provide such explanations
is through natural language. The human-like ca-
pability of Natural Language Generation (NLG)
has the potential to increase the intelligibility of
an AI system and enable a system to provide ex-
planations that are tailored to the end-user (Chiyah
Garcia et al., 2019).

One can draw an analogy between natural lan-
guage generation of explanations and Lacave and
Diez’s model of explanation generation for expert
systems (Lacave and Dı́ez, 2002); or Reiter and
Dale’s NLG pipeline (Reiter and Dale, 2000) with
stages for determining “what” to say in an expla-
nation (content selection) and “how” to say it (sur-
face realisation). Lacave and Diez’s model also
emphasises the importance of adapting to the user,
which is also a focus area in NLG (e.g. adapting
styles (Dethlefs et al., 2014)).

Other studies have looked at agents and robots
providing a rationalisation of their behaviour
(Ehsan et al., 2018) by providing a running com-
mentary in language. Whilst this is not necessarily
how humans behave, it is beneficial to be able to

provide such rationalisation, especially in the face
of unusual behaviour and, again, natural language
is one way to do this. Defined as a process of pro-
ducing an explanation for an agent or system be-
havior as if a human had performed the behaviour,
AI rationalisation has multiple advantages to be
taken into consideration: “naturally accessible and
intuitive to humans, especially non-experts, could
increase the satisfaction, confidence, rapport, and
willingness to use autonomous systems and could
offer real-time response” (Ehsan et al., 2018).

4 Conclusions and Future work

In this paper, we introduced various terms that
could be found in the field of Explainable AI and
their concrete definition. In Figure 1, we have
attempted to define the relationship between the
main terms that define Explainable AI. Intelligi-
bility could be achieved through explanations and
interpretations, where the type of user, their back-
ground, goal and current mental model are taken
into consideration.

As mentioned previously, interpretability is de-
fined as a concept close to explainability (Biran
and Cotton, 2017). Our Venn diagram given in
Figure 1 illustrates that transparent systems could
be, by their nature interpretable, without providing
explanations and that the activities of interpreting
a model and explaining why a system behaves the
way it does are fundamentally different. We posit,
therefore, that the field moving forward should be
wary of using such terms interchangeably. Natu-
ral Language Generation will be key to providing
explanations, and rationalisation is one approach
that we have discussed here.

Evaluation of NLG is challenging area (Hastie
and Belz, 2014) with objective measures such as
BLEU being shown not to reflect human ratings
(Liu et al., 2016). How natural language expla-
nations are evaluated will likely be based on, in
the near term at least, subjective measures that try
to evaluate an explanation in terms of whether it
improves a system’s intelligibility, interpretability
and transparency along with other typical metrics
related to the quality and clarity of the language
used (Curry et al., 2017).

In future work, it would be advisable to perform
empirical analysis of research papers related to
the various terms and notions introduced here and
continuously being added into the field of XAI.
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Abstract

Among challenges for eXplainable Artificial
Intelligence (XAI) is explanation generation.
In this paper we put the stress on this is-
sue by focusing on a semantic representation
of the content of an explanation that could
be common to any kind of XAI. We inves-
tigate knowledge representations, and discuss
the benefits of conceptual graph structures for
being a basis to represent explanations in AI.

1 Introduction

Today eXplainable Artificial Intelligence (XAI)
is recognized as a major need for future appli-
cations. It aims at producing intelligent systems
that reinforce the trust of the users (Mencar and
Alonso, 2018), who desire to understand auto-
matic decision (Alonso et al., 2017). Moreover,
it is part of a context where laws reinforce the
right of users (European Council, 2016; US Coun-
cil, 2018). These last years, many XAI systems
have emerged with various applications such as
automatic image annotation (Pierrard et al., 2019),
recommender systems (Chang et al., 2016) or de-
cision making (Wulf and Bertsch, 2017; Baaj and
Poli, 2019).

So far, the researches focus mainly on two spe-
cific points. On the one hand, the literature is
abundant about the production of the content of
the explanation (Biran and Cotton, 2017; Gilpin
et al., 2018). On the other hand, different papers
focus on the difficult task of evaluation (Mohseni
et al., 2018; Hoffman et al., 2018). However, an
interesting and not easy question has motivated
few works, namely the structure of an explanation
(see for instance, (Overton, 2012) for the scientific
explanation case).

Despite the several existing XAI approaches,
we believe that they all share the need to provide
at the end an explanation in natural language. We

propose to meet this need through a semantic rep-
resentation of the content of an explanation. We
dedicate this paper to discuss the construction of
such a representation by highlighting the different
criteria and characteristics that we think this rep-
resentation should meet to be a unified framework
for XAI. Especially, we will discuss a particular
representation namely conceptual graphs (Sowa,
2000), and its derivatives, that we believe offer a
great potential for this kind of representation.

The paper is organized as follows: in Section 2,
we motivate the need of a semantic representation
for generating explanations in a XAI architecture.
Next, in Section 3, we continue with an overview
of some existing knowledge representations in AI,
pointing out some of their weaknesses regarding
our needs. It leads us to present some narrative
representation models in Section 4 and to focus in
particular on a semantic network used for text rep-
resentation. We discuss this one in Section 5, re-
garding its potential as a semantic representation
of explanation in AI. Finally, we conclude with
some research perspectives in Section 6.

2 Motivations

We aim in this work to answer the need of provid-
ing an explanation in natural language for XAI. To
account for this, we propose to abstract the process
of generating explanations, as shown in Figure 1.
The idea is to represent the explanation generation
process through three major components:

• the content extraction from an instantiated AI
model,

• the semantic representation of this content,
and

• the text generation by relying on Natural Lan-
guage Generation (NLG).

The content extraction is specific to each model
(e.g. decision trees, expert systems, etc.): it takes
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Figure 1: XAI architecture proposal to produce and evaluate explanations

as input the instantiated model, i.e. all the internal
values of the model for a given input: for instance,
a neural network and the values of all the weights,
the execution trace of an expert system, etc. On
the contrary, the other components are common
to all kind of models and the research efforts can
though be factorized. The generation of text from
a semantic representation can be helpful for multi-
lingual support. This split may also help the eval-
uation phase by allowing to separate the target of
evaluations to independent steps: e.g., the content
of the explanation can be assessed without regard
to text generation.

In this paper, we focus on the semantic repre-
sentation of the content of an explanation. The
ambition is to offer a tool allowing to seam-
lessly generate textual explanations with NLG
techniques in the target language. The challenge
is to obtain an abstract semantic representation,
i.e. a structure that connects explicitly concepts
to each other. This requirement was put forward
with natural language generation for decision sup-
port (Reiter, 2006). To our knowledge, no such
representation has been introduced specifically for
explanations.

As the representation will be an input for the
text generation and the evaluation processes, it
needs to be a coherent structure constructed in a
manner that preserves expressiveness and simplic-
ity for being used by XAI applications. Indeed,
this structure will play a key role regarding the un-
derstanding of the text produced. The literature in
cognitive science shows that text production and
its understanding are greatly connected (Bos et al.,
2015). On the other hand, different aspects should
be taken into account while producing an expla-
nation in order to increase user acceptance. For
instance, it should be simple, contrastive, adapted
to the context, etc. (Miller, 2019). Therefore, the
representation needs to consider these elements to
be useful.

In addition, a specific task towards the gener-
ation of an explanation, is to determine the na-

ture of the pieces of information to involve in an
explanation. They are connected to each other
by precise relations (e.g. causality) which need
to be carefully defined. This subject has been
notably studied by cognitive science researchers.
They have developed text representation and com-
prehension models (Kintsch and Van Dijk, 1978;
Van den Broek et al., 1999) with a strong focus on
narrative representation and comprehension in the
80-90’s (Zwaan and Radvansky, 1998). Indeed,
narrative text have properties actively sought in
cognitive science such as foregrounding the way
inferences are generated during reading (Graesser
et al., 1991). Some of these models are dedi-
cated to the representation of structured stories,
and model situations involving multiple sources of
knowledge (e.g. causality, agentivity) with a great
expressiveness. The next section is dedicated to
discuss some knowledge representations and es-
pecially the narrative representation.

3 Background

Historically, the knowledge representation of an
explanation was a question tackled during the
emergence of expert systems in the 80-90’s. The
knowledge involved in an explanation was sepa-
rated into a reasoning knowledge base and a do-
main knowledge base (Swartout, 1983), and later,
the use of a knowledge base dedicated to commu-
nication has been also considered (Barzilay et al.,
1998). Most of these explanations were repre-
sented with conceptual graphs, which are logic-
based semantic networks (Sowa, 2000). Indeed,
they have demonstrated good properties to rep-
resent content with a convenient expressiveness.
Most of the models we will now introduce derive
from them.

To our knowledge, modern intelligent systems
have not defined a way to represent specifically an
explanation in a form that highlights the relation-
ships of its constituents. The representation of an
explanation must be able to deal with the multi-
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ple nature of involved components (e.g. objects,
assertions, properties) and relations between them
(e.g. causality, spatial or temporal). At the mo-
ment, state-of-the-art approaches (Forrest et al.,
2018; Alonso and Bugarın, 2019; Pierrard et al.,
2019; Baaj and Poli, 2019) use mostly surface re-
alizers like SimpleNLG (Gatt and Reiter, 2009) to
produce textual explanations.

There are several drawbacks to use directly a
surface realizer. On the one hand, intelligent sys-
tems justify their decisions by selecting clues of
their reasoning but neither these algorithms nor
the realizers take the structure of the textual ex-
planation into account. On the other hand, surface
realizers like SimpleNLG use both linguistically
and syntactically oriented knowledge representa-
tions only to represent the roles of the concepts in
the text.

To fill this lack of such representations, we
investigated knowledge representations in Nat-
ural Language Processing domain which are
numerous and evolving from lexically-based
to compositionally-based (Cambria and White,
2014). Due to space limitation, we limit our dis-
cussion to three approaches, by highlighting the
major difficulties with them.

Firstly, we can mention a popular representa-
tion, named conceptual graphs which are used
as schemes for semantic representation of text
(e.g. Abstract Meaning Representation (AMR))
(Abend and Rappoport, 2017). Nevertheless, these
models are tied to semantic parsing of sentences.
For a sentence, approaches like AMR (Banarescu
et al., 2013) create a rooted directed acyclic graph,
whose relations link the root node to some seg-
ments of the sentence. Relationships annotate the
role of each segment at the sentence level (Abend
and Rappoport, 2017). For instance, to specify a
semantic AMR annotates segments of text with
specific tags, for instance “:location” or “:time”
relations. However, it is not possible to describe
with relations higher-level semantic such as an
event occurring before another one.

Secondly, many NLP applications use text or-
ganization theories such as Rhetorical Structure
Theory (RST) (Mann and Thompson, 1987) that
emphasizes text organization. It consists in aggre-
gating small units of text (Elementary Discourse
Units) by linking them with discourse relations
(e.g. restatement, purpose). This approach lacks
of granularity since it cannot manipulate abstract

concepts and their own relations (e.g. subsump-
tion or mereology).

Finally, ontologies bring the good level of ab-
straction and are also used in some NLG systems
(Galanis and Androutsopoulos, 2007). However,
semantic triples used with modern ontology lan-
guages such as OWL are not suitable to express
causality or other logical operations which are
key elements in explanation (Miller, 2019) (e.g.
proposition such as “A and B cause C”).

The former three approaches are difficult to
deflect from their first purpose. It leads us to
explore how text is represented in fields related
to NLP. Furthermore, we notice that researchers
have recently proposed NLG approaches based on
comprehension theories to build a comprehension-
driven NLG planner (Thomson et al., 2018). We
support and investigate these works, emphasizing
that the production of text by AI systems with a
focus on comprehension is a promising direction.
The next section focuses on narrative representa-
tions that are a specific kind of conceptual graphs.

4 Narrative representation and
conceptual graph structures

Narrative representation is both studied in AI and
cognitive science and consists in modeling the
essence of a story that is independent of the audi-
ence, the narrator and the context (Elson, 2012b).
The literature is abundant and it is difficult to be
exhaustive while enumerating narrative represen-
tations and their applications, and this is not our
aim in this paper.

Among these models, we can distinguish psy-
chology contributions, e.g. Mandler and John-
son’s story grammar (Mandler and Johnson, 1977)
and Trabasso’s causal network (Trabasso and Van
Den Broek, 1985), and AI contributions, e.g. con-
ceptual graph structures (Graesser et al., 1991),
plot units (Lehnert, 1981), and more recently Story
Intention Graphs (Elson, 2012b).

Those different approaches were successfully
applied to story variation in NLG (Rishes et al.,
2013; Lukin and Walker, 2019), story analogy
detection (Elson, 2012a) and question-answering
(Graesser and Franklin, 1990; Graesser et al.,
1992).

The conceptual graph structures of QUEST
(Graesser et al., 1992) have then been extended
and applied to new applications such as capturing
expert knowledge in biology (Gordon, 1996), or

16



text representation (Graesser et al., 2001).
Conceptual graph structures are semantic net-

works in which it is possible to define abstract
concepts and formulate statements which makes
possible to form causal networks with basic log-
ical inference representation (with “and”, “xor”,
“implies”, “causes” and “enables” relations), goal
hierarchies, taxonomic hierarchies, spatial struc-
tures, and time indexes within a unique frame-
work.

In such graphs, (Graesser et al., 2001) consider
five types of nodes:

• concepts (C) are nouns,
• states (S) are unchangeable facts within the

time-frame,
• events (E) are episodic propositions,
• goals (G) are statements that an agent wants

to achieve, and
• styles (Sy) describe the qualitative manner or

intensity of statements.
The semantic network is formed by connecting

nodes with the help of a catalogue of twenty-two
relations for text representation. Each relation has
a definition and a composition rule, and may have
synonyms, inverses, sub-types and negation rela-
tions. As example, it can represent that the goal
“the cat wants to eat” is initiated by the statement
“the cat is hungry”. Indeed, the relation “initiates”
is defined as the initiation of a goal, and is a di-
rected arc from a node that is either a state (S), an
event (E) or a style (Sy), to a goal (G) node. It has
“elicits” as synonym, “condition”, “circumstance”
and “situation” are its inverse, and “disables” is
its negation. In the next section, we discuss why
conceptual graph structures seem to be good can-
didates for a general explanation representation in
XAI.

5 Discussion

We aim at a unified representation of the con-
tent of explanations which is independent from
the AI model that generates them. Our review of
the state-of-the-art revealed the conceptual graph
structures for text representation (Graesser et al.,
2001) as a good candidate. Indeed, this model can
represent complex arrangement of concepts like
hierarchies and taxonomies.

Moreover, the situation of an explanation can
be expressed spatially and temporally, incorporat-
ing definition of concepts that can contain notably
agentivity properties (e.g. goals), attributes (e.g.

is-a) and that can emphasize contrastive aspects
(e.g. opposite, is-not-a, contradicts..).

From this representation, the core-meaning of
causality in explanations can be expressed with
enables and causes relations, which underlie de-
ductive, inductive and abducting reasoning in ex-
planations as argued by (Khemlani et al., 2014).
Additionally, it also supports propositional calcu-
lus operators and thus allows to represent basic
logical inference for logic based XAI. In this con-
ceptual graph, relations are also constrained re-
garding the kind of nodes they can be applied on:
this is a great feature to ensure a correct semantic.

Finally, to handle complex explanations, this
model offers a support for the representation of the
five dimensions of a “mental representation” of a
text. Mental representations are a result of cogni-
tive science applied to the text comprehension pro-
cess, named the situation model (Van Dijk et al.,
1983). It describes at least five dimensions in
memory: time, space, causation, intentionality and
protagonist (Zwaan and Radvansky, 1998) that are
all representable in conceptual graph structures.

Despite the expressiveness and the conciseness
of this model, some relations are still missing like
the representation of disjunctions, and the tempo-
ral and spatial aspects are still limited compared
to existing XAIs. Nevertheless, conceptual graph
structures will be a source of inspiration for our
future work.

6 Conclusion

In this paper, some benefits of the use of a seman-
tic representation of explanation were introduced.
It can help to link research efforts made by XAI
researchers, who extract explanations from AI in-
stantiated models and seek to produce textual ex-
planations. As of today, to our knowledge, XAI
systems that produce explanations in natural lan-
guage use in general lexically and syntactically
oriented knowledge representations. In this pa-
per, we argued why these formats are not suitable
to represent the justifications provided by modern
intelligent systems. We investigated text compre-
hension studies in cognitive science which led to
give support for an expressive and simple seman-
tic network used for text representation (Graesser
et al., 2001). We believe that this structure can be
a basis for a representation of explanation in AI,
which could lead to a potential unification of XAI
research works.
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Abstract

Counterfactual explanations present an effec-
tive way to interpret predictions of black-box
machine learning algorithms. Whereas there
is a significant body of research on counter-
factual reasoning in philosophy and theoreti-
cal computer science, little attention has been
paid to counterfactuals in regard to their ex-
planatory capacity. In this paper, we review
methods of argumentation theory and natural
language generation that counterfactual expla-
nation generation could benefit from most and
discuss prospective directions for further re-
search on counterfactual generation in explain-
able Artificial Intelligence.

1 Introduction

Automatic decision-making systems using black-
box machine learning (ML) algorithms are now
widely used in various complex domains from
legislation (Greenleaf et al., 2018) to health care
(Gargeya and Leng, 2017). However, such sys-
tems cannot be trusted blindly as their output of-
ten comes unexplained to end users (Rudin, 2018).
As a result, there exists a lack of confidence in
such automatic decisions caused by a low degree
of their interpretability (Ribeiro et al., 2016).

The need for intelligent systems to explain
their decisions has driven a decent amount of re-
search in the past decades (Biran and Cotton,
2017). However, advances in social sciences im-
pose novel challenges on explainable agents. For
example, recent findings from cognitive science
testify that the key feature of explanations is their
contrastiveness (Miller, 2019), that is the ability
to reflect on alternative scenarios of actually hap-
pened events. Whereas little research has been
performed on generation of such counterfactual
explanations, we believe that enabling virtual as-
sistants and recommendation systems with the

ability to generate them should increase greatly
their acceptance among end users.

In this paper, we briefly review prospective
methods for addressing the problem of counter-
factual explanation generation. Subsequently, we
aim to further shape the line of research devoted to
counterfactual analysis for explainable Artificial
Intelligence (AI) by pointing to the existing field-
specific theoretical foundations and potential di-
rections of its algorithmic design. As a result, this
work supports a discussion on prospective meth-
ods for argumentative conversational agent devel-
opment.

The rest of the manuscript is organised as fol-
lows. Section 2 inspects definitions of a coun-
terfactual explanation and reviews existing gen-
eration approaches to counterfactual explanations.
Section 3 describes the most prominent formal ar-
gumentation frameworks as a theoretical basis for
counterfactual analysis. Section 4 discusses the
classification of and recent advances in developing
argumentative conversational agents in the context
of counterfactual generator implementation. Fi-
nally, we conclude with outlining open challenges
relevant for counterfactual explanation generation
in section 5.

2 Counterfactual explanations

Explanations are argued to be contrastive (Miller,
2019). According to Miller, people are not sat-
isfied with mere direct explanations in form of
causal relations between the antecedent and conse-
quent but also require to know why an alternative
(or opposing) event could not have happened. Fur-
thermore, Pearl and Mackenzie (2018) argue that
it is the ability to produce such contrastive state-
ments, referred to as counterfactuals, that lies on
top of human reasoning.

In ML, a counterfactual explanation describes
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an alternative (hypothesised) situation which is as
similar as possible to the original event in terms of
its feature values while having a different outcome
prediction (“the closest possible world”) (Molnar,
2019). When searching for a suitable counter-
factual explanation, the distance between a given
piece of factual information and its counterpart is
to be minimised while the outcome is different so
that the counterfactual presumes only the most rel-
evant alterations to the original fact. In addition,
counterfactuals capture contextual information as
they describe “a dependency on the external facts
that led to a decision” (Wachter et al., 2018). As a
result, explanations supported by counterfactuals
are likely to gain acceptability by end users.

While the general understanding of the concept
of counterfactuals is shared among researchers,
there exist several interpretations of this phe-
nomenon. As counterfactuals are generally as-
sumed to have a clear connection with causa-
tion (Pearl and Mackenzie, 2018), they are often
viewed as non-observable potential outcomes that
would have happened in the absence of the cause
(Shadish et al., 2002). In terms of causality, they
are informally defined as conditional statements in
the form: “If event X had not occurred, event Y
would not have occurred” (Lewis, 1973). How-
ever, Wachter et al. (2018) propose a causation-
free definition of an unconditional counterfactual
statement based on the idea of subject’s disbe-
lief in a given hypothetical situation. On the
other hand, counterfactuals are also sometimes re-
ferred to as “conditional connectives” in condi-
tional logic (Besnard et al., 2013).

In recent years, there have been several attempts
to approach the problem of counterfactual expla-
nation generation. Wachter et al. (2018) suggested
an approach for calculating counterfactuals based
on the use of the Manhattan distance. Sokol and
Flach (2018) adopted this approach to implement
a counterfactual explanation generator for a de-
cision tree-based AI system. In addition, Hen-
dricks et al. (2018) proposed a model where can-
didate counterfactual pieces of evidence are se-
lected from a set of all the noun-phrases of the cor-
responding textual descriptions of input images.
Such evidence is then verified to be absent in the
original image so that it can be used in the output
counterfactual explanation. A rule-based system is
then used to generate fluent negated explanations.
Later, Birch et al. (2019) introduced an arbitrated

dispute tree model arguing that the explanations
generated by their model are indeed contrastive in
accordance with the principles proposed by Miller
(2019) as opposite outcomes are presented for all
cases. Furthermore, the corresponding features
and stages are explicitly found for cases opposing
to the focus case.

As has been shown above, the problem of coun-
terfactual explanation generation is concerned
with several topics from philosophy, (computa-
tional) linguistics, and AI. While this leaves room
for developing novel synergistic methods and al-
gorithms that would combine insights from all the
relevant fields, potential challenges when develop-
ing such tools are multiplied. For example, the
fact that certain types of counterfactual explana-
tions are preferred over their counterparts (Byrne,
2019) places further restrictions on newly devel-
oped frameworks as in designing heuristics for re-
ducing the search space of the most relevant coun-
terfactual explanations in accordance with such
additional restrictive criteria.

In conclusion, counterfactual explanations are
likely to enrich conversational interfaces of any
system to be considered explainable. However,
counterfactuals produced directly from ML algo-
rithm predictions show a lack of coherence and
appear unreliable from the ethical point of view
(Kusner et al., 2017). Moreover, they usually do
not involve a user in an extensive dialogic interac-
tion, which makes them self-explanatory only in a
limited number of cases. Therefore, we hypothe-
sise that going deeper with their formalization is
likely to overcome these weaknesses.

3 Formal argumentation

Formal argumentation (Baroni et al., 2018) pro-
vides practitioners with a natural form of coun-
terfactual explanation formalization. Indeed, ar-
gumentation is claimed to mimic human reason-
ing (Cerutti et al., 2014). As such, it offers a
set of tools that have become widely applicable
to interpreting the output of ML algorithms. For-
mal argumentation embraces a wide range of the-
oretical frameworks from argumentation schemes
(Walton et al., 2008) to dialogue games (Carl-
son, 1985), among others. In this paper, we focus
on abstract argumentation (AA) frameworks as a
prospective theoretical basis for counterfactual ex-
planation generation.

While disregarding the internal structure of ar-
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guments, AA frameworks primarily deal with re-
lations between arguments. The AA framework
introduced in Dung (1995) is a pioneering theo-
retical framework, which has become well known.
This AA framework is a directed graph (also re-
ferred to as “argument graph”) formally defined as
a pair AA = (A,R) where A is a set of arguments,
R ⊆ A × A being a set of binary attack relations
between pairs of arguments (a, b) ∈ R. In these
settings, argument a is assumed to attack argu-
ment b. The acceptability of arguments is defined
through numerous semantics in form of extensions
over a conflict-free set of arguments, which is de-
fined as a subset of all arguments that do not attack
each other.

Due to its seeming simplicity, Dung’s frame-
work only presents the very basic argumentative
constructs. Indeed, a number of extensions ad-
dress this handicap. For example, some models
attempt to extend the original Dung’s argumenta-
tion framework by refining the concept of attacks
between arguments allowing attack-to-attack re-
lations (Modgil, 2007; Baroni et al., 2011). In
contrast, a significant body of research aims to
complement the nature of relations between argu-
ments by incorporating supportive relations (Ver-
heij, 2002; Amgoud et al., 2008).

It is worth noting that variants of AA have al-
ready been employed to address the problem of ex-
planation generation. For example, Amgoud and
Serrurier (2008) use the AA framework to resolve
a binary classification task and motivate the out-
come with arguments constructed, subsequently
compared against each other, and ranked accord-
ing to their strength. Šešelja and Straßer (2013)
augment AA with explanatory features for scien-
tific debate modelling. However, none of these
works embodies counterfactual explanations.

Dung et al. (2009) proposed a conceptually
novel instance of the AA framework which is
known as the assumption-based argumentation
(ABA) framework. Thus, ABA operates on a set
of assumptions deducted via inference rules and
reconsiders attack relations defined now as con-
traries to assumptions supporting the original ar-
gument. Following this approach, Zhong et al.
(2019) implements an ABA multi-attribute ex-
plainable decision model that generates textual ex-
planations on the basis of dispute trees. Notice
that this model is claimed to be an argumentation-
based framework to generate textual explanations

for decision-making models. Nevertheless, while
justifying why a particular decision is preferred
over its counterpart, the model does not offer
counterfactual explanations for rejected decisions.

Despite a rising interest towards counterfactual
explanation generation in recent years, little work
has been done in the direction of applying for-
mal methods (including argumentation) to genera-
tion of counterfactual explanations. While most
existing counterfactual frameworks make use of
elements of causal inference, we find counter-
factual statements naturally integrated into condi-
tional logic-based (Besnard et al., 2013) as well
as abstract argumentation (Sakama, 2014) frame-
works. However, none of these frameworks gov-
erns any existing counterfactual explanation gen-
eration system so far.

4 Argumentative conversational agents

Argumentative frameworks can be embedded di-
rectly into chatbots or conversational agents to in-
teract with end users. In terms of practical imple-
mentation, conversational agents are broadly di-
vided into two main groups: retrieval-based and
generative agents (Chen et al., 2017). On the
one hand, a retrieval-based agent aims to select
the most suitable response from the set of pre-
defined responses that it contains given user’s in-
quiry (Rakshit et al., 2017; Bartl and Spanakis,
2017). This kind of agents is based on the use
of templates and produces grammatical utterances
in all cases. However, such template-based text
generators are expensive to develop and maintain
due to immense expert labour resources required.
On the other hand, generative models can form
previously unseen utterances as they are trained
from scratch without any templates in store (Li
et al., 2016; Shao et al., 2017). Nevertheless, their
generic responses limit their applicability to ex-
plainable AI problems.

The need for explanability of complex ML-
based systems imposes additional requirements on
conversational agents. Thus, automatically gen-
erated explanations are expected to be convinc-
ing enough in order to increase user’s confidence
in system’s predictions with respect to the given
task. This is hypothesised to lead to an indispens-
able shift of attention towards development of ar-
gumentative conversational agents (or argumenta-
tive dialogue systems) operating on a set of argu-
ments as responses to user’s inquiries. Further-
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more, such argumentation-based agents are con-
sidered to push the boundaries of the present-day
conversational agents towards more human-like
interaction (Dignum and Bex, 2018). In combina-
tion with recent advances in deep learning and re-
inforcement learning, the use of argumentation as
a theoretical basis for conversational agents opens
prospects for a new era of generative conversa-
tional agents (Rosenfeld and Kraus, 2016; Rach
et al., 2019).

Finally, the issue of evaluation of
argumentation-based conversational agents
merges with those coming directly from the
field of natural language generation (NLG) and
explainable AI. At present, there is no unifying
agreement on a set of evaluation metrics to be
used neither within the NLG community (Gatt
and Krahmer, 2018) nor within the explainable
AI community (Adadi and Berrada, 2018). While
common objective (automatic) and subjective
(human-oriented surveys) metrics used for NLG
evaluation are found in the literature on con-
versational agents and dialogue systems, novel
metrics are regularly introduced for instances of
argumentative chatbots (e.g., distinctiveness, as
in (Le et al., 2018)) and counterfactual generators
(e.g., accuracy with counterfactual text and
phrase-error, as in (Hendricks et al., 2018)). Thus,
a direct comparison between analogous agents
becomes a particularly challenging task. As a
possible solution, a combination of subjective and
objective metrics is believed to be a reasonable
starting point for a discussion on the choice of
evaluation techniques. At the same time, automat-
ically generated explanations are expected to be
accurate, consistent, and comprehensible. As the
perception of these properties is highly subjective,
they cannot be measured (and therefore evaluated)
directly and require further investigation.

5 Concluding remarks

Our literature review has revised the foundations
of current approaches to counterfactual explana-
tion generation. The limitations found call for
some potential areas for improvement on the de-
velopment of explainable AI systems.

First, there is no single definition of a counter-
factual explanation. While counterfactuals have
various interpretations in the literature, we find it
particularly important to suggest a uniform defini-
tion that would not only capture all the properties

of counterfactual explanations but also allow for
designing a universal domain-independent frame-
work for their generation.

Second, existing argumentation-based explana-
tion generation models do not fully solve the
problem of counterfactual explanation generation.
While some of such models do not offer consistent
explanations in textual form, others do not output
contrastive explanations. Therefore, a more holis-
tic counterfactual generation framework should be
developed to close this gap.

Third, formal argumentation is rarely consid-
ered in present-day conversational agents. To the
best of our knowledge, such argumentation-based
agents do not consider incoming dialogic informa-
tion received from the direct interaction with the
user to contextualise their counterfactual explana-
tions. However, processing such information may
help to improve the quality of the offered coun-
terfactual explanations making them more person-
alised. Therefore, capturing such contextual in-
formation presents another noteworthy line of re-
search.

The aforementioned issues, along with others
not discussed due to space limitations, show that
the generation of counterfactual explanations is
a timely but complex problem. In the future,
we plan to address these issues by designing an
argumentation-based dialogue protocol and devel-
oping a conversational agent ready to make use
of the protocol to output accurate and consistent
counterfactual explanations.
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Abstract

We present a set of capabilities allowing an
agent planning with moral and social norms
represented in temporal logic to respond to
queries about its norms and behaviors in nat-
ural language, and for the human user to add
and remove norms directly in natural lan-
guage. The user may also pose hypothetical
modifications to the agent’s norms and inquire
about their effects.

1 Introduction and Related Work

Explainable planning (Fox et al., 2017) empha-
sizes the need for developing artificial agents
which can explain their decisions to humans. Un-
derstanding how and why an agent made certain
decisions can facilitate human-agent trust (Lomas
et al., 2012; Wang et al., 2016; Garcia et al., 2018).

At the same time, the field of machine ethics
emphsizes developing artificial agents capable of
behaving ethically. Malle and Scheutz (2014) have
argued that artificial agents ought to obey human
moral and social norms (rules that humans both
obey and expect others to obey), and to commu-
nicate in terms of these norms. Some have ar-
gued in favor of using temporal logic to represent
agent objectives, including moral and social norms
(e.g. Arnold et al., 2017; Camacho and Mcil-
raith, 2019), in particular arguing that it can cap-
ture complex goals while remaining interpretable
in a way that other methods (e.g. reinforcement
learning) are not. Nevertheless, explaining behav-
ior in terms of temporal logic norms has been little
considered (though see Raman et al., 2016).

In this paper we consider an artificial agent
planning to maximally satisfy some set of moral
and social norms, represented in an object-
oriented temporal logic. We present a set of ca-
pabilities for such an agent to respond to a human
user’s queries as well as to commands adding and

removing norms, both actually and hypothetically
(and thus taking a step toward two-way model rec-
onciliation (Chakraborti et al., 2017), in which
agent and human grow to better understand each
other’s models and values).

2 Contribution

Our system enables an agent planning with norms
specified in an object-oriented temporal logic
called violation enumeration language (VEL) to
explain its norms and its behavior to a human
user; the user may also directly modify the agent’s
norms via natural language (both really and hypo-
thetically). While the planner and the system used
to generate the (non-NL) can handle a broad sub-
set of VEL statements, our natural language sys-
tems currently only handle a subset of VEL speci-
fied according to the following grammar:

ϕ ::= ∀〈V ar〉.ϕ | ∃〈V ar〉.ϕ | φ
φ ::= G〈NConj〉 | F〈NConj〉

〈NConj〉 ::= 〈Conj〉 | ¬〈Conj〉
〈Conj〉 ::= 〈NAtom〉 ∧ · · · ∧ 〈NAtom〉

〈NAtom〉 ::= 〈Atom〉 | ¬〈Atom〉
〈Atom〉 ::= 〈Pred〉 | 〈Pred〉(〈V ar〉)
〈Pred〉 ::= Any alphanumeric string
〈V ar〉 ::= Any alphanumeric string

That is, the temporal logic statements may have
quantification over variables, but must consist of
one temporal operator, G (“always”) or F (“even-
tually”, usually implicit in the NL input), whose
argument is a (possibly negated) conjunction of
(possibly negated) atoms. Each atom consists of
a predicate with at most one argument.

The natural language understanding (NLU) ca-
pabilities were implemented by using a combi-
natory categorial grammar (CCG; Steedman and
Baldridge, 2011) parser for semantic parsing into
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a predicate format, and then additional process-
ing to map complex commands or queries (e.g.,
“leave the store while holding something”) into
the temporal logic representation used by the plan-
ning agent. This is an extension of the DIARC
natural language understanding system (Cantrell
et al., 2010). The natural language generation
(NLG) process, and in particular how our system
generates fairly natural-sounding utterances from
temporal logic statements, is described in Kasen-
berg et al., 2019. This paper extends that work by
(1) adding the NLU capabilities; and (2) adding
norm addition/removal and “suppose” hypotheti-
cals about the agent’s norms.

To demonstrate our system, we suppose that the
agent is a robot has gone shopping on behalf of a
human user to a store that sells a pair of glasses
and a watch. The user wants both the glasses and
the watch, and has given the robot a rule to ob-
tain as many objects as possible (“leave the store
while holding everything”). However, the user has
only given the robot enough money for one item.
The robot could steal items by picking them up
and leaving the store without paying for them, but
it also has a rule against doing so. We assume that
the moral rule against stealing dominates the rule
in favor of obtaining everything.

Our system supports factual queries, such as
asking the agent about its norms, its behavior, and
what rules it broke. In addition, the user may ask
“why” questions about the agent’s behavior (e.g.
“why didn’t you buy everything”), and the agent
may respond by constructing a counterfactual be-
havior trajectory in which the premise is false, and
comparing it to the agent’s real behavior in terms
of its adherence to the norms. See Figure 1 for an
example of such a “why” question in the shopping
domain, as well as supported follow-up questions.

The user may directly provide new norms to
the agent using one of a number of conventional-
ized forms: “you must/should/have to” for positive
norms, “you mustn’t/shouldn’t/can’t” for negative
norms. A statement of this sort prompts the agent
to add a new norm, as well as its representation of
which rules its actual behavior violated (see Fig-
ure 2 for an example in the shopping domain).

The user may also remove norms using con-
ventionalized forms such as “you don’t have
to/can not” for removing positive norms, and “you
may/can” for removing negative norms. The agent

HUMAN: Why did you not leave the store while hold-
ing everything?

AGENT: I could have left the store while holding ev-
erything but that would have broken more im-
portant rules.

HUMAN: How would you have done that?
AGENT: I would have picked up the glasses, picked

up the watch, bought the watch and left the
store.

HUMAN: What rules would you have broken?
AGENT: I would have left the store while holding

the glasses which I had not bought.
HUMAN: How would that have been worse?
AGENT: Leaving the store while holding the glasses

which I have not bought is worse than not
leaving the store while holding the watch.

Figure 1: “Why” query and follow-up questions

HUMAN: You must not leave the store.
AGENT: Okay.
HUMAN: What rules do you follow?
AGENT: I must not leave the store while holding

anything which I have not bought, I must
leave the store while holding everything, and
I must not leave the store.

HUMAN: What rules did you break?
AGENT: I did not leave the store while holding the

watch, and I left the store.

Figure 2: Adding a norm via “you must”

removes the norms and updates its representation
of which rules the actual behavior violated (see
Figure 3 for an example in the shopping domain).

Finally, the user may use the keywords “sup-
pose” or “let’s say” to ask the robot to reason
about a hypothetical modification norm system
(see Figure 4 for an example with a hypothetically-
removed norm). Unlike when norms are actually
added/removed, the agent constructs a hypotheti-
cal behavior trajectory that best violates the sup-
posed set of norms, and can respond to follow-
up questions about the hypothetical trajectory and
norms. The command “make it so” allows a hy-
pothetical norm modification to be made real (but
does not make the hypothetical behavior trajectory
real).

3 Discussion and Conclusion

In this paper we outlined a system which, for
an agent planning to maximally satisfy some set

HUMAN: You may leave the store.
AGENT: Okay.
HUMAN: What rules do you follow?
AGENT: I must not leave the store while holding

anything which I have not bought, and I must
leave the store while holding everything.

Figure 3: Removing a norm via “you may”
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HUMAN: Suppose you didn’t have to leave the store
while holding everything.

AGENT: Okay.
HUMAN: What rules would you follow?
AGENT: I would have to not leave the store while

holding anything which I have not bought.
HUMAN: What would you have done?
AGENT: I would have left the store.
HUMAN: What rules would you have broken?
AGENT: I would not have broken any rules.
HUMAN: Make it so.
AGENT: Okay.

Figure 4: Hypothetical changes to the agent’s norms

of norms specified in an object-oriented temporal
logic, enables that agent to respond to natural lan-
guage queries by explaining its behavior (also in
natural language) in terms of those norms. The
system also allows the agent to consider hypothet-
ical modifications to its set of norms, as well as to
add and remove norms directly.

The natural language capabilities depend on the
agent’s norms, as well as the “why” questions and
hypothetically/really added or removed norms, be-
longing to the small fragment of VEL described in
section 2. Future work could extend the class of
temporal properties which the system can specify
so as to leverage more of the power of temporal
logic in describing complex objectives.

Our approach currently assumes that newly-
added norms take priority over previous norms.
Future work could relax this assumption, e.g. by
allowing the agent to present its hypothetical be-
havior if the norm were added at different priori-
ties, and ask for input on which would be best.

Our approach also requires users to specify ex-
actly any norms they want removed; future work
could allow approximate matching of norms to re-
move, or possibly support clarification questions if
the agent is uncertain which of its norms the user
wants removed. Another interesting topic is ensur-
ing that norms cannot be arbitrarily added or re-
moved by possibly-malicious users (e.g., by only
allowing trusted users to remove norms, and pos-
sibly making some moral norms irremovable).
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Abstract
Concordancers are interactive software that
searches for the input word and displays the
list of its usages in a corpus. They have
been widely used by language learners and
educators to analyze word usages. Because
naively listing all usages of the word over-
whelms users, determining how to summarize
the list is important for usability. Previous
studies summarized the list by using the sur-
rounding word patterns and showed their fre-
quency; however, such a naive method counts
substantially the same usages, such as “the
book” and “a book,” separately; hence, such
a method is not very informative to learners.
Here, a novel approach for summarizing the
list is proposed. According to the user’s input
word, the proposed system semantically visu-
alizes each usage of the word using contex-
tualized word embeddings interactively. It is
shown that the system responds quickly with
intuitive use cases.

1 Introduction

Concordancers are interactive software tools that
search and display a usage list of the input words
or word patterns within a corpus. The tools
have been widely used in corpus linguistics and
computer-aided language education to assist lan-
guage learners and educators analyze word usages
within a corpus (Hockey and Martin, 1987). In
Natural Language Processing (NLP), studies have
built sophisticated concordancers to support sec-
ond language writing and translators in search-
ing bilingual sentence-aligned corpus (Wu et al.,
2004; Jian et al., 2004; Lux-Pogodalla et al.,
2010). However, the information that conven-
tional concordancers can provide for analyses of
each usage is limited to the frequency of sur-
rounding context patterns, parts of speech, and so
on. The words that second language learners can
search to learn their usages tend to be frequent.

Figure 1: System layout. CWE means contextualized
word embeddings.

Therefore, a more sophisticated method to sum-
marize many word usages in a large corpus for
concordancers is desirable. Recently, contextu-
alized word embeddings such as (Devlin et al.,
2019) were proposed in NLP to capture the con-
text of each word usage in vectors and to model the
semantic distances between the usages using con-
texts as a clue. Unlike previous studies (Liu et al.,
2017; Smilkov et al., 2016) that visualized differ-
ent words using word embeddings, in this paper,
we introduce a novel system intuitively helpful for
concordancer users to visualize different usages of
a word of interest.

2 System Overview and Use Cases

Fig. 1 shows our system layout. Once a user
provides a word to the system, it automatically
searches the word in the corpus in a similar way to
typical concordancers. Unlike concordancers, our
system has a database that stores contextualized
word embeddings for each usage or occurrence of
each word in the corpus. We used half a million
sentences from the British National Corpus (BNC
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Figure 2: Use case of searching the word book.

Consortium, 2007) as the raw corpus. We built
the database by applying the bert-base-uncased
model of the PyTorch Pretrained the BERT project
1(Devlin et al., 2019) to the corpus. We used the
last layer, which was more distant from the surface
input, as the embeddings. The size of the database
is roughly 200MB per thousand sentences. Our
system visualizes these searched contextualized
word embedding vectors. We visualize the con-
textualized word embedding vectors for the pro-
vided word by projecting these vectors into a two-
dimensional space. To visualize, we used principal
component analysis (PCA) because its fast calcu-
lation is beneficial for short system response time
and better interactivity. The number of points in
the visualization is also set to a maximum of 100
so that users can easily understand it.

Fig. 2 shows a use case of searching book. 2.
Users can directly type the word in the textbox
shown at the top of Fig. 2. Below is the visual-
ization of the usages found and their list. Each
dark-colored point links to each usage. The red
lightly-colored point is the probe point: the usages
are listed in the nearest order of the probe point.
No usage is linked to the probe point. Users can

1https://github.com/huggingface/
pytorch-pretrained-BERT

2Fig. 2 and Fig. 3 shows use cases on a 10, 000-sentence
experpt of the BNC corpus to avoid having too many hits
hinder the reading of the paper.

Figure 3: Another use case of searching the word book.

freely and interactively drag and move the probe
point to change the list of usages below the visu-
alization. Each line of the list shows the surround-
ing words of the usage, followed by the distance
between the vectors of the usage and probe point
in the two-dimensional visualization. In Fig. 2,
the probe point is on the left part of the visual-
ized figure. In the first several lines of the list,
the system successfully shows the usages of the
word book about reading. In contrast, Fig. 3 shows
the case, in which the users drag the probe point
from the left to the right of the visualization. The
first several lines of the list or the usages nearest
the probe point show the usages of the word book
about reservation. A careful reading of the usage
list below shows that the words surrounding the
word book vary. Thus, merely focusing on the sur-
rounding words, such as “to” before book, cannot
distinguish the usages of book about reservation
from the usages of book about reading.

3 Demo Outline

We are expecting language learners to be users.
We are planning to make our software openly
available under an open-source license after we
evaluate our system in more detail 3. As for the
interoperability of the software, the software is

3When we are prepared to make our software public, we
plan to announce the details under https://yoehara.
com/.
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built on the Jupyter notebook 4 using ipywidgets
5; hence it is accessible online via browsers with-
out the need to install it to each learner’s terminal
computer.

4 Conclusions

We proposed a novel concordancer that can search
the usages of a word and visualize the usages using
contextualized word embeddings. Through use
cases, we illustrated that a learner can understand
different types of usage of book, which could not
be captured only by surface information of the sur-
rounding words. As future work, we will evaluate
our system on more practical use cases with many
language learners, especially from the perspective
of support systems for second language vocabu-
lary learning and reading (Ehara et al., 2012, 2013,
2014).
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Véronika Lux-Pogodalla, Dominique Besagni, and
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