
Vedavaapi: A Platform for Community-sourced Indic Knowledge
Processing at Scale

Sai Susarla Damodar Reddy Challa
School of Vedic Sciences Vedavaapi Foundation

MIT-ADT University, Pune Bangalore
sai.susarla@gmail.com

Abstract

Indic heritage knowledge is embedded in millions of manuscripts at various stages of
digitization and analysis. Numerous powerful tools and techniques have been developed
for linguistic analysis of Samskrit and Indic language texts. However, the key challenge
today is employing them together on large document collections and building higher
level end-user applications to make Indic knowledge texts intelligible. We believe the
chief hurdle is the lack of an end-to-end, secure, decentralized system platform for (i)
composing independently developed tools for higher-level tasks, and (ii) employing human
experts in the loop to work around the limitations of automated tools to ensure curated
content always. Such a platform must define protocols and standards for interoperability
and reusability of tools while enabling their autonomous evolution to spur innovation.
This paper describes the architecture of an Internet platform for end-to-end Indic knowl-
edge processing called Vedavaapi that addresses these challenges effectively. At its core,
Vedavaapi is a community-sourced, scalable, multi-layered annotated object network. It
serves as an overlay on Indic documents stored anywhere online by providing textifica-
tion, language analysis and discourse analysis as value-added services in a crowd-sourced
manner. It offers federated deployment of tools as microservices, powerful decentralized
user / team management with access control across multiple organizational boundaries.
social-media login and an open architecture with extensible and evolving object schemas.
As its first application, we have developed human-assisted text conversion of hand-written
manuscripts such as palm leaf etc leveraging several standards-based open-source tools
including ones by IIIT Hyderabad, IIT Kanpur and University of Hyderabad.
We demonstrate how our design choices enabled us to rapidly develop useful applications
via extensive reuse of state-of-the-art analysis tools. This paper offers an approach to
standardization of linguistic analysis output, and lays out guidelines for Indic document
metadata design and storage.

1 Introduction
There is growing interest and activity in applying computing technology to unearth the knowl-
edge content of India’s heritage literature embedded in Indic languages due to its perceived
value to modern society. This has led to several research efforts to produce analysis tools for
Indic language content at various levels – text, syntax, semantics and meaning Goyal et al.
(2012; Kumar (2012; Huet (2002; Kulkarni (2016; Hellwig (2009). Many of these efforts have
so far been addressing algorithmic issues in specific linguistic analysis problems. However, as
the tools mature and proliferate, it becomes imperative to make them interoperable for higher
order document analytics involving larger document sets with high performance. We catego-
rize existing tools for Indic knowledge processing into three buckets - media-to-text (e.g., OCR
(image to text), speech recognition (audio to text)), text-to-concept (e.g., syntax-, semantics-
and discourse analysis), and concept-to-insight (e.g., knowledge search, mining, inference and
decision-making). For instance, though several alternative linguistic tools exist for Samskrit text



analysis (morphological analysis, grammatical checking), they use custom formats to represent
input text and analysis outcome, mainly designed for direct human consumption, and not for
further machine-processing. This inhibits the use of those tools to build end-user applications
for cross-correlating texts, glossary indices, concept search etc.
On the other hand, the number of Heritage Indic documents yet to be explored is staggering.

Data from National Mission for Manuscripts NAMAMI (2012) indicate that there are more
than 5 million palm leaf manuscripts that are scanned but not catalogued for content, let alone
converted into Unicode text to facilitate search. This is in contrast to less than a million in the
rest of the world combined before the advent of print era. In addition, The Internet Archive
project Archive.org (2019) has a huge collection of scanned printed Indic books. Very few of them
have been converted to text. There are also thousands of online Unicode Samskrit documents
yet to be analyzed linguistically for knowledge mining. Use of technology is a must to address
this scale.
We believe that to take Indic knowledge exploration to the next level, there needs to be

a systematic, end-to-end, interoperability-driven architectural effort to store, exchange, parse,
analyze and mine Indic documents at large scale. Due to lack of standardized data representa-
tion and machine interfaces for tools, Indic document analysis is unable to leverage numerous
advances in data analytics that are already available for English and other languages.
Moreover, Indic documents pose unique challenges for processing compared to other ancient

document collections due to the unbroken continuity of Indic knowledge tradition spanning
more than two thousand years. First, a vast majority of them are handwritten or in often
poorly scanned archaic printed modes in dozens of languages, more than thirty evolving scripts
and diverse media. Existing linguistic platforms are inadequate to handle their complexity and
diversity. Second, human feedback and correction in a community-sourced mode is essential to
curate Indic document content at scale for further machine processing. But the architecture of
many existing tools is not amenable to incorporating human input and adapting to it. Finally,
Indic knowledge collections and processing tools are fragmented across multiple organizations
and administrative boundaries. Hence a centralized approach to user authentication, access
control and accounting will not be acceptable.
To overcome these challenges, this paper presents Vedavaapi, a novel platform architecture

for community-sourced Indic document processing to transform digitized raw Indic content into
machine-interpretable knowledge base. Through Vedavaapi this paper makes the following con-
tributions to facilitate large-scale Indic knowledge processing:

1. A federated RESTful service architecture to support dynamic Indic knowledge processing
workflows by leveraging independently evolving services, where each service can be deployed
and scaled independently to handle load.

2. A canonical object model to represent document analytics output that enables interoper-
ability between multiple tools in the document processing pipeline and also transparent
integration of human feedback at each stage without modifying the tools themselves.

3. A NoSQL-based object store that supports self-describing, versioned schemas to help tool
and data evolution over time.

4. A uniform, hierarchical security and access control model for users and object collections
that supports decentralization of policies for flexible management across organizational
boundaries. This model also allows individual tool providers to meter usage for chargeback
to end-users.

The rest of the paper is organized as follows. In Section 3, we define the problem of Indic
Knowledge processing, its requirements and the scope of our work. In Section 4, we illustrate
the challenges in the use of existing tools for Indic knowledge processing to motivate our work. In



Section 5, we present the principles that guide the design of our solution Vedavaapi. In Section
6, we describe the key architectural aspects of Vedavaapi including its object model, security
model and deployment. In Section 7, we present an overview of our current implementation and
a qualitative evaluation against our objectives. In Section 8, we outline ideas for future work
and conclude.

2 Related Work

Existing work on language and knowledge processing can be viewed from three aspects - Natural
Language Processing (NLP) algorithms and tools, human-assisted adaptation techniques around
those tools to accelerate curation of content, and end-to-end platforms that compose NLP tools
into higher-level workflows. This paper’s focus is on the third aspect namely, how to build a
platform that enables composing NLP tools into effective workflows that lower human effort and
improve productivity in processing large, diverse document collections. NLP tools exist for each
stage of the language processing pipeline shown in Figure 1. Crowd-sourcing is well-known as
an effective way to rapidly curate or annotate content and is employed in multiple successful
knowledge projects such as Wikipedia Wikipedia (2019). For example, the Bodleian Library at
Oxford Libraries (2019) enables crowd-annotation of music collections to describe their content.
For Indic document processing, some of the metadata is layered on other metadata and also
machine-generated and hence might be inaccurate. Hence it needs manual curation, but should
have mechanisms to reduce repetitive corrections. The architecture proposed here enables such
flexibility. Workflows to handle archaic document collections are custom-built for individual
scripts. In contrast, for Indic document collections we need a system that is geared to handle
script diversity as well.

3 Indic Knowledge Processing: Overview and Status

By Indic knowledge, we refer to the practices, techniques and principles that evolved in Ancient
India over centuries across all disciplines. Some of that knowledge has been documented in
written form via manuscripts, while some got transmitted down to the present via oral, craft and
cultural traditions. The objective of Indic Knowledge Processing (IKP) is to recover, preserve,
paraphrase and leverage Indic knowledge sources for contemporary applications.
Heritage Indic documents come in all media formats and sizes. They include palm leaf and

other manuscripts containing hand-written text preserved over millennia, books printed over
the last 2 centuries, audio/video recordings of discourses/renderings by traditional scholars, and
thousands of Unicode texts available over the web. Some of these have been digitized, but not
yet converted to machine-processable text. They come in dozens of Indic scripts, languages and
fonts in multiple combinations NAMAMI (2016), making their organization and processing an
engineering challenge. In addition, much of Indic tribal knowledge is still locked up as regional
traditions yet to be recorded and captured from their practitioners. Many Indic documents use
languages with similar grammatical structure to Samskrit. Samskrit literature is well known
to have a rigorous linguistic discipline that makes it more amenable to machine-processing and
automated knowledge extraction than other natural languages Goyal et al. (2012). IKP involves
creating services to explore Indic knowledge content at various levels – text extraction, syntactic
and semantic analysis, knowledge search, mining, representation and inference.
The potential for automated mining of Indic knowledge due to its linguistic base of Samskrit,

coupled with the sheer size of Indic document corpus yet to be examined, opens the opportunity
to pursue Scalable Indic Knowledge Processing as an impactful research area in computing. This
area is inherently multi-disciplinary, and involves rich media analytics (of audio, video, images),
machine-learning, computational linguistics, graph databases, knowledge modeling and scale-out
cloud architecture.
Figure 1 illustrates the various stages of a typical IKP pipeline covering three distinct transfor-

mations: media to text, text to concept, and concept to insight. Each of these stages produces a



high volume of metadata in the form of analysis output, content indexes and user feedback that
need to be persisted. Currently, there is a huge corpus of digitized content to feed the pipeline
and numerous tools for various stages of the pipeline, but disjointed and not usable in tandem.

Figure 1: The irregularity of text layouts in Palm leaf manuscripts.

This paper presents the architecture of a novel software platform that bridges the gaps in the
IKP pipeline to help rapidly transform digitized Indic knowledge content into useful applica-
tions. Some of our target applications include an E-reader for Indic texts that provides search
within scanned or audio/video documents, glossary of technical terms used in a book, concept
map and knowledge map views and semantic queries. The scope of this paper is restricted
to architectural issues and not the algorithmic details of specific stages of the pipeline or the
end-user applications.

3.1 Requirements of an IKP Platform

In addition to scalable performance to handle millions of documents by thousands of simultane-
ous users, an IKP platform must have the following properties:

Durability: It must provide both data and metadata persistence, so users or services can build
on prior analysis by others.

Extensibility: The platform must support functional extensions to its services via APIs. It
should also provide well-documented data formats and interfaces to incorporate available
knowledge sources and analytics tools into its fold. This allows existing analysis tools to be
reused in larger contexts than anticipated originally.

Crowd-sourcing: Ambiguity is inherent in natural language understanding. To help resolve am-
biguity in analysis and enable users to enrich each other’s knowledge through the platform,
it must accept human feedback (analogous to Wikipedia) and and adapt to it. However to
reduce user burden of repetitive corrections, the IKP system must have built-in intelligence
to auto-apply suggested corrections to similar contexts.

4 Architectural Considerations for IKP

We now discuss several architectural implications of the above requirements and how existing
solutions handle them.



4.1 Handling OCR Errors
First, consider the conversion of digitized content into text, referred to as the “textify” stage in
the IKP pipeline of Figure 1. Optical Character Recognition (OCR) technology has matured to
extract printed text in many Indic languages from high quality scanned images. Google offers
a paid Vision API service Google (2019) that is more than 95% accurate on scanned images of
resolution higher than 100 DPI. Open source alternatives also exist (Tesseract Tesseract (2019),
Sanskrit OCR by Hellwig Hellwig (2019)), but are not found to be as effective on low-resolution
or skewed scans of printed text. The accuracy levels of these services is adequate for direct
human consumption for text search purposes, but not for further machine processing. Proof-
reading of even a 95% accurate OCR output is a tedious manual effort. Existing OCR services
do not have feedback-driven correction in their workflow. Such an adaptation facility would
greatly enhance the utility of OCR by reducing repetitive manual work over time.
An IKP system must leverage these OCR tools but also facilitate building human feedback

collection and tool re-training workflows around them. Another problem is that the bulk of
Indic texts are in handwritten manuscripts with irregular layouts, (see Figure 2 for examples)
and existing text segmentation and layout detection schemes are poor at handling them. A
more effective alternative for designing an OCR solution would be to separate layout detection
and text recognition into modular services and employ the best tools for each service. This
enables one to handle printed as well as hand-written text recognition that improves over time,
leveraging state-of-the-art tools. In Section 7, we discuss how Vedavaapi achieves that.

Figure 2: The irregularity of text layouts in Palm leaf manuscripts.

4.2 Human-assisted Language Analytics
Machine processing of Indic documents is inherently prone to errors due to ambiguity, For in-
stance, morphological analysis Kulkarni (2016; Huet (2002) of a Samskrit sentence produces
alternative semantic trees sometimes running into hundreds. Text segmentation to detect words
from a punctuation-free Indic character sequence can also generate multiple alternative seg-
mentations. Such tools still need human intervention both to supply the context to prune the
choices during analysis, and to select a meaningful option from analysis output. Further, system
adaptation needs to be built in to create self-improving analyzers. All this requires a mecha-
nism to capture human feedback persistently and incorporate it into future analysis tasks. The
IKP architecture should provide user-feedback-driven adaptation as a value-addition on top of
individual analysis tools, and define standard interfaces to exchange that information with the
tools.

4.3 Handling Data Diversity
The input data for an IKP workflow are source documents, which are mostly read-only content.
The document analysis tools augment original content with one or more alternate views (e.g.,



morphological analysis of a sentence, a concept map, an OCR output). When a user annotates
those views, some of them become irreplaceable and hence must be stored durably. From a
mutability standpoint, an IKP system must deal with three types of content with different rates
of churn:

Read-only Source Content that is never updated after creation,

Mutable System-inferred Content that can be reproduced by re-running analytics, and

Mutable Human-supplied Content including user annotations and corrections to system-inferred
content.

IKP’s data store should clearly demarcate these three types and treat them differently to avoid
imbalance in storage performance. Also, for the same source content, there could be multiple
alternate views at multiple levels of semantics and granularity that need to be tracked as such.
For instance, there could be a sentence-level analysis, paragraph-level analysis and global analysis
that coexist for a document.

4.4 Implications of Crowd-sourcing
When human input is solicited for correction, there needs to be a facility to track multiple alter-
nate suggestions, rank them by user reputation and provide a consolidated view that represents
the most acceptable suggestion. Similarly, the user feedback can be used as training data for
machine-learning tools to minimize the need for subsequent corrections. Hence an IKP system
must maintain version histories for content updates.
Resolving competing suggestions in a crowd-sourcing situation is a well-understood phe-

nomenon with numerous solutions. The IKP platform must enable the use of such solutions
in IKP use cases by facilitating persistent capture of the appropriate data.

5 IKP Architecture: Guiding Principles

Based on the considerations discussed in the previous section, we outline a set of guiding prin-
ciples for the design of an IKP architecture as follows:

• Federation: The architecture must adopt an open platform approach that enables services
to be independently developed, deployed and maintained by multiple organizations.

• Interoperability: The architecture must allow existing tools to be leveraged in larger Indic
document analytics workflows which the tool developers might not have anticipated.

• Community-sourcing: The architecture must support overlaying of human input and cor-
rection to the output of any of the services transparently.

• Decentralized security and Accounting: The architecture must allow single-sign-on across
multiple services while allowing them to independently meter resource consumption by end-
users for chargeback. For Indic knowledge processing to be accelerated, participation of
thousands of scholars and enthusiasts across multiple organizational boundaries is essential.
Decentralized authentication and authorization ensures that. Decentralized accounting al-
lows the development of value-add services to enrich the platform in an economically viable
manner.

6 Architecture of Vedavaapi

In this section, we describe the architecture of Vedavaapi, a platform we are building to facilitate
large-scale IKP workflows. Vedavaapi is a web-based platform that offers rich, multi-layered
annotated views of document collections stored natively or elsewhere (such as at archive.org).
Figure 3 illustrates the architecture of Vedavaapi. It is organized as a set of loosely coupled web

http://archive.org


services and web applications interacting via RESTful APIs. Each such service is packaged as
a cluster of Docker containers Docker (2019) for ease of deployment and scaling. A web service
only responds to API requests, whereas a web application offers end-user interaction as well, via
a GUI.

6.1 The Vedavaapi Ecosystem

One of the core web services is a Vedavaapi site that provides secure controlled access to an-
notated Indic document collections of an organization. There could be many Vedavaapi sites,
and each of them offers an administrative boundary with its own user and document collection
management. A Vedavaapi dashboard web application orchestrates end-user interaction with
one or more Vedavaapi sites. This application handles single-sign-on user login via social media,
user and team management, document collection management and launching IKP workflows via
invoking other Vedavaapi web services.
To facilitate third-party IKP tools (e.g., OCR and linguistics tools) to operate on document

collections of Vedavaapi sites securely, Vedavaapi provides an adapter library to be bundled with
those tools. This adapter provides user authentication and secure access to any Vedavaapi site.
A third-party IKP tool can be converted into a Vedavaapi IKP service by wrapping it with a
RESTful API frontend along with the adapter library. Using the adapter library, IKP services
interact with Vedavaapi sites to retrieve their data and store IKP output on behalf of logged in
users.

Figure 3: Vedavaapi Federated Architecture. Example IKP services that are active in this
illustration are Samskrit Linguistics, Indic Spell Checker and Doc Layout Analytics services.

An IKP service can be registered with multiple Vedavaapi sites to offer its services via specific
API endpoints or to manipulate specific document types. When an end-user requests an IKP
operation on an Indic document at a site, he/she is presented with a list of registered IKP
services available for that operation. For instance, multiple OCR tools can be made available
to extract text from a scanned page.
A Vedavaapi site consists of a persistent object store, user and team management service,

access control service, and an OAuth service. The object store service houses all of the site’s



persistent metadata in a NoSQL database as JSON objects, and provides a powerful navigational
query interface. The document source images are stored in the local file system.

6.2 User Authentication
Each Vedavaapi site maintains its own user accounts, teams and access control permissions
for its document collection, and exports itself as an OAuth service provider. The Vedavaapi
dashboard application authenticates a user via social media login and registers a new user to a
site upon first access. Soon after login, it procures an OAuth access token to represent the user
for subsequent operations at the site. Unlike cookies, the access token can be passed around to
other IKP services to represent the user when accessing Vedavaapi documents.
When a third-party IKP service needs to access or update a document at a Vedavaapi site, it

simply passes on the access token it received from its caller (usually the Vedavaapi dashboard
application). Thus IKP tool developers are relieved from performing user authentication and
access control. IKP services can also invoke other IKP services recursively while representing the
same user transparently throughout the delegation chain. Moreover, given the access token, any
IKP service provider can retrieve the user profile for accounting / metering the user’s operations
against his/her quota. This enables the service to chargeback based on usage regardless of where
it is the invocation chain.

6.3 Vedavaapi Object Model
A Vedavaapi site stores and manages Vedavaapi objects, which are of three types - agents,
resources and annotations. An agent is either a user (either human or bot) who has an account
with the site and needs to be authenticated, or a collection of users called a team. Resources
are the objects whose access by users needs to be regulated, and which can be annotated by
users. Annotations are pieces of information tagged to resources or other annotations, such as
the output of an IKP analysis. Every object is referred to by its unique UUID generated by the
underlying object store (in our case, MongoDB MongoDB (2016)).
Examples of resources include scanned books, text documents, videos, and collections of other

resources such as libraries. IKP applications can define their own resource types. Vedavaapi
recognizes a special type of resource called SchemaDef, which describes the schema of any Ve-
davaapi object using the JSONSchema description language standard Schema (2019). Resources
form a strict parent-child hierarchy, whereas an annotation can refer to multiple resources and
hence induces a directed acyclic graph. Examples of annotations include transcript, translation,
commentary, linguistic analysis output etc.
Vedavaapi object model allows object relationships to be captured via three types of links

- source / parent object, target / referred object and members list of a collection object. All
objects are referred by their UUIDs issued by the underlying object store (MongoDB in our
case). The source / parent link is used to link a resource to its container or parent resource
such as books to their library or pages to their book. The target / referred link is used to link
an annotation to its referred object such as a transcript to a paragraph. Figure 5 illustrates a
network of Vedavaapi objects generated in a typical OCR workflow.
Often, an IKP workflow needs to persist the ordering of objects in a collection, e.g., pages

in a book or words in a page. To facilitate that, we define a Sequence resource object as one
that enumerates its child resources via their numeric index field. Sometimes, we also need to
persist different orderings of the same set of objects, e.g., a user’s bookmarked pages in a book.
To support that, we define a sequence annotation object as one that explicitly enumerates a
set of arbitrary object ids in a specific order via its own “members” field. To capture multiple
alternatives produced by an IKP analysis output, we define a choice annotation object as one
that returns one of its referring annotations according to a selection strategy such as first,
random, vote, etc. For instance, when a morphological analysis produces multiple alternatives,
they can be persisted under a choice annotation to be presented to users for voting. Finally, to
represent arbitrary semantic linkage among concepts or among sentences in a discourse, we need



Figure 4: Vedavaapi Object Model.

Figure 5: An Example Vedavaapi Object Network showing both resources and annotations.



a generic way to explicitly annotate the relation among groups of objects. We define a relation
annotation object as one that captures the semantic relations among two or more resources or
annotations.
Figure 6 illustrates the entire class hierarchy of Vedavaapi objects along with their inter-linkage

conventions.

Figure 6: Class Hierarchy of Vedavaapi Objects.

6.4 Vedavaapi Access Control
A large-scale IKP platform must allow different teams the flexibility to manage access to their
own document collections independently, while providing administrative override when required.
Vedavaapi provides fine-grain control over operations on object content as well as the inter-object
network by users and teams. To do so, Vedavaapi recognizes the following operations on objects:

• read: allows reading this object’s content, i.e, metadata attributes

• updateContent: allows updating the object’s attributes

• delete: allows deleting the object and delinking it from its network.

• linkAnnos: allows creating annotations on this object.

• linkChildren: allows linking child resources to this resource.

• updateLinks: allows re-parenting a resource, re-targeting an annotation or changing the
members of a collection

• updateAcls: allows updating the access control list of this object.

Vedavaapi uses an ID card approach to authorizing user operations on objects. A user can be
part of multiple teams. Hence a user “carries” i.e., inherits the IDs of all the teams to which
one belongs.



A Vedavaapi access control list (ACL) is a persistent attribute of the object and applies to
all objects - user and teams objects as well as resources and annotations. Moreover, resources
inherit the ACLs from their parent resources and annotations inherit ACLs from the objects
they target. The ACL comprises three lists for each operation type:

• Granted IDs: the list of user and team IDs that are allowed this operation

• Revoked IDs: the list of user and team IDs that are not allowed this operation.

• Prohibited IDs: the list of user and team IDs that are prohibited this operation

A wildcard ‘*’ in a list matches any ID. Vedavaapi authorizes user operations on objects using
ACLs as follows: a user is allowed an operation on an object if at least one of the IDs one
possesses is allowed that operation, and none of the IDs is prohibited that operation.
Access control based on ID cards avoids the need to check a user for team membership at

access control time, which happens frequently. ACL inheritance offers a convenient and intuitive
way for administrators to control access to large object networks. Prohibited IDs feature allows
quarantining a user or team in an emergency security breach situation.
As a concrete example, if management of a library and its book collection needs to be delegated

to a team, that team can be given update ACLs for the library’s child resource hierarchy while
revoking the updateLinks operation to prevent the team from changing how the library connects
to the parent document collection.

6.5 Vedavaapi API Overview
Table 1 outlines the APIs exported by Vedavaapi site to client applications. It consists of user
and team management, authentication, object store access and ACL management. The APIs
mainly support create, read, update and delete (CRUD) operations on various resources. In
addition, the uniform object model of Vedavaapi allows a single API to manage diverse object
types while also providing a powerful bulk operation interface on object graphs for efficiency.
Specifically, the object store offers a versatile graph traversal API that not only is used for
retrieving object networks but also upload or modify them. The query for graph traversal takes
an attribute-based selection criterion to pick the initial objects and a list of hop criteria to guide
the navigation from those objects to others via selected links.

API Cluster APIs

Accounts OAuth login and portable access tokens

Accounts CRUD operations on users and teams

Object Store CRUD operations on objects (resources, annotations, schemas, services)

Object Store Object graph traversal, queries, updates and deletes

ACLs CRUD operations on ACLs for given resource

ACLs resolve permissions for currently logged in user

Table 1: Vedavaapi API Overview

7 Implementation and Evaluation
We have implemented most of the core Vedavaapi functionality in Python using Flask web
services framework to provide RESTful API access. The object store is implemented as a
python wrapper around MongoDB. The wrapper provides schema validation, user access control
and multi-hop navigational queries on the raw objects stored in MongoDB database. We have
implemented the Vedavaapi web dashboard as a standalone AngularJS application that can
connect to multiple Vedavaapi sites via their API.
The objective of the Vedavaapi platform is to facilitate leveraging existing tools to rapidly

create larger and effective IKP workflows. To evaluate how well our architecture achieves this



objective, we have repackaged several existing open-source and private software modules to
create an image-to-text conversion pipeline for scanned Indic documents - both printed and
handwritten ones. Unlike existing OCR solutions, our solution enables human intervention to
compensate for machine errors as well as OCR retraining for improved effectiveness. To do so,
we have ported the following existing tools to run as IKP services in the Vedavaapi ecosystem:

Figure 7: Screenshot of Vedavaapi library view showing books imported from archive.org via
IIIF importer.

• IIIF Book importer: This service imports layout and page information of scanned books
uploaded to large digitized archives including https://archive.org/. We wrote a python
library with a Flask API to import an entire scanned book from archive.org from its url
as a Vedavaapi resource hierarchy. This way, we can offer IKP services on scanned books
stored elsewhere. This took a couple of days of development effort, as Vedavaapi object
schema was expressive enough to incorporate their metadata. Figure 7 shows a screenshot
of a book imported via this service.

• Mirador Book Annotator: Then we ported a sophisticated open-source book viewer and
annotator web application (written in JavaScript) called Mirador to operate on Vedavaapi-
hosted books. We achieved this by using our Vedavaapi client-side adapter library in
JavaScript as a plugin to Mirador to source its book information and serve it from our site.
Mirador has a built-in annotation facility that lets users manually identify text segments
and also optionally transcript the text. We added persistence by storing those annotation
on Vedavaapi backend site. This took one week of effort.

• Indic OCR Tools: OCR tools such as Tesseract and Google Vision API service provide
both segmentation as well as text recognition from images in an XML-based standard
format called hOCR. We created a wrapper service around them to import and export
hOCR formatted data as annotations in Vedavaapi. We added a plugin to Mirador to
invoke a user-selected OCR service to pre-detect words of a scanned page. This took one

https://archive.org/
http://projectmirador.org/
https://opensource.google.com/projects/tesseract
https://cloud.google.com/vision


week of effort and greatly helped jumpstart text conversion for many printed texts available
publicly.

• hOCR Editor: We ported an open-source web-based text editor for HOCR-formatted output
to ease user experience in text conversion compared to Mirador. With our hOCR importer
and exporter libraries already in place, this step took a day of effort, mainly to persist
edits incrementally on Vedavaapi site. Figure 8 shows a screenshot of a post-OCR editing
session. We imported an 800-page book called “Halayudha Kosha” from archive.org using
IIIF importer application into Vedavaapi. We then invoked Tesseract OCR on the 10th
page. We opened the OCR output using the hOCR editor as shown in the figure.

Figure 8: hOCR Editor running within Vedavaapi dashboard for proofreading Tesseract OCR
output on a printed page from archive.org. The original image is shown on the left and the word
editor is on the right. The yellow is corrected word.

Figure 9: Palm leaf manuscript’s lines detected with IIIT Hyderabad’s palm leaf layout detector
and edited through Mirador viewer within Vedavaapi dashboard. The blue contours around the
lines were auto-detected and labeled by the tool as “Character Line Segments”.

With these applications integrated with Vedavaapi platform, we got a complete solution for
text conversion of archive.org books using OCR tools as well as crowd-sourced human correction
working within 2 weeks. However, the layout detection of existing OCR tools on hand-written
palm leaf manuscripts is poor due to irregular and overlapping lines in such documents. In
parallel, a research group at IIIT Hyderabad developed a deep-learning-based layout detector for



palm leaf manuscripts called Indiscapes Prusty et al. (2019) that automatically draws polygons
around lines of text, holes, images and other artifacts by training on manual shape annotations.
It requires a machine with GPU for the training step.

• Layout Detector for Palm leaf Manuscripts: Hence we have created a palm leaf layout
detector based on IIIT Hyderabad tool. It takes a page image URL from a Vedavaapi
site, detects line segments and posts them back as annotations to that page on Vedavaapi
with empty text label. The training model file is maintained at IIIT Hyderabad, while the
detector runs as Vedavaapi service. Subsequently, we were able to use the hOCR editor to
type the text manually, thereby creating a crowd-sourced workflow for online transcription
of hand-written text. Porting the tool to Vedavaapi took 2 days of effort as most of the
functionality was in place. Figure 9 shows the screenshot of this service running from within
Vedavaapi dashboard.

• Samsaadhanii Linguistic Toolkit: We are currently in the process of incorporating Sam-
saadhani toolset as an IKP service to be invoked on Vedavaapi-hosted Samskrit text data.
This will test Vedavaapi’s ability to leverage community-sourcing to eliminate ambiguity in
linguistic analysis output. This is still a work in progress.

8 Lessons Learnt and Future Directions

Our experience with devising and leveraging the Vedavaapi platform to create IKP workflows
indicates that a carefully designed object model that takes the data needs of existing tools can
greatly enhance the ability to reuse these tools in providing useful end-to-end IKP solutions.
While many of the design choices we had made got validated through the OCR pipeline ex-
periment, we need to work on incorporating the higher order linguistic analysis tools to fully
validate the design. During this journey of developing the IKP platform, we realize that there
are a lot of popular, well-designed tools already developed and used in different contexts. To
really facilitate widespread adoption of such a platform, it should be simple to adapt them to
fit into its ecosystem.
Hence the next steps in this effort would be to incorporate tools for text segmentation, Sam-

skrit linguistics and knowledge mapping to pave the way for a robust, popular platform for
innovation around Indic knowledge.

9 Conclusion

In this paper, we made the case for ensuring interoperability of tools and services to accelerate
the pace of Indic knowledge processing. While numerous point solutions exist, we have identified
that the lack of end-to-end systems approach hinders rapid progress in this field. We present a
novel platform approach to IKP architecture that combines the best practices of scale-out cloud
computing, careful metadata design and flexible security protocols to significantly accelerate
progress in this field.

References
Archive.org. 2019. Internet Archive: Digital Library of free and borrowable books.

http://www.archive.org/.

Docker. 2019. Docker: Enterprise Container Platform. https://www.docker.com/.

Google. 2019. Google Cloud Vision API. https://cloud.google.com/vision/.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed plat-
form for Sanskrit processing. In 24th International Conference on Computational Linguistics (COL-
ING), Mumbai.



Oilver Hellwig. 2009. Extracting dependency trees from sanskrit texts. Sanskrit Computational Linguis-
tics 3, LNAI 5406, pages 106–115.

Oliver Hellwig. 2019. Sanskrit OCR. http://www.sanskritreader.de/.

Gérard Huet. 2002. The Zen computational linguistics toolkit: Lexicon structures and morphology
computations using a modular functional programming language. In Tutorial, Language Engineering
Conference LEC’2002.

Amba Kulkarni. 2016. Samsaadhanii: A Sanskrit Computational Toolkit. http://sanskrit.uohyd.ac.in/.

Anil Kumar. 2012. Automatic Sanskrit Compound Processing. Ph.D. thesis, University of Hyderabad.

Bodleian Libraries. 2019. What’s the score at the Bodleian? https://www.bodleian.ox.ac.uk/we-
ston/our-work/projects/whats-the-score.

MongoDB. 2016. MongoDB NoSQL Database. http://www.mongodb.com/.

NAMAMI. 2012. Performance Summary of the National Mission for Manuscripts, New Delhi, India.
http://namami.org/Performance.htm.

NAMAMI. 2016. National manuscript mission, new delhi, india. http://namami.org/.

Abhishek Prusty, Sowmya Aitha, Abhishek Trivedi, and Ravi Kiran S. 2019. Indiscapes: Instance
segmentation networks for layout parsing of historical indic manuscripts. In Accepted for publication
in ICDAR 2019.

JSON Schema. 2019. JSON Schema Standard. http://json-schema.org/.

Tesseract. 2019. Tesseract OCR. https://opensource.google.com/projects/tesseract.

Wikipedia. 2019. Wikipedia: The Free Encyclopedia. http://www.wikipedia.org/.


