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Abstract

Neural generation methods for task-oriented
dialogue typically generate from a mean-
ing representation that is populated using a
database of domain information, such as a ta-
ble of data describing a restaurant. While ear-
lier work focused solely on the semantic fi-
delity of outputs, recent work has started to ex-
plore methods for controlling the style of the
generated text while simultaneously achiev-
ing semantic accuracy. Here we experiment
with two stylistic benchmark tasks, generating
language that exhibits variation in personality,
and generating discourse contrast. We report a
huge performance improvement in both stylis-
tic control and semantic accuracy over the
state of the art on both of these benchmarks.
We test several different models and show that
putting stylistic conditioning in the decoder
and eliminating the semantic re-ranker used in
earlier models results in more than 15 points
higher BLEU for Personality, with a reduction
of semantic error to near zero. We also report
an improvement from .75 to .81 in controlling
contrast and a reduction in semantic error from
16% to 2%.

1 Introduction

Neural encoder-decoder models were originally
developed for machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014a), but they have
also been shown to be successful in related natural
language generation (NLG) tasks such as realiz-
ing dialogue system utterances from meaning rep-
resentations (MRs) as shown for the restaurant do-
main in Table 1 (Dusek and Jurcı́cek, 2016). Re-
cent work in neural NLG has shown that stylistic
control is an important problem in its own right:
it is needed to address a well-known limitation of
such models, namely that they reduce the stylistic
variation seen in the input, and thus produce out-
puts that tend to be dull and repetitive (Li et al.,

Meaning Representation
name[Browns Cambridge], eatType[coffee shop],
food[Italian], customerRating[average], area[riverside],
familyFriendly[yes], near[Crowne Plaza Hotel]

E2E Dataset
Browns Cambridge is near Crowne Plaza Hotel.
Browns Cambridge has a three star rating. Browns
Cambridge is a family coffee shop.

Personality: Conscientious
Did you say Browns Cambridge? Well, i see, I think that
it is a coffee shop, also it has a decent rating, and it is
near Crowne Plaza Hotel kid friendly in riverside and
an Italian place.

Personality: Disagreeable
Come on, I am not sure. I mean Browns Cambridge is
an Italian place, also it has a damn average rating. It is
near Crowne Plaza Hotel.

Personality: Unconscientious
Oh God I don’t know! Browns Cambridge is a coffee
shop, also it is family friendly near Crowne Plaza Hotel,
also it is an Italian place in riverside, also it has like, a
decent rating.

Table 1: Sample meaning representation with a realiza-
tion from the E2E Challenge Dataset and three stylistic
personality realizations.

2016). Here we compare different methods for
directly controlling stylistic variation when gener-
ating from MRs, while simultaneously achieving
high semantic accuracy.

Tables 1 and 2 illustrate the two stylistic bench-
mark datasets that form the basis of our exper-
imental setup. Table 1 shows an example MR
with three surface realizations: the E2E realization
does not target a particular personality, while the
other two examples vary stylistically according to
linguistic profiles of personality type (Pennebaker
and King, 1999; Furnham, 1990; Mairesse and
Walker, 2011). Table 2 shows an example MR
with two surface realizations that vary stylistically
according to whether the discourse contrast rela-
tion is used (Nakatsu and White, 2006; Howcroft
et al., 2013). Both of these benchmarks provide
parallel data that supports experiments that hold
constant the underlying meaning of an utterance,
while varying the style of the output text. In
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Meaning Representation
name[Brown’s Cambridge], food[Italian], customer-
Rating[3 out of 5], familyFriendly[no], price[moderate]

With Contrast Relation
Browns Cambridge is an Italian restaurant with aver-
age customer reviews and reasonable prices, but it is
not child-friendly.

Without Contrast Relation
Browns Cambridge serves Italian food in moderate
price range. It is not kid friendly and the customer rat-
ing is 3 out of 5.

Table 2: A sample meaning representation with con-
trastive and non-contrastive surface realizations.

contrast, other tasks that have been used to ex-
plore methods for stylistic control such as machine
translation or summarization (known as text-to-
text generation tasks) do not allow for such a clean
separation of meaning from style because the in-
puts are themselves surface forms.

We describe three methods of incorporat-
ing stylistic information as side constraints into
an RNN encoder-decoder model, and test each
method on both the personality and contrast stylis-
tic benchmarks. We perform a detailed compara-
tive analysis of the strengths and weaknesses of
each method. We measure both semantic fidelity
and stylistic accuracy and quantify the tradeoffs
between them. We show that putting stylistic con-
ditioning in the decoder, instead of in the encoder
as in previous work, and eliminating the seman-
tic re-ranker used in earlier models results in more
than 15 points higher BLEU for Personality, with
a reduction of semantic error to near zero. We
also report an improvement from .75 to .81 in con-
trolling contrast and a reduction in semantic error
from 16% to 2%. To the best of our knowledge, no
prior work has conducted a systematic comparison
of these methods using such robust criteria specif-
ically geared towards controllable stylistic varia-
tion. We delay a detailed review of prior work to
Section 4 when we can compare it to our own.

2 Models and Variants

In the recent E2E NLG Challenge shared task,
models were tasked with generating surface forms
from structured meaning representations(Duek
et al., 2019). The top performing models were all
RNN encoder-decoder systems. Our model also
follows a standard RNN Encoder–Decoder model
(Sutskever et al., 2014; Bahdanau et al., 2014a)
that maps a source sequence (the input MR) to a
target sequence.

2.1 Model
Our model represents an MR as a sequence x =
(x1, x2, . . . xn) of slot-value pairs. The genera-
tor is tasked with generating a surface realization
which is represented as a sequence y of tokens
y1, y2, . . . ym. The generation system models the
conditional probability p(y|x) of generating the
surface realization y from some meaning repre-
sentation x. Thus, by predicting one word at a
time, the conditional probability can be decom-
posed into the conditional probability of the next
token in the output sequence:

p(y|x) =

m∏
t=1

p(yt|y1, y2, . . . yt−1, x) . (1)

We are interested in exercising greater control
over the characteristics of the output sequence
by incorporating side constraints into the model
(Sennrich et al., 2016). The side constraints c act
as an additional condition when predicting each
token in the sequence. In this case, the condi-
tional probability of the next token in the output
sequence is given by:

p(y|x, c) =

m∏
t=1

p(yt|y1, y2, . . . yt−1, x, c) . (2)

In Section 2.2 we describe three methods of com-
puting p(y|x, c) .

Encoder. The model reads in an MR as a se-
quence of slot-value pairs. Separate vocabularies
for slot-types and slot values are calculated in a
pre-processing step. Each slot type and slot value
are encoded as one-hot vectors which are accessed
through a table look-up operation at run-time.
Each slot-value pair is encoded by first concate-
nating the slot type encoding with the encoding of
its specified value. Then the slot-value pair is en-
coded with an RNN encoder. We use a multi-layer
bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) to encode the input sequence of MR
slot-value pairs. The hidden state h̄i is represented
as the concatenation of the forward state

−→
hi and

backward state
←−
hi . Specifically, h̄i = (

−→
hi ,
←−
hi) .

Decoder. The decoder is a uni-directional
LSTM. Attention is implemented as in (Luong
et al., 2015). We use a global attention where the
attention scores between two vectors a and b are
calculated as aTW b, where W is a model param-
eter learned during training.
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Figure 1: Attentional Encoder-Decoder architecture
with each of the three side constraint implementations
shown. The output sequence X, Y, Z is being gener-
ated from an MR represented as an input sequence of
attribute value pairs.

2.2 Side Constraints

Recent work has begun to explore methods for
stylistic control in neural language generation, but
there has been no systematic attempt to contrast
different methods on the same benchmark tasks
and thereby gain a deeper understanding of which
methods work best and why. Here, we compare
and contrast three alternative methods for imple-
menting side constraints in a standard encoder-
decoder architecture. The first method involves
adding slot-value pairs to the input MR, and the
second involves extending the slot-value encod-
ing through a concatenation operation. In the third
method, side constraints are incorporated into the
model by modifying the decoder inputs. The
three side constraint implementation methods are
shown simultaneously in Figure 1. The orange
area refers to Method 1, the yellow areas corre-
sponds to Method 2, and the red areas corresponds
to Method 3.

Method 1: Token Supervision. This method
provides the simplest way of encoding stylistic
information by inserting an additional token that
encodes the side constraint into the sequence of
tokens that constitute the MR (Sennrich et al.,
2016). We add a new slot type representing
side-constraint to the vocabulary of slot-
types, and new entries for each of the possible side

Figure 2: Slot-value encoding extended with constraint.

constraint values to the vocabulary of slot values.

Method 2: Token Features. This method incor-
porates side constraints through use of a slot-value
pair feature. First we construct a vector represen-
tation c that contains the side constraint informa-
tion. Normally the individual slot-value pair en-
codings are built by concatenating the slot-type
with the slot-value as with Method 1. We mod-
ify each slot-value pair encoding of the MR by ex-
tending it with c, as seen in Figure 2.

Method 3: Decoder Conditioning. This
method incorporates side constraint information
into the generation process by adding additional
inputs to the LSTM decoder. Traditionally, at the
t-th time step a LSTM decoder takes two inputs.
One input is the previous ground truth token’s
embedding wt−1, and the other is a context vector
dt which is an attention-weighted average of the
encoder hidden states. A vector c containing
side constraint information is provided to the
decoder as a third input. Thus at each time step
the decoder’s hidden state h̃i is calculated as

h̃i = LSTM([wt−1; dt; c]) . (3)

3 Experiments: Varying Personality and
Discourse Structure

We perform two sets of experiments using two
stylistic benchmark datasets: one for personality,
and one for discourse structure, i.e., contrast. In
both cases, our aim is to generate stylized text
from meaning representations (MRs). In the per-
sonality experiments, the generator’s goal is to
vary the personality style of the output and accu-
rately realize the MR. The personality type is the
side constraint that conditions model outputs, and
is represented using a 1-hot encoding for the mod-
els that use side constraint Methods 2 and 3. For
the sake of comparison, we also train a model that
does not use conditioning (NOCON). In the dis-
course contrast experiments, the generator’s goal
is to control whether the output utterance uses the
discourse contrast relation. The side constraint is
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Personality Realization

Meaning Repre-
sentation

name[The Eagle], eatType[coffee shop], food[English], priceRange[cheap], customer rat-
ing[average], area[riverside], familyFriendly[yes], near[Burger King]

Agreeable You want to know more about The Eagle? Yeah, ok it has an average rating, it is a coffee shop
and it is an English restaurant in riverside, quite cheap near Burger King and family friendly.

Disagreeable Oh god I mean, I thought everybody knew that The Eagle is cheap with an average rating, it’s
near Burger King, it is an English place, it is a coffee shop and The Eagle is in riverside, also it
is family friendly.

Conscientious I think that The Eagle is a coffee shop, it has an average rating and it is somewhat cheap in
riverside and an English restaurant near Burger King. It is rather kid friendly.

Unconscientious Yeah, I don’t know. Mmhm ... The Eagle is a coffee shop, The Eagle is cheap, it’s kind of in
riverside, it is an English place and The Eagle has an average rating. It is kind of near Burger
King.

Extravert The Eagle is a coffee shop, you know, it is an English place, family friendly in riverside and
cheap near Burger King and The Eagle has an average rating friend!

Table 3: Model outputs for each personality style for a fixed Meaning Representation (MR). The model was trained
using control Method 3.

a simple boolean: contrast, or no contrast. The
model is tasked with learning 1) which category of
items can potentially be contrasted (e.g., price and
rating can appear in a contrast relation but name
can not), and 2) which values are appropriate to
contrast (i.e., items with polar opposite values).

All models are implemented using PyTorch
and OpenNMT-py1(Klein et al., 2017). We use
Dropout (Srivastava et al., 2014) of 0.1 between
RNN layers. Model parameters are initialized us-
ing Glorot initialization (Glorot and Bengio, 2010)
and are optimized using stochastic gradient de-
scent with mini-batches of size 128. Beam search
with three beams is used during inference. We
implement multiple models for each experiment
using the methods for stylistic control discussed
in Section 2.2. We tune model hyper-parameters
on a development dataset and select the model
of lowest perplexity to evaluate on a test dataset.
All models are trained using lower-cased and de-
lexicalized reference texts. The sample model
outputs we present have been re-capitalized and
re-lexicalized using a simple rule based script.
Further details on model implementation, hyper-
parameter tuning, and data processing are pro-
vided as supplementary material.

3.1 Benchmark Datasets and Experiments

Personality Benchmark. This dataset provides
multiple reference outputs for each MR, where
the style of the output varies by personality type
(Oraby et al., 2018b).2 The styles belong to the
Big Five personality traits: agreeable, disagree-

1github.com/OpenNMT/OpenNMT-py
2nlds.soe.ucsc.edu/

stylistic-variation-nlg

able, conscientious, un-conscientious, and extro-
vert, each with a stylistically distinct linguistic
profile (Mairesse and Walker, 2010a; Furnham,
1990). Example model outputs for each person-
ality on a fixed MR are in Table 3.

The dataset consists of 88,855 train examples
and 1,390 test examples that are evenly distributed
across the five personality types. Each example
consists of a (MR, personality-label, reference-
text) tuple. The dataset was created using the
MRs from the E2E Dataset (Novikova et al., 2017)
and reference texts synthesized by PERSONAGE
(Mairesse and Walker, 2010b), a statistical lan-
guage generator capable of generating utterances
that vary in style according to psycho-linguistic
models of personality. The statistical generator
is configured using 36 binary parameters that tar-
get particular linguistic constructions associated
with different personality types. These are split
into aggregation operations that combine individ-
ual propositions into larger sentences, and prag-
matic markers which typically modify some ex-
pression within a sentence, e.g. tag questions or
in-group markers. A subset of these are illustrated
in Table 4: see Oraby et al. (2018b) for more de-
tail.

We conduct experiments using two control con-
figurations that differ in the granularity of control
that they provide. We call the first configuration
course-grained control, and the model is condi-
tioned using a single constraint: the personality la-
bel. The second configuration, called fine-grained
control, conditions the model using the personal-
ity label and Personage’s 36 binary control param-
eters as illustrated by Table 4, which provide fine-
grained information on the desired style of the out-

github.com/OpenNMT/OpenNMT-py
 nlds.soe.ucsc.edu/stylistic-variation-nlg
 nlds.soe.ucsc.edu/stylistic-variation-nlg
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Attribute Example
AGGREGATION OPERATIONS

”WITH” CUE X is in Y, with Z.
CONJUNCTION X is Y and it is Z. & X is Y, it is Z.
”ALSO” CUE X has Y, also it has Z.

PRAGMATIC MARKERS
ACK JUSTIFICATION I see, well
ACK YEAH yeah
CONFIRMATION let’s see ....., did you say X?
DOWN KIND OF kind of
DOWN LIKE like
EXCLAIM !
GENERAL SOFTENER sort of, somewhat, quite, rather
EMPHASIZER really, basically, actually, just
TAG QUESTION alright?, you see? ok?

Table 4: Example Aggregation and Pragmatic Opera-
tions

put text. The stylistic control parameters are not
updated during training. When operating under
fine-grained control, for side constraint Methods
2 and 3, the 1-hot vector that encodes personality
are extended with dimensions for each of the 36
control parameters. For Method 1 we insert 36 to-
kens, one for each parameter, to the beginning of
each input sequence, in addition to the single to-
ken that represents personality label.

Contrast Benchmark. This dataset provides ref-
erence outputs for 1000 MRs, where the style of
the output varies by whether or not it uses the dis-
course contrast relation.3 Contrast training set ex-
amples are shown in Table 2.

The contrast dataset is based on 15,000 exam-
ples from the E2E generation challenge, which
consists of 2,919 contrastive examples and 12,079
examples without contrast.4 We split the dataset
into train and development subsets using a 90/10
split ratio. The test data is composed of a set of
500 MRs that contain attributes that can be con-
trasted, whose reference outputs use discourse-
contrast (Reed et al., 2018). The test set also con-
tains a set of 500 MRs that were selected from the
E2E development set that do not use discourse-
contrast. We crowd-sourced human-generated ref-
erences for the contrastive test set, and used the
references from the E2E dataset for the noncon-
trastive test set.5

3nlds.soe.ucsc.edu/
sentence-planning-NLG

4www.macs.hw.ac.uk/InteractionLab/E2E/
5We will make our test and partitions of training data

available to the research community if this paper is accepted.

3.2 Results

For both types of stylistic variation, we evaluate
model outputs using automatic metrics targeting
semantic quality, diversity of the outputs, and the
type of stylistic variation the model is attempting
to achieve. We also conduct two human evalu-
ations. In the tables and discussion that follow,
we refer to the models that employ each of the
side constraint methods, e.g., Methods 1, 2, and
3, described in Section 2.2, using the monikers
M{1,2,3}. The model denoted NoCon refers to
a model that uses no side constraint information.
Sample model outputs from the personality ex-
periments are shown in Table 3. The outputs are
from the M3 model when operating under the fine
grained control setting. Outputs from model M2
of the contrast experiment are shown in Table 8.

3.2.1 Semantic Quality

Model BLEU SER H AGG PRAG
Oraby et al. (2018b)

NoCon 27.74 - 7.87 .56 .08
coarse 34.64 - 8.47 .64 .48
fine 37.66 - 8.58 .71 .55

This Work
Train - - 9.34 - -
NoCon 38.45 0 7.70 .44 .14

coarse control
M1 49.04 0.000 8.49 .57 .51
M2 48.10 0.002 8.52 .62 .50
M3 49.06 0.009 8.50 .60 .50

fine control
M1 55.30 0.004 8.77 .82 .94
M2 52.29 0.103 8.80 .84 .93
M3 55.98 0.014 8.74 .84 .93

Table 5: Automatic evaluation on Personality test set.
course and fine refer to the specificity of the control
configuration.

First, we measure general similarity between
model outputs and gold standard reference texts
using BLEU, calculated with the same evaluation
script6 as Oraby et al. (2018b). For the person-
ality experiment, the scores for each conditioning
method and each control granularity are shown in
Table 5, along with the results reported by Oraby
et al. (2018b). For the contrast experiment, the
scores for each conditioning method are shown in
Table 6, where we refer to the model and results of
Reed et al. (2018) as M-Reed. Reed et al. (2018)
do not report BLEU or Entropy (H) measures.

We first discuss the baselines from previous
work on the same benchmarks. Interestingly, for

6github.com/tuetschek/e2e-metrics

 nlds.soe.ucsc.edu/sentence-planning-NLG
 nlds.soe.ucsc.edu/sentence-planning-NLG
www.macs.hw.ac.uk/InteractionLab/E2E/
github.com/tuetschek/e2e-metrics
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Personality, our NOCON model gets a huge per-
formance improvement of more than 11 points in
BLEU (27.74 → 38.45) over results reported by
Oraby et al. (2018a). We note that while the un-
derlying architecture behind our experiments is
similar to the baseline described by Oraby et al.
(2018a), we experiment with different parameters
and attention mechanisms. Reed et al. (2018) and
Oraby et al. (2018b) also use an LSTM encoder-
decoder model with attention, but they both im-
plement their models using the TGen7(Dušek and
Jurcicek, 2016) framework with its default model
architecture. TGen uses an early version of Ten-
sorFlow with different initialization methods, and
dropout implementation. Moreover, we use a dif-
ferent one-hot encoding of slots and their val-
ues, and we implement attention as in Luong
et al. (2015), whereas TGen uses Bahdanau et al.
(2014b) attention by default. Side constraints are
incorporated into the TGen models in two ways:
1) using a new dialogue act type to indicate the
side constraints, and 2) a feed-forward layer pro-
cesses the constraints and, during decoding, atten-
tion is computed over the encoder hidden states
and the hidden state produced by the feed-forward
layer. The TGen system uses beam-search and an
additional output re-ranking module.

We now compare the performance of our own
model results in Table 5. As would be expected,
NoCon has the lowest performance overall of all
models, with a BLEU of 38.45. With both coarse
control and fine-grained control, M3 and M2 are
the highest and lowest performers, respectively.
For the contrast experiment, M2 and M3 have very
similar values for all rows of Table 6. M2 has the
highest BLEU score of 17.32 and M3 has 17.09.
M1 is consistently outperformed by both M2 and
M3. All side constraint models outperform No-
Con. We note that the contrast task achieves much
lower scores on BLEU. This maybe due to the rel-
atively small number of contrast examples in the
training set, but it is also possible that this indi-
cates the large variety of ways that contrast can be
expressed, rather than poor model performance.
We show in a human evaluation in Section 3.2.2
that the contrast examples are fluent and stylisti-
cally interesting.

A comparison of our results versus those re-
ported by Oraby et al. (2018b) are also shown in
Table 5. Note that our model has an over 14 point

7github.com/UFAL-DSG/tgen

margin of improvement in BLEU score when us-
ing coarse control and a more than 18 point im-
provement when using fine-grained control. Our
models can clearly use the conditioning informa-
tion more effectively than earlier work.

Model BLEU SER H
Train - 10.68

Contrast Data
M-Reed - .16 -
NoCon 15.80 .053 8.09

M1 16.58 .055 8.08
M2 17.32 .058 8.03
M3 17.09 .058 7.93

Non Contrast Data
NoCon 26.58 .025 7.67

M1 26.58 .023 7.56
M2 26.35 .017 7.68
M3 26.04 .035 7.40

Table 6: Automatic evaluation on Contrast test set.

Slot Error Rate. While the n-gram overlap met-
rics are able to measure general similarity between
gold references and model outputs, they often do
not do a good job at measuring semantic accuracy.
Slot error rate (SER)(Wen et al., 2015; Reed et al.,
2018) is a metric similar to word error rate that
measures how close a given realization adheres to
its MR. SER8 is calculated using the slot aligner
released9 by Juraska et al. (2018) to count the
number of attributes (slots) and their values that
correctly (and incorrectly) occur in a given surface
realization. Please refer to Supplementary Materi-
als, Section A.1 for the definition of SER.

We evaluate each model using SER with results
in Tables 5 and 6. We first note that all the SERs
for both tasks are extremely low and that only M2
under fine control performs worse with an SER of
.10. The models are clearly learning to realize the
intended MRs. M1 has the best SER scores in all
experiment conditions. In the contrast experiment,
M2 and M3 are practically equivalent.

Model Acc Contrast Attempts
M-Reed .75 422
M1 .74 437
M2 .79 485
M3 .81 474

Table 7: Contrast accuracy out of 500 examples.

8A formal definition of SER is provided in the supplemen-
tary materials.

9github.com/jjuraska/slug2slug

github.com/UFAL-DSG/tgen
github.com/jjuraska/slug2slug
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Meaning Representation Realization

name[Aromi], eatType[restaurant], rating[low], fami-
lyFriendly[yes]

Aromi is a family friendly restaurant but the customer rating
is low.

name[Fitzbillies], cuisine[English], price[more than
$30], eatType[pub], familyFriendly[yes]

Fitzbillies is a pub that serves English food, is children friendly,
but the price range is more than $30.

name[Clowns], price[more than $30], rating[high],
familyFriendly[no], near[Clare Hall]

Clowns is near Clare Hall. It has a high customer rating but is
not child friendly.

name[Cotto], cuisine[English], location[riverside],
price[high], eatType[coffee shop], rating[5 out of 5],
near[The Portland Arms]

Cotto is a English coffee shop near The Portland Arms in the
riverside. It has a high price range but a customer rating of 5
out of 5.

Table 8: Sample outputs from model M2 with contrast relation in bold.

3.2.2 Quality in Variation

In the previous section we tested the ability of the
side constraint models to produce semantically ac-
curate outputs. In this section we evaluate the ex-
tent to which the side constraint models produce
stylistically varied texts. We evaluate variation us-
ing two measures: 1) Entropy, and 2) counts on
model outputs for particular stylistic targets.
Entropy. Our goal is NLG models that produce
stylistically rich, diverse outputs, but we expect
that variation in the training data will be aver-
aged out during model training. We quantify the
amount of variation in the training set, and also in
the output references from the test set MRs using
Entropy10, H , where a larger entropy value indi-
cates a larger amount of linguistic variation pre-
served in the test outputs.

The results are shown in the H column of Ta-
bles 5 and 6. For the personality experiment, the
training corpus has 9.34 entropy and none of the
models are able to match its variability. When
using fine-grained control M2 does the best with
8.52 but all side constraint models are within 0.03.
When using coarse control M2 has the highest en-
tropy with 8.80. Our models with fine control out-
perform Oraby et al. (2018b) in terms of entropy.
For the contrast experiment, NoCon has the high-
est entropy at 8.09, but the differences are small.
Counts of Stylistic Constructions. Entropy mea-
sures variation in the corpus as a whole, but we
can also examine the model’s ability to vary its
outputs in agreement with the stylistic control pa-
rameters. Contrast accuracy measures the ratio of
valid contrast realizations to the number of con-
trasts attempted by the model. We determine valid
contrasts using the presence of polar opposite val-
ues in the MR and then inspecting realization of
those values in the model output.

10A formal definition of our Entropy calculation is pro-
vided with the supplementary materials.

Table 7 shows the results. The row labeled M-
Reed refers to the results reported by Reed et al.
(2018). NoCon rarely attempts contrast because
there is no way to motivate it to do so, and it there-
fore produces no contrast. Contrast attempts are
out of 500 and M2 has the most at 485. In terms
of contrast accuracy M3 is the best with 81%.

When comparing our model performance to M-
Reed, models M{1,2,3} make more contrast at-
tempts. M1 and M-Reed have similar contrast
accuracy with 74% and 75%, respectively. The
higher performance of our models is particularly
impressive since the M-Reed models see roughly
7k contrast examples during training, which is
twice the amount that our models see.

For personality, we examine each model’s abil-
ity to vary its outputs in agreement with the stylis-
tic control parameters by measuring correlations
between model outputs and test reference texts in
the use of the aggregation operations and prag-
matic markers, two types of linguistic construc-
tions illustrated in Table 4, and associated with
each personality type. The results for these lin-
guistic constructions over all personality types are
shown in the last two columns (Agg, Prag) of Ta-
ble 5. The supplementary material provides de-
tails for each personality. Our results demon-
strate a very large increase in the correlation of
these markers between model outputs and refer-
ence texts compared to previous work, and also
further demonstates the benefits of fine-grained
control, where we achieve correlations to the ref-
erence texts as high as .94 for pragmatic markers
and as high as .84 for aggregation operations.

Methods Comparison. The results in Tables 5
and 7 reveal a general trend where model perfor-
mance in terms of BLEU and entropy increases
as more information is given to the model as side
constraints. At the same time, the slot error rates
are somewhat higher, indicating the difficulty of
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simultaneously achieving both high semantic and
stylistic fidelity. Our conclusion is that Method
3 performs the best at controlling text style, but
only when it has access to a large training dataset,
and Method 2 performs better in situations where
training data is limited.
Human evaluation. We perform human evalua-
tion of the quality of outputs for the M3 model
with a random sample of 50 surface realizations
for each personality, and 50 each for contrast and
non-contrast outputs for a total of 350 examples.
Three annotators on Mechanical Turk rate each
output for both interestingness and fluency (ac-
counting for both grammaticality and naturalness)
using a 1-5 Likert scale.

Human evaluation results are shown in Table 9
for the personality experiment and Table 10 for
contrast. The tables show average annotator rat-
ing in each category. For the personality outputs,
each personality has similar fluency ratings with
Conscientious slightly higher. The model outputs
for the contrast relation have higher average rat-
ings for Fluency than the non-contrastive realiza-
tions. For interestingness, we compare both the
personality styles and the contrastive style to the
basic style without contrast. The results show that
non-contrast (3.07), the vanilla style, is judged as
significantly less interesting than the personality
styles (ranging from 3.39 to 3.51) or the use of dis-
course contrast (3.45) (p-values all less than .01).

Con. Dis. Agr. Ext. Unc. avg
Fluent 3.77 3.38 3.53 3.38 3.35 3.48
Interest 3.39 3.40 3.51 3.46 3.45 3.44

Table 9: Human evaluation results for personality.

Non-contrast Contrast

Fluent 4.21 4.38
Interest 3.07 3.45

Table 10: Human evaluation results for discourse con-
trast.

4 Related Work

Stylistic control is important as a way to address a
well-known limitation of vanilla neural NLG mod-
els, namely that they reduce the stylistic variation
seen in the input, and thus produce outputs that
tend to be dull and repetitive (Li et al., 2016).
The majority of other work on stylistic control
has been done in a text-to-text setting where MRs
and corpora with fixed meaning and varying style

are not available (Fan et al., 2017; Iyyer et al.,
2018; Wiseman et al., 2018; Ficler and Goldberg,
2017). Sometimes variation is evaluated in terms
of model performance in some other task, such
as machine translation or summarization. Herzig
et al. (2017) also control personality in the con-
text of text-2-text generation in customer care di-
alogues. Kikuchi et al. (2016) control output se-
quence length by adding a remaining-length en-
coding as extra input to the decoder. Sennrich
et al. (2016) control linguistic honorifics in the tar-
get language by adding a special social formality
token to the end of the source text. Hu et al. (2017)
control sentiment and tense (past, present, future)
in text2text generation of movie reviews. Ficler
and Goldberg (2017) describe a conditioned lan-
guage model that controls variation in the stylistic
properties of generated movie reviews.

Our work builds directly on the approach and
benchmark datasets of Reed et al. (2018) and
Oraby et al. (2018b). Here we compare directly
to the results of Oraby et al. (2018b), who were
the first to show show that a sequence-to-sequence
model can generate utterances from MRs that
manifest a personality type. Reed et al. (2018) also
develop a neural model for a controllable sentence
planning task and run an experiment similar to our
contrast experiment. Here, we experiment exten-
sively with different control methods and present
large performance improvements on both tasks.

5 Conclusion

We present three different models for stylistic
control of an attentional encoder-decoder model
that generates restaurant descriptions from struc-
tured semantic representations using two stylis-
tic benchmark datasets: one for personality vari-
ation and the other for variation in discourse con-
trast. We show that the best models can simultane-
ously control the variation in style while maintain-
ing semantic fidelity to a meaning representation.
Our experiments suggest that overall, incorporat-
ing style information into the decoder performs
best and we report a large performance improve-
ment on both benchmark tasks, over a large range
of metrics specifically designed to measure se-
mantic fidelity along with stylistic variation. A hu-
man evaluation shows that the outputs of the best
models are judged as fluent and coherent and that
the stylistically controlled outputs are rated signif-
icantly more interesting than more vanilla outputs.
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A Supplementary Materials:
Maximizing Stylistic Control and
Semantic Accuracy in Dialogue
Generation: Conditional Decoding for
Personality Variation and Discourse
Contrast

A.1 Calculating Slot Error Rate
Multiple methods of measuring SER have been
proposed (Wen et al., 2015; Reed et al., 2018).
In this work we use a method similar to the one
described by Reed et al. (2018). First, we define
the following types of errors: substitutions (realiz-
ing an attribute with an incorrect value), deletions
(failing to mention an attribute), repeats, and hal-
lucinations (mentioning an attribute that does not
appear in the MR).

The SER score for a given (MR, text realiza-
tion) pair is calculated by first calculating S, D,
R, and H̃ , which are the amounts of substitu-
tions, deletions, repeats, and hallucinations, re-
spectively. The SER formula is then given as:

SER =
S + D + R + H̃

N
(4)

where N is the number of slots in the MR. Note
that using this method can result in SER values
greater than one, since it is possible for there to be
more errors than slots in the MR.

A.2 Calculating Entropy
To calculate Shannon Text Entropy H , we first
construct the corpus vocabulary V of all unigrams,
bigrams, and trigrams. Then H is given by the
equation

H = −
∑
a∈V

ka
N
· log2(

ka
N

) (5)

where N is the sum total of occurrences for all
terms in V , and ka is the number of occurrences
for the term a.

A.3 Model Implementation Details
Model Implementation. All models are imple-
mented using PyTorchand OpenNMT-py11 (Klein
et al., 2017). We use Dropout (Srivastava et al.,
2014) of 0.1 between RNN layers. Model pa-
rameters are initialized using Glorot initialization
(Glorot and Bengio, 2010) and are optimized us-
ing stochastic gradient descent with mini-batches

11github.com/OpenNMT/OpenNMT-py

of size 128. Beam search with three beams is
used during inference. We implement multiple
models for each experiment using the methods for
stylistic control discussed in Section 2.2. We tune
model hyper-parameters on a development dataset
and select the model of lowest perplexity to eval-
uate on a test dataset. All models are trained us-
ing lower-cased and de-lexicalized reference texts.
The sample model outputs we present have been
re-capitalized and re-lexicalized using a simple
rule based script.

Hyper Parameter Tuning. Hyper parameters
are tuned using a grid search over the following
parameter space:

• RNN layers over the range [1, 2]

• RNN size over the range [150, 200, 250, 300]

We tune the number RNN layers and RNN size by
training a model for each combination of layers
and RNN size (8 models). We use the model of
lowest development dataset perplexity to evaluate
on the test dataset.

This parameter tuning process is performed for
each of the side constraint methods and style pa-
rameter configuration (fine control, coarse con-
trol). The resulting hyper parameter values are
shown in Table 11

Model RNN layers RNN size
NoCon 2 150

coarse control
M1 1 200
M2 1 200
M3 2 150

fine control
M1 1 200
M2 2 200
M3 1 200

Table 11: Model hyper-parameter values.

A.4 Data Processing
The data is pre-processed using Stanford
CoreNLP (Manning et al., 2014).

A.5 Linguistic constructions: Pragmatic
Markers and Aggregation Operations

Psycholinguistic studies have shown these mark-
ers to be indicative of the language of people with
different personality traits (Pennebaker and King,

github.com/OpenNMT/OpenNMT-py
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1999; Furnham, 1990). For example, the use of
pragmatic markers has been shown to effect per-
ceptions of personality traits such as politeness,
friendliness, extraversion, and enthusiasm (Ober-
lander and Gill, 2004; Levinson et al., 1987; De-
waele and Furnham, 1999). Using a method sim-
ilar to Oraby et al. (2018b), we count the occur-
rences of pragmatic markers and aggregation oper-
ations in the model outputs. Then we average the
counts within each personality category and cal-
culate the Pearson correlation between the model
output averages and the gold reference text aver-
ages.

The Pearson correlation r for pragmatic mark-
ers can be seen in Table 12. All values of r are sig-
nificant with p-values less than 0.01. The model
with no side constraints has r ≤ 0.17 for all per-
sonalities except for conscientious with r = 0.81.
This suggests that the un-constrained model picks
one personality to optimize – conscientious in this
case. For both control granularities each of the
side constraint models have similar performance.
Table 12 also shows the correlation results re-
ported by Oraby et al. (2018b) where we observe a
marked improvement in the pragmatic marker cor-
relations of our models compared to theirs.

Pearson correlations for aggregation operations
are shown in Table 13. Again, the test for corre-
lation results in p-values less than 0.01 for each
personality type. Here, the Token model of Oraby
et al. (2018b) outperforms all three of our models
when conditioning on only the personality label
(coarse control).

Model AGR CON DIS EXT UNC avg
Oraby et al

NoSup 0.05 0.59 -0.07 -0.06 -0.11 .08
Token 0.35 0.66 0.31 0.57 0.53 .48
Context 0.28 0.67 0.40 0.76 0.63 .55

This Work - coarse control
NoCon .17 .81 -.08 -.08 -.11 .14
M1 .44 .81 .17 .79 .32 .51
M2 .44 .81 .17 .83 .27 .50
M3 .40 .81 .14 .83 .31 .50

This Work - fine control
M1 .87 .94 .98 .99 .90 .94
M2 .87 .94 .98 .99 .88 .93
M3 .87 .93 .97 .99 .90 .93

Table 12: Correlations between test examples and
model outputs for pragmatic markers.

Model AGR CON DIS EXT UNC avg
Oraby et al

NoSup 0.78 0.80 0.13 0.42 0.69 .56
Token 0.74 0.74 0.57 0.56 0.60 .64
Context 0.83 0.83 0.55 0.66 0.70 .71

This Work - coarse control
NoCon 0.70 0.73 -0.19 0.35 0.60 .44
M1 0.67 0.70 0.58 0.56 0.36 .57
M2 0.61 0.70 0.58 0.60 0.60 .62
M3 0.64 0.68 0.58 0.59 0.49 .60

This Work - fine control
M1 0.84 0.91 0.78 0.81 0.78 .82
M2 0.89 0.92 0.78 0.79 0.84 .84
M3 0.86 0.91 0.79 0.82 0.81 .84

Table 13: Correlations between test examples and
model outputs for aggregation operations.


