
ISCLS 2019

Proceedings of the 6th International Sanskrit Computational
Linguistics Symposium

23–25 October, 2019
Indian Institute of Technology Kharagpur

West Bengal, India

Sponsors

c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-71-0

Introduction

Welcome to the 6th edition of the International Sanskrit Computational Linguistics Symposium (6th IS-
CLS) at IIT Kharagpur, West Bengal, India. The aim of ISCLS is to bring together researchers interested
in any aspects of Sanskrit Computational Linguistics. Full papers were invited on original and unpub-
lished research on various aspects of Computational Linguistics and Digital Humanities related to San-
skrit (Classical and Vedic), Prakrit, Pali, Buddhist Hybrid Sanskrit, etc. 13 contributions were accepted,
and the final versions, after incorporating the reviewers’ comments constitute the proceedings. We would
like to thank the Program Committee for the 6th ISCLS for their reviewing efforts:

• Stefan Baums (University of Munich)

• Laxmidhar Behera (IIT Kanpur)

• Brendan Gillon (McGill University)

• Pawan Goyal (IIT Kharagpur)

• Olivier Hellwig (University of Zurich)

• Gérard Huet (Inria Paris)

• Amba Kulkarni (University of Hyderabad)

• Malhar Kulkarni (IIT Bombay)

• Pavan Kumar Satuluri (Chinmaya Vishwavidyapeeth, Veliyanad)

• Andrew Ollett (Harvard University, Cambridge, MA)

• Dhaval Patel (Ahmedabad)

• Ganesh Ramakrishnan (IIT Bombay)

• Peter Scharf (IIIT Hyderabad)

• Srinivasa Varakhedi (KKSU, Ramtek)

• K Varalakshmi (Osmania University, Hyderabad)

The first two papers talk about Sanskrit sentence generation and parsing. In “Sanskrit Sentence Genera-
tor", Amba Kulkarni and Madhusoodana Pai J present a sentence generator for Sanskrit, which takes an
intermediate representation from which, using Panini’s grammar, the desired sentence can be generated,
without appealing to the world knowledge. In “Dependency Parser for Sanskrit Verses", Amba Kukarni,
Sanal Vikram and Sriram K describe their efforts to build a dependency parser which parses both prose as
well as verse texts. The parser utilizes various constraints following traditional rules of verbal cognition,
which are employed using and edge-centric binary join method.

The next two papers discuss the compound identification and type classification using word embeddings
and machine learning methods. The paper, “Revisiting the Role of Feature Engineering for Compound
Type Identification in Sanskrit" by Jivnesh Sandhan, Amrith Krishna, Pawan Goyal and Laxmidhar Be-
hera, attempts to ask the question if the recent advances in neural networks can outperform traditional

iii

hand engineered feature based methods on the semantic level multi-class classification task for Sanskrit.
In “A Machine Learning Approach for Identifying Compound Words from a Sanskrit Text", Premjith B,
Chandni Chandran V, Shriganesh Bhat, Soman Kp and Prabaharan P propose a classification framework
for finding the compound words from a Sanskrit text, in particular, those found in Ayurveda text books,
using word embeddings.

The next two papers talk about NLP corpus building. In “LDA Topic Modeling for pramāṅa Texts: A
Case Study in Sanskrit NLP Corpus Building", Tyler Neill describes the methodology followed towards
the preparation of digital corpus for word-level analysis. It also explains pitfalls in current digitalization
practices of Sanskrit corpus. In “Vedavaapi: A Platform for Community-sourced Indic Knowledge Pro-
cessing at Scale", Sai Susarla and Damodar Reddy Challa describe the architecture of an online platform
for end-to-end indic knowledge processing addressing the challenges of composing independently devel-
oped tools for higher-level tasks, as well as employing human experts in the loop to work around the
limitations of automated tools.

The next two contributions discuss the problems concerning information retrieval and questions answer-
ing from Sanskrit texts. The paper, “On Sanskrit and Information Retrieval" by Michaël Meyer discusses
the challenges for traditional information retrieval systems to handle the peculiarities of Sanskrit, and dis-
cusses a few possible solutions. In “Framework for Question-Answering in Sanskrit through Automated
Construction of Knowledge Graphs", Hrishikesh Terdalkar and Arnab Bhattacharya target the problem
of building knolwedge graphs for particular types of relations from Sanskrit texts and attempts to answer
factoid questions using the extracted relations.

The next two papers discuss digital tools for Sanskrit Wordnet and Vaijayantı̄kośa. In “Introduction
to Sanskrit Shabdamitra: An Educational Application of Sanskrit Wordnet", Malhar Kulkarni, Nilesh
Joshi, Sayali Khare, Hanumant Redkar and Pushpak Bhattacharyya introduce Sanskrit Shabdamitra, a
digital tool based on Sanskrit Wordnet, for learning and teaching Sanskrit. The paper, “Vaijayantı̄kośa
Knowledge-Net" by Aruna Vayuvegula, Satish Kanugovi, Sivaja S Nair, Shivani V and Mahalakshmi
discusses Vaijayantı̄kośa Knowledge-Net, a web-based tool for easy access and analysis of words in Vai-
jayantı̄kośa, a Sanskrit lexicon containing words from spoken language as well as those in Vedic literature.

The next two contributions attempt to capture the evolution of manuscript texts. The paper, “Utilizing
Word Embeddings based Features for Phylogenetic Tree Generation of Sanskrit Texts" by Diptesh Kano-
jia, Abhijeet Dubey, Malhar Kulkarni, Pushpak Bhattacharyya and Reza Haffari infers phylogenetic trees
of Sanskrit texts using inter-manuscript distances obtained via word embeddings. In “An Introduction to
the Textual History Tool", Diptesh Kanojia, Malhar Kulkarni, Pushpak Bhattacharyya, Sayali Ghodekar,
Irawati Kulkarni, Nilesh Joshi and Eivind Kahrs describe textual history tool to capture the historical view
of the transmission of a text through the manuscript tradition, captured via inter-related data from various
types of related texts.

The proceedings conclude with the paper, “Pāli Sandhi – A Computational Approach" by Swati Basapur,
Shivani V and Sivaja Nair, which discusses complexities involved in creating a computational grammar
for Sandhi tools in Pāli language.

ISCLS 2019 has received financial support from Dharohar, Indic-Academy and DST-SERB.

The conference also hosts two keynote talks by Prof. Rajeev Sangal and Prof. Korada Subrahmanyam.
Further, various demo submissions are also presented at the conference.

We very much hope that you will have an enjoyable and inspiring time at the conference!

iv

Pawan Goyal

Indian Institute of Technology, Kharagpur, WB, India

October 2019

v

Table of Contents

Sanskrit Sentence Generator . 2
Amba Kulkarni and Madhusoodana Pai

Dependency Parser for Sanskrit Verses . 15
Amba Kulkarni, Sanal Vikram and Sriram K

Revisiting the Role of Feature Engineering for Compound Type Identification in Sanskrit 29
Jivnesh Sandhan, Amrith Krishna, Pawan Goyal and Laxmidhar Behera

A Machine Learning Approach for Identifying Compound Words from a Sanskrit Text 46
Premjith B, Chandni Chandran V, Shriganesh Bhat, Soman Kp and Prabaharan P

LDA Topic Modeling for pramāa Texts: A Case Study in Sanskrit NLP Corpus Building 53
Tyler Neill

Vedavaapi: A Platform for Community-sourced Indic Knowledge Processing at Scale 69
Sai Susarla and Damodar Reddy Challa

On Sanskrit and Information Retrieval . 84
Michaël Meyer

Framework for Question-Answering in Sanskrit through Automated Construction of Knowledge
Graphs . 98

Hrishikesh Terdalkar and Arnab Bhattacharya

Introduction to Sanskrit Shabdamitra: An Educational Application of Sanskrit Wordnet 118
Malhar Kulkarni, Nilesh Joshi, Sayali Khare, Hanumant Redkar and Pushpak Bhattacharyya

Vaijayantı̄kośa Knowledge-Net . 135
Aruna Vayuvegula, Satish Kanugovi, Sivaja S Nair, Shivani V and Mahalakshmi

Utilizing Word Embeddings based Features for Phylogenetic Tree Generation of Sanskrit Texts . . 153
Diptesh Kanojia, Abhijeet Dubey, Malhar Kulkarni, Pushpak Bhattacharyya and Reza Haffari

An Introduction to the Textual History Tool . 167
Diptesh Kanojia, Malhar Kulkarni, Pushpak Bhattacharyya, Sayali Ghodekar, Irawati Kulkarni, Nilesh
Joshi and Eivind Kahrs

Pāli Sandhi – A computational approach . 182
Swati Basapur, Shivani V and Sivaja S Nair

vi

Full Papers

Sanskrit Sentence Generator

Amba Kulkarni & Madhusoodana Pai J
Department of Sanskrit Studies

University of Hyderabad
apksh.uoh@nic.in, jmadhusoodan@gmail.com

Abstract

In this paper we describe a sentence generator for Sanskrit. Pāṇini’s grammar provides
the essential grammatical rules to generate a sentence from its meaning structure. The
meaning structure is an abstract representation of the verbal import. It is the interme-
diate representation from which, using Pāṇini’s rules, without appealing to the world
knowledge, the desired sentence can be generated. At the same time, this meaning struc-
ture also represents the dependency parse of the generated sentence.
Keywords: Sanskrit, Sentence Generator, Pāṇini, Paninian Grammar, Computational
Linguistics.

1 Introduction
Natural language generation (NLG) is the process of generating text from a meaning represen-
tation. It may be thought of as the reverse of natural language understanding (NLU). There has
been considerably less focus in NLG than in NLU. Nevertheless, a generator is an essential com-
ponent of any machine translation (MT) system. It is also needed in systems such as information
summarization, question answering, etc. NLG systems are also being used by human writers to
make the writing process efficient and effective (Galitsky, 2013). In the field of computational
creativity, the interest does not lie any more on how a computer can generate creative pieces
on its own but rather how such systems can be used to assist a person in a creative task. Poem
machine by Hämäläinen () is an example of an online tool to generate Finnish poetry with a
computationally creative agent. Automatic advertisement slogan generators (Iwama and Kano,
2018) are being used by Japanese.
NLG is also useful for second language learners. Second language learners can use such

modules to generate sentences in a controlled way and learn the language at their own pace. For
a classical language like Sanskrit which is for most of the people a second language and not the
mother tongue, a computational aid can help a user in several ways. Some of the aspects where
such an aid would be useful are listed below.
• Sanskrit is an inflectional language. That means the case suffixes (vibhakti-pratyayas) get

attached to the stem (prātipadika/dhātu) and during the attachment some morpho-phonetic
changes also take place. In some cases, one can’t tell apart the stem and its suffix. This
increases the load on memorization.

• Each Sanskrit noun has a gender which is independent of the sex or animacy of the referent.
In Sanskrit, gender is an integral part of the nominal stem (prātipadika). That means one
has to remember the gender of each nominal stem since the word forms differ with gender
as well. The gender has no relation to the meaning/denotation of the word. For example
wife in Sanskrit can be either a patnī in feminine gender or dārā in masculine gender or
kalatra in neuter gender.

• The participants of an action are termed kārakas. The definitions of these kārakas are
provided by Pāṇini which are semantic in nature. However, the exceptional cases make
them syntactico-semantic. For example, in the presence of the prefix adhi with the verbs

2

śīṅ, sthā and as, the locus instead of getting the default adhikaraṇaṁ role gets a karma
(goal) role and subsequently accusative case marker, as in saḥ grāmam adhitiṣṭhati (He
inhabits/governs the village) where grāma gets a karma role, and is not an adhikaraṇaṁ.

• There are a set of words in whose presence a nominal stem gets a specific case marker. For
example, in the presence of saha, the accompanying noun gets instrumental case suffix. The
noun denoting the body part causing the deformity also gets an instrumental case suffix as
in akṣṇā kāṇaḥ (one-eyed). Most of these rules being language specific, the learner has to
remember all the relevant grammar rules.

• Sanskrit has a natural tendency to use passive (karmaṇi) with transitive verbs and im-
personal passive (bhāve) with intransitive verbs. If the native language of a learner does
not permit such usages, s/he finds it difficult to understand/construct sentences with such
usages.

• There are also cases where the verbs in different pada (ātmanepada/ parasmaipada) have
different meanings. A speaker, by mistake, if uses a wrong pada, the sentence may not
convey the desired meaning. For example, the verb bhuj from rudhādi-gaṇa when used in
the meaning of eating is always in ātmanepada while in the sense of to rule or to govern it
is used in parasmaipada.1

• In the causative constructions, the semantics associated with certain participants is different
for different sets of verbs. For example, for the verbs denoting motion, the causer is also a
karman with respect to the causative action. And then in such cases, even a person who
has studied grammar well gets confused in assigning proper case marker to the verbs. The
confusion grows more if the senetnce is to be expressed in passive voice.

All these problems make the life of a Sanskrit speaker difficult. Even if a person has passive
control, due to the above-mentioned problems, he either shies away from speaking / writing
Sanskrit or ends up in speaking /writing wrong Sanskrit. Finally, the influence of mother
tongue on Sanskrit speaking also results in wrong/nativized Sanskrit. A speaker who does not
want to adulterate Sanskrit with the influence of his/her native language would like to have some
assistance, and if it were by a mechanical device such as a computer, it would be advantageous.
With these problems in mind, and also the possible applications in computational linguistics

as mentioned above, we decided to build a Sanskrit sentence generator.

2 Approaches
Natural language generation is comparatively easier to handle than natural language under-
standing. NLU involves handling of ambiguities, whereas the main problem in NLG is selection
of appropriate lexicon and syntax for expressions. In the late nineties of the last millennium,
several NLGs were developed which were general purpose (Dale, 2000). But they were difficult
to adopt to small task oriented applications. Two different methods were used to develop NLGs
- rule based and template based. A rule based system can generate sentences without any re-
striction, provided the rules are complete. A template based generation on the other hand is
delimited in its scope by the set of templates. A programme that sends individualized bulk
mails is an example of template based generation. There have been efforts to mix the use of rule
based and template based generation. The recent trend in NLG, as with all other NLP systems
is to use machine learning algorithms using large databases.
With the availability of a full-fledged generative grammar for Sanskrit in the form of Aṣṭād-

hyāyī, it is appropriate to use a rule based approach for building the generation module. A lot of
work in the area of Sanskrit Computational linguistics has taken place in the last decade, some
of which is related to the word generators. So we decided to use the existing word generators
and build a sentence generator, modelling only the sūtras that correspond to the assignment of
case markers.
In the next section, we discuss our approach to building a sentence generator using rules
1bhujo’navane(1.3.66)

3

from kāraka and vibhakti sections of Pāṇini’s Aṣṭādhyāyī. In the fourth section, we provide the
implementation details. In the fifth section we discuss the interface while the usability of the
sentence generator is reported in the last section.

3 Sentence Generator: Architecture

Pāṇini has given a grammar which is generative in nature. He presents a system of grammar
that provides a step by step procedure to transform thoughts in the minds of a speaker into
a language string. Broadly speaking one may imagine three mappings in the direction from
semantics to phonology ((Bharati et al., 1994), (Kiparsky, 2009)). These levels are represented
pictorially as in Figure 1.

Figure 1: Levels in the Pāṇinian model

3.1 Semantic Level

This level corresponds to the thoughts in the mind of a speaker. The information is still at the
conceptual level, where the speaker has identified the concept and has concretised them in his
mind. The speaker, let us assume, for example, has witnessed an event where a person is leaving
a place and is going towards some destination. For our communication, let us assume that
the speaker has identified the travelling person as person#108, the destination as place#2019,
and the action as move-travel#09. Also the speaker has decided to focus on that part of the
activity of going where the person#108 is independent in performing this activity, and that the
goal of this activity is place#2019. This establishes the semantic relations between person#108
and move-travel#09 as well as between place#2019 and move-travel#09. Let us call these
relations sem-rel#1 and sem-rel#2 respectively. This information at the conceptual level may
be represented as in Figure 2.

Figure 2: Conceptual representation of a thought

4

3.2 Kāraka Level
In order to convey this, now the speaker chooses the lexical items that are appropriate in the
context from among all the synonyms that represent each of these concepts. For example, for
the person#108, the speaker chooses a lexical term, say Rāma, among the synonymous words
{ayodhyā-pati, daśarathanandana, sītā-pati, kausalyā-nandana, jānakī-pati, daśa-ratha-putra,
Rāma, ...}. Similarly corresponding to the other two concepts, the speaker chooses the lexical
terms say vana and gam respectively. With the verb gam is associated the pada and gaṇa
information along with its meaning.
Having selected the lexical items to designate the concepts, now the speaker chooses appropri-

ate kāraka labels corresponding to the semantics associated with the chosen relations. He also
makes a choice of the voice in which to present the sentence. Let us assume that the speaker in
our case decides to narrate the incidence in the active voice. The sūtras from Aṣṭādhyāyī now
come into play. The semantic roles sem-rel#1 and sem-rel#2 are mapped to kartā and karma,
following the Pāṇinian sūtras
• svatantraḥ kartā(1.4.54); which assigns a kartā role to Rāma.
• karturīpsitatamaṁ karma(1.4.49); which assigns a karma role to vana.

Let us further assume that the speaker wants to convey the information as it is happening i.e.,
in the present tense (vartamāna-kāla). Thus at the end of this level, the available information
is as shown in Figure 3.

Figure 3: Representation in abstract grammatical terms

This information is alternately represented in simple text format as shown below.

word index stem features role
1 Rāma puṃ eka kartā 3
2 vana napuṃ eka karma 3
3 gam parasmaipada bhvādi vartamāna kartari

The first field represents the word index which is used to refer to a word while marking the
roles. The second field is the stem (with gender in case of nouns), the third field provides
morphological features such as number, tense, etc. and the fourth field provides the role label
and the index of the word with respect to which the role is marked.

3.3 Vibhakti Level
Now the sūtras from vibhakti section of Pāṇini’s Aṣṭādhyāyī come into play. Vana which is
a karma, gets accusative (dvitīyā) case marker due to the sūtra karmaṇi dvitīyā (anabhihite)
(2.3.2). Since the sentence is desired to be in active voice, kartā is abhihita (expressed), and
hence it will get nominative (prathamā) case due to the sūtra - prātipadikārtha-liṅga-parimāṇa-
vacana-mātre prathamā(2.3.46). The verb gets a laṭ lakāra due to vartamāna-kāla (present
tense) by the sūtra -vartamāne laṭ(3.2.123). It also inherits the puruṣa (person) and vacana
(number) from the kartā Rāma, since the speaker has chosen an active voice. Thus at this level,
now, the information available for each word is as follows.

5

word index stem features role
1 Rāma puṃ eka kartā 3
2 vana napuṃ eka karma 3
3 gam1 vartamāna kartari

Table 1: Input to Sentence Generator

word index stem morphological features
1 Rāma puṃ eka prathamā
2 vana napuṃ eka dvitīyā
3 gam parasmaipada bhvādi laṭ prathama eka

3.4 Surface Level
With this information, now each pada is formed using the available word generator. Sandhi at
the sentence level is optional. If the speaker intends, then the sandhi rules come into play and a
sentence with sandhi is formed. Thus we get either Rāmaḥ vanaṃ gacchati or optionally Rāmo
vanaṅgacchati as an output.

3.5 Sentence Generation: Input and Output
In the above architecture, there are three modules:
1. A module that maps the semantic information in the form of abstract concepts and abstract

semantic relations into the linguistic elements viz. the nominal / verbal stem and syntactico-
semantic relations
We have not implemented this module yet. However we have conceptualised it as follows. A
user interface is planned, to model this part, through which the speaker selects the proper
lexical terms as well as declares his intention selecting the syntactico-semantic relations and
the voice. The gender associated with the nominal stem is provided by the interface, and the
user does not have to bother about it. The user only provides the nominal stem, chooses the
number and its role with respect to the verb. In the case of verbs, the user selects the verb
based on its meaning, and the information of pada and gaṇa is automatically picked by the
interface, coding this information in the form of a subscript. User also chooses appropriate
relations between the words. The user interface takes care of exceptional cases hiding the
language specific information from the user. The output of this module is, for the example
sentence under discussion, is as shown in the Table 1.

2. A module that maps the syntactico-semantic relations to the morpho-syntactic categories
such as case marker and position (in the case of upapadas, for example)
In this paper we describe this second module in detail that maps the syntactico-semantic
relations into morpho-syntactic categories. The input to the generator is a set of quadruplets
as shown in the Table 1. The first element provides the index, the second the stem, the
third the morphological features and the last one the relation and the index of the second
relata (viz. anuyogin). The current version recognises only the following expressions for
stem-feature combinations, where ’?’ represents optionality, ’*’ is the Kleene operator for
zero or more occurences.
(a) {Noun}{Taddhita}?{Gender}{Vacana}?
(b) {Upasarga}*{Verb}{Sanādi_suffix}{Kṛt_suffix}{Vacana}?
(c) {Upasarga}*{Verb}{Sanādi_suffix}{prayoga}{lakāra}
Number and Gender are not specified if it has an adjectival relation with other word.
This representation is the same as the internal representation of the output of the Saṃsād-
hanī2 parser. We call this representation, an intermediate form, or the meaning structure.
It represents the verbal import of the sentence in abstract form, hiding the details of which

2http://scl.samsaadhanii.in/scl

6

linguistic unit codes what information.
3. A module that composes a surface form/word form from the morphological information.

This third module corresponds to the word generation. Given the morphological information,
this module produces the correct form of the word. For this module, the word-generator devel-
oped in-house3, which is also a part of Saṃsādhanī tools is being used. We decided to produce
the output in unsandhied form. Hence, for this example, the output would be

Rāmaḥ vanaṃ gacchati.
The focus of this paper is on the second module viz. morphological spellout rules.

4 Morphological spellout module
There are 3 major tasks that are carried out in this module.
1. Assigning case marker to the substantive based on its syntactico-semantic role,

In Pāṇini’s grammar we come across 3 different types of case marker assignment. They are
(a) case marking for a kāraka relation,
(b) case marking in the presence of certain words called upapadas,
(c) case marking expressing the noun-noun relations
All these sūtras are found in the third section of the second chapter of Aṣṭādhyāyī from
2.3.2 till 2.3.50.

2. Inheriting morphological features of the adjectives from their heads, and
3. Assigning morphological features for finite verbs such as person and number, and
4. Assigning lakāra corresponding to the tense, aspect and modality of the verb.
Now we explain each of these steps below.

4.1 Assigning case marker
For generating the substantial forms, we need the case marker corresponding to the kāraka role.
The default cases for kartā, karma, karaṇaṁ, sampradānaṁ, apādānaṁ and adhikaraṇaṁ are
3,2,3,4,5,and 7 respectively, provided the kāraka is an-abhihita (not expressed). When the kartā
(karma) is expressed by the verbal suffix, then kartā (karma) gets the nominative case suffix by
prātipadikārthaliṅgaparimāṇavacanamātre prathamā(2.3.46). Similarly, in the case of causatives,
the case markers get decided based on the semantics of the verbal roots. For example, the sūtra
gatibuddhipratyavasānārthaśabdakarmākarmakāṇāmaṇi kartā sa ṇau (1.4.52) assigns a karma
role and hence accusative case suffix to the prayojya-kartā, if the verb has one of the following
meaning - motion, eating, knowledge or information related, or it is a verb with literary work
as a karma or it is an intransitive verb. We have summarized all these rules in Appendix A.
For other kārakas viz. karaṇaṁ, sampradānaṁ, apādānaṁ and adhikaraṇaṁ, the case assign-

ment is pretty straightforward. However, there is some problem, from the user’s perspective, in
the selection of a kāraka. We illustrate this problem with examples.

1. In the presence of the prefix adhi with the verbs śīṅ, sthā and as, the locus instead of getting
the default adhikaraṇaṁ role, gets a karma (goal) role, as in saḥ grāmam adhitiṣṭhati (He
inhabits/governs the village) where grāma gets a karma role, and is not an adhikaraṇaṁ.
Now this is an exception to the rule, and only the native speaker of Sanskrit might be aware
of this phenomenon. The user, based on his semantic knowledge, would consider grāma a
locus, and the generator then will fail to generate the correct form.

2. Another problem is with cases of exceptions under apādānaṁ and sampradānaṁ. For a
verbal root bhī to mean to be afraid of, according to Pāṇini’s grammar, the source of fear is
termed apādānaṁ. But this is not obvious to a user who has not studied Pāṇini’s grammar.
He may treat it as a cause. Similarly, in the case of motion verb gam, the destination,
according to the Pāṇini’s grammar is a karma, but due to the influence of native language
such as Marathi or Malayalam, the speaker may think it as an adhikaraṇaṁ.

3http://scl.samsaadhanii.in/scl

7

Another case is of the relation between two nouns such as part and whole, kinship relations,
or relation showing the possession, as in vṛkṣasya śākhā (the branches of a tree), Daśarathasya
putraḥ (son of Dasharatha) and Rāmasya pustakam (Rama’s book). In all these cases Sanskrit
uses a genitive case. Pāṇini does not discuss the semantics associated with all such cases, neither
he proposes any semantic role in such cases. He deals with all such cases by a single rule ṣaṣṭhī
śeṣe (2.3.50) assigning a genitive case in all the residual cases. While for analysis purpose, it
is sufficient to mark it as a generic relation, for the generation purpose, the user would like to
specify the semantics associated with it as part-and-whole-relation, or kinship, etc.
Hence in all such cases, we plan4 to provide templates of expectancies for such verbs and

internally they are mapped to the Pāṇinian labels. The set of tags providing the role labels and
other relations are provided in Appendix A. These tags were found to be appropriate for both
analysis as well as generation (Kulkarni, 2019). This tagset essentially consists of the kāraka
roles which account for the direct participants in the activity, other tags such as hetu (cause),
prayojanaṁ (purpose), kriyāviśeṣaṇaṁ (adverb), etc. which indicate the modifiers of the action,
tags such as pūrvakāla (precedence) showing the relation between sub-ordinate clause with the
main clause, and tags marking the relations between nouns such as adjectival relation, etc. All
these relations are semantic in nature.
One more set of relations between nouns is due to the upapadas (accompanying words). In

the presence of an upapada, the accompanying word gets a specific case marker. For example,
in the presence of saha, the accompanying word gets an instrumental case. This is again lan-
guage specific, and hence non-native speakers of Sanskrit may go wrong in speaking sentences
that involve upapadas. Pāṇini has not provided any semantic interpretation associated with
such upapadas. (Kulkarni, 2019) has provided a semantic classification of these upapadas (See
Appendix A).

Handling Causatives: In Sanskrit a causative suffix (ṇic) is added to the verbal root to
change the sentence from non-causative to causative. In kartari ṇic prayoga, the prayojakakartā
being expressed by the verbal suffix gets nominative case. If the verb is transitive, the karma
gets dvitīyā vibhakti by anabhihite karmaṇi dvitīyā. The prayojyakarma however behaves in
a different way with different verbs. Next, in the case of karmaṇi ṇic prayoga, karma being
abhihita gets nominative case and prayojakakartā gets instrumental case. Now when the verb
is dvikarmaka, which of the two karmas is expressed and which is unexpressed is decided on the
basis of the verbal root. In the case of verbal roots duh, yāc, pac, daṇḍ, rudhi, pracchi, chī, brū,
śāsu, jī, math, muṣ mukhyakarma gets accusative case and gauṇakarma gets nominal case. In
the case of verbal roots nī, hṛ, kṛṣ, vah gauṇakarma gets accusative case and mukhyakarma gets
nominal case 5. Following Pāṇini’s grammar, we have classified the verbs into semantic classes
as below.
• akarmaka (intransitive)
• sakarmaka (transitive)

– verbs in the sense of to motion, knowledge or information, eating and the verbs which
have literary work as their object
∗ verbs in the sense of motion

• dvikarmaka (ditransitive)-type 1
• dvikarmaka (ditransitive)-type 2

This list then takes care of the proper vibhakti assignment in all the type of causatives. See
AppendixA for the summary of all rules.

4.2 Handling adjectives
Consider the following input to the system, which has viśeṣaṇa in it.

4The work is in progress, and hence is not being reported.
5pradhānakarmaṇyākhyeye lādīnāhurdvikarmaṇām . apradhāne duhādīnām ...(akathitaṃ ca (Mahābhāṣyam))

8

word index stem features role
1 vīra viṣeṣaṇam 2
2 Rāma puṃ eka kartā 3
3 vana napuṃ eka karma 3
4 gam1 vartamāna kartari

Table 2: example with adjective

Note here that no morphological features have been provided for the viśeṣaṇaṁ. In order to
generate the correct word form of the word vīra, we need its gender, number, and case (liṅga,
vacana, vibhakti). Only information available to the generator from the user that vīra is a
viśeṣaṇaṁ of the second word. The required information is inherited from the parent node
i.e. the viśeṣya. If the adjective is a derived participle form of a verb, which itself may have
kāraka expectancies, we provide the necessary verbal root and the participle suffix also as input
parameters for generation. For example, in Table 3, vyūḍhaṁ is an adjective of pāṇḍavānīkaṁ,
and the stem and the features for it are provided as vi+vah1 and bhūtakarma respectively.

4.3 Handling finite verbs
In the case of verb form generation, the verb form generator needs the information of
• pada,
• gaṇa,
• puruṣa,
• vacana, and
• lakāra.

to generate the verb form.
Pāṇini has given sūtras to assign lakāras for different tense and mood. For example -vartamāne

laṭ(3.2.123). These sūtras are implemented as a hash data structure that maps the tense and
mood to the lakāra. The voice determines the person and number of the verbal form. If the voice
is kartari (karmaṇi), then the person and number information is inherited from the kartā(karma).
In the case of impersonal passive (bhāve), the person and number are assigned the values third
(prathama-puruṣa) and singular(eka-vacana) respectively. A note on the information of puruṣa
is in order. As we notice, the information of person is not provided with a noun stem in the
input. Then from where does the machine get this information? Here we use Pāṇini’s sūtras:
• yuṣmadyupapade samānādhikaraṇe sthāninyapi madhyamaḥ(1.4.105).
• asmadyuttamaḥ(1.4.107).
• śeṣe prathamaḥ(1.4.108).
Next comes the information about pada and gaṇa. We notice that, though the majority of

the verbs belong to a single gaṇa, there are several dhātus which belong to more than one gaṇa.
For example the very first dhātu in the dhātupāṭha viz bhū belongs to two different gaṇas viz
bhvādi and curādi. It is the meaning which distinguishes one from the other. Bhū in bhvādigaṇa
is in the sense of sattāyām (to exist) and the one in the curādigaṇa is in the sense of prāptau (to
acquire). A detailed study of the verbs belonging to different gaṇas is carried out by (Shailaja,
2014). She has indexed these dhātus for distinction. The verb generator of Saṃsādhanī uses
these indices to distinguish between these verbs. The speaker, on the other hand, would not be
knowing these indices. So we provide a user interface to the user wherein the user can select the
dhātu, gaṇa and its meaning, and the interface assigns a unique desired index automatically.
If a verb has ubhayapada both the parasmaipada and ātmanepada forms would be generated.

Otherwise only the form with associated pada would be generated. Certain verbs use different
padas to designate different meanings. For example, the verb bhuj has two meanings viz. to eat
and to rule or to govern. In the sense of to eat, the verb has only ātmanepada forms and in the
sense of to govern, it has only parasmaipada forms. In such cases, the user interface hides all

9

these complexities from the user.

4.4 Evaluation
In order to evaluate the coverage, a list of around 1000 sentences is manually collected covering
a wide range of syntactic phenomenon and also verbs with different expectancies. Each sentence
is parsed with the available parser and the parsed output, which is the same as the meaning
representation or the semantic input for the generation, is manually verified. This semantic
representation is given to the generator as an input.
There were a few challenges in the evaluation. In the absence of a taddhita (secondary

derivatives) word generator, we provide the nominal stem formed by affixing the taddhita suffix.
For example, we directly provide the stem śaktimat instead of śakti + matup. Similarly in
the absence of a handler for feminine suffix, we provide the stem formed after the addition of
feminine suffix as in anarthā (which is formed by adding a feminine suffix to anartha). In order
to handle the out of vocabulary words, we developed a morphological analyser that assigns the
default paradigm for the generation of such words.

5 Sanskrit Sentence Generator: Interface
The Graphical User Interface (GUI) of the Sanskrit Sentence Generator facilitates a user to
provide the required input in a prescribed form. As mentioned earlier, all the language specific
details such as the gaṇa, pada information of a verb, or the gender of a nominal stem are hidden
from the user. The user just selects the appropriate nominal / verbal stem and the grammatical
relations among the words. Figure 4 shows the generator interface for the following input.

word index stem and features relation
1 dṛś1 pūrvakālaḥ 11
2 tu sambandhaḥ 1
3 pāṇḍava-ānīka {puṃ eka} karma 1
4 vi+vah1 {bhūtakarma} viśeṣaṇam 3
5 duryodhana {puṃ eka} kartā 11
6 tadā kālādhikaraṇam 11
7 ācārya {puṃ eka} karma 8
8 upa_sam+gam1 pūrvakālaḥ 11
9 rājan abhedaḥ 5
10 vacana {napuṃ eka} karma 11
11 brū1 {anadyatanabhūtaḥ} kartari

Table 3: Input for the generator

We have also provided another interface. This interface takes the input from the Sanskrit
parser. It allows us to test the completeness of both parser as well as the generator at the
sentence level. This interface takes the machine internal representatin of the parser’s output
(which is the same as shown in the Table 1) and feeds it to the generator. The overall architecture
of our generator (and parser) is as shown in Figures 5 and 6.

6 Conclusion
Pāṇini’s grammar provides a grammatical framework for generation. While the complexity of
Sanskrit generation lies at the word level, the sentence generation is pretty straightforward. The
only challenge in designing the generator was in deciding the granularity of the semantic relations
appropriate for both analysis and generation. We wanted to make sure that the grammatical
relations used are universal in nature, without carrying any baggage of the language idiosyncrasy.
Having confirmed that this tagset is appropriate for both generation and analysis (Kulkarni,
2019), we can now open it for other languages as well; to start with the Indian languages. Now

10

Figure 4: Generation of a Shloka from its analysis

Figure 5: parser-generator: inverse operations

we are in the process of designing a user interface that hides the language and grammar specific
details from the user and allows him to provide the input purely in semantic form.
Having said this, now we list some advantages and limitations of our generator.
1. This generator can be plugged in to a machine translation system.
2. It acts as a useful aid to the non-native speakers of Sanskrit to write in Sanskrit effectively

guaranteeing grammatically correct sentences.
• One need not memorize the word forms and the gender of the nominal stems
• No need to remember all the special rules assigning case suffix to a noun representing

the specific kāraka role.
• With a single keystroke, one can generate passive constructs which are predominantly

found in Sanskrit literature, with which a non-native speaker may not be at ease with.
• The generator does not dictate any word order. So one may generate a sentence in

any word order as one desires. In the future, it should also be possible to provide a
generator that will help the user to render the text in a chosen prosodic meter.

3. The generator is useful for testing the parser performance as well. Since both the modules
are developed independently, testing helps in mutual improvement of the systems.

4. The major contribution of the development of this module was in identifying some morpho-
syntactic relation labels such as those due to upapadas (Kulkarni, 2019).

11

Figure 6: User interface

5. One disadvantage of this generator is the amount of information one has to provide for
generation in a particular format.

6. While most of the relation labels are semantic in nature, one may need some initial training
for the proper use of some relational tags.

7. One also needs some training in specifying the use of conjuncts and disjuncts since the
current implementation is dominated by the syntax of Sanskrit(Panchal and Kulkarni,
forthcoming). More research is needed to arrive at a uniform treatment of the conjuncts
across languages.

12

References
[Bharati et al.1994] Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal. 1994. Natuaral Language

Perscpective - A Paninian Perspective. Prentice Hall of India.

[Cardona2007] George Cardona. 2007. On the Structure of Pāṇṇini’s System. Sanskrit Computational
Linguistic, 1&2:1–31.

[Dale2000] Ehud Dale, Robert; Reiter. 2000. Building natural language generation systems. Cambridge
University Press, Cambridge, U.K.

[Galitsky2013] Boris Galitsky. 2013. A web mining tool for assistance with creative writing. In Advances
in Information Retrieval. Lecture Notes in Computer Science. Lecture Notes in Computer Science.
7814.

[Hämäläinen] Mika Hämäläinen. Poem Machine - a Co-creative NLG Web Application for Poem Writing.
Department of Digital Humanities, University of Helsinki.

[Iwama and Kano2018] Kango Iwama and Yoshinobu Kano. 2018. Japanese advertising slogan generator
using case frame and word vector. In Proceedings of The 11th International Natural Language Genera-
tion Conference, Japan, pages 197–198, Japan, November. Association for Computational Linguistics.

[Joshi2009] S. D. Joshi. 2009. Background of the Aṣṭādhyāyī. Sanskrit Computational Linguistic, 3:1–5.

[Kiparsky2009] Paul Kiparsky. 2009. On the Architecture of Pāṇṇini’s Grammar. Sanskrit Computational
Linguistic, 1&2:32–94.

[Kulkarni2019] Amba Kulkarni. 2019. Appropriate Dependency Tagset for Sanskrit Analysis and Gen-
eration. In Proceedings of Sanskrit in China International Conference 2019: Sanskrit on Paths.
forthcoming.

[Panchal and Kulkarniforthcoming] Sanjeev Panchal and Amba Kulkarni. forthcoming. Ca-śabdayukta-
vākyaviśleṣaṇam. In Gauri Mahulikar, editor, Proceedings of NFSI. Chinmaya Vishvavidyalaya,
Veliyanad.

[Pande1992] Gopal Dutt Pande. 1992. Aṣṭādhyāyī of Pāṇini. Chaukhamba Surbharti Prakashan,
Varanasi.

[R and P2017] Perera R and Nand P. 2017. Recent Advances in Natural Language Generation: A Survey
and Classification of the Empirical Literature. Computing and Informatics, 36 (1):1–32.

[Ramakrishanamacharyulu2009] K.V. Ramakrishanamacharyulu. 2009. Annotating Sanskrit Texts Based
on Śābdabodha Systems. Sanskrit Computational Linguistics.

[Rao1969] Veluri Subba Rao. 1969. The Philosophy of a Sentence and its Parts. Munshiram Manorharlal
Publishers, New Delhi.

[Shailaja2014] N. Shailaja. 2014. Comparison of Paninian Dhātuvṛttis. Ph.D. thesis, Department of
Sanskrit Studies, University of Hyderabad.

13

A Tagset of Dependency Relations

• Kāraka-sambandhāḥ
• kartā

– prayojaka-kartā
– prayojya-kartā

• karma
– mukhya-karma
– gauṇa-karma
– vākya-karma

• karaṇam
• sampradānam
• apādānam
• adhikaraṇam

– kāla-adhikaraṇam
– deśa-adhikaraṇam
– viṣaya-adhikaraṇam

• Kāraketara-sambandhāḥ
– Kriyā-kriyā-sambandhāḥ

∗ pūrva-kālaḥ
∗ vartamāna-samāna-kālaḥ
∗ bhaviṣyat-samāna-kālaḥ
∗ bhāvalakṣaṇa-pūrva-kālaḥ
∗ bhāvalakṣaṇa-vartamāna-samāna-
kālaḥ

∗ bhāvalakṣaṇa-anantara-kālaḥ
∗ sahāyaka-kriyā

– Kriyā-sambandhāḥ
∗ sambodhyaḥ
∗ hetuḥ
∗ prayojanam
∗ kartṛ-samānādhikaraṇam
∗ karma-samānādhikaraṇam
∗ kriyāviśeṣaṇam
∗ pratiṣedhaḥ

– Nāma-nāma-sambandhāḥ
∗ śaṣṭhī-sambandhaḥ
∗ aṅgavikāraḥ
∗ vīpsā
∗ viśeṣaṇam
∗ sambodhana-sūcakam
∗ vibhaktam
∗ avadhiḥ
∗ abhedaḥ
∗ lyapkarmādhikaranam
∗ nirdhāraṇam
∗ atyanta-saṃyogaḥ
∗ apavarga-sambandhaḥ
∗ vakyakarmadyotakaḥ

• Upapada-sambandhāḥ
– sandarbhabinduḥ
– tulanābinduḥ
– viśayādhikaraṇam
– nirdhāraṇam
– prayojanam
– udgāravācakaḥ
– saha-arthaḥ
– vinā-arthaḥ
– svāmī
– srotaḥ

• Vākyetarasambandhāḥ
– anuyogī
– pratiyogī
– nitya-sambandhaḥ

• Samuccayādisambandhāḥ
– samuccitaḥ
– samuccaya-dyotakaḥ
– anyataraḥ
– anyatara-dyotakaḥ

Note: The bold entries are the headings and do not indicate relation labels

14

Dependency Parser for Sanskrit Verses

Amba Kulkarni, Sanal Vikram and Sriram K
Department of Sanskrit Studies

University of Hyderabad
apksh.uoh@nic.in,sanal.vikram@gmail.com,sriramk8@gmail.com

Abstract

Sentence parser is an essential component in the mechanical analysis of natural language texts.
Building a parser for Sanskrit text is a challenging task because of its free word order and the
dominance of verse style in Sanskrit literature in comparison to prose style. In this paper, we
describe our efforts to build a parser which parses both prose as well as verse texts. It employs an
Edge-Centric Binary Join method using various constraints following traditional rules of verbal
cognition. We also propose a Daṇḍa-anvaya-janaka which converts the parsed verse form to its
canonical prose order.

1 Introduction

Parsing natural language sentences automatically to reveal the underlying semantics has at-
tracted many researchers to this field in the past two decades. The parse of a sentence is useful
for several applications ranging from machine translation, information retrieval to question an-
swering. Parsing sentences with fixed word order is comparatively easier than parsing texts
that show some flexibility in the word order. We come across such flexibility in poetry. The
syntax and semantics of poems have been an area of serious studies. Delmonte (2018) studies
the syntax and semantics of Italian poetry. He observes that the best parsers for Italian based
on statistical probabilistic information fail to parse poetic structures while the rule based system
performs well. Lee and Kong (2012) have noticed the importance of treebank for poems in order
to use the statistical or machine learning models, and have developed a dependency treebank for
Classical Chinese poems. The Stanford Dependency relations were extended in order to account
for certain poetic constructs in Chinese.

(Krishna et al., 2019) proposed a model, called kāvya guru, for the conversion of Sanskrit
sentences in verse to prose form, which considers the task of conversion as a linearisation prob-
lem. It first uses—Dynamic Meta Embeddings (DME)—for training, where it forms a single
meta embedding from multiple pretrained word embeddings of a given token. Then it uses a
linearisation model—Self-Attention Based Word Ordering (SAWO)—which generates multiple
permutations of words, which are then sent to a seq2seq model that produces the required prose
order form. They compared the performance of their system with an LSTM based Linearisation
Model, and seq2seq model with Beam Search Optimisation, and their system performs the best
with a BLEU score of 55.26.

Majority of Sanskrit literature is in verse form. These verses follow metrical patterns which
make them easy to memorise. The metrical pattern also brings in deviation from the default
word order found in the prose. This makes it difficult to understand the verse without any
special training. Sanskrit being a flexional language, and also rich in derivational morphology,
enjoys the flexibility in the word order. There is, as well, a natural tendency to have a kind of
rhythm even in the normal speech in Sanskrit, which results in the deviation from normal word
order. Gillon (1996) reports several cases of dislocations of arguments from their default order
even in prose. This flexibility, however, makes parsing such texts a bit challenging.

15

In this paper we describe a parser for Sanskrit that can parse both verse and prose. In the
next section we describe the basic architecture of our parser that extracts a tree from a graph
satisfying some local and global constraints. In the third section we provide the algorithm for
constraint solver and illustrate it with an example. Next two sections describe an application of
this parser to get the prose order (also termed daṇḍa-anvaya) of any verse. We conclude with
the discussion on the performance of the parser stating its limitations and the areas where it
needs further improvement.

2 Design of a Parser

We find two main approaches towards the design of a dependency-based parser. They are Gram-
mar based and Data driven. The Link parser (Sleator and Temperley, 1993) based on Link
grammar formalism and the Minipar (Lin, 1998) based on Chomsky’s Minimalism are among
the grammar based dependency parsers. Data-driven dependency parsers are the state-of-art
parsers. They use supervised machine learning algorithms to train the machine on annotated
corpus. These parsers need manually annotated corpus, called tree banks, for training. Among
these parsers, we come across two dominating approaches. They are graph-based dependency
parsing and transition-based dependency parsing. The graph-based approach creates a parser
model that assigns scores to all possible dependency graphs and then uses maximum span-
ning tree methods from Graph theory for getting the highest-scoring dependency graph. The
transition-based approach scores transitions between parser states based on the parse history and
then follows a greedy approach and produces a single parse corresponding to the highest-scoring
transition sequence that derives a complete dependency graph.

Most of the natural language parsers call a part of speech(POS) tagger and a chunker before
invoking a parser. These two modules reduce the ambiguity due to multiple morphological
analyses. A POS tagger selects the best part of speech in the context, and a chunker groups
all the auxiliary verbs with the main verbs, the post-positions with the noun, and multi-word
expressions as one chunk. The head of such chunks is marked which relates to other words ot
heads of other chunks in a sentence. The POS taggers and chunkers ease the task of a parser, by
reducing the ambiguities at the morphological level. However the disadvantage of calling these
modules before a parser is that the errors may get cascaded.

Our parser differs from the state-of-the-art parsers in three ways. First, in the absence of
any annotated corpus, we follow the grammar based approach. Secondly, our parser is invoked
right after the morphological analyser. The main reason behind this decision was the following.
Indian literature on verbal import was found to be useful from parsing point of view since it
has discussions on various factors that are instrumental in the process of verbal cognition. Our
main goal is to build a parser modeling the theories of śābdabodha. When we looked at various
Indian literature related to the theories of verbal cognition, there was no discussion on any kind
of POS tagger or chunker. Moreover, use of chunker also presupposes that dependencies relate
the whole chunk and do not involve a sub-part of it. But in Sanskrit we come across instances
of compounds termed as asamartha-samāsa (Joshi, 1968; Gillon, 1993) where the dependencies
relate to the sub-part of a compound which need not necessarily be a head. Use of a chunker
module before calling a parser would fail to parse such constructs. Finally, the state-of-art
parsers typically produce a single parse. We decided to produce all possible parses. This is to
ensure that we do not miss out the correct parse. The onus of choosing the correct parse, from
among the parses produced, is on the reader.

The challenge before us was to handle the free word order in Sanskrit both in prose as well
as in verse. The basic algorithm we followed for parsing is given below.

1. Define one node each corresponding to each morphological analysis of every word in a
sentence.

2. Establish directed edges between the nodes, if there is either a mutual or unilateral ex-
pectancy (ākāṅkṣā) between the corresponding words and the word meanings are not mu-

16

tually incongruous (yogyatā).
3. Define constraints, both local on each node as well as global on the graph as a whole. One

of these constraints corresponds to sannidhi (proximity).
4. Extract all possible trees from this graph that satisfy both local and global constraints. Pro-

duce all possible solutions to ensure that in case of sentences with multiple interpretations,1
machine does not miss any interpretation.

5. Produce the most probable solution as the first solution by defining an appropriate cost
function. The cost C associated with a solution tree is defined as C =

∑
e de × rk, where e

is an edge from a word wj to a word wi with label k, de = |j − i|, rk is the rank2 of the role
with label k.

Then the problem of parsing a sentence may be modeled as the task of finding a sub-graph T
of G such that T is a Directed Tree (or a Directed Acyclic Graph).

To start with, in order to get familiarity with the kind of problems due to ambiguity, we
designed a parser (Kulkarni et al., 2010) that handles a text in formally defined canonical prose
order. This parser was implemented as a constraint solver. This parser was found to be very
inefficient due to the use of matrix data structure which resulted in sparse matrices for long
sentences or sentences with heavily ambiguous words, affecting the efficiency. This algorithm
was later improved by using vertex-centric traversal using dynamic programming (Kulkarni,
2013). The major disadvantage of this method is, being node-centric traversal, if the initial
words have several incoming arrows, then the number of partial solutions in the beginning are
many and as one traverses various paths, the possibilities grow exponentially. It also checks the
compatibility of each new edge with all the edges on the path explored so far. This leads to
some redundancy, since if a node falls on more than one path, it would be visited more than
once, and during each such visit all the incoming edges are checked for compatibility with all
other edges on the path traversed so far. In the worst case scenario the incompatibility between
the nodes would be noticed only at the final node.

Both these algorithms were designed for sentences that have a default SOV order. Now we
present below an algorithm that is designed to handle both prose as well as verse order. This
algorithm also overcomes the disadvantages of the earlier algorithm viz. the redundancy in
compatibility checking. It has been observed that the arguments having mutual expectancy
(utthita ākāṅkṣā), such as the core arguments of a predicate, follow weak non-projectivity while
the arguments having unilateral expectancy (utthāpya ākāṅkṣā) are exceptions to this rule
(Kulkarni et al., 2015). We use these constraints to extract a tree from the graph.

3 Edge-centric Binary Join

We modify the previous algorithm at three levels.
1. Any edge that is a part of the solution should be compatible with remaining n − 2 edges

in the solution tree, where n is the number of words in the sentence. This is to ensure that
the solution has n − 1 edges. Hence, all those edges that are not compatible with at least
n − 2 other edges are thrown away.

2. We define the compatibility of two sets of edges as a simple operation of set intersection.
3. We build the solutions recursively starting with the individual words bottom-up, each time

joining two sets of compatible edges. In n − 1 joins we get all possible directed acyclic
graphs (DAG), where n is the number of words in a sentence. Join operation is defined as
a set union.

This algorithm is edge-centric.
Before giving the detailed algorithm, we define a few terms.
1. Local constraints:

1as in the case of texts involving pun or multiple meanings (śleṣa).
2All the roles are ranked, on the basis of heuristics, from 1 to 99.

17

(a) A morpheme corresponding to a suffix marks only one relation.
That is, a node can have one and only one incoming edge.

(b) Each kāraka relation is marked by a single morpheme.
There cannot be more than one outgoing edge with the same label from the same
node, if the relation corresponds to a kāraka relation,3 i.e. there cannot be two words
satisfying the same kāraka role of the same verb.

(c) A morpheme does not mark a relation to itself.
A word cannot satisfy its own expectancy, i.e. a word cannot be linked to itself.

(d) There can be only one valid analysis of every word per solution. Since a word has one
node corresponding to each morphological analysis it has, there are further restrictions
as below.
i. If a word has both an incoming edge as well as an outgoing edge, they should be

through the same node.
ii. If there is more than one outgoing edge for a word, then all of them should be

through the same node.
iii. A viśeṣaṇa cannot have a viśeṣaṇa.4
These conditions ensure that only one morphological analysis is chosen per word.

2. Global Constraints:
(a) Sannidhi: There are no crossing of edges.

If all the nodes are plotted in a straight line, then the edges connecting them (drawn
on the upper side of the line) should not intersect each other. Adjectival relation and
the relation due to genitive suffix are exceptions to this rule.

(b) Certain relations always occur in pairs. For example, a kartṛsamānādhikaraṇa (a pred-
icative adjective, literally having same locus as that of kartṛ) assumes that there is a
relation of kartṛ already established.

3. Compatible edge:
An edge e1 is said to be compatible with another edge e2 if they satisfy local constraints,
and we set Compatible(e1, e2) = 1.

4. Compatible set of edges:
Let R be a set with edges {r1,r2,…,rn}, and S be a set with edges {s1,s2,…,sm}. S is
compatible with R iff ∀i ∀j Compatible(si, rj) = 1.

5. Joinable sets:
Let R1 and R2 be two sets of edges. Let S1 and S2 be the sets of edges that are compatible
with R1 and R2 respectively. R1 and R2 are joinable provided R1 ⊆ S2 and R2 ⊆ S1. For
such joinable sets, the edges compatible with R1 ∪ R2 are defined as (S1 ∩ S2) - (R1 ∪ R2).

Now we give the detailed algorithm.
1. Let there be N edges.
2. For each edge, list down all other edges it is locally compatible with.
3. Construct all possible DAGs, by calling ConstructDags 0 N ,

where ConstructDags is defined as
ConstructDags initial final =

if (final - initial > 0)
then

dags = RemoveSmallDags size (JoinDags dag1 dag2)
where
size = final - initial -1
dag1 = ConstructDags init mid, and

3adhikaraṇa is treated as an exception since one can have more than one adhikaraṇa as in—
Skt: rāmaḥ adya pañca vādane gṛham agacchat
Eng: Today Rama came home at five o’clock.

4guṇānām ca parārthatvāt asambandhaḥ samatvāt syāt MS 3.1.22

18

dag2 = ConstructDags (mid+1) final,
where mid = (initial + final) / 2

else
dags = GetInitialDags init,
which returns as many initial DAGs as there are
incoming arrows at the node with index init. Each
such initial DAG contains a single incoming arrow.

RemoveSmallDags N dags
removes all the DAGs, from dags that have less than N edges.

JoinDags D1 D2

joins two dags D1 and D2, if they are joinable sets, and for
the combined dag D, computes the edges compatible with D.

4. Remove all those solutions that do not satisfy the global compatibility condition.
5. For each globally compatible solution, compute the Cost =

∑
w ∗ |j − i|, where w is the

weight of the relation from jth word to ith word and then prioritise the solutions based on
this Cost.

3.1 An Example

We illustrate the algorithm with the following simple sentence.

San: gacchati rāmaḥ vanam. (1)
gloss: Goes Ram forest{acc.}.
Eng: Ram goes to the forest.

In this sentence, each of the two words rāmaḥ (Ram) and vanam (forest) has two possible
analyses, and the word gacchati (goes) has three possible analyses as shown below.

0. rāmaḥ = rāma {masc.} {sg.} {nom.}
1. rāmaḥ = rā {pr.} {1p} {pl.}
2. vanam = vana {neu.} {sg.} {nom.}
3. vanam = vana {neu.} {sg.} {acc.}
4. gacchati = gam {pr.} {3p.} {sg.}
5. gacchati = gam {pr. part.} {masc.} {sg.} {loc.}
6. gacchati = gam {pr. part.} {neu.} {sg.} {loc.}

Figure 1: All possible relations for sentence 1

All possible relations are shown in Figure 1 and their compatible relations in Table 1.

19

Edge From To Relation Name Compatible
ID (j) (i) (r) Edges
a 1 0 kartṛ -
b 4 0 kartṛ f
c 1 2 kartṛ i,j
d 4 2 kartṛ -
e 1 3 karman i,j
f 4 3 karman b
g 5 3 karman i
h 6 3 karman j
i 1 5 adhikaraṇa c,g
j 1 6 adhikaraṇa c,h

Table 1: All possible edges and their compatible edges

Instructions Step Output at each step
ConstructDags 0 2 12. {b,f | c,i | c,j | e,i | e,j | g,i | h,j}

ConstructDags 0 1 7. {b,f | b | c | e | f | g | h }
ConstructDags 0 0 2. {b}

GetInitDags 0 1. {b}
ConstructDags 1 1 4. {c | e | f | g | h}

GetInitDags 1 3. {c | e | f | g | h}
JoinDags {b}, { c | e | f | g | h} 5. {b,f | b | c | e | f | g | h}
RemoveSmallDags 6. {b,f | b | c | e | f | g | h}

ConstructDags 2 2 9. {i | j}
GetInitDags 2 8. {i | j}

JoinDags {b,f| b|c|e|f|g|h}, {i | j} 10. {b,f | c,i | e,i | g,i | c,j | e,j | h,j |
b | c | e| f | g | h | i | j }

RemoveSmallDags 11. {b,f | c,i | c,j | e,i | e,j | g,i | h,j}
GlobalCompatibilityChk 13. {b,f}

Table 2: Trace of algorithm on sentence 1

First we filter out the edge a, since it maps the relation between two analyses of the same word,
thereby violating local compatibility. Similarly, we filter out edge d, since it is not compatible
with any of other edges. We retain all other edges as they are compatible with at least 1 (=
n − 2) other edge. Next we start building the solutions recursively. We start with the incoming
edges of the first word. There is only one incoming edge, marked as b. This forms our first set
of edges R1. The set of compatible edges with R1, denoted by S1 has only one edge f . For the
second word there are five incoming edges, marked as c, e, f , g, and h. Each of these starts a new
partial solution. We call them R2, R3, R4, R5 and R6. For each of these edges, the compatible
edges are shown in Table 1. We call them S2, S3, S4, S5 and S6 respectively. Now we check
which of these partial solutions are joinable with R1. We notice that only R4 is joinable with
R1. Joining these two partial solution sets, results in {b,f}. The set of edges compatible with
this partial solution is given by (S1 ∩ S4) - (R1 ∪ R4) = ϕ. We carry earlier partial solutions
viz. R2, R3, R4, R5, and R6, as well, being potential partial solutions, since each of them has
one edge, and we still have one more word to visit. Now we get the edges of the third word, and
join them with the current partial solutions. Corresponding to the third word, we have i and
j as two incoming edges. Checking compatibility with all the partial solutions in the previous
stage, we get seven possible solutions as shown in Figure 2. In Table 2, we show the invocation
of the algorithm for this sentence. The result shows the step number followed by the list of

20

possible relations at that step. In this trace, we have not shown the compatible edges at each
stage for each partial dag.

Finally, we check all these solutions for global compatibility. In this example only {b, f}
satisfies the global compatibility. And thus we get a unique solution. This corresponds to the
top left tree in Figure 2. If there are more than one globally compatible solutions, we rank them
with the same cost function defined earlier.

In this algorithm, JoinDags is called n − 1 times. If there are ri incoming edges for ith word,
then in the worst case, there are ∏

i ri set union and set intersection operations.

Figure 2: All Possible solutions

3.2 Another Example

Figure 3 shows the parse of the first śloka from Śiśupālavadham by the poet Māgha, which
occupies a prominent place among the Mahākāvyas. It has the three virtues of the best Kāvya,
viz. upamā of Kālidāsa, arthagauravam of Bhāravi and padalālityam of Daṇḍi. We also tried
to parse the daṇḍa-anvaya of the same śloka, and Figure 4 shows the parse of the anvaya. The
śloka and its prose form are given below.
Śloka: śriyaḥ patiḥ śrīmati śāsituṁ jagat jagat-nivāsaḥ vasudeva-sadmani |
vasan dadarśa avatarantaṁ ambarāt hiraṇya-garbha-aṅga-bhuvaṁ muniṁ hariḥ || (2)

Daṇḍa-anvaya: śriyaḥ patiḥ jagat-nivāsaḥ hariḥ jagat śāsituṁ śrīmati vasudeva-sadmani vasan
ambarāt avatarantaṁ hiraṇya-garbha-aṅga-bhuvaṁ muniṁ dadarśa | (3)

Eng: Lakṣmi’s consort,Viṣṇu, who is the source of the world, who was residing in the house of
Vasudeva to control the world, saw Brahma’s son Nārada, descending from the sky.

Figure 3: Parse of the śloka (2)

21

Figure 4: Parse of the prose (3)

As stated earlier, our parser produces all possible parses, and since the constraint of mutual
compatibility (yogyatā) is not yet implemented fully,5 the number of parses is on higher side.
The total number of parses produced by the machine, in the case of śloka and prose are 98,658
and 10,804 respectively. And the correct parse was found at 47, 848th and 1, 256th position
respectively. The explanation for almost 10 fold increase in the number of parses in the case
of śloka is as follows: In the case of prose, it is assumed that the head is to the right. So all
the adjectives, and also the arguments of the predicate occur to the left of the head. But in
the case of a śloka this condition does not hold. The adjectives as well as the arguments of
the predicates can occur on either side of the head. Further, the adjectives and the modifiers
with genitive case have more flexibility over the predicate-argument relations. Since they can
cross the clausal boundaries, and that we have not yet implemented the meaning compatibility
check on these relations, the possible number of solutions grows rapidly. Thus we notice that
this parser can be still improved at two levels: a) To reduce the number of solutions. Study
of mutual congruity among the meanings would help pruning out non-solutions. However, the
representation of meaning congruity useful from computational point of view is challenging. b)
The number of parses grow exponentially with the śloka order, and this is essentially because of
the dislocation of adjectives and the genitives. More research is needed in order to understand
the nature of dislocations and also syntactic constraints on such dislocations.

4 Understanding Texts: Commentary Tradition
In this section, we explain how the parsed structure can help us in understanding the original
text in the same way as does the commentary tradition. Free word order in Sanskrit had a
key role in the emergence of the poetic style, rather than prose, as a natural style for Sanskrit
compositions. Authors who have written Sanskrit prose also have taken advantage of the free
word order to present texts that are consistent with the intended meter or are interesting from
the aesthetics point of view. But it is also true that it is difficult to understand poetry compared
to prose. This is evident from the fact, we notice, that the commentators, especially commenting
on the kāvya (poetic) literature, first rewrite the verse in prose in some default word order, and
then comment on it. This deviation from the normal word order adds an extra load on the part
of the readers in understanding the poetry. In order to understand such texts, one needs special
training for interpreting these texts. We come across commentaries on several of such Sanskrit
poetic texts, which make their understanding easier.

In the Indian tradition, we see two methods followed by commentators while dealing with
sentence level analysis of ślokas (Tubb and Boose, 2007). In both these approaches, the aim
of the commentator is to unfold the encoded meaning. While doing so, the commentator takes
clues from the theories of śābdabodha. The two approaches are described below.

• The first approach is known as Khaṇḍa-anvaya (also known as katham-bhūtinī), where the
commentator starts with the verb, and the expectancies associated with the verb, and goes

5The current implementation uses yogyatā only for the viśeṣaṇa relation. (Panchal and Kulkarni, July 2018)

22

on filling these slots with the nominal forms in the śloka. Once the basic skeleton with all
the expectancies is ready, then the commentator connects the viśeṣaṇas (adjectives) to their
viśeṣyas (headwords), providing flesh to the skeleton.

The parse produced by the machine provides us the khaṇḍānvaya. All the words that are
directly related to the verb work as a backbone, or as a part of the sentence carrying core
information. The adjectives attached to the nouns, te arguments of non-finite verbs, etc.
typically occupy the second or higher level in the tree structure, and add the flesh to the
structure.

• The second approach is the Daṇḍa-anvaya (also known as anvaya-mukhī). In this method,
first the commentator arranges the words in the śloka in a prose form, following a default
word order typically encountered in prose.

In the next section, we present an algorithm that produces the Daṇḍa-anvaya for a śloka,
from the parsed output of a śloka.

5 Daṇḍa-anvaya-janaka

The dependency structure, produced by the parser described above, of the following śloka from
Bhagavadgītā is shown in Figure 5.

Dṛṣṭvā tu pāṇḍavānīkam Vyūḍham duryodhanaḥ tadā |
Ācāryam upasaṅgamya Rājā vacanam abravīt || (BhG 1.2)

At that time, after seeing the army of the Pāṇḍavas arranged in military phalanx, Duryodhana
approached (his) teacher and spoke (these) words.

Figure 5: Dependency graph of Bhagavadgita 1.2 śloka

The machine internal representation of this parsed output is in the form of a set of quintuplets
containing the relations among words. Each quintuplet (a, b, r, x, y) consists of information
about one dependency relation where,
a represents the word ID
b represents the morphological variant of the word
r represents the relation of the word with its parent word
x represents the word ID of the parent word
y represents the morphological variant of the parent word

23

Word (a,b) Relation (r) Parent Word (x,y)
dṛṣṭvā (0,0) pūrvakālaḥ abravīt (10,0)

tu (1,0) sambandhaḥ dṛṣṭvā (0,0)
pāṇḍavānīkam (2,0) karma dṛṣṭvā (0,0)

vyūḍham (3,0) viśeṣaṇam pāṇḍavānīkam (2,0)
duryodhanaḥ (4,0) kartā abravīt (10,0)

tadā (5,0) kālādhikaraṇam abravīt (10,0)
ācāryam (6,0) karma upasaṅgamya (7,0)

upasaṅgamya (7,0) pūrvakālaḥ abravīt (10,0)
rājā (8,0) abhedaḥ duryodhanaḥ (4,0)

vacanam (9,1) mukhyakarma abravīt (10,0)

Table 3: Output of Samsaadhanii parser

Table 3 shows the machine internal representation of the dependency graph shown in Figure 5.
The shared roles are marked by dotted lines. For the purpose of re-ordering the words in Daṇḍa-
anvaya order, these shared roles are not useful and hence ignored.

Initializing Reordering Task
Anvaya reordering tool is a simple script written in Python. It takes the set of quintuplets as
input and creates a corresponding Python tree object. Since multiple morphological variants
of a word cannot occur in a single set of dependency solution, variant information is not used
presently but is preserved for proposed uses in the future.

Graphical representation of the tree object created with the parsed information of the Bha-
gavadgītā verse is same as in Figure 5, without the dotted lines.

Deciding the Order
We found the clues for anvaya-order in the Samāsacakra. The two relevant kārikās go like this.

Ādau kartṛpadam vācyam dvitīyādipadam tataḥ
Ktvātumunlyap ca madhye tu kuryād ante kriyāpadam
(Samāsacakram kārikā 4, (Bhagirath, 1901, p. 12))

Starting with kartṛ, followed by other words, placing the non-finite verbal forms such as ktvā,
tumun, lyap in between, place the main verb at the end.

Viśeṣaṇam puraskṛtya viśeṣyam tadanantaram
Kartṛ-karma-kriyā-yuktam etad anvaya-lakṣaṇam
(Samāsacakram kārikā 10, (Bhagirath, 1901, p. 13))

Starting with adjectives, targeting the headword, in the order of kartṛ-karma-kriyā (subject-
object-verb), gives an anvaya (the natural order of words in a sentence).

In recent studies, Aralikatti (1991) has shown that the unmarked word order in Sanskrit is
SOV. That is, all the arguments of a verb are placed to the left of the verb starting with the
kartṛ, then karman followed by other arguments, the attributive adjectives are placed to the
left of the noun they qualify, and the predicate is at the end of the sentence. The sub-ordinate
clauses, if any, are before the predicate.

Taking clue from these resources, we define a sentence to be in canonical word order if it
satisfies the following criteria:

All the modifiers are placed to the left of the word they modify.
This is equivalent to the following.

1. The adjectives are to the left of the substantives they qualify.
2. All the arguments of a verb (either in finite form or in non-finite form) are to its left.

24

3. All the non-finite forms that modify the finite verb form are to its left.
This implies that the main verb6 is always the last word of a sentence. This canonical word
order provides us the Daṇḍa-anvaya for ślokas. We assigned the priorities to the dependency
relation labels following these clues. These priorities were further fine-tuned by studying the
commentaries and prose orders of around 400 ślokas from literature including Bhagavadgītā,
Nītiśataka, various subhāṣitas and about 50 poetic prose sentences from Kādambarī.

Adjusted by various measures, currently, the relative positions of various arguments are fixed
following the rules given below.

1. Sambodhya (vocative) comes at the initial position in the canonical order.
2. Kartṛ comes after vocative.
3. Kāraka relations follow in reverse order i.e. adhikaraṇa, apādāna, sampradāna, karaṇa and

karman.
4. Viśeṣanas, modifiers with genitive case markers, etc. are placed before their viśeṣya.
5. Kriyāviśeṣana, pratiṣedha etc. are placed right before their corresponding verb.
6. Mukhyakriyā is positioned at the end of the sentence.
7. Avyaya particles such as tu and api are placed right after their parent word.
8. The non-finite verbal forms are placed before the karman. All the arguments of non-finite

verb appear to their left.
9. The kartṛ-samānādhikaraṇa and karma-samānādhikaraṇa are placed after the katṛ and

karman respectively.

Sorting the Tree

The reordering tool traverses through the tree object using level-order-iteration and sort re-
cursively at each node. Primary sorting is carried out based on the relation priorities. The
indeclinables such as emphatic particles, and conjuncts are left out as their positions are fixed
with respect to their parent node. If there are relations with equal priorities at any level,
secondary sorting is done based on the word order (ID) in the original sentence.

The reordered dependency tree of the example śloka is represented in Figure 6.

Figure 6: Dependency tree object with sorted relations

Linearizing the Tree

The sorted dependency tree is linearized to get the anvaya order. The tree is traversed using
post-order-iteration and each node is added to the linear order pattern.

6The main verb can be either in finite form, or in a participial form with either of the suffixes: kta, ktavatu
(Speijer, 1886 Reprint 2009), or any of the kṛtya suffixes viz. anīyar, tavyat, tavya, yat, kyap, ṅyat or kelimer.

25

The tree mentioned in Figure 6 is linearized in the order: Rājā Duryodhanaḥ vyūḍham
pāṇḍavānīkam dṛṣṭvā tu ācāryam upasaṅgamya tadā7 vacanam abravīt.

5.1 Performance
This parser was tested on 195 instances and their canonical prose versions. The sample was taken
from the corpus available at Heritage Platform8, which essentially corresponds to the citations
in the dictionary entry and thus is a random selection from Sanskrit texts belonging to different
branches of knowledge and different time period. We provided manually their canonical form.
And both the canonical form as well as verse form was run through the parser. Out of 195, the
parser could not parse 45 instances both in prose as well as in verse form. One major reason
for the failure is out of vocabulary words. The average number of parses for verse order text
and prose order text were 151 and 60 respectively. There were around 10 instances, where the
number of parses was greater than 1000. This was mainly due to over-analysis with the genitive
case markers, in the absence of proper handling of mutual congruity. The median for number
of parses is 4, for both verse as well as prose.

Some of the limitations of the current parser are—
1. The parser is based on the Vaiyākaraṇa’s theory of śābdabodha. As such, it expects a verb

in a sentence. Sanskrit has a tendency of eliding stative verbs meaning ‘to be’ like asti,
bhavati etc. Parser shows poor performance dealing with such sentences.

2. The relation of kartṛsamānādhikaraṇa is established with a noun, only if it agrees with
kartṛ in gender, number, person and case suffix. There are exceptions in literature where
samānādhikaraṇas have semantic compatibility though they don’t agree in gender, number
etc. For example,

• Chandaḥ pādau tu vedasya (chandaḥ and pādau do not agree in number).
• Māyā idam sarvam (Gender of māyā does not agree with that of idam and sarvam).

Parser fails to establish relations among such words.
3. Parser performs poorly on some domain specific sentences. Here is an example from math-

ematical domain: caturādhikam śatamaṣṭaguṇam dvāṣaṣṭistathā sahasrāṇām ayutadvaya-
viṣkambhasyāsannaḥ vṛttapariṇāhaḥ.

6 Conclusion
The main purpose behind the development of an indegenous parser was to evaluate the usefulness
of the theories of śābdabodha for the mechanical parsing of Sanskrit sentences. The theories
of śābdabodha discuss in minute detail the flow of information, various means of encoding
the information, the amount of information encoded, and so on. These theories were further
supported by providing various conditions such as ákāṅkṣā, yogyatā and sannidhi, that help in
the process of verbal cognition. So we decided to model these conditions computationally.

In this paper we have presented an edge-centric algorithm that handles both prose as well as
poetry. In this algorithm, the incompatibility between the edges is noticed at an early stage.
And hence the non-solutions are thrown out at an early stage. The user interfaces allow the user
to select the best suited segmentation and provide the canonical word order of such segmented
text.

We noticed that the performance of the algorithm when the input is in prose form is better
than when it is in verse form. The relations contributing to the over-generation are the relation
due to genitive case suffix and the adjectival relation. More research towards the nature of
dislocation and syntactic constraints on dislocation, and also the semantic compatibility of the
words related thus would help in rejecting the non-solutions mechanically.

7Here tadā, though a kālādhikaraṇam, acts as a connector between the previous and the current sentence,
and thus should be at the beginning of a sentence. However, since the current implementation does not handle
inter-sentential relations, the word ‘tadā’ is not placed at the beginning.

8http://sanskrit.inria.fr

26

References
[Aralikatti1991] R. N. Aralikatti. 1991. A note on word order in modern spoken Sanskrit and some

positive constraints. In Hans Henrich Hock, editor, Studies in Sanskrit Syntax, pages 13–18. Motilal
Banarsidass Publishers.

[Attardi2006] Giuseppe Attardi. 2006. Experiments with a multilanguage non-projective dependency
parser. In Proceedings of CoNLL, pages 166–170.

[Bhagirath1901] Hariprassad Bhagirath. 1901. Samāsacakra. Jagadishwar Press, Mumbai.

[Delmonte2018] Rodolfo Delmonte. 2018. Syntax and semantics of italian poetry in the first half of the
20th century. arXiv:1802.03712v2 [cs.CL].

[Gillon1993] Brendan S. Gillon. 1993. Bhartṛhari’s solution to the problem of asamartha compounds.
Études Asiatiques/Asiatiche Studien, 47(1):117–133.

[Gillon1996] Brendan S. Gillon. 1996. Word order in Classical Sanskrit. Indian Linguistics, 57(1):1–35.

[Joshi1968] S. D. Joshi. 1968. Patañjali’s Vyākaraṇa-mahābhāṣya. Samarthāhnika. Edited with translation
and explanatory Notes. Center of Advanced Study in Sanskrit. Class C, No. 3. University of Poona,
Poona.

[Krishna et al.2019] Amrith Krishna, Vishnu Sharma, Bishal Santra, Aishik Chakraborty, Pavankumar
Satuluri, and Pawan Goyal. 2019. Poetry to prose conversion in sanskrit as a linearisation task: A
case for low-resource languages. forthcoming.

[Kulkarni et al.2010] Amba Kulkarni, Sheetal Pokar, and Devanand Shukl. 2010. Designing a constraint
based parser for Sanskrit. In G. N. Jha, editor, Proceedings of the Fourth International Sanskrit
Computational Linguistics Symposium, pages 70–90. Springer-Verlag LNAI 6465.

[Kulkarni et al.2015] Amba Kulkarni, Preeti Shukla, Pavankumar Satuluri, and Devanand Shukl. 2015.
How free is the ‘free’ word order in Sanskrit. In Peter Scharf, editor, Sanskrit Syntax, pages 269–304.
Sanskrit Library.

[Kulkarni2013] Amba Kulkarni. 2013. A deterministic dependency parser with dynamic programming for
Sanskrit. In Proceedings of the Second International Conference on Dependency Linguistics (DepLing
2013), pages 157–166, Prague, Czech Republic, August. Charles University in Prague Matfyzpress.

[KulkarniAugust 2019] Amba Kulkarni. August 2019. Sanskrit Parsing based on the theories of śābd-
abodha. D. K. Printworld, Delhi.

[Lee and Kong2012] John Lee and Yin Hei Kong. 2012. A dependency treebank of classical Chinese
poems. In Conference on North American Chapter of the Association of Computational Linguistics:
Human Language Technologies, pages 191–199.

[Lin1998] Dekang Lin. 1998. Dependency-based evaluation of minipar. In Workshop on the Evaluation of
Parsing Systems, Granada, Spain.

[Mcdonald and Nivre2007] Ryan Mcdonald and Joakim Nivre. 2007. Characterizating the errors of data-
driven dependency parsing models. In Proceedings of EMNLP-CoNLL, pages 122–131.

[McDonald et al.2005] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajiç. 2005. Non-
projective dependency parsing using spanning tree algorithms. In Proceedings of HLT/EMNLP, pages
523–530.

[Nakagawa2007] Tetsuji Nakagawa. 2007. Multilingual dependency parsing using global features. In
Proceedings of the Joint Conference on EMNLP-CoNLL.

[Nivre and Scholz2004] J. Nivre and M. Scholz. 2004. Deterministic dependency parsing of english text.
In Proceedings of COLING 2004, pages 64–70, Geneva, Switzerland.

[Nivre2006] J. Nivre. 2006. Constraints on non-projective dependency parsing. In Eleventh Conference of
the European Chapter of the Association for Computational Linguistics (EACL), pages 73–80, Trento,
Italy. ACL.

27

[Panchal and KulkarniJuly 2018] Sanjeev Panchal and Amba Kulkarni. July 2018. Yogyataa as an ab-
sence of non-congruity. In Gérard Huet and Amba Kulkarni, editors, Computational Sanskrit and
Digital Humanities, selected papers presented at the 17th world Sanskrit Conference, Vancouver. D. K.
Publishers and Distributors Pvt. Ltd.

[Scharf et al.2015] Peter Scharf, Anuja Ajotikar, Sampada Savardekar, and Pawan Goyal. 2015. Dis-
tinctive features of poetic syntax preliminary results. In Sanskrit Syntax, pages 305––324. Sanskrit
Library, USA.

[Sleator and Temperley1993] Daniel D. Sleator and Davy Temperley. 1993. Parsing english with a link
grammar. In Third International Workshop on Parsing Technologies.

[Speijer1886 Reprint 2009] J. S. Speijer. 1886; Reprint 2009. Sanskrit Syntax. Motilal Banarsidass, New
Delhi.

[Tubb and Boose2007] Gary A. Tubb and Emery R. Boose. 2007. Scholastic Sanskrit: A Handbook for
students. The American Institute of Buddhist Studies at Columbia University in the City of New York,
New York.

[Yamada and Matsumoto2003] H. Yamada and Y. Matsumoto. 2003. Statistical dependency analysis
with support vector machines. In Proceedings of IWPT, pages 195–206, Nancy, France.

28

Revisiting the Role of Feature Engineering for Compound Type
Identification in Sanskrit

Jivnesh Sandhan1, Amrith Krishna2, Pawan Goyal2 and Laxmidhar Behera1

1 Department of Electrical Engineering
Indian Institute of Technology, Kanpur, UP, India

2Department of Computer Science
Indian Institute of Technology, Kharagpur, WB, India

jivnesh@iitk.ac.in

Abstract

We propose an automated approach for semantic class identification of compounds in San-
skrit. It is essential to extract semantic information hidden in compounds for improving
overall downstream Natural Language Processing (NLP) applications such as information
extraction, question answering, machine translation, and many more. In this work, we
systematically investigate the following research question: Can recent advances in neural
network outperform traditional hand engineered feature based methods on the semantic
level multi-class compound classification task for Sanskrit? Contrary to the previous
methods, our method does not require feature engineering. For well-organized analysis,
we categorize neural systems based on Multi-Layer Perceptron (MLP), Convolution Neu-
ral Network (CNN) and Long Short Term Memory (LSTM) architecture and feed input
to the system from one of the possible levels, namely, word level, sub-word level, and
character level. Our best system with LSTM architecture and FastText embedding with
end-to-end training has shown promising results in terms of F-score (0.73) compared to
the state of the art method based on feature engineering (0.74) and outperformed in
terms of accuracy (77.68%).

1 Introduction

The landscape of Natural Language Processing has significantly shifted towards the realm of
Deep Learning and Artificial Neural Networks. With the benefit of hindsight, the title for the
seminal work on a neural pipeline for NLP from Collobert et al. (2011), “Natural Language Pro-
cessing (Almost) from Scratch”, seems prophetic. Neural networks have demonstrated promising
results in a wide variety of problems like sentiment analysis (Tai et al., 2015), information ex-
traction (Nguyen et al., 2009), text classification (Kim, 2014), machine translation (Bastings
et al., 2017) among others. Many of such models in fact have become part and parcel of a
standard NLP pipeline for data processing, especially for the resource-rich languages such as
English (Tenney et al., 2019).

There have been academic debates over the philosophical implications of the use of such
statistical black box approaches in Computational Linguistics, especially towards the trade-off
between performance and interpretability as also summarised in Krishna et al. (2018b). However,
in this work, we focus more on the pragmatic side of using such approaches for low resource
languages like Sanskrit. Deep Learning models demand a humongous amount of data to train
a model effectively. Additionally, it is challenging and often tricky to incorporate available
linguistic knowledge into these neural architectures (Strubell et al., 2018). Summarily, we can
say that a standard off the shelf neural model relies mostly on its capacity to learn distributional
information from the large datasets provided as input during training. In this pretext, we revisit
the problem of compound type identification in Sanskrit (Krishna et al., 2016) and experiment
with various neural architectures for solving the task.

29

The process of compounding and the nature of compositionality of the compounds are well
studied in the field of NLP. Given that compounding is a productive process of word-formation in
languages, this is of much interest in the area of word-level semantics in NLP. There are various
aspects involved in the compound analysis. These include productivity and recursiveness of the
words involved in the process, presence of implicit relations between the components, and finally,
the analysis of a compound relies on its pragmatic or contextual features (Kim and Baldwin,
2005). Recently, there has been a concerted effort in studying the nature of compositionality
in compounds by leveraging on distributional word-representations or word embeddings and
then learning function approximators to predict the nature of compositionality of such words
(Mitchell and Lapata, 2010; Cordeiro et al., 2016; Salehi et al., 2015; Jana et al., 2019). In
Sanskrit, Krishna et al. (2016) have proposed a framework for semantic type classification of
compounds in Sanskrit. They proposed a multi-class classifier using Random Forests (Geurts et
al., 2006; Pedregosa et al., 2011), where they classified a given compound into one of the four
coarse level compound classes, namely, Avyaȳıbhāva, Tatpurus.a, Bahuvr̄ıhi and Dvandva. They
have used an elaborate feature set, which summarily consists of rules from the grammar treatise
As.t.ādhyāȳı pertaining to compounding, semantic relations between the compound components
from a lexical database Amarakos.a and distributional subword patterns from the data using
Adaptor Grammar (Johnson et al., 2007). Inspired from the recent advances in using neural
models for compound analysis in NLP, we revisit the task of compound class identification and
validate the efficacy of such models under the low-resource setting like that of Sanskrit.

In this work, we experiment with multiple deep learning models for compound type classifi-
cation. Our extensive experiments include standard neural models comprising of Multi-Layer
Perceptrons (MLP), Convolution Neural Networks (CNN) (Zhang et al., 2015) and Recurrent
models such as Long Short Term Memory (LSTM) configurations. Unlike the feature-rich repre-
sentation of Krishna et al. (2016), we rely on various word embedding approaches, which include
character level, sub-word level, and word-level embedding approaches. Using end-to-end train-
ing, the pretrained embeddings are fine tuned for making them task specific embeddings. So
all the architectures are integrated with end-to-end training (Kim, 2014). The best system of
ours, an end-to-end LSTM architecture initialised with fasttext embeddings has shown promis-
ing results in terms of F-score (0.73) compared to the state of the art classifier from Krishna et
al. (2016) (0.74) and outperformed it in terms of accuracy (77.68%). Summarily, we find that
the models we experimented with, report competitive results with the current state of the art
model for compound type identification. We achieve the same without making use of any feature
engineering or domain expertise. We release the codebase for all our models experimented with
at https://github.com/Jivnesh/ISCLS-19.

2 Compound Classification Task in Sanskrit

In this work, we address the challenge of semantic type identification of compounds in Sanskrit.
This is generally treated as a word-level semantic task in NLP (Rink and Harabagiu, 2010;
Hashimoto et al., 2014; Santos et al., 2015). We treat the task as a supervised multiclass
classification problem. Here, similar to Krishna et al. (2016), we expect the users to provide a
compound in its component-wise segmented form as input to the model. But our model relies on
distributed representations or embeddings of the input as features, instead of the linguistically
involved feature set proposed in Krishna et al. (2016).

Approaches for compound analysis have been of great interest in NLP for multiple languages
including English, Italian, Dutch and German (Séaghdha and Copestake, 2013; Tratz and Hovy,
2010; Kim and Baldwin, 2005; Girju et al., 2005; Verhoeven et al., 2014a). These methods
primarily rely on lexical networks, distributional information (Séaghdha and Copestake, 2013)
or a combination of both lexical and distributional information (Nastase et al., 2006). In San-
skrit, Krishna et al. (2016) proposed a similar statistical approach which combined lexical and
distributional information by using information from the lexical network Amarakos.a (Nair and

30

Kulkarni, 2010) and variable length n-grams learned from data using Adaptor grammar (Johnson
et al., 2007). Here, the authors also adopted rules from As.t.ādhyāȳı as potentially discriminative
features for compound type identification (Kulkarni and Kumar, 2013). While this model has
shown to be effective for the task, it nevertheless is a linguistically involved model. Recently,
Dima and Hinrichs (2015), Cordeiro et al. (2016) and Ponkiya et al. (2016) have shown that
use of word embedding as the sole features can produce models with competitive results as
compared to other feature-rich models. Inspired from these observations, we attempt to build
similar models which use only embeddings as features for the compound type identification task.

Compounds in Sanskrit can be categorized into 30 possible classes based on how granular
categorizations one would like to have (Lowe, 2015). There are slightly altered set of categoriza-
tions considered by Gillon (2009), Olsen (2000), Bisetto and Scalise (2005) and Tubb and Boose
(2007). Semantically As.t.ādhyāȳı categorizes the Sanskrit compounds into four major semantic
classes, namely, Avyaȳıbhāva, Tatpurus.a, Bahuvr̄ıhi and Dvandva (Kumar et al., 2010). Similar
to prior computational approaches in Sanskrit compounding (Krishna et al., 2016; Kumar et al.,
2010), we follow this four class coarse level categorization of the semantic classes in compounds.
Compounding in Sanskrit is extremely productive, or rather recursive, resulting in compound
words with multiple components (Lowe, 2015). Further, it is observed that compounding of a
pair of components may result in compounds of different semantic classes. Avyaȳıbhāva and
Tatpurus.a may likely be confusing due to particular sub-category of Tatpurus.a if the first com-
ponent is an avyaya. For example, upa j̄ıvatah. has the first component as avyaya which is strong
characteristic of Avyaȳıbhāva. However, this compound belongs to Tatpurus.a class. Likewise, a
negation avyaya in the first component can create confusion between Tatpurus.a and Bahuvr̄ıhi
classes. The instances mentioned above reveal the difficulties associated with distinguishing the
semantic classes of a compound.

3 System Description

While the compounds in Sanskrit can consist of multiple components, we restrict our problem
to that of compounds with two components only. Thus, given the two components of the
compound, we treat this as a classification problem. For the task, we use neural models, which
can be categorized based on the architectural point of view, namely, Multi-Layer Perceptron
(MLP), Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) based
classifier, among others.

These networks typically require a feature representation of the input (in our case, the two
components of the compound word), and learn to classify into one of the possible compound
categories. We again utilize multiple possibilities of input feature representation. For instance,
consider svamānasam, which is a Tatpurus.a compound. We can break this compound in three
possible ways: 1) word level: sva mānasam 2) subword level: sva mā nas am (subword level
segmentation is based on segmentation learned by Byte Pair Encoding (BPE) (Sennrich et al.,
2016) from corpus data). 3) Character level: s v a m ā n a s a m.

We learned word embeddings of these components of the compound from our Sanskrit corpus
(Section 4.1). Word embeddings map a word x from a vocabulary V to a real-valued vector x⃗
of dimensionality D in a feature space (Schnabel et al., 2015). The idea based on distributional
hypothesis (Harris, 1954), and the learning objective attempts to put similar words closer in the
vector space.We used FastText for learning word-level embedding, BPE along with Word2Vec
(w2v) (Mikolov et al., 2013) and Glove (Pennington et al., 2014) for learning subword level
embedding, and character level embedding learned using CharCNN (Zhang et al., 2015). Note
that we learned embeddings for the individual components, and finally concatenated vectors
corresponding to each component and fed as input to the classifier.

We also integrated our system with task-specific end-to-end training for text classifica-
tion (Kim, 2014). This approach facilitates pre-trained initialized vector to be updated during
the task-specific training process. Performance of the classifier, with and without end-to-end

31

training, is reported in Appendix I. In all the architectures, relu activation function for dense
layer, softmax cross entropy loss function and adam optimizer are used.

3.1 MLP based classifier

Multi-layer Perceptron in supervised learning problem consists of an input layer to receive in-
put, output layer to make a decision and multiple hidden layers in between them. Training
involves learning the parameters of the model using backpropagation. As discussed earlier, We
experiment with feeding input in two levels, namely, word level (FastText and FastText*) and
subword level (W2V and Glove along with BPE). Architectures used for them are reported in
Table 1. Next to the embedding layer, a drop-out layer with drop-out rate 0.2 is used to avoid
over-fitting (Srivastava et al., 2014).

Embedding Layer units

w2v [20 x 100] 1 1000
2 500
3 100
4 4

glove [20 x 225] 1 1000
2 4

FastText [2 x 350] 1 500
2 4

FastText* [1 x 1400] 1 500
2 4

Table 1: MLP architecture used for different embeddings. [a x b] indicates that there are total
‘a’ segments of compound and dimension of each segment is ‘b’. For instance, for w2v, there are
20 segments (max) to account for the BPE vocabulary of the compound, and each word in the
BPE vocabulary is represented using 100 dimensions.

FastText*: In this case, as shown in Figure 1, FastText vectors of two components of the
compound are concatenated along with element-wise absolute difference and element-wise prod-
uct between the embedding vector of these two vectors (it is denoted by FastText*). Moreover,
the resultant vector is passed to MLP based classifier (Table 1) with no end-to-end training.

The architecture we have used to combine information from the two components is similar to
the one used for the Natural Language Inference (NLI) problem in Conneau et al. (2017). The
key idea behind their approach was to obtain a unified representation of two sentences, each
represented as a vector, similar to Figure 1.

3.2 CNN based classifier

CNN has shown outstanding performance in the field of computer vision. The purpose behind
adopting CNNs in NLP is to derive position-invariant features (such as phrases, n-grams) using
the convolution operation. Max pooling over these features helps to find the essential n-grams
and then fully connected hidden layers are employed, similar to MLP, for final predictions. Re-
cently, Kim (2014) has shown the application of CNN for textual data. In our CNN architecture,
end-to-end training is integrated into the embedding layer. Next to the embedding layer, drop-
out layer with a drop-out rate of 0.2 is used. For different input levels, architecture details are
shown in Table 2. Now We will explain CNN used for the character level input.

CharCNN: Zhang et al. (2015) used character level information of text as input for a convo-
lutional neural network. The advantage of the model is that by using character level embedding
with convolution layers, word-level embedding can be obtained. This model requires fixed-size
input of encoded characters where embeddings of each character are initialized with Gaussian

32

Figure 1: FastText feature augmented with element-wise difference and multiplication of com-
pound’s component (Conneau et al., 2017)

distribution with mean 0 and variance 0.05. CharCNN architecture employed for our experiment
is mentioned in Table 2.

Embedding Layer Filter Kernel Pull

CharCNN [25 x 1014] 1 256 7 3
2 256 7 3
3 256 3 N/A
4 256 3 N/A
5 256 3 N/A
6 256 3 3
7 500 N/A N/A
8 4 N/A N/A

w2v [20 x 700] 1 300 25 4
2 100 N/A N/A
3 4 N/A N/A

glove [20 x 900] 1 350 25 4
2 400 N/A N/A
3 4 N/A N/A

FastText [2 x 350] 1 150 25 2
2 4 N/A N/A

Table 2: CNN architecture used for different embeddings. For embedding layer, same conven-
tion is used. For charCNN, 25 segments correspond to the max number of characters in the
compound, and 1014 dimensional embedding is used for each of these.

3.3 LSTM based classifier

The conventional feed-forward neural network treats all input-output pairs independently, which
limits the ability to learn patterns in sequential data. RNNs are designed to capture this time
dependency where network memorizes the previous input-output interactions in order to predict

33

the current output. Due to the problem of Vanishing Gradient (Pascanu et al., 2013; Bengio
et al., 1994), RNNs can capture only short-term dependencies. To overcome this limitation,
LSTM (Hochreiter and Schmidhuber, 1997) is used which employs a gating mechanism to carry
forward the long-term dependencies. LSTM has achieved great success in working with sequences
of words. In our LSTM architecture, next to embedding layer, drop-out layer with rate 0.2 is
used. Embedding layer is integrated with end-to-end training. Architectural details for different
input levels are given in Table 3.

Embedding Layer Type units

w2v [20 x 450] 1 LSTM 450
2 Fully Connected 400
3 Fully Connected 4

glove [20 x 900] 1 LSTM 450
2 Fully Connected 400
3 Fully Connected 4

FastText [2 x 350] 1 LSTM 100
2 Fully Connected 4

Table 3: LSTM architecture used for different embeddings.

4 Experiments

4.1 Dataset

Our text corpus contains data from the Digital Corpus of Sanskrit (DCS)1, as well as scraped
data from Wikipedia and Vedabase corpus. The number of words in each corpus are 3.8 M,
0.7 M, and 0.2 M, respectively. DCS and Vedabase are segmented, but the Wikipedia data is
unsegmented. We have used this corpus to learn word embedding features. Most of the data in
our corpus is in the form of poetry.

Figure 2 presents a few statistics regarding the corpus utilized.

(a) (b)

Figure 2: (a) Histogram plot of frequency of the compounds from the classification dataset in
the corpus. 50% of compounds have zero occurrence in the corpus. (b) Distribution of number
of characters per word in the corpus.

The labelled dataset for the compound classification task with a segmented pair of components
is obtained from the department of Sanskrit studies, UoHyd2. These compounds are part of
ancient texts, namely, Bhagavadḡıtā, Carakasam. h̄ıta, etc. We have used the same experimental

1http://www.sanskrit-linguistics.org/dcs/
2http://sanskrit.uohyd.ac.in/scl/

34

setting as Krishna et al. (2016) for the classification task. The dataset for the compound
classification task has more than 32,000 sandhi splitted compounds with labels. There are four
broad classes, namely, Avyaȳıbhāva, Tatpurus.a, Bahuvr̄ıhi and Dvandva. More than 75% data
points were from Tatpurus.a class, Krishna et al. (2016) down-sampled it to 4,000, which takes
it close to the count of the second most highly populated class Bahuvr̄ıhi. Avyaȳıbhāva class is
highly skewed, 5% of the Bahuvr̄ıhi class. After down-sampling, number of compounds are 239 in
Avyaȳıbhāva, 4,271 in Bahuvr̄ıhi, 1,176 in Dvandva, and 4,266 in Tatpurus.a. Out of 9,952 data-
points, 7,957 were kept for training and remaining for testing. We have created development
(dev) dataset for hyperparameter tuning, from 20 % stratified sampling of the training data.
We have not used test dataset in any part of training or hyperparameter tuning.

4.2 Hyperparameter tuning for input representation

Figure 3(e) and 3(f) show the effect of embedding size on the dev set performance. In FastText,
accuracy on dev-set saturated at 350, which we used as the default embedding size. Since most
of the data is in the form of poetry, the window size is kept larger. As we increase the epoch
size, there was a gradual increase in performance (Figure 3(e)). Parameters min-n and max-n
were chosen by plotting the distribution of the number of characters in word (Figure 2(b)).

Figure 2(a) shows that more than 50% data sample from the classification task has zero
occurrences in the corpus. So this Out of Vocabulary (OOV) issue is handled by applying BPE
with vocabulary size 100. Results did not improve by increased vocabulary size of BPE. BPE
vocabulary size is chosen as 100, for both glove and w2v features. Embedding for w2v and
Glove is calculated for segmented sub-words. Figure 3(b) and 3(c) indicates that by increasing
embedding size, there is a gradual increase in F-score on dev dataset for both BPE+W2v and
BPE+Glove. So we chose 450 as the embedding size for w2v. For Glove, feature size, epoch size
and window size are 450, 70 and 20, respectively.

In CharCNN, the vocabulary size of characters is 60. Apart from the Sanskrit alphabets,
there are other eight symbols present in the dataset, which include numbers. The maximum
length of characters in the input is 25. Features corresponding to each character is of size 1014,
which is initialized from Gaussian distribution with mean 0 and variance 0.05. Filter size, kernel
size, and pull size for each layer are shown in Table 2. Last two layers are fully connected layers
with a relu activation function. All the hyper-parameters are reported in Appendix II.

4.3 Results

Classifier’s performance is evaluated based on micro accuracy and macro precision, recall and
F-score. F-score is the combined metric of precision and recall, so accuracy and the F-score will
be our main evaluation metric.

Embedding Classifier A P R F

baseline ERF 77.39 0.78 0.72 0.74
RF(N-gram) 75.88 0.83 0.64 0.70

Random CNN+ 66.15 0.63 0.57 0.59

charcnn CNN+ 74.65 0.73 0.65 0.68

bpe+w2v CNN+ 71.90 0.74 0.64 0.67

bpe+glove CNN+ 74.13 0.76 0.64 0.68

FastText* MLP 74.51 0.72 0.66 0.68

FastText LSTM+ 77.68 0.76 0.71 0.73

Table 4: Evaluation measures are accuracy (A), macro precision (P), macro recall (R) and
macro F-score (F). Results reported on the test data are averaged over 5 runs. ‘+’ sign indicates
end-to-end training integrated with classifier.

We have used two baseline models to compare against, first one is Krishna et al.’s (2016)

35

(a) (b)

(c) (d)

(e) (f)

Figure 3: Investigating the sensitivity of the results (F1-score and Accuracy) with respect to the
dimensionality of various embeddings on the development set: (a) As vocabulary size of BPE
increases, macro F1-score decreases. So we have used the BPE vocabulary size as 100. (b) As
embedding size of w2v increases, there is a gradual increase in F-score. So we have chosen 450
as the embedding size. (c) As embedding size of Glove increases, there is a gradual increase in
F-score. So we have chosen 450 as the embedding size. (d) As the FastText dimension increases
(with component-wise subtraction and product augmentation), there is a gradual increase in F-
score. (e) Effect on accuracy as embedding size of FastText increases. For our experimentation,
we have chosen embedding size of 350. (f) Effect on accuracy as epoch size varies for FastText.

feature engineered model with ERF classifier (F-score 0.74). Another baseline is N-gram based
features with Random Forest (RF) classifier (F-score 0.70). In this model, only N-gram based

36

(a) (b)

Figure 4: (a) Class-wise F-score for different embeddings with the same architecture (CNN) (b)
Class-wise F-score for different architectures with the same embedding (FastText). Note that
class size increases as we move from left to right along x-axis. ERF and N-gram are baselines
reported in Table 4.

feature engineering is involved, but it was able to give comparable performance.

There are three possible ways to feed input to the system, namely, word level, subword level,
and character level. Based on these categorizations, step by step, we evaluated our MLP,
CNN, and LSTM based classifiers. First, for word-level inputs, we randomly initialized all the
embedding vectors and checked the performance of the classifier. We were able to reach up to
0.59 (macro) F-score with CNN+ classifier (Table 4). Next, for subword level input, we used
W2V and Glove embedding on BPE segmented (the segmentation is not morphemic) sub-words
of the compound. These embeddings helped to get significant improvement compared to word
level randomly initialized embedding, achieving F-score of 0.67 and 0.68, respectively. As shown
in Figure 2(a), W2V and Glove could not give very good embeddings due to the rare occurrence
of compound words in the corpus. Then we experimented with another embedding, FastText,
which has shown excellent performance compared to all other systems. We were able to reach
0.73 (macro) F-score. We almost achieved state of the art result without feature engineering.
Then we used the FastText* embedding combination technique to check whether we can improve
further, but it declined the actual result to 0.68. Finally, character level input with CharCNN
architecture with randomly initialized embedding reached 0.68. Our system outperformed in
terms of accuracy (77.68) to state of the art baseline (77.39). We also integrated end-to-end
training to learn task-specific embedding in all systems mentioned above. Detailed results for
all the systems are presented in Appendix I.

4.4 Error Analysis

We have done a detailed analysis of particular instances of compound types which get misclassi-
fied. From confusion matrix heat map in Figure 5, we can see that most of the mis-classification
has gone to Tatpurus.a class for our best performing system. There are no mis-classification be-
tween Dvandva and Avyaȳıbhāva. Specific sub-type of Tatpurus.a has similar properties as that
of Avyaȳıbhāva, where first component of compound is avyaya, which creates conflict between
these two classes. In our observation, 11 data-points from Tatpurus.a got mis-classified into
Avyaȳıbhāva where all of them have the first component as avyaya. Also from Figure 5(a), we
can see that most of the compounds from Avyaȳıbhāva were misclassified into Tatpurus.a. Our
best model is able to perform better compared to the baseline model for Bahuvr̄ıhi and Dvandva
which are the second and the third most highly populated classes (Figure 4). Figure 5(b) in-
dicates that our best system mostly got confused between Tatpurus.a and Bahuvr̄ıhi, because
there is a special sub-type in both of these semantic classes which exhibits similar properties.

37

There are more than 600 unique components of compound common in training set of Bahuvr̄ıhi
and Tatpurus.a. Out of these, 205 components have more number of occurrences in Bahuvr̄ıhi
than that of Tatpurus.a and 201 components have more occurrence in Tatpurus.a than that of
Bahuvr̄ıhi. So common component compounds present in a conflicting class which has less oc-
currences will be misclassified. Since we have not provided any other information, classifier is
getting confused due to common component occurrences in both the classes. Similar cases have
been found for Dvandva and Tatpurus.a. For example, bāla occurred 7 times in Dvandva and
12 times in Tatpurus.a, so majority of compounds of Dvandva having bāla as component will be
misclassified into Tatpurus.a. There are 11 such unique components in training set which have
number of occurrences more than 4 in either class. We need to provide contextual information
in order to overcome this problem. In summary, error cases observed in our best system are
similar to that of baseline system. In this classification setup, apart from individual components
of compounds, we have not provided contextual information or canonical paraphrasing. With
this restriction, the classification problem is not entirely solvable; however, we explored up to
what degree the ambiguities can be resolved.

(a) (b)

Figure 5: (a) Confusion matrix heat-map for our best performing system (A, B, D and T refer to
Avyaȳıbhāva, Bahuvr̄ıhi,Dvandva, and Tatpurus.a, respectively) (b) Alluvial graph for showing
mis-classification to demonstrate conflicts between classes.

5 Related Work

Semantic analysis of compounds is an essential preprocessing step for improving on overall down-
stream NLP applications such as information extraction, question answering, machine transla-
tion, and many more (Fares et al., 2016). It has captivated much attention from the computa-
tional linguistics community, particularly on languages like English, Dutch, Italian, Afrikaans,
and German (Verhoeven et al., 2014b). By rigorously studying Sanskrit compounding system
and Sanskrit grammar, analysis of compounds in Hindi and Marathi has been done (Kulkarni et
al., 2012). Another interesting approach uses simple statistics on how to automate segmentation
and type identification of compounds (Kumar et al., 2010). Nastase et al. (2006) show that from
two types of word meaning, namely, based on lexical resources and corpus-based, noun-modifier
semantic relations can be learned. Another exciting work by Séaghdha and Copestake (2013)
has done noun-noun compound classification using statistical learning framework of kernel meth-
ods, where the measure of similarity between compound components is determined using kernel
function. Based on As.t.ādhyāȳı rules, Kulkarni and Kumar (2013) has developed rule-based
compound type identifier. This study helped to get more insights on what kind of information
should be incorporated into lexical databases to automate this analysis. Kulkarni and Kumar
(2011) proposed a constituency parser for Sanskrit compounds to generate paraphrase of the
compound which helps to understand the meaning of compounds better.

38

Recently, neural models are widely used for different downstream NLP applications for San-
skrit. The error corrections in Sanskrit OCR documents is done based on a neural network based
approach (Adiga et al., 2018). Another work used neural models for post-OCR text correction
for digitising texts in Romanised Sanskrit (Krishna et al., 2018a). Hellwig and Nehrdich (2018)
proposed an approach for automating feature engineering required for the word segmentation
task. Another neural-based approach for word segmentation based on seq2seq model architecture
was proposed by Reddy et al. (2018), where they have shown significant improvement compared
to the previous linguistically involved models. Feedforward networks are used for building San-
skrit character recognition system (Dineshkumar and Suganthi, 2015). Krishna et al. (2018c)
proposed energy-based framework for jointly solving the word segmentation and morphological
tagging tasks in Sanskrit. The pretrained word embeddings proposed by Mikolov (2013) and
Pennington (2014) had a great impact in the field of Natural Language Processing (NLP). How-
ever, these token based embeddings were unable to generate embeddings for out-of-vocabulary
(OOV) words. To overcome this shortcoming, subword level information was integrated into
recent approaches, where character-n-gram features (Bojanowski et al., 2017) have shown good
performance over the compositional function of individual characters (Wieting et al., 2015). An-
other interesting approach (Zhang et al., 2015) is the use of character level input for word-level
predictions.

6 Conclusion

For resource-rich languages, deep learning based models have helped in improving the state of the
art for most of the NLP tasks, and have now replaced the need for feature engineering with the
choice of a good model architecture. In this work, we systematically investigated the following
research question: Can the recent advances in neural network outperform traditional hand
engineered feature based methods on the semantic level multi-class compound classification task
for Sanskrit? We experimented with some of the basic architectures, namely, MLP, CNN, and
LSTM, with input representation at the word, sub-word, and character level. The experiments
suggest that the end-to-end trained LSTM architecture with FastText embedding gives an F-
score of 0.73 compared to the state of the art baseline (0.74) which utilized a lot of domain
specific features including lexical lists, grammar rules, etc. This is clearly an important result.

There are many limitations of this study. For instance, what is the effect of the corpus size
on the performance? We work with a corpus with less than 5 million tokens, which is negligible
compared to 840 billion tokens, on which Glove embeddings for English have been trained.
Would a larger dataset have helped? Could methods based on cross-lingual embeddings help in
this scenario for transfer learning from languages similar to Sanskrit?

Acknowledgements

The first author would like to thank Pranav Kulkarni, IIT Kanpur, for his helpful feedback and
suggestions.

References

Devaraja Adiga, Rohit Saluja, Vaibhav Agrawal, Ganesh Ramakrishnan, Parag Chaudhuri, K Rama-
subramanian, and Malhar Kulkarni. 2018. Improving the learnability of classifiers for sanskrit ocr
corrections. In The 17th World Sanskrit Conference, Vancouver, Canada. IASS.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an. 2017. Graph convolu-
tional encoders for syntax-aware neural machine translation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 1957–1967, Copenhagen, Denmark, Septem-
ber. Association for Computational Linguistics.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. 1994. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

39

Antonietta Bisetto and Sergio Scalise. 2005. The classification of compounds. Lingue e linguaggio,
4(2):319–0.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–2537, Novem-
ber.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670–680, Copen-
hagen, Denmark, September. Association for Computational Linguistics.

Silvio Cordeiro, Carlos Ramisch, Marco Idiart, and Aline Villavicencio. 2016. Predicting the compo-
sitionality of nominal compounds: Giving word embeddings a hard time. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 1986–1997.

Corina Dima and Erhard Hinrichs. 2015. Automatic noun compound interpretation using deep neural
networks and word embeddings. In Proceedings of the 11th International Conference on Computational
Semantics, pages 173–183.

R Dineshkumar and J Suganthi. 2015. Sanskrit character recognition system using neural network.
Indian Journal of Science and Technology, 8(1):65.

Murhaf Fares, Stephan Oepen, and Erik Velldal. 2016. Identifying compounds : On the role of syntax.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized trees. Machine learning,
63(1):3–42.

Brendan S Gillon. 2009. Tagging classical sanskrit compounds. In International Sanskrit Computational
Linguistics Symposium, pages 98–105. Springer.

Roxana Girju, Dan Moldovan, Marta Tatu, and Daniel Antohe. 2005. On the semantics of noun com-
pounds. Computer speech & language, 19(4):479–496.

Zellig S Harris. 1954. Distributional structure. Word, 10(2-3):146–162.

Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa, and Yoshimasa Tsuruoka. 2014. Jointly learning
word representations and composition functions using predicate-argument structures. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1544–
1555.

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recurrent
and convolutional neural networks. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2754–2763.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation,
9(8):1735–1780.

Abhik Jana, Dima Puzyrev, Alexander Panchenko, Pawan Goyal, Chris Biemann, and Animesh Mukher-
jee. 2019. On the compositionality prediction of noun phrases using poincar embeddings. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence (Italy),
July. Association for Computational Linguistics.

Mark Johnson, Thomas L Griffiths, and Sharon Goldwater. 2007. Adaptor grammars: A framework for
specifying compositional nonparametric bayesian models. In Advances in neural information processing
systems, pages 641–648.

Su Nam Kim and Timothy Baldwin. 2005. Automatic interpretation of noun compounds using wordnet
similarity. In International Conference on Natural Language Processing, pages 945–956. Springer.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha,
Qatar, October. Association for Computational Linguistics.

40

Amrith Krishna, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar, and Pawan Goyal. 2016.
Compound type identification in sanskrit: What roles do the corpus and grammar play? In Proceedings
of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016),
pages 1–10.

Amrith Krishna, Bodhisattwa P. Majumder, Rajesh Bhat, and Pawan Goyal. 2018a. Upcycle your
OCR: Reusing OCRs for post-OCR text correction in Romanised Sanskrit. In Proceedings of the 22nd
Conference on Computational Natural Language Learning, pages 345–355, Brussels, Belgium, October.
Association for Computational Linguistics.

Amrith Krishna, Bodhisattwa Prasad Majumder, Anil Kumar Boga, and Pawan Goyal. 2018b. An
ekalavyaapproach to learning context free grammar rules for sanskrit using adaptor grammar. Com-
putational Sanskrit & Digital Humanities, page 83.

Amrith Krishna, Bishal Santra, Sasi Prasanth Bandaru, Gaurav Sahu, Vishnu Dutt Sharma, Pavanku-
mar Satuluri, and Pawan Goyal. 2018c. Free as in free word order: An energy based model for word
segmentation and morphological tagging in Sanskrit. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages 2550–2561, Brussels, Belgium, October-November.
Association for Computational Linguistics.

Amba Kulkarni and Anil Kumar. 2011. Statistical constituency parser for sanskrit compounds. Proceed-
ings of ICON.

Amba Kulkarni and Anil Kumar. 2013. Clues from as. t. adhyayı for compound type identification. In
Proceedings of the International Sanskrit Computational Linguistics Symposium. DK Printworld (P)
Ltd.

Amba Kulkarni, Soma Paul, Malhar Kulkarni, Anil Kumar, and Nitesh Surtani. 2012. Semantic process-
ing of compounds in indian languages. Proceedings of COLING 2012, pages 1489–1502.

Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010. Sanskrit compound processor. In International
Sanskrit Computational Linguistics Symposium, pages 57–69. Springer.

John J Lowe. 2015. The syntax of sanskrit compounds. Language, 91(3):e71–e115.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of semantics. Cognitive
science, 34(8):1388–1429.

Sivaja S Nair and Amba Kulkarni. 2010. The knowledge structure in amarakośa. In International
Sanskrit Computational Linguistics Symposium, pages 173–189. Springer.

Vivi Nastase, Jelber Sayyad-Shirabad, Marina Sokolova, and Stan Szpakowicz. 2006. Learning noun-
modifier semantic relations with corpus-based and wordnet-based features. In AAAI, pages 781–787.

Truc-Vien T Nguyen, Alessandro Moschitti, and Giuseppe Riccardi. 2009. Convolution kernels on
constituent, dependency and sequential structures for relation extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3, pages 1378–
1387. Association for Computational Linguistics.

Susan Olsen. 2000. Composition. G. Booij and al, pages 897–916.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

41

Girishkumar Ponkiya, Pushpak Bhattacharyya, and Girish K. Palshikar. 2016. On why coarse class
classification is bottleneck in noun compound interpretation. In Proceedings of the 13th International
Conference on Natural Language Processing, pages 293–298, Varanasi, India, December. NLP Associ-
ation of India.

Vikas Reddy, Amrith Krishna, Vishnu Sharma, Prateek Gupta, Vineeth M R, and Pawan Goyal. 2018.
Building a word segmenter for Sanskrit overnight. In Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation (LREC-2018), Miyazaki, Japan, May. European Lan-
guages Resources Association (ELRA).

Bryan Rink and Sanda Harabagiu. 2010. Utd: Classifying semantic relations by combining lexical and
semantic resources. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages
256–259. Association for Computational Linguistics.

Bahar Salehi, Paul Cook, and Timothy Baldwin. 2015. A word embedding approach to predicting
the compositionality of multiword expressions. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 977–983.

Cicero Nogueira dos Santos, Bing Xiang, and Bowen Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. arXiv preprint arXiv:1504.06580.

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. 2015. Evaluation methods
for unsupervised word embeddings. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 298–307.

Diarmuid O Séaghdha and Ann Copestake. 2013. Interpreting compound nouns with kernel methods.
Natural Language Engineering, 19(3):331–356.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, August. Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 5027–5038, Brussels, Belgium, October-November.
Association for Computational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 1556–1566, Beijing, China, July. Association for
Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert rediscovers the classical nlp pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy, July. Association for Computational Linguistics.

Stephen Tratz and Eduard Hovy. 2010. A taxonomy, dataset, and classifier for automatic noun com-
pound interpretation. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 678–687. Association for Computational Linguistics.

Gary Alan Tubb and Emery Robert Boose. 2007. Scholastic Sanskrit: A handbook for students. Columbia
University Press.

Ben Verhoeven, Menno van Zaanen, Walter Daelemans, and Gerhard van Huyssteen. 2014a. Automatic
compound processing: Compound splitting and semantic analysis for Afrikaans and Dutch. In Pro-
ceedings of the First Workshop on Computational Approaches to Compound Analysis (ComAComA
2014), pages 20–30, Dublin, Ireland, August. Association for Computational Linguistics and Dublin
City University.

42

Ben Verhoeven, Menno van Zaanen, Walter Daelemans, and Gerhard Van Huyssteen. 2014b. Automatic
compound processing: Compound splitting and semantic analysis for afrikaans and dutch. In Proceed-
ings of the First Workshop on Computational Approaches to Compound Analysis,(ComAComA 2014),
Dublin, Ireland, August 24, 2014/Verhoeven, B.[edit.]; ea, pages 20–30.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2015. Towards universal paraphrastic
sentence embeddings. CoRR, abs/1511.08198.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pages 649–657.

43

Appendix I

Embedding Classifier A P R F

baseline ERF 77.39 0.78 0.72 0.74
RF(N-gram) 75.88 0.83 0.64 0.70

Random MLP 64.9 0.62 0.55 0.58
MLP+ 65.78 0.61 0.56 0.58
CNN 65.91 0.60 0.55 0.58
CNN+ 66.15 0.63 0.57 0.59
LSTM 65.28 0.62 0.53 0.56
LSTM+ 65.88 0.63 0.56 0.59

charcnn CNN 74.32 0.72 0.65 0.67
CNN+ 74.65 0.73 0.65 0.68

bpe+w2v MLP 68.53 0.71 0.59 0.62
MLP+ 69.85 0.74 0.58 0.63
CNN 72.27 0.77 0.61 0.65
CNN+ 71.90 0.74 0.64 0.67
LSTM 67.48 0.71 0.60 0.63
LSTM+ 68.94 0.73 0.60 0.64

bpe+glove MLP 71.37 0.75 0.60 0.65
MLP+ 72.12 0.73 0.63 0.66
CNN 73.01 0.75 0.62 0.67
CNN+ 74.13 0.76 0.64 0.68
LSTM 69.17 0.72 0.60 0.63
LSTM+ 69.42 0.71 0.62 0.64

FastText* MLP 74.51 . 0.72 0.66 0.68

FastText MLP 76.77 0.75 0.71 0.72
MLP+ 77.06 0.75 0.71 0.72
CNN 77.04 0.76 0.71 0.73
CNN+ 77.40 0.76 0.70 0.73
LSTM 77.49 0.76 0.70 0.73
LSTM+ 77.68 0.76 0.71 0.73

Table 5: Evaluation measures are accuracy (A), macro precision (P), macro recall (R) and macro
F-score (F). Results reported on test data in table are averaged over 5 runs. ‘+’ sign indicates
end-to-end training integrated with classifier.

44

Appendix II

Embedding Parameter Description Value

CharCNN maxlen maximum no of characters in input 25
Voc-size Vocabulary size of characters 60

size randomly initialized embedding size 1014

w2v size Dimensionality of the word vectors 450
window Max distance between current & predicted word 15

BPE-Voc BPE vocabulary size used for segmentation 100
sample down-sampling of more-frequent words 1e-3

min-count Ignores all words with frequency lower than this 1
epochs Number of iterations over the corpus. 10

Glove size Dimensionality of the word vectors 450
window Max distance between current & predicted word 20

BPE-Voc BPE vocabulary size used for segmentation 100
min-count Ignores all words with frequency lower than this 1

epochs Number of iterations over the corpus. 70

FastText size Dimensionality of the word vectors 350
window Max distance between current & predicted word 11
min-n Minimum length of char n-grams 2
max-n Maximum length of char n-grams 11
epochs Number of iterations over the corpus. 70

FastText* input size size of FastText features used as input 350

Table 6: Hyper-parameters used in all the systems.

45

AMachine Learning Approach for Identifying Compound Words from
a Sanskrit Text

Premjith B, Chandni Chandran V, Shriganesh Bhat, Soman K.P,
Center for Computational Engineering and Networking (CEN)

Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
prem.jb@gmail.com and

Prabaharan P
Center for Cybersecurity Systems and Networks

Amrita School of Engineering, Amritapuri, Amrita Vishwa Vidyapeetham, India

Abstract

In this paper, we propose a classification framework for finding the compound words
from a given Sanskrit text. The compound word identification plays a significant role in
learning the elucidations of verses in Ayurveda text books which are written in Sanskrit.
This process was modelled using several classification algorithms and we examined
their efficacy with varying word embedding dimensions. Sanskrit words were vector-
ized using fastText word embedding method. The results show that the performance of
K-Nearest Neighbor is better than other classifiers and the prediction accuracy is 90.38%.

1 Introduction
Compound words (समास) are abundant in Sanskrit. These words are formed by joining two
or more nominal words together and it is even possible to have a sequence of more than 10
words in a compound word (En.wikipedia.org, 2015). Computational analysis of a compound
word is hard because of its productive nature, unexpressed relationship between the compo-
nent words and the semantics of a compound word often rely on the contexts (Krishna et al.,
2016). Generally, compound words in any language is an open set of words and can be con-
structed by obeying the sandhi rules in that language. However, the sandhi splitting does not
impart the underlying meaning of a compound. To know the meaning of a compound, it is es-
sential to identify the constituent words which in turn helps to learn the relationship between
the words (Kumar et al., 2010) (Kulkarni and Kumar, 2011). This can be achieved with the help
of word segmentation algorithms (Huet, 2009), (Reddy et al., 2018), (Hellwig and Nehrdich,
2018). These algorithms can segment all the words including compound words and it affects
the understanding of texts written in verse (ोक) form.
Ayurveda has a long history and almost all the texts are written in Sanskrit. Approximately

67% of the compendium were framed in verse form with the motivation to memorize it eas-
ily(Panja, 2013). Despite this advantage, it is difficult for a novice to understand the meaning
of a verse accurately. Usually, most of the students who join for Ayurveda course have little
knowledge in interpreting such verses. In addition to that, a substantial number of words in
each verse belong to the category of compound words. The difficulty level of interpreting the
meaning of a verse again increases due to the presence of these complex words. This hardness
can be lessened by splitting the compound words into its constituents using aforementioned
computational algorithms. However, one can elucidate the whole meaning of a verse only after
achieving the Anvaya (अय) form. When we split the compounds before reordering the words
may lead to the scattering of the constituent words and hence the reader loses the connection
between the words as well as the meaning of the verse. Therefore, a computational tool for
identifying the compound words before performing the word segmentation is required for an
Ayurveda student to learn the concepts and meaning of a verse precisely.
In this paper, we propose a machine learning tool for distinguishing compound words from

non-compound words. This task is modelled as a binary classification problem. Various classi-
fication algorithms (Alpaydin, 2009), (Soman et al., 2006) such asNaïve Bayes, K-NearestNeigh-

46

bor, Decision Tree, Random Forest, Support Vector Machine, Multi-Layer Perceptron, Logistic
Regression and Adaboost were used for the classification. Input to the classifier is a word or a
sequence of words and output is the class label which is either compound or non-compound.
Inputwords are represented as vectors using fastText (Bojanowski et al., 2016)word embedding
algorithm. We didn’t use any linguistic features for this classification.

2 Sanskrit compounds and non-compound words

In English, words can be formed in multiple ways like compounding, prefixation, suffixation
etc. (Bauer, 1983), (Rajendran, 2000). However, Sanskrit extensively uses compounding and
affixation methods for the formation of words. Phrasal construction is also commonly used as
a word formation scheme.
A compound is typically formed by combining two ormore entities. These entities have their

own existence when they occur independently. Affixation is a different way of word formation
in which morphemes are added to a root word to obtain various word forms and is not a pro-
ductive process. Unlike the components of a compound, constituent morphemes of an affixed
word do not exhibit the properties of a normal word. In addition to that, compound words
have the following characteristics (Kumar et al., 2010),

• Single word

• Mono case endings

• Mono accent

• Fixed component word order

• Presence of Sandhi

A subset of these properties such as single word, presence of Sandhi etc. is applicable to non-
compound words also. This poses a difficulty in computationally discriminating compound
words from other words in the language.

3 Method

The problem of identifying compound words from a Sanskrit document was modelled as a
binary classification problem (Class labels are compound word class and other word class).
Several machine learning algorithms such as Naïve Bayes, K-Nearest Neighbor, Decision Tree,
Random Forest, Support VectorMachine, Multi-Layer Perceptron, Logistic Regression andAd-
aboost classifier were used to model the problem. The major ingredient of any machine learn-
ing algorithm is features. There are various approaches for converting words into vectors of
which word embedding algorithms were used for feature representation. Word embedding al-
gorithms are built over neural network architectures and are said to learn the semantic as well
as syntactic similarities in a corpus. In this paper, fastText was used for embedding words as
vectors. The fastText uses sub word information along with the typical word vectors which
helps the algorithm to learn the character level as well as the sub word level information from a
word. It helps to capture theminutemorphological informationwhich are hidden in thewords.
It is an important aspect for the computational processing of Indian languages because of their
morphological richness. Apart from the fastText embedding, we didn’t use any linguistic fea-
tures for the representation of Sanskrit words.

47

Result: 1 - if the word is a compound word or 0 - if the word is not a compound word
Read the data ;
Fill the empty labels with zero (0). Thi label belongs to the class of non-compound words ;
Replace compound word labels with one (1) ;
Tokenize the sentence ;
Apply Fasttext with parameters specified in the Table 4 ;
while Till the last word in the corpus do
if If there are more than one word in the sequence then
Obtain the vector representation for the word sequence by taking the mean of the
individual word vectors;

else
Take the word embedding for the respective word;

end
end
Split the data into train and test data. 80% of the input data was categorized as train set
and the remaining 20% was considered as test data ;
Use a classification algorithm to train the model with train data and train label;
Evaluate the performance of the model using the testing data ;
if A new text comes then
Tokenize the text;
while For each word do
Get the vector representation;
Predict the class label using the trained mode;
if label == 0 then
Print ”Non-compound word”

else
Print ”Compound word”

end
end

else
end
Algorithm 1: Algorithm for the identification of the compound words in a Sanskit text

4 Experiments and Discussions
The compound word classification problem is a binary class problem and the words were rep-
resented using Fasttext word embedding algorithm. In this paper, we didn’t use any linguistic
information for representing the words.

4.1 Dataset description
We collected the tagged dataset from University of Hyderabad website 1 which contained de-
composed compound words along with undecomposed non-compound words. The dataset
contains 32,183 tokens and amongwhich 17,479 are unique. The statistics of the dataset is given
in Table 1 and 2.

4.2 Discussion
The classification problem was modeled using 8 classification algorithms, which were defined
in scikit-learn (Pedregosa et al., 2011) python package, with fastText word embedding. We also
tried with Word2vec and Doc2vec methods for word representation, but they failed to obtain
vector representation for Out-of-Vocabulary (OoV) words which is very crucial in Natural Lan-
guage Processing applications. The classification capability of the machine learning algorithms

1http://sanskrit.uohyd.ac.in/scl/

48

Type of word Number of words
Compound word 13,009
Non-compound words 19,174
Total 32,183

Table 1: Number of words in compound word class and non-compound words class.

Type of word Number of unique words
Compound word 12,224
Non-compound words 5,255
Total 17,479

Table 2: Number of unique words in compound word class and other words class.

were evaluated using fourmetrics - accuracy, precision, recall and f1-score and the performance
scores are given in Table 3. The analysis shows that K-Nearest Neighbor (KNN) algorithm per-
formed better than other classification algorithms in terms of all the evaluation metrics. We
finalized the evaluation scores after 3 runs of each model.
Another trend we observed from the results was the non-linearity in the data. The data was

found to be highly non-linearly separable in the feature space and it causes the linear classifi-
cation algorithms like Support Vector Machine to perform poorly. These classification perfor-
mance of these algorithms didn’t improve further even after the feature mapping of the data
points to an extremely higher dimensional space. Therefore, we came to the conclusion that the
only way to enhance the performance of the classifier is to increase the number of data points in
the corpus otherwise we have to incorporate certain linguistic features. Figure 2 (a) shows the
confusion matrix heat-map. We also executed a 10-fold cross validation over the entire dataset
and the cross validation heat-map is given in Figure 2 (b).
The receiver operating characteristic curves of all the algorithms are shown in Figure 1. It

also shows the superiority of KNN over other classification algorithms in the identification of
compound words. We also tested the performance of the algorithms with various embedding
sizes. The analyses showed that the classification accuracy was better when the embedding
dimension was 500. The increase in embedding beyond 500 didn’t increase the performance of
the algorithms to a significant level.

Classifier Accuracy (in %) Precision Recall F1-score
Naïve Bayes 65.23 0.6837 0.6822 0.6523
K-Nearest Neighbor 90.38 0.8999 0.9162 0.9023
Decision tree 84.37 0.8390 0.8329 0.8356
Random forest 86.78 0.8644 0.8583 0.8610
SVM 60.15 0.3008 0.5000 0.3756
MLP 75.75 0.7511 0.7340 0.7392
Logistic Regression 60.20 0.8009 0.5006 0.3769
AdaBoost 78.14 0.7720 0.7755 0.7736

Table 3: Performance Evaluation of various classification algorithms.

The optimal parameters for the KNN algorithm and fastText are shown in Table 4. A grid
search method was used to fix the optimal parameters of KNN whereas the fastText hyper
parameters were determined after a series of runs with varying embedding dimensions.
Even though the training dataset contains segmented compounds, the classification model

was able to pick out the compounds words from a set of words, which are not decomposed,

49

Parameters Value
Number of neighbors 5
Weights Uniform
Leaf size 30
Word embedding dimension 500
Context Window size 1
Minimum count 1

Table 4: Parameters and their values used with KNN classifer and Fasttext word embedding
algorithms.

(a) Naïve Bayes (b) K-Nearest Neighbor

(c) Decision Tree (d) Random Forest

(e) Support Vector Machine (f) Multi-Layer Perceptron

(g) Logistic Regression (h) Adaboost

Figure 1: Receiver operating characteristic curves

50

(a) With 80% of the training data (b) With 10-fold cross validation

(c) Identification of Samasa from Ash-
tanga Hridayam text using KNN

(d) Identification of Samasa from Ash-
tanga Hridayam text using Sanskrit her-
itage reader 3

Figure 2: Confusion matrix heat map for the Compound word identification

taken from Ashtanga Hridayam (अादय). 136 words were selected for testing the potential of
the trainedmodel. This test dataset contained 43 compoundwords and 93were non-compound
words. Themodel was able to identify 41 compoundwords correctly, but it failed to classify the
non-compounds properlywith a prediction accuracy of 61.29%. The confusionmatrix heat-map
is shown in Figure 2 (c). We also used Sanskrit heritage engine to identify the compoundwords
from the above mentioned test data. This engine was able to pick non-compound words with
an accuracy of 98.92%, but at the same time failed to identify the compound words correctly
(prediction accuracy = 46.51%). The confusion matrix is depicted in 2 (d).

5 Conclusion

In this paper, we proposed a machine learning approach for compound word identification
from a Sanskrit text. Compoundwords can be constructed by joining two or more independent
words and the resulting word conveys a commonmeaning which may or may not be related to
the meanings of the component words. The identification of the compound words is important
in learning verses in Ayurveda texts. In this paper, we investigated the implication of various
machine learning algorithms with fastText word embedding algorithms in the classification
of Sanskrit words into compound and non-compound words. We observed that, K-Nearest
Neighbor classifier achieved the highest accuracy of 90.38% for an embedding dimension of
500. We also noticed that data is highly non-linearly separable which is the reason for SVM to
give poor results. For this reason, the current model can be upgraded by adding more train-
ing examples. Moreover, the classification accuracy can further be increased by incorporating
linguistic information which are specific to compounds and non-compounds.

51

References
Ethem Alpaydin. 2009. Introduction to machine learning. MIT press.

Laurie Bauer. 1983. English word-formation. Cambridge university press.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors
with subword information. arXiv preprint arXiv:1607.04606.

En.wikipedia.org. 2015. Sanskrit compound. https://en.wikipedia.org/wiki/Sanskrit_compound.
[Online; accessed 19-May-2019].

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recur-
rent and convolutional neural networks. In Proceedings of the 2018 Conference on EmpiricalMethods
in Natural Language Processing, pages 2754–2763.

Gérard Huet. 2009. Sanskrit segmentation. South Asian Languages Analysis Roundtable XXVIII, Den-
ton, Ohio (October 2009).

AmrithKrishna, Pavankumar Satuluri, ShubhamSharma, ApurvKumar, and PawanGoyal. 2016. Com-
pound type identification in sanskrit: What roles do the corpus and grammar play? In Proceedings
of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016),
pages 1–10.

Amba Kulkarni and Anil Kumar. 2011. Statistical constituency parser for sanskrit compounds. Pro-
ceedings of ICON.

Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010. Sanskrit compound processor. In International
Sanskrit Computational Linguistics Symposium, pages 57–69. Springer.

Asit Panja. 2013. A critical review of rhythmic recitation of charakasamhita as per chhanda shastra.
Ayu, 34(2):134.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R.Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830.

S Rajendran. 2000. Types of word formation in tamil. Linguisticoliterary, pages 323–343.

Vikas Reddy, Amrith Krishna, Vishnu Dutt Sharma, Prateek Gupta, Pawan Goyal, et al. 2018. Building
a word segmenter for sanskrit overnight. arXiv preprint arXiv:1802.06185.

KP Soman, Shyam Diwakar, and V Ajay. 2006. Data mining: theory and practice [with CD]. PHI
Learning Pvt. Ltd.

52

LDA Topic Modeling for pramāṇa Texts:
A Case Study in Sanskrit NLP Corpus Building

Tyler Neill
Leipzig University

Institute for Indology and Central Asian Studies
Schillerstraße 6, 04109

Leipzig, Germany
tyler.g.neill@gmail.com

Abstract

Sanskrit texts in epistemology, metaphysics, and logic (i.e., pramāṇa texts) remain under-
represented in computational work. To begin to remedy this, a 3.5 million-token digi-
tal corpus has been prepared for document- and word-level analysis, and its potential
demonstrated through Latent Dirichlet Allocation (LDA) topic modeling. Attention is
also given to data consistency issues, with special reference to the SARIT corpus.

1 Credits

This research was supported by DFG Project 279803509 “Digitale kritische Edition des Nyāya-
bhāṣya”1 and by the Humboldt Chair of Digital Humanities at the University of Leipzig, espe-
cially Dr. Thomas Köntges. Special thanks also to conversation partner Yuki Kyogoku.

2 Introduction

Sanskrit texts concerned with epistemology, metaphysics, and logic (hereafter: pramāṇa texts)
have so far been underrepresented in computational work. Digitized texts are available, but
supervised word-level analysis is lacking, and so corpus-level operations remain mostly limited
to manual plain-text searching.

In response to this, by building on the knowledge-base of the Digital Corpus of Sanskrit
(DCS) (Hellwig, 2010–2019) and looking toward a comparably robust future for pramāṇa studies,
a 3.5 million-token corpus of pramāṇa texts has been prepared for word-level NLP, and its
potential demonstrated through Latent Dirichlet Allocation (LDA) topic modeling. Attention is
also given to data consistency issues, with special reference to the SARIT corpus, and with the
goal of continuing to improve existing text corpora, including ultimately with rich annotation.

3 Overview

The process of building the present corpus for use with LDA topic modeling can be idealized as
the following sequence of nine steps, in three phases:

Phase Steps
Obtain Data (1) Collect E-Texts, (2) Choose Versions, (3) Extract XML to Plain-Text
Prep for LDA (4) Create Doc IDs, (5) Clean Content, (6) Resize Docs, (7) Segment Words

Implement LDA (8) Model Topics, (9) Query Topics and Documents

Table 1: Workflow Overview

In reality, Steps 3 through 5 were found to frequently overlap, especially in those cases in-
volving more of the data consistency issues discussed in Section 9.

1See also the earlier FWF project out of which this grew: https://www.istb.univie.ac.at/nyaya/.

53

Nyāya-Vaiśeṣika Tokens (103) Bauddha Tokens (103) Other Tokens (103)
Vātsyāyana 45.8 Dharmakīrti 64.5 Jaimini 16.5

Praśastapāda 11.0 Candrakīrti 77.9 Kumārila Bhaṭṭa 50.1
Uddyotakara 117.0 Śāntarakṣita 38.8 Sucarita Miśra 172.8

Jayanta Bhaṭṭa 209.7 Arcaṭa 57.0 Madhva 29.4
Bhāsarvajña 165.5 Kamalaśīla 268.9 Jayatīrtha 364.6

Śrīdhara 95.7 Prajñākaragupta 235.4 (Yuktidīpikā) 56.1
Vācaspati Miśra 314.8 Karṇakagomin 161.5 Māṭhara 17.8

Udayana 149.9 Durveka Miśra 120.1 Patañjali 17.1
Gaṅgeśa 34.7 Jñānaśrīmitra 155.3 Siddhasena 27.1

Pravāduka 29.8 Ratnakīrti 48.8 Abhayadeva Sūri 37.4
Vāgīśvara Bhaṭṭa 41.1 Manorathanandin 108.7 Abhinavagupta 45.6

Total 1242.9 Total 1336.9 Total 834.5

Table 2: Corpus Makeup by Well-Represented Authors

4 Obtaining Data

The approximately 70 pramāṇa texts included in the corpus so far — totaling about 3.5 million
tokens — were chosen out of a practical need of the aforementioned Nyāyabhāṣya project to
be able to more effectively cross-reference relevant texts, above all from the voluminous Nyāya-
Vaiśeṣika and Bauddha traditions. A representative sample of authors and their cumulative
token counts in the corpus so far is presented in Table 2.2 Many of the corresponding e-
texts are incomplete, owing to imperfect editing or digitization. In addition, many more such
pramāṇa texts are available not only online (easily over twice as much) but also in private
offline collections. Even more textual material awaits basic digitization. Owing to a lack of
resources, however, virtually no new material could be digitized here, e.g., through OCR and/or
double-keyboarding.

4.1 Collecting Available E-Texts

Among existing digital collections, the open online repositories GRETIL and SARIT emerged
as most relevant for Nyāya- and Bauddha-centric pramāṇa studies.3 All work based on data
derived from these sources can therefore be shared without hesitation. In those few cases where
exceptions were made for clearly superior text versions in still-private collections of personal
colleagues, original and cleaned versions of such texts cannot yet be shared in full.4

2For more detail on this list, along with nearly all data and tools discussed in this paper, see the associated
GitHub page: https://github.com/tylergneill/pramana-nlp.

3Despite the sophisticated analysis of its other texts, the DCS has few materials directly related to pramāṇa;
all are either complete and of small size (e.g. Viṃśatikākārikā and -Vṛtti) or of large size (e.g. Prasannapadā,
Abhidharmakośabhāṣya, Nyāyabhāṣya, Sarvadarśanasaṃgraha) and very incomplete (2% or less). Nor do TITUS,
The Sanskrit Library, or Muktabodha have significant materials for this genre.
The “Digital Resources” corpus of the University of Hyderabad (http://sanskrit.uohyd.ac.in/Corpus/) in-
cludes a few such texts (some even sandhi-splitted) but not enough from the Leipzig project “wishlist” to warrant
inclusion in this first round of work; a second round would certainly utilize the digitizations of Vāsudeva’s Pada-
pañcikā on Bhāsarvajña’s Nyāyasāra, Cinnambhaṭṭa’s Prakāśikā on Keśavamiśra’s Tarkabhāṣā, Rucidattamiśra’s
Prakāśa on Gaṅgeśa’s Tattvacintāmaṇi, and Dharmarājādhvarin’s Tarkacūḍāmaṇi thereon, among others.
Other digital projects of note for pramāṇa studies are: Ono Motoi’s sandhi analysis of Dharmakīrti’s works for
KWIC-indexation (now housed on GRETIL and included here); R.E. Emmerick’s indexation database and pro-
grams including bhela.exe (now lost to obsolescence); and Yasuhiro Okazaki’s analyzed index of Uddyotakara’s
Nyāyavārttika (not used here; see: http://user.numazu-ct.ac.jp/~nozawa/b/okazaki/readme.htm#n.con).

4For example, Uddyotakara’s Nyāyavārttika, Bhaṭṭavāgīśvara’s Nyāyasūtratātparyadīpikā, and Pravāduka’s
(a.k.a. Gambhīravaṃśaja’s) Nyāyasūtravivaraṇa, provided by Prof. Karin Preisendanz in Vienna, as well as
Ernst Steinkellner’s edition of Dharmakīrti’s Pramāṇaviniścaya I & II, provided by Hiroko Matsuoka in Leipzig.

54

4.2 Choosing One E-Text Version Per Work
In comparing and selecting from among digital text versions, data quality, both of edition and
digitization, was considered to be of secondary importance relative to two other NLP needs:
quantity of text and clarity of structural markup. Only in a few cases was a uniquely available
version of a text deemed to be of insufficient quality for inclusion in the analysis presented
here.5 Occasional exceptions to the one-work-one-file rule were made for base texts quoted in
commentaries (e.g., Kaṇāda’s Vaiśeṣikasūtra within Candrānanda’s Ṭīkā thereon).

4.3 Extracting XML to Plain-Text
As a third, overlapping criterion, special priority was given to the SARIT corpus, nearly half
of which (by file size) consists of pramāṇa texts. Along with these texts’ relatively good data
quality, their hierarchical TEI/XML encoding seemed worth trying to exploit for the current
purpose. As a positive side-effect of this inclusion, an XSLT workflow was developed to ex-
tract the XML to plain-text. For reasons explored below (Section 9.1), multiple transforms
were crafted for each text and then daisy-chained together with Python’s lxml library. During
extraction, rendering of structural elements into machine-readable identifiers was sensitive both
to philological understanding of the texts and to the particular NLP purpose at hand.

5 LDA Topic Modeling as Guiding Use Case
LDA topic modeling, as the special purview of the Nyāyabhāṣya project’s Digital Humanities
specialist Dr. Köntges, was chosen on pragmatic grounds as the best means for stimulating
potentially useful NLP experimentation on the envisioned corpus of pramāṇa texts.

In machine learning, topic models comprise a family of probabilistic generative models for
detecting latent semantic structures (called topics) in a textual corpus. Among these, the rel-
atively recently-developed LDA model,6 characterized by its use of sparse Dirichlet priors for
the word-topic and topic-document distributions,7 has proven popular for its ability to produce
more readily meaningful, human-interpretable results even with smaller datasets and limited
computational power. Consequently, the literature on it is already quite vast,8 and its soft-
ware implementations are increasingly numerous and user-friendly.9 In recent years, humanities
scholars working in a variety of modern and historical languages have used LDA to support
their research10 in an ever-expanding variety of ways, from studying societal trends reflected in
newspapers (Nelson, 2011; Block, 2016), to exploring poetic themes and motifs (Rhody, 2012;
Navarro-Colorado, 2018), to direct authorship verification (Savoy, 2013; Seroussi et al., 2014).
For Classical Sanskrit, it has also been used to scrutinize authorship, albeit indirectly, by helping
to control for significance of other parameters.11

5For example: GRETIL’s versions of Vyāsatīrtha Rāghavendra’s Nyāyadīpatarkatāṇḍava (transcription error-
rate too high), Madhva’s Mahābhāratatattvanirṇaya (encoding corrupt), and Śākyabuddhi’s Pramāṇavārttikaṭīkā
(diplomatic transcription of a damaged manuscript).

6The original paper is Blei (2003).
7These sparse Dirichlet priors “encode the intuition that documents cover only a small set of topics and that

topics use only a small set of words frequently” (Anouncia and Wiil, 2018, p. 271).
8See, e.g., David Mimno’s annotated bibliography: https://mimno.infosci.cornell.edu/topics.html.
9Used here are open-source tools by Dr. Köntges: (Meletē)ToPān (2018), built on the R libraries lda and

LDAvis, and Metallo (2018). Other options include Java-based MALLET and various Python machine-learning
packages like gensim.

10This subtle point, that digital humanities methods do not supplant, but support traditional humanities
approaches, is made nicely by David Blei (2012):

Note that the statistical models are meant to help interpret and understand texts; it is still the scholar’s
job to do the actual interpreting and understanding. A model of texts, built with a particular theory
in mind, cannot provide evidence for the theory. (After all, the theory is built into the assumptions of
the model.) Rather, the hope is that the model helps point us to such evidence. Using humanist texts
to do humanist scholarship is the job of a humanist.

11Low-dimensional topic models (k <= 10) are used by Hellwig (2017) to determine which linguistic features
to exclude from authorship layer analysis.

55

Most important for the present undertaking in corpus building, however, is the basic data
requirement in LDA for units at two levels: 1) words and 2) documents.

5.1 Data Need #1: Segmented Words
The first of these, words, is here accepted as equivalent to segmented tokens, namely as provided
by the Hellwig-Nehrdich Sanskrit Sandhi and Compound Splitter tool (Hellwig and Nehrdich,
2018), using the provided model pre-trained on the four-million-token DCS corpus.12 Splitted
output from this tool was then modified only slightly, replacing hyphens with space, and these
spaces, along with pre-existing spaces, were in turn used to define tokens for this corpus.13

For example, kiñcit, written as such, would be one token, whereas kiṃ tu would be two. Efforts
should be made to standardize tokenization for this corpus in the future. Similarly, the Splitter’s
natural error rate increases if orthography is not standardized, as is the case here.14 Nevertheless,
given the tool’s ease of use, it was seen as preferable, from the humanities perspective, to work
with relatively more familiar, human-interpretable units than to work with, for example, raw
character n-grams for the LDA modeling.15 Moreover, LDA being a statistical method, the
relatively large amount of data involved (namely, several million tokens) helps to improve the
signal-to-noise ratio.

A further possible concern is that this Splitter, as used here, does not perform any sort
of lemmatization or stemming, as have been aimed at by, for example, SanskritTagger or the
reading-focused systems, especially Reader Companion and Saṃsādhanī.16 Thus, arthaḥ, arthau,
arthāḥ, artham, arthān, arthena, etc. remain distinct items here rather than all being abstracted
to a single word, artha. However, whether this is a problem is again an empirical question; such
stemming may itself result in the loss of some useful information, such as collocations of certain
verbs with certain nouns in certain case endings, or genre-specific uses of certain verb tenses.17

The current Splitter, therefore, provides a sufficient starting point for experimentation.

5.2 Data Need #2: Sized and Coherent Documents
The second requirement for LDA is segmentation of a corpus into properly sized and suitably
coherent documents. Whereas the importance of sizing is generally well-known, the necessity
of document coherence, as with the issue of stemming just addressed, may depend on one’s
specific goals.18 Toward this end, effort was made by Hellwig to “not transgress adhyāya bound-

12Code at https://github.com/OliverHellwig/sanskrit/tree/master/papers/2018emnlp.
Splitting the entire pramāṇa corpus took only a few hours on the average-strength personal computer used here:
a 2017 MacBook Air with a 1.8 GHz Intel Core i5 processor and 8 GB RAM running macOS High Sierra 10.13.6.
For another large-scale demonstration of the Splitter’s power, see Nehrdich’s visualization of quotations within
the GRETIL corpus, based on fasttext vector representations of sequences with a fixed length of six tokens, at
https://github.com/sebastian-nehrdich/gretil-quotations. For a descriptive introduction, see:
http://list.indology.info/pipermail/indology_list.indology.info/2019-February/049348.html.

13This includes the token counts in Table 2 above. The largest pramāṇa text cleaned and splitted so far (but not
yet included in the corpus discussed here) was Someśvara Bhaṭṭa’s Nyāyasudhā, on Kumārila Bhaṭṭa’s Tantra-
vārttika, sourced from SARIT. It is roughly half a million words long, i.e., one-third the size of the Mahābhārata.

14The default error rate is summarized on the GitHub page as “~15% on the level of text lines”, meaning that
“about 85% of all lines processed with the model don’t contain wrong Sandhi or compound resolutions.” For more
on the theoretical accuracy limit, as well as on further limitations related to text genres and orthography, see
§5.2 “Model Selection” and §5.3 “Comparison with Baseline Models” in Hellwig and Nehrdich (2018), including
sentence-accuracies for non-standardized Nyāyamañjarī test sentences, esp. 60.2% for the model “rcNNsplit

short”.
Other immediate drawbacks of using the pre-trained model include: an input limit of 128 characters at a time
(compensated for with chunking before splitting) and hyphens indifferently outputted for both intra-compound
and inter-word splits (unimportant for LDA).

15Not yet tested is the possibility of using n-grams alongside segmented words in a “bootstrapping” effort; cp.
Dr. Köntges’ upcoming work on LDA bootstrapping with morphological normalization and translation.

16Respectively: Hellwig (2009), Goyal et al. (2012), and Kulkarni (2009).
17Cp., e.g., the importance of the Spanish preterite form fue in an LDA topic concerned with time in Navarro-

Colorado (2018). Cp. also use of the Sanskrit imperfect in narrative literature in Hellwig (2017, passim).
18For discussion of the importance of size constraints, see Tang et al. (2014), on which the range of words-per-

document adopted here is based. For discussion of optimizing topic concentration by using paragraphs to segment
documents, as opposed to foregoing all such structural markers (including chapter headings) in favor of simple
fixed-length documents for a corpus of 19th-century English novels, see section 6.2 “What is a Document?” in

56

aries” (2017, p. 145). Here, too, despite the more diverse nature of the śāstric corpus, the
challenge of using structural markup was accepted, in part to shed light on encoding issues in
this developing body of material. In practice, this meant first seeking out any and all available
structural markup — whether in the form of section headers, numbering, whitespace (especially
indentation and line breaks), punctuation distinctions like double vs. single daṇḍas, or, in the
case of SARIT, XML element types and attribute values — and operationalizing it with unique,
machine-readable conventions in plain-text. In addition to basic sections, higher-level groupings
thereof were also marked (see Section 6 for details).

These preliminary subdivisions of text, or document candidates, could then be automatically
transformed into the final LDA training documents using a two-step resizing algorithm: 1) subdi-
vide document candidates which exceed the maximum length, using punctuation and whitespace
as lower-level indicators to guide where a safe split can occur; and 2) combine adjacent document
candidates whose length is below the minimum, using the grouping markup as a higher-level
indicator to guide which boundaries should not be transgressed. The target size range was set
at approximately 50–200 words per document,19 or 300–1000 IAST characters (pre-cleaning),
relying on a conservative average of 7 characters per word.20 Finally, the resulting training
documents each received a unique, machine-readable identifier automatically reformulated from
identifiers manually secured during initial cleaning, so as to facilitate meaningful interpretation
during analysis (see, e.g., Section 8).21

6 Data Cleaning

The above-described need for maximally useful word- and document-segmentation for LDA
prompted the development of practical encoding standards as well as tools for enforcing these
standards. This cleaning process involved the greatest amount of manual effort, relying heavily
on regular expressions.

Content was standardized to IAST transliteration22 and stored as UTF-8. Orthographic
variation, including “optional sandhis”, has unfortunately not yet been controlled for, which
does result in systematic Splitter errors;23 this should either be standardized in the future or
else the Splitter model should be retrained for orthographic substyles.

Punctuation was standardized in certain respects, especially dashes and whitespace: em-
dash was used only for sentential punctuation; en-dash only for ranges; hyphen only for pre-
existing manual sandhi-splits;24 and underscore only for new manual sandhi-splits in rare cases
of compounds longer than 128 characters (for the sake of the pre-trained Splitter model). Tab
was used only for metrical material; space only for separating words from each other and from
punctuation marks; and newline only for marking the start of new sections.25 In this way, these
special characters could more effectively help guide document- and word-segmentation before

Boyd-Graber et al. (2017, pp. 70–71).
19Cp. the use of sections each containing “approximately 30 ślokas” and thus “an average length of 404 words

(= lexical units)” in Hellwig (2017, p. 154).
20Such a proxy is necessary because document resizing occurs before word segmentation in this workflow, since

punctuation is used for the former and removed in the latter. It is also assumed here that use of IAST instead of,
say, SLP1, with the latter’s theoretically preferable one-phoneme-one-character principle, is not problematic, since
letters are relatively evenly distributed throughout documents, and since LDA treats words as simple strings.

21Cp. use of the Canonical Text Services protocol (http://cite-architecture.org/) by the Open Greek
and Latin Project (https://www.dh.uni-leipzig.de/wo/projects/open-greek-and-latin-project/) for its
identifiers. Here, a pragmatic decision was made to opt for simpler, more familiar title abbreviations for now.

22Transliteration was performed, for reasons of familiarity and also for included meter detection features, with
the author’s own small Python library, available on GitHub at https://github.com/tylergneill/Skrutable.
Other transliteration toolkits, such as that at https://github.com/sanskrit-coders/indic_transliteration,
should work equally well.

23See fn. 14 above.
24This occurred mostly in Ono’s Dharmakīrti texts, which were in any case mechanically re-sandhified during

pre-processing in order to ensure more uniform Splitter results. These texts may eventually also prove useful for
comparing manual and automatic splitting of pramāṇa material.

25For metrical or sūtra texts with extensive structural markup, these “sections” could be verse-halves or smaller.

57

ultimately being filtered out in final preprocessing.
Finally, brackets were also allocated structural markup functions: square brackets were used

only for identifying the beginnings of document candidates; curly brackets only for marking
higher-level groupings of document candidates; angle brackets only for tertiary structural in-
formation useful for reading but not needed for the present purpose; and parentheses only for
certain kinds of philological notes, for example on related passages, also not needed here. Other
philological material, especially variant or unclear readings, whether found in-line or in foot-
notes, was either deleted from this corpus or flattened into a single, post-correction text. This
required a surprising amount of tedious and often haphazard manual work, which should become
more avoidable in the future (for more detail, see Section 9.2).

Cleaned Text Note
<iti pratyakṣasyānumānatvaparīkṣāprakaraṇam> End of Previous Prakaraṇa
{avayaviparīkṣāprakaraṇam} Document Group: New Prakaraṇa
[2.1.33] Document Candidate
(“sādhyatvād avayavini sandehaḥ”) Editorial Markup
kāraṇebhyo dravyāntaram utpadyata iti sādhyam etat. Text Content
kim punar atra sādhyam. ...
kim avyatireko ’thāvayavīti. ...
... ...
ataḥ “sādhyatvād avayavini sandehaḥ” ity ayuktam. (In-Line Sūtra Quotation)
itaś ca sādhyatvād avayavini sandeha iti na yuktam

Table 3: Example of Cleaned Text for NV_2.1.33

To more efficiently enforce these standards, a two-part validator script was written in Python,
firstly to check for permitted structural patterns as indicated by bracket markup, and secondly to
check for permitted characters and sequences thereof. In case of deviations, the script generated
a verbose alert to assist in manual correction.

To recap: After e-texts had been collected and most useful versions chosen, usable structure
was sought out and highlighted with in-house markup, including during plain-text extraction
from XML where needed. Thereafter, structure and content were laboriously standardized for
all texts with the help of a custom-built validator tool. Beyond this point, final preprocessing
occurred automatically: Extraneous elements were removed, document candidates were resized,
final documents were word-splitted, and the results were reassociated with appropriate identifiers
in a two-column CSV file for use with the topic modeling software.

7 Modeling Topics with LDA and Visualizing Structure

One application of LDA topic modeling of philological interest is direct interpretation of the
automatically discovered topics. This information is contained in the resulting ϕ table describing
the word-topic distributions, and it lends itself well to visualization.

For example, using ToPān (Figure 1) to train an LDA topic model on 67 pramāṇa texts
segmented into words and documents as characterized above and with near-default settings26

resulted in fifty topics, all human-interpretable, of which half are presented here, identified both
by the respective fifteen top words (adjusted for “relevance”)27 and by an interpretive label
based on manual scrutiny of the ϕ table.

26α = 0.02, η = 0.02, and seed = 73, but k = 50 and number of iterations = 1000. Twelve most frequent
function words (indeclinables and pronouns) were also removed as stopwords for training, à la Schofield (2017),
summarized at https://mimno.infosci.cornell.edu/publications.html. In addition, but only after training,
a further eighty-two function words were removed for the sake of more meaningful interpretation of ϕ values.

27λ = 0.8. See Sievert & Shirley (2014), and note log normalization: λ * log(p(w|t)) + (1-λ) * log(p(w|t)/p(w)).

58

Figure 1: Visualization of Fifty Topics with LDAvis in ToPān.
Left: Marginal word-topic probabilities plotted against 2-D PCA of fifty topics.

Right: Top twenty-five words of Topic 32 (λ = 0.8), with topic and corpus frequencies.

Topic # Top Fifteen Words Interpretive Label
4 kārya kāraṇa sahakāri kāryam bīja sāmagrī svabhāva causation

janana aṅkura śakti śaktiḥ eka hetu janaka sāmarthyam
10 prakāśa nīla prakāśaḥ rūpa ātma rūpam grāhya ātmā Bauddha non-dual

jñāna grāhaka ākāra saṃvid prakāśate nīlam ābhāsa perception
11 jñānam jñāna indriya viṣaya pratyakṣam artha jñānasya perceptual

pratyakṣa viṣayam vijñānam akṣa jam rūpa kalpanā grahaṇam cognitive process
14 vikalpa ākāra vastu artha ākāraḥ bāhya vikalpaḥ vāsanā images and

rūpa pratibhāsaḥ pratibhāsa vikalpasya viṣayaḥ sāmānya viṣaya conceptuality
15 bheda bhedaḥ eka bhedāt bhinna abheda bhede abhedaḥ difference

bhedena dharma aneka ekam bhedasya bhedam rūpa
16 brahma mokṣa ānanda bhagavat maya śrutiḥ anna śruti Dvaita

viṣṇu jñāna mukti viṣṇuḥ arthaḥ sadā devānām soteriology
17 nigraha pakṣa sādhana sthānam pratijñā artham sthāna Nyāya

para kathā uttara artha tattva siddhāntaḥ doṣa jalpa method
20 abhāva abhāvaḥ bhāva vastu abhāvasya bhāvaḥ anya rūpa affirmation

virodhaḥ vidhi niṣedha pratiṣedha abhāvayoḥ virodha niṣedhaḥ and negation
22 duḥkha sukha rāga duḥkham sukham ātma tattva doṣa Nyāya

dveṣa saṃsāra nivṛttiḥ avidyā pravṛtti rāgaḥ janma soteriology
23 dravya saṃyoga guṇa vibhāga karma kāraṇa dvi saṃyogaḥ Vaiśeṣika

guru ākāśa dravyam mahat samavāyi parimāṇa kāraṇam ontology

Table 4: Philological Interpretation of Ten out of First Twenty-Five LDA Topics.
Based on ϕ values, relevance-adjusted (λ = 0.8), excluding eighty-two further stopwords.

59

Topic # Top Fifteen Words Interpretive Label
26 pramāṇa artha pramāṇam pravṛtti jñānam prāmāṇyam prameya pramāṇa

niścaya kriyā niścayaḥ phalam viṣaya prameyam prāmāṇya pravṛttiḥ
27 rūpa sparśa pṛthivī cakṣuḥ gandha indriya śabda rasa sensation

guṇa pradīpa śrotra grahaṇam tejaḥ śabdaḥ indriyam
29 sat asat kāraṇa kāraṇam kāryam kārya sattā asataḥ Sāṃkhya

cit sarvam utpatti prāk sataḥ utpattiḥ sattvam pre-existent effect
32 eka deśa avayava avayavi avayavī avayavinaḥ paramāṇu atoms, parts,

avayavāḥ parimāṇa deśaḥ paramāṇavaḥ antara deśena vṛtti aṇu and wholes
35 phala svarga vidhi phalam karma hiṃsā kāmaḥ vidhiḥ Vedic

sādhana putra yāga artha vidheḥ yajeta codanā sacrifice
36 rajata mithyā bādhaka satya rajatam svapna bādhya error

sākṣi bādhaḥ sat śukti jñāna asat bhrānti mithyātvam
38 prāmāṇyam veda āpta prāmāṇya pramāṇa artha āgama aprāmāṇyam trustworthy

vākya pramāṇam puruṣa doṣa vaktṛ apauruṣeya svatas speech
39 pañca prakṛti vyaktam rajaḥ pradhānam prakṛtiḥ avyaktam Sāṃkhya

vikāra tamaḥ sattva mahat avyakta sargaḥ vṛttiḥ tanmātrāṇi metaphysics
40 smṛti pūrva smṛtiḥ anubhava smaraṇam smaraṇa saṃskāra experience and

smṛteḥ anubhavaḥ kāla saṃskāraḥ anubhūta viṣaya jñānam jñāna recollection
41 karma śarīra śarīram icchā īśvaraḥ īśvara prayatna karma

dharma śarīrasya deha adharma phala karmaṇaḥ cetanā bhoga
42 bhavanti viśeṣāḥ dharmāḥ sarve santi hetavaḥ syuḥ plural

viśeṣa arthāḥ yeṣām kecid śabdāḥ anye teṣu bhāvāḥ words
43 indriya manaḥ ātma manasaḥ śarīra yugapad jñāna sukha Nyāya prameyas

viṣaya artha icchā cakṣuḥ jñānam sannikarṣa indriyāṇām related to the self
45 kriyā kāraka kartṛ karma karaṇa artha vyāpāra vyāpāraḥ action

dhātu karaṇam arthaḥ bhāvanā kriyām karoti kriyāyāḥ
47 aham puruṣa puruṣaḥ buddhi puruṣasya ātmā artham buddhiḥ Sāṃkhya on

arthaḥ ātmanaḥ ātmānam buddheḥ prakṛtiḥ mama bhoktā self and other
48 viśeṣaṇa viśeṣya samavāyaḥ ghaṭa samavāya bhū sambandha qualification

ghaṭaḥ viśeṣaṇam viśiṣṭa ādhāra sambandhaḥ paṭa paṭaḥ guṇa

Table 5: Further Philological Interpretation of Fifteen out of Remaining Twenty-Five LDA Topics.

8 Using Topics for Information Retrieval

Another computational application of interest to philologists, that of calculating similarity
among portions of text, can to some extent also be approached directly with these same topic
modeling results, namely by vectorizing documents according to their topic distributions and
measuring their distance from each other in topic-space.28 The relevant information for this is
found in the θ table describing the topic-document distributions.

For example, using Metallo with default settings29 to compare documents according to their
Manhattan distance in topic-space, one can query topics and documents of interest to a particular
research question — here, say, the present author’s own dissertation topic: the ontological whole
(avayavī) in Bhāsarvajña’s Nyāyabhūṣaṇa. Manual inspection of the fifty discovered topics
quickly reveals that Topic 32 (see Table 5 above) will likely be relevant. Metallo then easily
generates a list of arbitrarily many documents best exemplifying this topic, or in other words,
documents closest to that particular basis vector in the topic-space (see Table 6). It also allows

28Ideally, topic distribution would be only one among a number of linguistic features used to characterize doc-
uments for information retrieval. The implementation here is therefore mainly for the purpose of demonstration.

29Significance parameter = 0.1. Note also that by default, all topics are weighted equally.

60

for direct querying of any desired document, say, NBhū_104,6^130 (beginning of the avayavī
discussion), for arbitrarily many documents closest to it in topic-space, as seen in Figure 2 and
Tables 7 and 8.

Rank Document Identifier Topic 32
1 NV_4.2.7 98.8%
2 NVTṬ_4,2.10.1–4,2.10.2^2–4,2.11.1 98.7%
3 NV_2.1.31^2 98.4%
4 NSV_4.2.7 98.4%
5 NV_2.1.32^4 97.2%
6 NV_2.1.32^8 95.4%
7 NBh_2.1.36.1–2.1.36.2 95.1%
14 NSV_4.2.8–4.2.9 90.6%
15 NSV_4.2.16 90.3%
20 NSV_4.2.11–4.2.13 88.3%
21 NBh_2.1.36.3 87.9%
22 VVṛ_12 87.8%
24 VVṛ_14^2 87.0%
25 VVṛ_14^1 87.0%
26 NBh_4.2.16.1–4.2.16.3 86.6%
27 NBh_2.1.31.3–2.1.31.5 86.4%
35 NVTṬ_2,1.32.1^7 82.6%
39 NM_9,2.430.325 80.7%
40 VVṛ_13 80.6%
43 NBhū_106,3 80.0%
46 NVTṬ_4,2.7.1 79.3%
48 NTD_4.2.7 79.3%
51 NBhū_111,24^1 78.8%
52 NVTṬ_4,2.25.1^3 78.6%
56 NTD_4.2.10 77.0%
65 PVV_1.87,0–1.87,1 75.5%
72 PVin_1.38.3 74.2%
75 NK_59.4^2 74.1%
76 NSu_2.2.66cd.3–2.2.66cd.4 74.0%
81 NTD_2.1.39 72.9%
86 NTD_4.2.15 71.5%
91 VNṬ_80,1^2 70.5%
94 NBhū_104,6^2 70.1%
97 NM_9,2.430.322 69.8%
100 YŚ_3.44.5–3.44.6 69.3%

Table 6: Selected Documents in which Topic 32 is Most Dominant.
Top four only shown for NV, NVTṬ, NSV, NBh, VVṛ, NTD. (Sixty-five more not shown.)

All shown for NM, NBhū, PVV, NK, NSu, VNṬ, YŚ.

30As seen here by the “^1” notation marking a document automatically subdivided in resizing, queriable docu-
ments are currently limited to those somewhat artificial ones used in modeling. It is also possible to extrapolate
to new data, but this has not yet been done here.

61

Figure 2: Screenshot of Metallo “view” Query on Document NBhū_104,6^1

Rank PVin NBh NBhū NV
0 104,6^1
1 1.38.3
7 104,6^2
13 4.2.24.3
15 110,12
17 106,3
18 4.2.16.1–4.2.16.3
20 2.1.36.7
25 2.1.31^10
26 2.1.33^30
27 2.1.32^4
28 2.1.33^31
30 2.1.36.4
31 4.2.26
34 2.1.36^3
35 2.1.33^33
36 4.2.25^3
37 123,21
41 2.1.31^3
42 1.1.14^14
43 130,15^2
45 2.1.36.3
47 2.1.35.3–2.1.35.4
49 4.1.13

Table 7: Selected Documents Closest to NBhū_104,6^1 in Topic-Space.
Emphasis on: PVin, NBh, NBhū, NV.

Not shown: NM, NSV, NSu, NTD, VVṛ, NK, NVTṬ, ĀTV, PVV.

62

Rank Document Identifier Text Preview (Segmented, Unproofread)
0 NBhū_104,6^1 ... jñānāt artha antaram sthūlam sutarām na sambhavati

tathā hi na tāvat ekaḥ avayavī tathā sati tasya pāṇi ādi kampe
sarva kampa prāpteḥ akampane vā cala acalayoḥ pṛthak ...

1 PVin_1.38.3 na api sthūlaḥ ekaḥ viṣayaḥ tathā pāṇi ādi kampe
sarvasya kampa prāpteḥ akampane vā cala acalayoḥ
pṛthak siddhi prasaṅgāt vastra udaka vat ...

13 NBh_4.2.24.3 ... uktam ca atra sparśavān aṇuḥ sparśavatoḥ aṇvoḥ
pratighātāt vyavadhāyakaḥ na sāvayava tvāt sparśavat tvāt ca
vyavadhāne sati aṇu saṃyogaḥ na āśrayam vyāpnoti ...

18 NBh_4.2.16.1–4.2.16.3 ... niravayava tvam tu paramāṇoḥ vibhāgaiḥ alpatara
prasaṅgasya yatas na alpīyaḥ tatra avasthānāt loṣṭasya khalu
pravibhajyamāna avayavasya alpataram alpatamam ...

20 NBh_2.1.36.7 ... bhavataḥ tena vijñāyate yat mahat tat ekam iti aṇu
amahatsu samūha atiśaya grahaṇam mahat pratyayaḥ iti ced saḥ
ayam aṇuṣu mahat pratyayaḥ atasmin tat iti pratyayaḥ bhavati ...

7 NBhū_104,6^2 vṛtti anupapatteḥ ca avayavī na asti tathā hi gavi
śṛṅgam iti laukikam śṛṅge gauḥ iti alaukikam tatas
yadi avayavini avayavāḥ varttante tadā ...

15 NBhū_110,12 nanu eka avayava kampane api anya avayavānām akampanāt
asti cala acala tvam tena bheda siddhiḥ tatas kim aniṣṭam
yadi nāma avayavānām cala acala tvena bhedaḥ tatas ...

17 NBhū_106,3 itas ca na asti avayavī buddhyā vivecane anupalambhāt
na hi ayam tantuḥ ayam tantuḥ iti evam buddhyā
pṛthak kriyamāṇeṣu avayaveṣu tad anyaḥ avayavī pratibhāti ...

25 NV_2.1.31^10 ... atha manuṣe na asmābhiḥ avayavi dravyāṇi kāni cit
pratipadyante kim tu teṣu eva parama aṇuṣu paraspara
pratyāsatti upasaṃgraheṇa saṃsthāna viśeṣa avasthiteṣu ...

26 NV_2.1.33^30 ... na tantavaḥ tantūnām avayavāḥ iti viruddhaḥ artha
antara pratyākhyānāt ca avayavaḥ avayavī iti etat na syāt yat
api idam ucyate ye avayavāḥ avayavinaḥ artha antaram ...

27 NV_2.1.32^4 tasmāt ekasmin na kārtsnaḥ vartate iti na api eka deśena vartate na
hi asya kāraṇa vyatirekeṇa anye eka deśāḥ santi sa ayam eka deśa
upalabdhau avayavi upalabhyamānaḥ na kṛtsnaḥ upalabhyate ...

Table 8: Detail on Ten Documents Close to NBhū_104,6^1 in Topic-Space.
In this case, PVin_1.38.3, ranked first, is in fact the direct source of the non-verbatim quotation.

9 Data Consistency Issues

These tentative results, encouraging though they may be, stand to be improved not only through
more sophisticated application of NLP methods, but also through increased attention to data
consistency. Besides systematic tokenization and orthography issues (addressed in Section 5.1)
and unsystematic typographical or even editing errors (not yet prioritized here), three additional
sets of systematic data consistency issues were revealed through the process of preparing this
corpus. These are advanced here as the low-hanging fruit of improving textual data for future
Sanskrit NLP work. The first issue applies at the level of documents and relates to being able
to effectively manipulate these through meaningful identifiers, while the second and third are
concerned with data loss at the level of individual words. In each case, special attention is paid
to the SARIT texts so as to further encourage their use for NLP purposes.

63

9.1 Structural Markup and Identifiers
The essential structural challenge in such corpus-level computational work is to be able to refer to
every single piece of text in the corpus with a unique and, if at all possible, meaningful identifier,
in order to be able to effectively coordinate retrieval and human use after processing. In the
texts used here, however, structural markup for the purpose of creating such identifiers was often
less than easily available. Sometimes, only physical features of the edition, rather than logical
features of the text, were found to be marked, even when the latter might have been possible (e.g.,
the digitization of Durveka Miśra’s Hetubinduṭīkāloka lacking the structure of the underlying
Hetubindu or Hetubinduṭīkā). Sometimes, numerical structural markup was only found mixed in
among textual content (e.g., Abhinavagupta’s Īśvarapratyabhijñāvivṛtivimarśinī). Sometimes,
important section information was marked only with the verbal headers or trailers of the printed
edition rather than with numbers (e.g., Vinītadeva’s Nyāyabinduṭīkā).

Of course, some markup issues may reflect citation difficulties within the philological field
itself; for example, citation conventions for texts with continuously interwoven prose and metrical
(or aphoristic) material may be more varied than for other texts.31 Similarly, when (or if)
creating paragraphs in such prose texts, editors must often make a substantial interpretive
departure from the available manuscript evidence. Thus, as the philological understanding
of the interrelationships among parts of a given text gradually improves, so too might the
corresponding structural markup in digitized texts also be expected to do so.32

In other cases, however, it seems that basic encoding work has just been left undone, whether
for lack of time or resources, or through a preference for adhering literally to the source edi-
tion, which, for better or worse, allows one to postpone further questions concerning structural
annotation. Looking forward, insofar as these digitizations can receive more attention, and as
more computational projects are attempted with them, the field should continue33 to gradually
move in the direction of the Canonical Text Services protocol. This protocol encourages explicit
and usually numerical reference conventions for the sake of unambiguous citation and automatic
processing, and its implementation has been admirably exemplified in recent years (also with
TEI/XML markup) by the Open Greek and Latin Project (OGL).34

Structural Markup and Identifiers in SARIT
The existing SARIT stylesheet transforms proved difficult to understand and adapt for the
current purposes, and thus it was decided to utilize the situation as an exercise in understanding
the diversity of structures encoded in that corpus. Experimentation quickly revealed that, in
contrast to texts in the OGL corpus, where a single XPath expression in the <TEIheader>
explicitly identifies the depth at which textual information will be found, the texts in the SARIT
corpus varied so much in their use of main structural elements — <div>, <p>, <lg>, <quote>,
<q>, etc. — that it was not possible to write and use straightforward XSL transforms that
could apply to multiple files, much less to use the XML library of a given programming language
(e.g. Python or Golang) to easily unmarshall the structure and expose the textual data.35 For
example, while for some texts, logical structure was encoded using only a single level of <div>
elements (e.g., sūtra sections in Vātsyāyana’s Nyāyabhāṣya), for others, any number of levels
of nested <div>s could be used for the same purpose (e.g., Jñānaśrīmitra’s Nibandhāvali and
Prajñākaragupta’s Pramāṇavārttikālaṅkāra). Meanwhile, still other texts were structured not

31Take, for example, Prajñākaragupta’s Pramāṇavārttikālaṅkāra. It’s not always clear whether one should
refer to a piece of the prose commentary with the help of a numbered Dharmakīrti verse quoted nearby, or with
Prajñākaragupta’s own nearby and numbered verses, or simply with the edition page and line numbers.

32Cp., e.g., Nyāyabhūṣaṇa topical headers and paragraph divisions by editor Yogīndrānanda (1968) with those
of S. Yamakami (2002) for the avayavī section at http://www.cc.kyoto-su.ac.jp/~yamakami/synopsis.html.

33For thoughts so far, see, e.g., Ollett (2014).
34See, e.g., the OGL texts in the Scaife Viewer online reading environment: https://scaife.perseus.org/.
35Cp. such a mass unmarshalling script for OGL texts at https://github.com/ThomasK81/TEItoCEX.

Cp. also the simple, two-level, chapter-verse structure of DCS data as exported from the SanskritTagger in XML
form, reflecting top-down, NLP-driven decision making from the very beginning. (A version of the Tagger capable
of performing this export was secured with the kind help of Oliver Hellwig.)

64

according to logical structure but rather according to physical structure of the edition. For
example, Jayantabhaṭṭa’s Nyāyamañjarī, printed on the top halves of pages in the book, was
therefore encoded as <quote> elements inserted at unpredictable depths, i.e., within <p> or
<q> elements, within the supervening modern Ṭippanī commentary, following page breaks.
This proved especially difficult to understand and deal with from a perspective seeking natural
language. Thus, new transforms had to be individually crafted for each of the fifteen SARIT
texts used. While this does provide temporary access to the plain-text information, suggestions
will be made to modify the SARIT source files so that they adhere to a smaller number of
structural patterns that can be explicitly noted in their respective headers.

9.2 Editorial Markup
Also reflecting a still-developing state of editing and understanding, many digitizations of printed
editions literally reproduce or add editorial markup — especially variant readings, including
additions, deletions, and substitutions of variable length — which can be quite idiosyncratic
and not always thoroughly explained in accompanying digitization metadata. For example, see
the table below, based on Durveka Miśra’s Hetubinduṭīkāloka (parenthetical editorial notes turn
out to be reporting on the corresponding text in Arcaṭa):

Page Text (with Editorial Note) Suggested Change
254 ... tadutpattāv eveti(tpattyā veti) vivakṣitam | replacement
279 a(nya)thā “nirvikalpakabodhena... insertion
280 anadhigacchann iti (gaṃcchadi)ti | none?

Table 9: Examples of Inconsistent Editorial Markup

Insofar as it is not possible to automatically flatten such alternatives into a single text, the
flow of natural language will be compromised, and words lost. The straightforward solution is
to anticipate such flattening — either through XML transforms or simple search-and-replace
routines — with consistent use of some unambiguous notation. This does, however, of course
require substantial additional investment of time and expertise. Extensive notes taken during
the corpus cleaning here should hopefully contribute to such improvements for the future.

Editorial Markup in SARIT
The use of <choice> elements in XML is a perfect way to address this situation, yet the SARIT
texts were found to apply this solution only unevenly, leaving many instances of editorial markup
uninterpreted as found in the printed edition. For example, as reported in the metadata of
Karṇakagomin’s Pramāṇavārttikavṛttiṭīkā, although many round brackets (i.e., parentheses) and
square brackets have been successfully interpreted — as <ref>, <note type=‘correction’>, and
<supplied resp=‘#ed-rs’> — others have simply been left as is: “All other round brackets
(227 occurrences) were encoded as <hi rend=‘brackets’>” and “All other square brackets (19
occurrences) were encoded as <hi rend=‘squarebrackets’>”. In other cases (e.g., Vācaspati
Miśra’s Tattvavaiśāradī), these editorial notes were left untouched. Such cases require further
philological scrutiny in order to allow for consistent extraction of natural language.

9.3 Whitespace
In the printed representation of Sanskrit texts, one can distinguish between two basic conven-
tions, or perhaps styles, of using whitespace between words: 1) maximal use of whitespace,
usually associated with Roman transliteration and prioritizing separate phonemes and words,
and 2) conservative use of whitespace, usually associated with Indic scripts and prioritizing
ligatures as found in the underlying manuscript tradition. Each style has its strengths and
weaknesses, e.g., assuming more work on the part of the editor or digitizer and less on the part
of the reader (first style) or vice versa (second style). The point of distinguishing these two

65

styles, however, is not to advocate for one over the other,36 but rather to distinguish both from
outright spacing errors. That is, it should be trivial for an NLP researcher to quickly filter out
all markup and obtain a clean, consistent representation of either one style or the other.

In practice, however, this was often found not to be the case, suggesting that whitespace
has not yet been conceived of as containing as much information as other character types. To
take but one small example from the digitization of Candrakīrti’s Prasannapadā (prose section
preceding 27.19):

... saṃsāraprabandhamupalabhya śāśvata mātmānaṃ parikalpayāmaḥ |
Here, the “conservative” style is found, but with a spurious space. Each such instance represents
the effective loss of one or more words in segmentation. Many of these errors do follow certain
patterns, such that regular expressions can be part of a standardization solution, but there are
limits to what such language-blind methods can detect.37

Whitespace in SARIT
For its own part, SARIT experiences this same whitespace consistency issue, but it also intro-
duces novel difficulties with its handling of in-line annotations, i.e., XML node() elements placed
within text() elements. For example, consider the following six representative examples in the
digitization of Mokṣākaragupta’s Tarkabhāṣā (transliterated, XML elements simplified):

Space Proper Improper
Left kumbhakārasya <note n=“45-1”/>kartṛtvam pratyakṣa <note n=“4-1”/>mabhidhīyate

Right -mataśrutyai<note n=“1-1”/> tarkabhāṣā balāda<note n=“5-2”/> bhyupagatam
None parokṣatva<note n=“18-1”/>pratipādanāya -pādaiḥ<note n=“41-0”/>kāryatvasya

Table 10: Examples of Inconsistent Whitespace in SARIT Texts

It thus becomes impossible to systematically extract the expected result.
Particularly problematic were <lb> (and to a lesser extent <pb>) elements containing the

break=“no” attribute, as these were not infrequently found to occur adjacent to other <lb> or
<pb> elements not possessing this attribute, as well as adjacent to simple whitespace, thereby
rendering the attribute ineffective and compromising word segmentation. A particularly dra-
matic example is found in Jñānaśrīmitra’s Nibandhāvali (complex whitespace simplified):

... pariṇāma<lb break=“no”/> <lb/> <pb n=“257”/> <lb/>paramparāparicayasya ...
In such cases, ensuring proper segmentation necessitates removal of competing elements, which
can then cause problems of its own, e.g., if line number counts are required for constructing
identifiers. On the other hand, this break=“no” attribute was sometimes simply not used when
it should have been. For example, in Śāntarakṣita’s Vādanyāyaṭīkā (67,4–5; element simplified)
(also observe not one but two whitespaces):

sadādyaviśeṣavi <lb/> ṣayā ...
Fortunately, once identified, fixing such problems is relatively easy with the help of regular

expressions and SARIT’s recommended Git-based workflow, although again, expertise and time
are required. The XSLT workflow described above can also be further modified to help diagnose
such issues and assess how much progress has been made in this direction at any given point.

10 Conclusion
This demonstration of working through a certain subset of Sanskrit pramāṇa texts with LDA
topic modeling has been of a preliminary character. Nevertheless, it provides a valuable window

36From the perspective of NLP, machine-learning-based systems, ever more the rule rather than the exception,
can be made to handle both separately, just as OCR systems can be trained for multiple fonts.

37E.g., a regex built to find a final consonant migrating to the beginning of the next word, as in the example
given, would fail to distinguish between “-m ucyate” and “mucyate”, both valid sequences, depending on context.

66

onto the state of digitization of a large number of e-texts of ever-increasing importance to the
scholarly community and shows what potential they have for further computational research.
Moreover, issues encountered with LDA and pramāṇa texts in particular should generalize well
to many other NLP methods and Sanskrit subgenres. Until a database of supervised word-
segmentation, such as found in the DCS, is secured also for such specialized texts, perhaps
with the help of a collaborative, online annotation system, the remarks here will hopefully help
interested parties continue to improve digitization workflows in ways that anticipate the kind of
accessible, citable, machine-actionable text — to be processed, for instance, with an unsupervised
segmenter — that will be most needed for a variety of corpus-linguistic and information retrieval
applications in the future.

References
S. Margret Anouncia and Uffe Kock Wiil. 2018. Knowledge Computing and its Applications: Knowledge

Computing in Specific Domains, volume 2. Springer Nature Singapore.

David Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet allocation. The Journal of Machine
Learning Research, 3:993–1022.

David Blei. 2012. Topic modeling and digital humanities. Journal of Digital Humanities, 2(1), Winter.

Sharon Block. 2016. Doing more with digitization. Common-place.org, 6(2), January.

Jordan Boyd-Graber, Yuening Hu, and David Mimno. 2017. Applications of topic models. Foundations
and Trends® in Information Retrieval, 20(20):1–154.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In 24th International Conference on Computational Linguistics
(COLING), Mumbai.

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recurrent
and convolutional neural networks. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2754–2763, Brussels, Belgium, October-November. Association for
Computational Linguistics.

Oliver Hellwig. 2009. SanskritTagger: A stochastic lexical and POS tagger for Sanskrit. In Gérard Huet,
Amba Kulkarni, and Peter Scharf, editors, Sanskrit Computational Linguistics, pages 266–277.

Oliver Hellwig. 2010–2019. DCS - The Digital Corpus of Sanskrit. http://www.sanskrit-
linguistics.org/dcs/index.php.

Oliver Hellwig. 2017. Stratifying the Mahābhārata: The textual position of the Bhagavadgītā. Indo-
Iranian Journal, 60:132–169, January.

Thomas Koentges and J. R. Schmid. 2018. ThomasK81/ToPan: Rbiter. January.
http://doi.org/10.5281/zenodo.1149062.

Thomas Koentges and Jeffrey C. Witt. 2018. ThomasK81/Metallo: HumboldtBonpland. October.
http://dx.doi.org/10.5281/zenodo.1445773.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit morphological analyser: Some issues. Indian
Linguistics, 70(1–4):169–177.

Borja Navarro-Colorado. 2018. On poetic topic modeling: Extracting themes and motifs from a corpus
of Spanish poetry. Frontiers in Digital Humanities, 5.

Robert K. Nelson. 2011. Of monsters, men — and topic modeling. The New York Times, May.

Andrew Ollett. 2014. Sarit-prasāraṇam: Developing SARIT beyond ’Search and Retrieval’. Posted on
Academia.edu. Slides from a talk given in Oxford (’Buddhism and Digital Humanities,’ organized by
Jan Westerhoff.

Lisa M. Rhody. 2012. Topic modeling and figurative language. Journal of Digital Humanities, 2(1),
Winter.

67

Jacques Savoy. 2013. Authorship attribution based on a probabilistic topic model. Information Process-
ing & Management, 49:341–354, 01.

Alexandra Schofield, Måns Magnusson, and David Mimno. 2017. Pulling out the stops: Rethinking
stopword removal for topic models. pages 432–436, April.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert. 2014. Authorship attribution with topic models.
Computational Linguist, 40(2):269–310, June.

Carson Sievert and Kenneth Shirley. 2014. LDAvis: A method for visualizing and interpreting topics. In
Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, pages
63–70, Baltimore, Maryland, USA, June. Association for Computational Linguistics.

Jian Tang, Zhaoshi Meng, XuanLong Nguyen, Qiaozhu Mei, and Ming Zhang. 2014. Understanding
the limiting factors of topic modeling via posterior contraction analysis. In Proceedings of the 31st
International Conference on International Conference on Machine Learning - Volume 32, pages I–190–
I–198. JMLR.org.

Svāmī Yogīndrānanda and Bhāsarvajña. 1968. Nyāyabhūṣaṇam: śrīmadācāryabhāsarvajñapraṇītasya
nyāyasārasya svopajñaṃ vyākhyānam. Ṣaddarśana Prakāśana Pratiṣṭhānam : Prāpti-sthānam Udāsīna
Saṃskṛta Vidyālaya, Vārāṇasī.

68

Vedavaapi: A Platform for Community-sourced Indic Knowledge
Processing at Scale

Sai Susarla Damodar Reddy Challa
School of Vedic Sciences Vedavaapi Foundation

MIT-ADT University, Pune Bangalore
sai.susarla@gmail.com

Abstract

Indic heritage knowledge is embedded in millions of manuscripts at various stages of
digitization and analysis. Numerous powerful tools and techniques have been developed
for linguistic analysis of Samskrit and Indic language texts. However, the key challenge
today is employing them together on large document collections and building higher
level end-user applications to make Indic knowledge texts intelligible. We believe the
chief hurdle is the lack of an end-to-end, secure, decentralized system platform for (i)
composing independently developed tools for higher-level tasks, and (ii) employing human
experts in the loop to work around the limitations of automated tools to ensure curated
content always. Such a platform must define protocols and standards for interoperability
and reusability of tools while enabling their autonomous evolution to spur innovation.
This paper describes the architecture of an Internet platform for end-to-end Indic knowl-
edge processing called Vedavaapi that addresses these challenges effectively. At its core,
Vedavaapi is a community-sourced, scalable, multi-layered annotated object network. It
serves as an overlay on Indic documents stored anywhere online by providing textifica-
tion, language analysis and discourse analysis as value-added services in a crowd-sourced
manner. It offers federated deployment of tools as microservices, powerful decentralized
user / team management with access control across multiple organizational boundaries.
social-media login and an open architecture with extensible and evolving object schemas.
As its first application, we have developed human-assisted text conversion of hand-written
manuscripts such as palm leaf etc leveraging several standards-based open-source tools
including ones by IIIT Hyderabad, IIT Kanpur and University of Hyderabad.
We demonstrate how our design choices enabled us to rapidly develop useful applications
via extensive reuse of state-of-the-art analysis tools. This paper offers an approach to
standardization of linguistic analysis output, and lays out guidelines for Indic document
metadata design and storage.

1 Introduction
There is growing interest and activity in applying computing technology to unearth the knowl-
edge content of India’s heritage literature embedded in Indic languages due to its perceived
value to modern society. This has led to several research efforts to produce analysis tools for
Indic language content at various levels – text, syntax, semantics and meaning Goyal et al.
(2012; Kumar (2012; Huet (2002; Kulkarni (2016; Hellwig (2009). Many of these efforts have
so far been addressing algorithmic issues in specific linguistic analysis problems. However, as
the tools mature and proliferate, it becomes imperative to make them interoperable for higher
order document analytics involving larger document sets with high performance. We catego-
rize existing tools for Indic knowledge processing into three buckets - media-to-text (e.g., OCR
(image to text), speech recognition (audio to text)), text-to-concept (e.g., syntax-, semantics-
and discourse analysis), and concept-to-insight (e.g., knowledge search, mining, inference and
decision-making). For instance, though several alternative linguistic tools exist for Samskrit text

69

analysis (morphological analysis, grammatical checking), they use custom formats to represent
input text and analysis outcome, mainly designed for direct human consumption, and not for
further machine-processing. This inhibits the use of those tools to build end-user applications
for cross-correlating texts, glossary indices, concept search etc.
On the other hand, the number of Heritage Indic documents yet to be explored is staggering.

Data from National Mission for Manuscripts NAMAMI (2012) indicate that there are more
than 5 million palm leaf manuscripts that are scanned but not catalogued for content, let alone
converted into Unicode text to facilitate search. This is in contrast to less than a million in the
rest of the world combined before the advent of print era. In addition, The Internet Archive
project Archive.org (2019) has a huge collection of scanned printed Indic books. Very few of them
have been converted to text. There are also thousands of online Unicode Samskrit documents
yet to be analyzed linguistically for knowledge mining. Use of technology is a must to address
this scale.
We believe that to take Indic knowledge exploration to the next level, there needs to be

a systematic, end-to-end, interoperability-driven architectural effort to store, exchange, parse,
analyze and mine Indic documents at large scale. Due to lack of standardized data representa-
tion and machine interfaces for tools, Indic document analysis is unable to leverage numerous
advances in data analytics that are already available for English and other languages.
Moreover, Indic documents pose unique challenges for processing compared to other ancient

document collections due to the unbroken continuity of Indic knowledge tradition spanning
more than two thousand years. First, a vast majority of them are handwritten or in often
poorly scanned archaic printed modes in dozens of languages, more than thirty evolving scripts
and diverse media. Existing linguistic platforms are inadequate to handle their complexity and
diversity. Second, human feedback and correction in a community-sourced mode is essential to
curate Indic document content at scale for further machine processing. But the architecture of
many existing tools is not amenable to incorporating human input and adapting to it. Finally,
Indic knowledge collections and processing tools are fragmented across multiple organizations
and administrative boundaries. Hence a centralized approach to user authentication, access
control and accounting will not be acceptable.
To overcome these challenges, this paper presents Vedavaapi, a novel platform architecture

for community-sourced Indic document processing to transform digitized raw Indic content into
machine-interpretable knowledge base. Through Vedavaapi this paper makes the following con-
tributions to facilitate large-scale Indic knowledge processing:

1. A federated RESTful service architecture to support dynamic Indic knowledge processing
workflows by leveraging independently evolving services, where each service can be deployed
and scaled independently to handle load.

2. A canonical object model to represent document analytics output that enables interoper-
ability between multiple tools in the document processing pipeline and also transparent
integration of human feedback at each stage without modifying the tools themselves.

3. A NoSQL-based object store that supports self-describing, versioned schemas to help tool
and data evolution over time.

4. A uniform, hierarchical security and access control model for users and object collections
that supports decentralization of policies for flexible management across organizational
boundaries. This model also allows individual tool providers to meter usage for chargeback
to end-users.

The rest of the paper is organized as follows. In Section 3, we define the problem of Indic
Knowledge processing, its requirements and the scope of our work. In Section 4, we illustrate
the challenges in the use of existing tools for Indic knowledge processing to motivate our work. In

70

Section 5, we present the principles that guide the design of our solution Vedavaapi. In Section
6, we describe the key architectural aspects of Vedavaapi including its object model, security
model and deployment. In Section 7, we present an overview of our current implementation and
a qualitative evaluation against our objectives. In Section 8, we outline ideas for future work
and conclude.

2 Related Work

Existing work on language and knowledge processing can be viewed from three aspects - Natural
Language Processing (NLP) algorithms and tools, human-assisted adaptation techniques around
those tools to accelerate curation of content, and end-to-end platforms that compose NLP tools
into higher-level workflows. This paper’s focus is on the third aspect namely, how to build a
platform that enables composing NLP tools into effective workflows that lower human effort and
improve productivity in processing large, diverse document collections. NLP tools exist for each
stage of the language processing pipeline shown in Figure 1. Crowd-sourcing is well-known as
an effective way to rapidly curate or annotate content and is employed in multiple successful
knowledge projects such as Wikipedia Wikipedia (2019). For example, the Bodleian Library at
Oxford Libraries (2019) enables crowd-annotation of music collections to describe their content.
For Indic document processing, some of the metadata is layered on other metadata and also
machine-generated and hence might be inaccurate. Hence it needs manual curation, but should
have mechanisms to reduce repetitive corrections. The architecture proposed here enables such
flexibility. Workflows to handle archaic document collections are custom-built for individual
scripts. In contrast, for Indic document collections we need a system that is geared to handle
script diversity as well.

3 Indic Knowledge Processing: Overview and Status

By Indic knowledge, we refer to the practices, techniques and principles that evolved in Ancient
India over centuries across all disciplines. Some of that knowledge has been documented in
written form via manuscripts, while some got transmitted down to the present via oral, craft and
cultural traditions. The objective of Indic Knowledge Processing (IKP) is to recover, preserve,
paraphrase and leverage Indic knowledge sources for contemporary applications.
Heritage Indic documents come in all media formats and sizes. They include palm leaf and

other manuscripts containing hand-written text preserved over millennia, books printed over
the last 2 centuries, audio/video recordings of discourses/renderings by traditional scholars, and
thousands of Unicode texts available over the web. Some of these have been digitized, but not
yet converted to machine-processable text. They come in dozens of Indic scripts, languages and
fonts in multiple combinations NAMAMI (2016), making their organization and processing an
engineering challenge. In addition, much of Indic tribal knowledge is still locked up as regional
traditions yet to be recorded and captured from their practitioners. Many Indic documents use
languages with similar grammatical structure to Samskrit. Samskrit literature is well known
to have a rigorous linguistic discipline that makes it more amenable to machine-processing and
automated knowledge extraction than other natural languages Goyal et al. (2012). IKP involves
creating services to explore Indic knowledge content at various levels – text extraction, syntactic
and semantic analysis, knowledge search, mining, representation and inference.
The potential for automated mining of Indic knowledge due to its linguistic base of Samskrit,

coupled with the sheer size of Indic document corpus yet to be examined, opens the opportunity
to pursue Scalable Indic Knowledge Processing as an impactful research area in computing. This
area is inherently multi-disciplinary, and involves rich media analytics (of audio, video, images),
machine-learning, computational linguistics, graph databases, knowledge modeling and scale-out
cloud architecture.
Figure 1 illustrates the various stages of a typical IKP pipeline covering three distinct transfor-

mations: media to text, text to concept, and concept to insight. Each of these stages produces a

71

high volume of metadata in the form of analysis output, content indexes and user feedback that
need to be persisted. Currently, there is a huge corpus of digitized content to feed the pipeline
and numerous tools for various stages of the pipeline, but disjointed and not usable in tandem.

Figure 1: The irregularity of text layouts in Palm leaf manuscripts.

This paper presents the architecture of a novel software platform that bridges the gaps in the
IKP pipeline to help rapidly transform digitized Indic knowledge content into useful applica-
tions. Some of our target applications include an E-reader for Indic texts that provides search
within scanned or audio/video documents, glossary of technical terms used in a book, concept
map and knowledge map views and semantic queries. The scope of this paper is restricted
to architectural issues and not the algorithmic details of specific stages of the pipeline or the
end-user applications.

3.1 Requirements of an IKP Platform

In addition to scalable performance to handle millions of documents by thousands of simultane-
ous users, an IKP platform must have the following properties:

Durability: It must provide both data and metadata persistence, so users or services can build
on prior analysis by others.

Extensibility: The platform must support functional extensions to its services via APIs. It
should also provide well-documented data formats and interfaces to incorporate available
knowledge sources and analytics tools into its fold. This allows existing analysis tools to be
reused in larger contexts than anticipated originally.

Crowd-sourcing: Ambiguity is inherent in natural language understanding. To help resolve am-
biguity in analysis and enable users to enrich each other’s knowledge through the platform,
it must accept human feedback (analogous to Wikipedia) and and adapt to it. However to
reduce user burden of repetitive corrections, the IKP system must have built-in intelligence
to auto-apply suggested corrections to similar contexts.

4 Architectural Considerations for IKP

We now discuss several architectural implications of the above requirements and how existing
solutions handle them.

72

4.1 Handling OCR Errors
First, consider the conversion of digitized content into text, referred to as the “textify” stage in
the IKP pipeline of Figure 1. Optical Character Recognition (OCR) technology has matured to
extract printed text in many Indic languages from high quality scanned images. Google offers
a paid Vision API service Google (2019) that is more than 95% accurate on scanned images of
resolution higher than 100 DPI. Open source alternatives also exist (Tesseract Tesseract (2019),
Sanskrit OCR by Hellwig Hellwig (2019)), but are not found to be as effective on low-resolution
or skewed scans of printed text. The accuracy levels of these services is adequate for direct
human consumption for text search purposes, but not for further machine processing. Proof-
reading of even a 95% accurate OCR output is a tedious manual effort. Existing OCR services
do not have feedback-driven correction in their workflow. Such an adaptation facility would
greatly enhance the utility of OCR by reducing repetitive manual work over time.
An IKP system must leverage these OCR tools but also facilitate building human feedback

collection and tool re-training workflows around them. Another problem is that the bulk of
Indic texts are in handwritten manuscripts with irregular layouts, (see Figure 2 for examples)
and existing text segmentation and layout detection schemes are poor at handling them. A
more effective alternative for designing an OCR solution would be to separate layout detection
and text recognition into modular services and employ the best tools for each service. This
enables one to handle printed as well as hand-written text recognition that improves over time,
leveraging state-of-the-art tools. In Section 7, we discuss how Vedavaapi achieves that.

Figure 2: The irregularity of text layouts in Palm leaf manuscripts.

4.2 Human-assisted Language Analytics
Machine processing of Indic documents is inherently prone to errors due to ambiguity, For in-
stance, morphological analysis Kulkarni (2016; Huet (2002) of a Samskrit sentence produces
alternative semantic trees sometimes running into hundreds. Text segmentation to detect words
from a punctuation-free Indic character sequence can also generate multiple alternative seg-
mentations. Such tools still need human intervention both to supply the context to prune the
choices during analysis, and to select a meaningful option from analysis output. Further, system
adaptation needs to be built in to create self-improving analyzers. All this requires a mecha-
nism to capture human feedback persistently and incorporate it into future analysis tasks. The
IKP architecture should provide user-feedback-driven adaptation as a value-addition on top of
individual analysis tools, and define standard interfaces to exchange that information with the
tools.

4.3 Handling Data Diversity
The input data for an IKP workflow are source documents, which are mostly read-only content.
The document analysis tools augment original content with one or more alternate views (e.g.,

73

morphological analysis of a sentence, a concept map, an OCR output). When a user annotates
those views, some of them become irreplaceable and hence must be stored durably. From a
mutability standpoint, an IKP system must deal with three types of content with different rates
of churn:

Read-only Source Content that is never updated after creation,

Mutable System-inferred Content that can be reproduced by re-running analytics, and

Mutable Human-supplied Content including user annotations and corrections to system-inferred
content.

IKP’s data store should clearly demarcate these three types and treat them differently to avoid
imbalance in storage performance. Also, for the same source content, there could be multiple
alternate views at multiple levels of semantics and granularity that need to be tracked as such.
For instance, there could be a sentence-level analysis, paragraph-level analysis and global analysis
that coexist for a document.

4.4 Implications of Crowd-sourcing
When human input is solicited for correction, there needs to be a facility to track multiple alter-
nate suggestions, rank them by user reputation and provide a consolidated view that represents
the most acceptable suggestion. Similarly, the user feedback can be used as training data for
machine-learning tools to minimize the need for subsequent corrections. Hence an IKP system
must maintain version histories for content updates.
Resolving competing suggestions in a crowd-sourcing situation is a well-understood phe-

nomenon with numerous solutions. The IKP platform must enable the use of such solutions
in IKP use cases by facilitating persistent capture of the appropriate data.

5 IKP Architecture: Guiding Principles

Based on the considerations discussed in the previous section, we outline a set of guiding prin-
ciples for the design of an IKP architecture as follows:

• Federation: The architecture must adopt an open platform approach that enables services
to be independently developed, deployed and maintained by multiple organizations.

• Interoperability: The architecture must allow existing tools to be leveraged in larger Indic
document analytics workflows which the tool developers might not have anticipated.

• Community-sourcing: The architecture must support overlaying of human input and cor-
rection to the output of any of the services transparently.

• Decentralized security and Accounting: The architecture must allow single-sign-on across
multiple services while allowing them to independently meter resource consumption by end-
users for chargeback. For Indic knowledge processing to be accelerated, participation of
thousands of scholars and enthusiasts across multiple organizational boundaries is essential.
Decentralized authentication and authorization ensures that. Decentralized accounting al-
lows the development of value-add services to enrich the platform in an economically viable
manner.

6 Architecture of Vedavaapi

In this section, we describe the architecture of Vedavaapi, a platform we are building to facilitate
large-scale IKP workflows. Vedavaapi is a web-based platform that offers rich, multi-layered
annotated views of document collections stored natively or elsewhere (such as at archive.org).
Figure 3 illustrates the architecture of Vedavaapi. It is organized as a set of loosely coupled web

74

services and web applications interacting via RESTful APIs. Each such service is packaged as
a cluster of Docker containers Docker (2019) for ease of deployment and scaling. A web service
only responds to API requests, whereas a web application offers end-user interaction as well, via
a GUI.

6.1 The Vedavaapi Ecosystem

One of the core web services is a Vedavaapi site that provides secure controlled access to an-
notated Indic document collections of an organization. There could be many Vedavaapi sites,
and each of them offers an administrative boundary with its own user and document collection
management. A Vedavaapi dashboard web application orchestrates end-user interaction with
one or more Vedavaapi sites. This application handles single-sign-on user login via social media,
user and team management, document collection management and launching IKP workflows via
invoking other Vedavaapi web services.
To facilitate third-party IKP tools (e.g., OCR and linguistics tools) to operate on document

collections of Vedavaapi sites securely, Vedavaapi provides an adapter library to be bundled with
those tools. This adapter provides user authentication and secure access to any Vedavaapi site.
A third-party IKP tool can be converted into a Vedavaapi IKP service by wrapping it with a
RESTful API frontend along with the adapter library. Using the adapter library, IKP services
interact with Vedavaapi sites to retrieve their data and store IKP output on behalf of logged in
users.

Figure 3: Vedavaapi Federated Architecture. Example IKP services that are active in this
illustration are Samskrit Linguistics, Indic Spell Checker and Doc Layout Analytics services.

An IKP service can be registered with multiple Vedavaapi sites to offer its services via specific
API endpoints or to manipulate specific document types. When an end-user requests an IKP
operation on an Indic document at a site, he/she is presented with a list of registered IKP
services available for that operation. For instance, multiple OCR tools can be made available
to extract text from a scanned page.
A Vedavaapi site consists of a persistent object store, user and team management service,

access control service, and an OAuth service. The object store service houses all of the site’s

75

persistent metadata in a NoSQL database as JSON objects, and provides a powerful navigational
query interface. The document source images are stored in the local file system.

6.2 User Authentication
Each Vedavaapi site maintains its own user accounts, teams and access control permissions
for its document collection, and exports itself as an OAuth service provider. The Vedavaapi
dashboard application authenticates a user via social media login and registers a new user to a
site upon first access. Soon after login, it procures an OAuth access token to represent the user
for subsequent operations at the site. Unlike cookies, the access token can be passed around to
other IKP services to represent the user when accessing Vedavaapi documents.
When a third-party IKP service needs to access or update a document at a Vedavaapi site, it

simply passes on the access token it received from its caller (usually the Vedavaapi dashboard
application). Thus IKP tool developers are relieved from performing user authentication and
access control. IKP services can also invoke other IKP services recursively while representing the
same user transparently throughout the delegation chain. Moreover, given the access token, any
IKP service provider can retrieve the user profile for accounting / metering the user’s operations
against his/her quota. This enables the service to chargeback based on usage regardless of where
it is the invocation chain.

6.3 Vedavaapi Object Model
A Vedavaapi site stores and manages Vedavaapi objects, which are of three types - agents,
resources and annotations. An agent is either a user (either human or bot) who has an account
with the site and needs to be authenticated, or a collection of users called a team. Resources
are the objects whose access by users needs to be regulated, and which can be annotated by
users. Annotations are pieces of information tagged to resources or other annotations, such as
the output of an IKP analysis. Every object is referred to by its unique UUID generated by the
underlying object store (in our case, MongoDB MongoDB (2016)).
Examples of resources include scanned books, text documents, videos, and collections of other

resources such as libraries. IKP applications can define their own resource types. Vedavaapi
recognizes a special type of resource called SchemaDef, which describes the schema of any Ve-
davaapi object using the JSONSchema description language standard Schema (2019). Resources
form a strict parent-child hierarchy, whereas an annotation can refer to multiple resources and
hence induces a directed acyclic graph. Examples of annotations include transcript, translation,
commentary, linguistic analysis output etc.
Vedavaapi object model allows object relationships to be captured via three types of links

- source / parent object, target / referred object and members list of a collection object. All
objects are referred by their UUIDs issued by the underlying object store (MongoDB in our
case). The source / parent link is used to link a resource to its container or parent resource
such as books to their library or pages to their book. The target / referred link is used to link
an annotation to its referred object such as a transcript to a paragraph. Figure 5 illustrates a
network of Vedavaapi objects generated in a typical OCR workflow.
Often, an IKP workflow needs to persist the ordering of objects in a collection, e.g., pages

in a book or words in a page. To facilitate that, we define a Sequence resource object as one
that enumerates its child resources via their numeric index field. Sometimes, we also need to
persist different orderings of the same set of objects, e.g., a user’s bookmarked pages in a book.
To support that, we define a sequence annotation object as one that explicitly enumerates a
set of arbitrary object ids in a specific order via its own “members” field. To capture multiple
alternatives produced by an IKP analysis output, we define a choice annotation object as one
that returns one of its referring annotations according to a selection strategy such as first,
random, vote, etc. For instance, when a morphological analysis produces multiple alternatives,
they can be persisted under a choice annotation to be presented to users for voting. Finally, to
represent arbitrary semantic linkage among concepts or among sentences in a discourse, we need

76

Figure 4: Vedavaapi Object Model.

Figure 5: An Example Vedavaapi Object Network showing both resources and annotations.

77

a generic way to explicitly annotate the relation among groups of objects. We define a relation
annotation object as one that captures the semantic relations among two or more resources or
annotations.
Figure 6 illustrates the entire class hierarchy of Vedavaapi objects along with their inter-linkage

conventions.

Figure 6: Class Hierarchy of Vedavaapi Objects.

6.4 Vedavaapi Access Control
A large-scale IKP platform must allow different teams the flexibility to manage access to their
own document collections independently, while providing administrative override when required.
Vedavaapi provides fine-grain control over operations on object content as well as the inter-object
network by users and teams. To do so, Vedavaapi recognizes the following operations on objects:

• read: allows reading this object’s content, i.e, metadata attributes

• updateContent: allows updating the object’s attributes

• delete: allows deleting the object and delinking it from its network.

• linkAnnos: allows creating annotations on this object.

• linkChildren: allows linking child resources to this resource.

• updateLinks: allows re-parenting a resource, re-targeting an annotation or changing the
members of a collection

• updateAcls: allows updating the access control list of this object.

Vedavaapi uses an ID card approach to authorizing user operations on objects. A user can be
part of multiple teams. Hence a user “carries” i.e., inherits the IDs of all the teams to which
one belongs.

78

A Vedavaapi access control list (ACL) is a persistent attribute of the object and applies to
all objects - user and teams objects as well as resources and annotations. Moreover, resources
inherit the ACLs from their parent resources and annotations inherit ACLs from the objects
they target. The ACL comprises three lists for each operation type:

• Granted IDs: the list of user and team IDs that are allowed this operation

• Revoked IDs: the list of user and team IDs that are not allowed this operation.

• Prohibited IDs: the list of user and team IDs that are prohibited this operation

A wildcard ‘*’ in a list matches any ID. Vedavaapi authorizes user operations on objects using
ACLs as follows: a user is allowed an operation on an object if at least one of the IDs one
possesses is allowed that operation, and none of the IDs is prohibited that operation.
Access control based on ID cards avoids the need to check a user for team membership at

access control time, which happens frequently. ACL inheritance offers a convenient and intuitive
way for administrators to control access to large object networks. Prohibited IDs feature allows
quarantining a user or team in an emergency security breach situation.
As a concrete example, if management of a library and its book collection needs to be delegated

to a team, that team can be given update ACLs for the library’s child resource hierarchy while
revoking the updateLinks operation to prevent the team from changing how the library connects
to the parent document collection.

6.5 Vedavaapi API Overview
Table 1 outlines the APIs exported by Vedavaapi site to client applications. It consists of user
and team management, authentication, object store access and ACL management. The APIs
mainly support create, read, update and delete (CRUD) operations on various resources. In
addition, the uniform object model of Vedavaapi allows a single API to manage diverse object
types while also providing a powerful bulk operation interface on object graphs for efficiency.
Specifically, the object store offers a versatile graph traversal API that not only is used for
retrieving object networks but also upload or modify them. The query for graph traversal takes
an attribute-based selection criterion to pick the initial objects and a list of hop criteria to guide
the navigation from those objects to others via selected links.

API Cluster APIs

Accounts OAuth login and portable access tokens

Accounts CRUD operations on users and teams

Object Store CRUD operations on objects (resources, annotations, schemas, services)

Object Store Object graph traversal, queries, updates and deletes

ACLs CRUD operations on ACLs for given resource

ACLs resolve permissions for currently logged in user

Table 1: Vedavaapi API Overview

7 Implementation and Evaluation
We have implemented most of the core Vedavaapi functionality in Python using Flask web
services framework to provide RESTful API access. The object store is implemented as a
python wrapper around MongoDB. The wrapper provides schema validation, user access control
and multi-hop navigational queries on the raw objects stored in MongoDB database. We have
implemented the Vedavaapi web dashboard as a standalone AngularJS application that can
connect to multiple Vedavaapi sites via their API.
The objective of the Vedavaapi platform is to facilitate leveraging existing tools to rapidly

create larger and effective IKP workflows. To evaluate how well our architecture achieves this

79

objective, we have repackaged several existing open-source and private software modules to
create an image-to-text conversion pipeline for scanned Indic documents - both printed and
handwritten ones. Unlike existing OCR solutions, our solution enables human intervention to
compensate for machine errors as well as OCR retraining for improved effectiveness. To do so,
we have ported the following existing tools to run as IKP services in the Vedavaapi ecosystem:

Figure 7: Screenshot of Vedavaapi library view showing books imported from archive.org via
IIIF importer.

• IIIF Book importer: This service imports layout and page information of scanned books
uploaded to large digitized archives including https://archive.org/. We wrote a python
library with a Flask API to import an entire scanned book from archive.org from its url
as a Vedavaapi resource hierarchy. This way, we can offer IKP services on scanned books
stored elsewhere. This took a couple of days of development effort, as Vedavaapi object
schema was expressive enough to incorporate their metadata. Figure 7 shows a screenshot
of a book imported via this service.

• Mirador Book Annotator: Then we ported a sophisticated open-source book viewer and
annotator web application (written in JavaScript) called Mirador to operate on Vedavaapi-
hosted books. We achieved this by using our Vedavaapi client-side adapter library in
JavaScript as a plugin to Mirador to source its book information and serve it from our site.
Mirador has a built-in annotation facility that lets users manually identify text segments
and also optionally transcript the text. We added persistence by storing those annotation
on Vedavaapi backend site. This took one week of effort.

• Indic OCR Tools: OCR tools such as Tesseract and Google Vision API service provide
both segmentation as well as text recognition from images in an XML-based standard
format called hOCR. We created a wrapper service around them to import and export
hOCR formatted data as annotations in Vedavaapi. We added a plugin to Mirador to
invoke a user-selected OCR service to pre-detect words of a scanned page. This took one

80

week of effort and greatly helped jumpstart text conversion for many printed texts available
publicly.

• hOCR Editor: We ported an open-source web-based text editor for HOCR-formatted output
to ease user experience in text conversion compared to Mirador. With our hOCR importer
and exporter libraries already in place, this step took a day of effort, mainly to persist
edits incrementally on Vedavaapi site. Figure 8 shows a screenshot of a post-OCR editing
session. We imported an 800-page book called “Halayudha Kosha” from archive.org using
IIIF importer application into Vedavaapi. We then invoked Tesseract OCR on the 10th
page. We opened the OCR output using the hOCR editor as shown in the figure.

Figure 8: hOCR Editor running within Vedavaapi dashboard for proofreading Tesseract OCR
output on a printed page from archive.org. The original image is shown on the left and the word
editor is on the right. The yellow is corrected word.

Figure 9: Palm leaf manuscript’s lines detected with IIIT Hyderabad’s palm leaf layout detector
and edited through Mirador viewer within Vedavaapi dashboard. The blue contours around the
lines were auto-detected and labeled by the tool as “Character Line Segments”.

With these applications integrated with Vedavaapi platform, we got a complete solution for
text conversion of archive.org books using OCR tools as well as crowd-sourced human correction
working within 2 weeks. However, the layout detection of existing OCR tools on hand-written
palm leaf manuscripts is poor due to irregular and overlapping lines in such documents. In
parallel, a research group at IIIT Hyderabad developed a deep-learning-based layout detector for

81

palm leaf manuscripts called Indiscapes Prusty et al. (2019) that automatically draws polygons
around lines of text, holes, images and other artifacts by training on manual shape annotations.
It requires a machine with GPU for the training step.

• Layout Detector for Palm leaf Manuscripts: Hence we have created a palm leaf layout
detector based on IIIT Hyderabad tool. It takes a page image URL from a Vedavaapi
site, detects line segments and posts them back as annotations to that page on Vedavaapi
with empty text label. The training model file is maintained at IIIT Hyderabad, while the
detector runs as Vedavaapi service. Subsequently, we were able to use the hOCR editor to
type the text manually, thereby creating a crowd-sourced workflow for online transcription
of hand-written text. Porting the tool to Vedavaapi took 2 days of effort as most of the
functionality was in place. Figure 9 shows the screenshot of this service running from within
Vedavaapi dashboard.

• Samsaadhanii Linguistic Toolkit: We are currently in the process of incorporating Sam-
saadhani toolset as an IKP service to be invoked on Vedavaapi-hosted Samskrit text data.
This will test Vedavaapi’s ability to leverage community-sourcing to eliminate ambiguity in
linguistic analysis output. This is still a work in progress.

8 Lessons Learnt and Future Directions

Our experience with devising and leveraging the Vedavaapi platform to create IKP workflows
indicates that a carefully designed object model that takes the data needs of existing tools can
greatly enhance the ability to reuse these tools in providing useful end-to-end IKP solutions.
While many of the design choices we had made got validated through the OCR pipeline ex-
periment, we need to work on incorporating the higher order linguistic analysis tools to fully
validate the design. During this journey of developing the IKP platform, we realize that there
are a lot of popular, well-designed tools already developed and used in different contexts. To
really facilitate widespread adoption of such a platform, it should be simple to adapt them to
fit into its ecosystem.
Hence the next steps in this effort would be to incorporate tools for text segmentation, Sam-

skrit linguistics and knowledge mapping to pave the way for a robust, popular platform for
innovation around Indic knowledge.

9 Conclusion

In this paper, we made the case for ensuring interoperability of tools and services to accelerate
the pace of Indic knowledge processing. While numerous point solutions exist, we have identified
that the lack of end-to-end systems approach hinders rapid progress in this field. We present a
novel platform approach to IKP architecture that combines the best practices of scale-out cloud
computing, careful metadata design and flexible security protocols to significantly accelerate
progress in this field.

References
Archive.org. 2019. Internet Archive: Digital Library of free and borrowable books.

http://www.archive.org/.

Docker. 2019. Docker: Enterprise Container Platform. https://www.docker.com/.

Google. 2019. Google Cloud Vision API. https://cloud.google.com/vision/.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed plat-
form for Sanskrit processing. In 24th International Conference on Computational Linguistics (COL-
ING), Mumbai.

82

Oilver Hellwig. 2009. Extracting dependency trees from sanskrit texts. Sanskrit Computational Linguis-
tics 3, LNAI 5406, pages 106–115.

Oliver Hellwig. 2019. Sanskrit OCR. http://www.sanskritreader.de/.

Gérard Huet. 2002. The Zen computational linguistics toolkit: Lexicon structures and morphology
computations using a modular functional programming language. In Tutorial, Language Engineering
Conference LEC’2002.

Amba Kulkarni. 2016. Samsaadhanii: A Sanskrit Computational Toolkit. http://sanskrit.uohyd.ac.in/.

Anil Kumar. 2012. Automatic Sanskrit Compound Processing. Ph.D. thesis, University of Hyderabad.

Bodleian Libraries. 2019. What’s the score at the Bodleian? https://www.bodleian.ox.ac.uk/we-
ston/our-work/projects/whats-the-score.

MongoDB. 2016. MongoDB NoSQL Database. http://www.mongodb.com/.

NAMAMI. 2012. Performance Summary of the National Mission for Manuscripts, New Delhi, India.
http://namami.org/Performance.htm.

NAMAMI. 2016. National manuscript mission, new delhi, india. http://namami.org/.

Abhishek Prusty, Sowmya Aitha, Abhishek Trivedi, and Ravi Kiran S. 2019. Indiscapes: Instance
segmentation networks for layout parsing of historical indic manuscripts. In Accepted for publication
in ICDAR 2019.

JSON Schema. 2019. JSON Schema Standard. http://json-schema.org/.

Tesseract. 2019. Tesseract OCR. https://opensource.google.com/projects/tesseract.

Wikipedia. 2019. Wikipedia: The Free Encyclopedia. http://www.wikipedia.org/.

83

On Sanskrit and Information Retrieval

Michaël Meyer
Paris Diderot university

École pratique des hautes études / Paris
michael.meyer@etu.univ-paris-diderot.fr

Abstract
Many Sanskrit texts are available today in machine-readable form. They are of consid-
erable help to philologists, but their exploitation is made difficult by peculiarities of the
language which prevent the use of traditional information retrieval systems. We discuss a
few possible solutions to improve this situation and present as well a number of strategies
to increase retrieval efficiency.

1 Searching Sanskrit Corpora: Purposes and Difficulties
1.1 The Sanskrit Electronic Corpora
Philologists have nowadays at their disposal many digital resources for the study of Sanskrit
literature. Among these resources, electronic texts are of peculiar importance. At the time of
this writing, about 1,500 such texts are publically available, all electronic archives included,1 for
a total size of around 350 Megabytes of plain text data.2
The most comprehensive of these collections, both in terms of quantity and in the variety of

subjects embraced, is probably the Göttingen Register of Electronic Texts in Indian Languages
[GRETIL].3 Of importance is also the digital library of the Muktabodha Indological Research
Institute [MIRI],4 which focuses on Tantric literature from the Medieval era. The Thesaurus
Indogermanischer Text- und Sprachmaterialien [TITUS],5 by contrast, mainly focuses on Vedic
and Brahmanic literatures.
To our knowledge, the most recent digital library is the Search and Retrieval of Indic Texts

[SARIT] repository,6 managed by Dominik Wujastyk, Patrick McAllister and a few other schol-
ars. At the time of this writing, it offers access to about sixty Sanskrit texts, all of which
are encoded in XML format, according to the guidelines of the Text Encoding Initiative [TEI]
standard.7 Peter Scharf also provides texts in this format in his Sanskrit Library.8 By contrast,
most other online repositories typically provide their electronic texts in plain text format, in
obscure ad hoc formats, or in HTML with very light markup.
Of a different genre are part-of-speech-tagged corpora. We know of only one, the Digital

Corpus of Sanskrit [DCS],9 elaborated by Oliver Hellwig. However, Huet and Lankri (2018)
recently developed a Sanskrit corpus manager that provides access to a number of annotated
sentences.

1It is difficult to give a reliable estimate of the number of unique texts input electronically, for two reasons.
Firstly, because several scholars have input the same text, sometimes using the same edition, sometimes not, and
under various formats. Secondly, because some texts are actually subsets of larger ones, such as the Bhagavadgītā
relative to the Mahābhārata.

2By plain text, we here mean Sanskrit text in the International Alphabet for Sanskrit Transliteration [IAST],
encoded in UTF-8 and devoid of markup data such as XML tags.

3http://gretil.sub.uni-goettingen.de.
4http://muktalib5.org/digital_library.htm.
5http://titus.uni-frankfurt.de.
6http://sarit.indology.info.
7https://tei-c.org.
8https://sanskritlibrary.org.
9http://www.sanskrit-linguistics.org/dcs.

84

1.2 The Importance of Electronic Corpora for Sanskrit Studies
Electronic texts are very useful to philologists. Indeed, philological work in its two forms—edi-
tion on the one hand, interpretation and exegesis on the other—requires to discover textual
parallels.10 This is particularly important in the case of Sanskrit literature, because it is rife with
citations and glosses. Indeed, scholiasts often cite excerpts from the literature, or paraphrase
them, when commenting a text. Identifying the source of these citations can prove difficult, if
only because merely vague references to the quoted work are often provided.11

Broadly speaking, we can distinguish two types of philological enquiries.
Firstly, searching for textual parallels, i.e., finding the source of a citation, or, conversely,

checking whether a passage from a given text is cited elsewhere. These enquiries usually help
to reconstruct corrupt passages or to amend them. They are also useful to obtain a better
understanding of the meaning of obscure passages, because the original context of the passage
or its exegesis in the scholastic literature generally provide crucial information. Finally, they
are of considerable importance to estimate the dates of an author or of a text: checking which
texts an author cites, and, conversely, which texts cite him, is one of the most effective ways to
estimate his date.
Other inquiries are more linguistic in nature. They typically aim at understanding the meaning

of rare syntagms, or the meaning of syntagms that are somewhat common in the literature but
possess a technical signification in specific texts. This type of philological work is at the origin of
the Tāntrikābhidhānakośa project, which aims at creating a lexicon of the Tantric terminology.
The editors themselves take notice of the importance of electronic texts in their preface to the
third volume of the work (Goodall and Rastelli, 2013, 9):

Whereas the initiators of this project worked with notes and card-indices that they had
compiled over a life-time of reading, we are faced with dozens, hundreds, or sometimes
even thousands of usages of a given tantric expression at the touch of a search-button.
Many instances are therefore inevitably unfamiliar to us, but we must at least attempt
to take what is relevant into account. Searching through an electronic library with
“grep” thus has considerable and obvious advantages, but carries with it an obligation
to take into account more passages than we would otherwise encounter. Furthermore
“grepping” is especially helpful for revealing the contours of evolutions in usage for
certain expressions.

1.3 Limits of Pattern Matching Tools
To assist philologists in their work, the development of full-text retrieval systems is important.
A few have been written over the years, usually to provide search interfaces to specific text
collections.12 Despite the existence of these systems, most researchers generally use pattern
matching tools such as grep, if only because they are more readily available and allow them to
search into their private collection of documents or in their research notes.
These tools, however, are not practical for searching Sanskrit texts. Not so much because of

speed issues, since pattern matching engines are nowadays highly optimized and since the volume
of data is small enough to be fully cached in-memory, even on a low-end computer. But because
their matching strategy, as well as their display facilities, are closely tied to the input data format.
Searching Sanskrit documents in several formats, not even talking about distinct transliteration
schemes, is generally very messy. Many possible query matches are usually missed because of
intricacies of the text representation, such as the use of whitespace or the introduction of special
symbols and annotations within the text. If the IAST is used, queries can also return more

10We borrow this distinction from Pollock (2018).
11For instance, a considerable number of citations are introduced with the words tad uktam “this has been said,”

which tell us absolutely nothing about the origin of the citation.
12We present two of them below in section 2.2.

85

matches than expected when they start or end with a phoneme which textual representation is
a substring of another phoneme, as is the case of the simple vowel i relative to the diphthong ai.
These issues could be alleviated by preprocessing documents and transliterating them to a

simplified version of the Sanskrit Library Phonetic Basic encoding scheme [SLP1] (Scharf and
Hyman, 2012, 151–158), which possess the useful property that it needs a single code point—in
fact, a singly byte—to represent a Sanskrit phoneme. Amending the original documents would
however likely cause problems, if, for instance, annotations in English appear within Sanskrit
passages; furthermore, the encoding itself, while convenient for machines, is noticeably hard to
decipher for a human reader. A better solution would be to write a pattern matching engine
that runs its matching algorithm, not on the actual text, but on a logical representation derived
from it on-the-fly. To our knowledge, however, this approach is almost never chosen, probably
because any non-trivial preprocessing would considerably impede the performance of the engine.
Complicated queries are usually relegated to database systems, or, less frequently, information
retrieval systems.

1.4 Difficulties in Indexing Sanskrit Texts
It would thus be beneficial to use a real information retrieval system, both for the sake of
efficiency and for the sake of flexibility. But the Sanskrit language does not lend itself easily to
text retrieval, because indexing a document generally presupposes that it is possible to recognize
its lexical units. This process is straightforward in a lot of languages, but is however highly
ambiguous in Sanskrit. The difficulties involved are due to two principal reasons: the scarcity
of explicit word boundaries, and the existence of euphony phenomena.
In Indic scripts, word boundaries are indeed not necessarily made explicit with whitespace or

punctuation characters. Sequences of graphemes thus do not represent words, properly speaking,
but rather sequences of one or more words. We call these clusters, by analogy with the meaning
of the term in musical terminology, where it designates a group of adjacent sounds.
To facilitate reading, researchers usually introduce, while transliterating a text, as much

boundaries as possible, typically by adding whitespace characters, as shown in table 1. We call
this process ungluing. More specifically, we say that a text is unglued if no more boundaries can
be introduced into it without altering the graphemes that represent phonemes.

Devanāgarī सोममय इित दशङमीकृतमऽ ।
Transliteration (glued) somamaya iti darśaṅamaṅgīkṛtamatra |
Transliteration (unglued) somamaya iti darśaṅam aṅgīkṛtam atra |

Table 1: Several possible representations of a Sanskrit passage. Excerpt of Vṛṣabhadeva’s com-
mentary on the first chapter of Bhartṛhari’s Vākyapadīya (Iyer, 1966, 201, l. 9).

Despite the advantages of this ungluing process, some researchers or copists do not introduce,
in transliterated texts, boundaries that were not present in the original text. The rationale
for this practice, if any, is unclear to us. A possible explanation could be that preserving the
transliterated text in its original glued form eases roundtrip conversions between the original
Devanāgarī and its transliterated representation.
A more serious issue resides in the fact that phonemes around word boundaries and at the

end of a phrase, before a punctuation mark, can be modified as a result of euphony phenomena
(sandhi). These transformations obey a set of rules, which can be compactly represented with the
notation α|β → γ;13 the vertical bar here stands for a word boundary, the variable α represents
the end of the left word, β the start of the right one, and γ the result of the application of
the rule. To be more accurate, we represent here with α and β the shortest possible strings of
phonemes that need to be considered for applying the rule.

13We borrow this notation from Gérard Huet.

86

For our purpose, it is convenient to distinguish three basic types of sandhi rules. A few of
them, all of which have in common that they operate on vowels, produce as output a single
phoneme. This is the case of the rule a|ī → e, for instance, which dictates that the words
deva ‘god’ and īśvara ‘lord,’ when written in sequence, form the string maheśvara. But most
other rules produce as output a sequence of two or more phonemes that can be unglued in
transliterated texts. We write these rules with the notation α|β → α′|β′; the vertical bar on the
right side of the arrow indicates that it is possible to unglue the text at this point, while α′ and
β′ denote the transformation of α and β, respectively. The rule ḥ|c → ś|c, for instance, belongs
to this category; it dictates that the words devaḥ ‘god’ and ca ‘and,’ when written in sequence,
form either the string devaśca or devaś ca. Finally, a few rules do not involve any gluing. They
are applied at the end of a phrase, before a punctuation mark. We represent them with the
notation α|∅ → α′|∅, were the symbol ∅ represents the absence of a phoneme.
Despite the difficulties involved in segmenting Sanskrit texts, programs have been developed

to address the issue. Gérard Huet (2003; 2005) thus elaborated an unsupervised parser based
on finite-state technologies. By contrast, Oliver Hellwig (2009; 2010) developed a supervised
parser based on a hidden Markov model, which he trained on manually annotated sentences
from the DCS. These tools are of considerable help for computer-assisted linguistic tasks, but
it does not seem to us that they are currently robust enough to be used autonomously, without
human supervision, for indexing tasks. Gérard Huet’s segmenter—the only one that can be
used programmatically at the time of this writing—indeed operates on a finite vocabulary and
with a finite set of sandhi rules and inflection rules, so that a single unknown word, peculiar
form or typing error prevents the segmentation of a full cluster. This is aggravated by the fact
that the strings that are worth looking for in an index are typically rare words or syntagms,
names of persons, etc., which are the most likely to not be recognized correctly by a tokenizer.
Furthermore, many electronic texts contain corrupt passages—either because of typing errors,
or because the original manuscript from which the text was copied is itself damaged or corrupt.
Most issues involved in indexing Sanskrit texts would go away if the electronic texts at our

disposal were all exhaustively segmented. We do have access, in fact, to segmented electronic
texts, most notably the word-reading (padapāṭha) of the Ṛgvedasaṃhitā and the annotated
texts of the DCS. But they only form a small subset of the available electronic texts, and it
is unreasonable to assume that this situation is going to evolve significantly in the near future.
For the time being, we should thus be content with the data available, and try to make the best
of it.

2 State of the Art

2.1 Basic Structure of an Information Retrieval System
An information retrieval system, at the very least, consists in an index that maps a set of
strings to lists of sorted integers that represent the documents these strings occur in. Generally,
the offsets at which each string occurs within each document are recorded as well, so as to
make possible phrase searches. These lists of occurrences, technically called postings lists, are
typically represented as arrays of variable-length integers. The index proper is represented as a
dictionary-like data structure, a B+ tree for instance.
When the documents to index are texts, as is the case for us, an index typically stores the

terms that appear in the documents collection, or at least some useful representation of them,
such as their stem. But this is in no way mandatory. In particular, a few experimental XML
retrieval systems (Büttcher and Clarke, 2005; Strohman et al., 2005) index as well the structure
of the document, typically by treating XML tags as if they were terms. This makes possible
structured queries with arbitrary nesting of the kind supported by XPath expressions.
Nevertheless, most text retrieval systems available today use a flat data model where structural

information is encoded as part of each term, typically by prefixing the term with a binary string
that represents the section of the document the term occurs in. This approach is more convenient

87

to implement and generally reduces the time necessary for evaluating a query. We will soon see
that segregating structural information from terms is nonetheless very useful in practice, even
for flat text documents that do not have an explicit structure.

2.2 The Existing Sanskrit Information Retrieval Systems
To our knowledge, two Sanskrit text retrieval systems use an information retrieval architecture
instead of a pattern matching tool or a traditional database system.
The Gaveṣikā system (Srigowri and Karunakar, 2013) allows searching for the inflected forms

of a nominal or verbal stem and supports as well spelling variations. This functionality is
implemented by ungluing the text at indexing time14, and, at search time, by expanding the stem
submitted as query to its inflected forms and to alternate spellings of these forms, with the help
of a morphological generator. This expansion process does not cover phonetic transformations
that result from the application of sandhi, so that a number of results are typically missed.
Nevertheless, the recall of the system is very high, on par with the DCS word retrieval facilities.
The SARIT corpus also makes use of an information retrieval system, the most interesting

feature of which is the support of document attributes. Its indexing strategy is not described
anywhere, but we can reasonably assume, by looking at the website documentation and at search
results, that the unit of indexing is a cluster. Searching for a string in such a way that all its
occurrences are returned thus requires adding wildcards on each side of it, as in *mukha* ‘face,’
for instance. This somewhat defeats the purpose of using an information retrieval architecture,
if only because of efficiency reasons. Indeed, searching for a query string with a leading wildcard
typically involves a full traversal of the terms dictionary, followed by a costly merge operation.15

Searching for the string mukha in the GRETIL corpus, for instance, would require examining a
dictionary of about 2,785,000 clusters and merging about 7,000 postings lists.
We initially wrote our own retrieval system in 2017, as a practical and convenient replacement

for traditional string matching tools. It supports searching for arbitrary substrings, while being
aware of gluing phenomena and of phonetic transformations that result from the application of
sandhi. The indexing strategy we chose at the time was elaborated to maximize recall, in such a
way that no potential match can possibly be missed, provided that sandhi application between
the words in the query is deterministic. We were primarily concerned with this completeness
guarantee because it is of the utmost importance when searching for textual parallels. However,
we did not pay much attention to the precision of the system. Improving it while still maintaining
this completeness guarantee indeed creates a host of new difficulties, as will be evident from our
discussion below.

3 Adapting Information Retrieval Techniques to Sanskrit
3.1 Substring Search
We explained above in section 1.4 that segmenting a Sanskrit text accurately is a difficult task.
For the sake of retrieval, however, it is not necessary to segment texts in a way that is linguis-
tically meaningful. We can make possible arbitrary substrings searches, without tokenizing the
text in lexical units. This is usually done by indexing the n-grams of a document, that is to say,
all substrings of length n this document contains.
In information retrieval, the item n stands for is usually a character, sometimes a word. In

our case, n represents Sanskrit phonemes, which map to variable-length sequences of bytes in
the source text. Within the index, we represent phonemes as code points in one of the Unicode
private-use areas,16 so that it is possible to index both phonemes and assigned code points
together while using the UTF-8 encoding for compressing strings. We currently support as input

14This detail is not mentioned in the paper, but is patent from the actual implementation: http://scl.
samsaadhanii.in:8080/searchengine.

15It is however possible to make wildcards lookup run in sublinear time, for instance by using the technique
described in section 3.1.

16http://www.unicode.org/faq/private_use.html.

88

transliteration scheme all the variants of the IAST that are actually used in electronic texts.17

Support for new transliteration schemes could easily be added, by writing a new transliteration
state machine or by extending the existing one.
We use trigrams (n = 3) as basic retrieval units, as a compromise between speed, usability

and simplicity. Searching for strings which include less than three phonemes is not very useful in
practice, except for monosyllabic mantras (bījamantra) which comprehend exactly two phonemes,
such as aiṃ.
Searching with n-grams is conceptually equivalent to matching phrases. For instance, the

query mantra can be evaluated by retrieving the postings lists of the trigrams man, ant, ntr and
tra, and by examining them concurrently so as to find a window of length 6 where these n-grams
occur, in this order. Given that n-grams overlap when n > 1, it is in this case unnecessary to look
for all n-grams in the query string to satisfy the query. To retrieve the documents that match
the query string mantra, for instance, searching for a window of length 6 where the trigrams
man and tra occur in this order is sufficient.

3.2 Handling of Cluster Boundaries
We have so far explained how to support matching strings of phonemes. We should also discuss
what to do with cluster boundaries, i.e., the substrings of the indexed text that do not represent
phonemes—most notably, whitespace characters. Given that Sanskrit electronic texts are not
necessarily unglued, we want cluster boundaries to be treated as optional during matching. For
instance, we want the query string punar api to match documents that do contain exactly the
string punar api, but also those that contain the string punarapi.
To address this issue, we first used a crude, but somewhat effective, approach: ignore all

cluster boundaries in both the indexed text and the query, thus treating punar api and punarapi
as equivalent, for instance. However, this results in false positives when it happens that two
or more clusters, when joined together, contain as a substring what could be a valid word in
another context, but is not in this peculiar case. For instance, searching for the term nara
‘man’ returns documents that contain the string punar api, because this string is interpreted
internally as punarapi, which contains nara as a substring. If the text is originally glued, as in
the string punarapi, it is of course impossible to prevent such false positives without a full-fledged
segmentation module. But we can at least prevent them when boundaries were introduced in
the text that allow us to do so. For this to be possible, the query string itself should be unglued.
In the remainder of this paper, we will assume that this is necessarily the case.
A possible way to prevent this kind of false positives is to include cluster boundaries in the

n-grams generated at indexing time, and to amend the user query in such a way that the cluster
boundaries it contains need not be present in the text for a document to be considered match-
ing. Representing cluster boundaries inside the n-grams generated at indexing time involves
interpreting sequences of characters that do not represent phonemes as a single character, say
_, and to emit n-grams as usual. The string punar api, for instance, thus results in the trigrams
pun, una, nar, ar_, r_a, _ap and api. Interpreting the user query in such a way that cluster
boundaries are optional at search time is, however, more involved. The simplest solution would
be to generate all possible forms the query string could take on inside a document, and search
for the union of these strings. Following this process, the query string punar api ca, for instance,
would be expanded to the union of the strings punar_api_ca, punar_apica, punarapi_ca and
punarapica, all of which would then be segmented into n-grams for evaluating the query.
This method, however, would produce a highly redundant query. A convenient way to improve

it becomes readily apparent if we observe that we ultimately want to produce a query that is
semantically equivalent to a regular expression where cluster boundaries are optional, such as
punar_?api_?ca. In other words, we want to produce a query that recognizes the language of

17A few phonemes can be written in different ways, for instance the anusvāra, which is represented as ṁ or ṃ
depending on the source text. We systematically ignore Vedic accents.

89

the finite-state automaton denoted by such a regular expression. Instead of selecting n-grams
from the query string proper, we can thus convert it to a finite-state automaton, amend this
automaton to make cluster boundaries optional, determine and minimize it so as to obtain an
automaton similar to the one presented in figure 1, and finally extract n-grams directly from
this representation.

Figure 1: Minimal acyclic finite-state automaton denoted by the regular expression
punar_?api_?ca

There is however a simpler solution to the problem of cluster boundaries. Instead of repre-
senting cluster boundaries inside the n-grams generated at indexing time, we can instead keep
indexing texts as if they did not contain any cluster boundaries, and index separately cluster
locations. To do that, it is necessary to amend the n-grams tokenizer so as to make it emit
a special token C each time a new cluster is encountered, with the same position as the first
n-gram in the cluster. The resulting postings list C thus records the start offset of all clusters
in the document collection. Query strings must be processed in a similar way, so as to obtain
a list of n-grams to look for, on the one hand, and a list of cluster start offsets, on the other.
The evaluation of the query follows the process we described above in section 3.1, up to the
point where an interval [a, b] of the document that matches the query n-grams is delimited. At
this point, an additional test is required to determine whether the segmentation of the text is
compatible with the one of the query: if all cluster boundaries c that occur within the delimited
interval of the document such that a < c < b also appear at the same relative position in the
query, the delimited passage can be considered a match; otherwise, it must be discarded.
Compared to the first solution, this approach presents the disadvantage that it requires ad-

ditional storage. But it can also be much faster to execute, provided that the index layout is
modified in the way described below in section 4.3.

3.3 Handling of Sandhi
The most vexing difficulty to take care of is however the handling of sandhi. Briefly put, we
want a query string to match, not only its original form, but also all the forms it could take on
inside a text as a result of the application of sandhi. For instance, we want the query devaḥ to
match, not only the string devaḥ, but also the strings devaś in devaśca ‘and the god,’ devo in
devo’pi ‘but the god,’ and so on.

3.3.1 Noncontextual Sandhi Expansion
In our first attempt at the task, we used a simple generation approach that only takes into
account a single side of each sandhi transformation rule, treating the other as if it did not
matter for the application of the rule. To be more explicit, we treated rules of the type α|β → γ
as if they could be read as α|* → γ or *|β → γ, where the wildcard symbol * stands for an
arbitrary sequence of zero or more phonemes; similarly, we treated rules of the type α|β → α′|β′

as if they could be read as α|* → α′|* or *|β → *|β′; and we treated rules of the form α|∅ → α′|∅
as α|* → α′|*.
To implement this approach, we wrote a sandhi application module in the most straightforward

way,18 and systematically exercised it so as to generate two lookup tables T left and Tright. T left
maps a given phoneme to the set of forms it could take on as a result of sandhi application when
it occurs at the beginning of a word. Conversely, Tright maps sequences of one or two phonemes

18At the time we started developing our system, Gérard Huet’s sandhi engine was not yet publicly downloadable.

90

to the forms they could take on when they occur at the end of a word. A record of each table
is reproduced in table 2, together with sample rules from which each record entry was derived.

T left Tright

Entry Sample rule
ū u|u → ū
o a|u → o
u k|u → k|u

Entry Sample rule
v u|a → v|a
uv u|a → uv|a
ū u|u → ū
u u|k → u|k

Table 2: Sandhi expansion of the phoneme u in T left and Tright

At query time, we look up the beginning and the end of the query string submitted by the user
in the tables T left and Tright, respectively, and use the retrieved data to construct a query that
matches all possible forms the original query string could take on inside a text. This generation
process is performed by creating, from the user query and the data retrieved in T left and Tright, a
minimal acyclic finite-state automaton similar to the one presented in figure 2, before extracting
n-grams from this representation, in the manner described above in section 3.2.

Figure 2: The query string ubhayeṣu after sandhi expansion

This sandhi expansion process does not require additional storage and is fast enough to be
performed online, because the number of forms α and β can take on after sandhi application
is small in practice. It is, however, incomplete, since it does not attempt to apply sandhi
between the words of a query string, essentially ignoring the fact that sandhi application is a
nondeterministic process and could thus produce several distinct query strings. Furthermore, it
also returns many false positives, since it does not take into account the phonetic context of the
query string within a document.

3.3.2 Contextual Sandhi Expansion
The errors generated by our sandhi expansion technique fall into three basic categories:

1. To begin with, sandhi expansion is performed even at the very beginning of a phrase, where
no sandhi can possibly occur. The query string iti ‘thus’ thus ends up erroneously matching
the verb eti ‘he goes’ when this verb appears at the beginning of a phrase, because of rules
such as a|i → e.

2. Similarly, false positives can occur at the end of a phrase, before a punctuation mark. In
this configuration, the only rules that should be taken into account are those of the form
α|∅ → α′|∅.

3. But the vast majority of false positives occur within clusters. For instance, the query string
devaḥ ends up incorrectly matching the string devaśabda ‘divine sound,’ because devaḥ is
expanded to devaś due to the rules ḥ|c → ś|c and ḥ|ch → ś|ch, and because devaś is a
substring of devaśabda.

91

False positives of the types 1 and 2 could be addressed to by implementing a filtering mech-
anism similar to the one we described above for cluster boundaries. To make this possible, the
start and end positions S and E of each daṇḍas-delimited text segment should be recorded in
the index, and n-grams in the query tree should be annotated to reflect the conditions under
which they can be considered to match. For instance, the trigram eti generated from the query
string iti should be annotated with a flag that dictates that it can only be considered to be a
match if no postings in S possess the same position. Similarly, the trigram evo generated from
the query string devas and the rule as|a → o|’ should be annotated with a flag that dictates
that it can only be considered to be a match if E does not occur three positions ahead of it.
This solution is feasible for false positives of the types 1 and 2, but not so much for those

of the type 3. The main problem is that performing contextual checks becomes in this case
prohibitively expensive. To test whether the transformation of a k to a g at the end of a word is
appropriate in a given context, for instance, we would have to check the postings list of about
27 phonemes. The cost of query evaluation could be improved by indexing phoneme classes
so as to reduce the number of postings list that need to be examined concurrently. If, say, all
sonants except nasals were indexed under a single postings list S, we could determine whether
the transformation of a k to a g at the end of a word is appropriate by examining just S.
However, it seems to us preferable to take the reverse approach, that is to say, to resolve

possible results of sandhi application at indexing time. To test this approach, we wrote a
transducer that maps each possible string that could result from the application of sandhi to
the set of rules that could have generated it. Instead of attempting to determine whether a
given reading is correct, as would a full-fledged tokenizer, we assume it necessarily is, and index
it as such. To be more specific, we generate two extra tokens αright and βleft that represent
respectively the values α and β of sandhi rules of the form α|β → γ or α|β → α′|β′, each time
such a rule is recognized in the source text. These extra tokens are affected the same position
as the string γ, α′ or β′ they stand for. For instance, the phoneme ā in the word uvāca triggers
the generation of the tokens aleft, aright, āleft and āright, with duplicates removed. Similarly, we
emit one extra token αright each time a sandhi rule of the form α|∅ → α′|∅ is recognized in the
source text.
With this approach, the query process is greatly simplified. We start by looking up the first

phoneme of the query string in the index so as to retrieve its postings list of the form βleft, if
any. The same operation is performed for the last one or two phonemes of the query string, so
as to retrieve the corresponding postings list of the form αright. The remainder of the string
is then segmented into trigrams as usual, and a phrase query is finally constructed from these
three types of elements. For instance, the query string ubhayatas results into the four tokens
uleft, bhay, yat and asright, which are then combined to construct a phrase query.

This approach is appropriate for a small number of documents, but might be less feasible
for a large documents collection. Indexing sandhi rules indeed considerably increases the size
of the index and produces huge postings lists, an effect that is compounded by the fact that,
to make possible searching for strings which comprehend between 3 and 6 phonemes included,
bigrams (n = 2) and unigrams (n = 1) must also be indexed. To support a real workload, it
might be necessary to prune bigrams and unigrams that are useless for matching the text; if, for
instance, a string of three phonemes that cannot possibly involve phonetic modifications—say
abhi—appears at the beginning of a verse, indexing its bigrams and unigrams is unnecessary,
because its trigram will necessarily be selected over them at search time.

3.4 Searching for Inflected Forms Given a Stem
When searching for a peculiar syntagm, as opposed to a phrase, it is often desirable to obtain,
in the set of search results, documents that contain various forms of this syntagm, such as its
plural form, instead of just the specific form that was submitted in the query. This functionality
is important for the Sanskrit language, because its morphology is particularly rich.
To make possible this type of functionality, it is customary to use a stemmer, that is to say,

92

a program that maps an inflected form to its stem, or at least to a string that is not a valid
stem but that could stand for it in some way.19 This approach is of course only feasible if lexical
units can be distinguished in the first place. It is thus not suited to the indexing framework we
described above.
However, it is possible to use the reverse approach, that is to say, to generate, at query time, all

possible inflected forms of a stem submitted as query, and to search for the union of the resulting
strings. This is the approach used by Srigowri and Karunakar (2013). The same strategy can be
used with our indexing scheme, save for the fact that each generated inflected form must itself
be segmented into n-grams. To generate a compact query tree, we can construct a minimal
acyclic finite-state automaton such as the one presented in figure 3 and extract n-grams from
this representation, as done above in section 3.3.1.

Figure 3: Inflected forms of the nominal stem buddhi (fem.) ‘intelligence’ represented as a finite-
state automaton

4 Increasing the Efficiency of the System
4.1 Combining Documents Representations
We assumed so far that existing tokenizers for the Sanskrit language are not yet robust enough
to be used autonomously for indexing tasks. This does not imply, however, that they should not
be used at all. Relying exclusively on the output of a real tokenizer would not suffice, for the
reasons given above in section 1.4. But we could still index both the output of such a tokenizer
and the n-grams generated as described above.
This strategy has been used with some success in Chinese information retrieval (Zhang et al.,

2000), and would thus probably benefit us too. However, the very process of indexing several
readings of the same text is in itself technically challenging, because sandhi application often
modifies the length of a word, which complicates phrase matching. We have not yet elaborated
a robust enough strategy to address this issue. Furthermore, it is not yet clear to us how exactly

19Algorithmic stemmers such as the one of Porter (1980) do not necessarily return valid stems.

93

the output of a full-fledged tokenizer could be used to produce a better ranking of possible query
matches. At the very least, we could provide to the user a visual cue of the estimated correctness
of a match by highlighting possible matches with different colors, or maybe different shades of
the same color.

4.2 Optimizing the Selection of N-grams
In all the information retrieval systems we have studied so far, no special attention is given to
the fact that query strings which contain a number of characters that is not a multiple of n
when n > 1 can be segmented in different ways while minimizing the number of n-grams in the
query. Furthermore, it is implicitly assumed that pruning as many n-grams as possible in the
query string is necessarily beneficial, as far as retrieval time is concerned.
This assumption, however, is not necessarily correct. For the time of retrieval is by far

dominated by the decoding of postings lists, not by the lookup of n-grams in the index. A more
accurate estimation of the cost of the evaluation of a query can thus be obtained by examining
the frequency of each query n-gram in the collection, an information that is usually readily
available in the index data structure. Instead of arbitrarily pruning n-grams, we should thus
attempt to select the combination of n-grams that minimizes the overall number of postings to
be decoded while satisfying the query. This amounts to interpreting the user query as if it was
a directed acyclic graph, where vertices represent n-grams and edges represent the length of the
postings list of the target n-gram, so as to find the shortest path from the first n-gram to the
last one.
An example is given in figure 4, for the query string mantraḥ and n = 3. Edges are an-

notated with the actual frequency of the n-gram they point to in the GRETIL corpus. The
cost of decoding the postings list of the first trigram man can be ignored, just as the cost of
decoding the postings list of the last trigram raḥ, since both trigrams must necessarily be se-
lected for the query to match. In this case, the optimal path is 0:man → 2:ntr → 4:raḥ, which
involves decoding 203, 356 + 37, 885 + 76, 636 = 317, 877 postings. By contrast, choosing the
path 0:man → 3:tra → 4:raḥ, which also involves the minimum number of trigrams necessary
to match the query, would lead to decoding nearly two times more postings.

Figure 4: The query string mantraḥ represented as a directed acyclic graph of trigrams

A further optimization is also possible, this time for all n > 0, when a query string contains
several occurrences of a given n-gram. In this situation, query tree nodes can be shared, so that
the postings list of a n-gram that occurs several times in the query need to be decoded only
once. Accordingly, the contribution of a given n-gram to the cost of query evaluation should be
taken into account only once during the n-grams selection process.

4.3 Optimizing the Representation of Postings Lists
The indexing strategies we discussed so far are very costly in terms of processing time if a tradi-
tional index layout is used for representing postings lists. Indeed, lists of documents identifiers
are usually separated, both conceptually and physically—on disk or in-memory—from the lists of

94

integers that represent the positions of a given term within a given document. The primary mo-
tivation for this data layout is the idea that the queries that do not involve positional matching
should not incur the cost of decoding lists of positions. In our case, however, positional queries
are almost always necessary. We would thus benefit from inlining lists of positions within lists
of documents.
It seems however beneficial, in terms of implementation complexity and in terms of expres-

siveness at the very least, to go one step further and merely index positions, essentially treating
the documents collection as if it was a single long document. Doing this allows better granu-
larity at retrieval time. If documents boundaries are indexed in the way we proposed to index
clusters previously in section 3.2, it indeed becomes possible to constrain matching, not merely
to a single document, but also to a sequence of documents. Other structural information could
be indexed as well, such as verse boundaries or paragraph boundaries, to make possible more
expressive queries.
But the main advantage of this index layout lies in the fact that it lends itself more conveniently

to the optimization of positional queries. For these queries can often be evaluated without
reading in full the postings lists of the terms they are made of. To give but one example, if a
document contains the string a a a a a a a b and we are looking for the phrase a b, all postings
of a up to the last one are irrelevant, and thus we can jump directly to the last occurrence of a.
For this to be possible, postings lists must be made addressable, at least to some degree.
To address this problem, Moffat and Zobel (1996) propose to split each postings list into

several chunks, and to prefix each of these chunks but the last one with the identifier of the first
document in the next chunk, together with a pointer to this chunk. This solution can of course
be extended to positions lists. It saves processing time, since chunks that are irrelevant for the
evaluation of a query need not be decoded, and can be skipped over. However, it does not save
much disk or memory bandwidth, if at all, because a chunk, or at least its initial part, must
necessarily be fetched from disk or from memory in order to retrieve the location of the next
one. This suggests that we should store chunks pointers separately from the chunks themselves.
To do that in a way that is amenable to disk storage, we propose to store postings lists

contiguously on disk, while introducing a logical separation in fixed-size pages. A single postings
list can thus cross several pages, and, conversely, a single page can hold several postings lists.
The postings lists that cross several pages can then be indexed by allocating new pages and
store there pointers to each page the list occupies at the lower level, together with a copy of the
first position of each delimited chunk of the list at the lower level. This process can be repeated
again to introduce further levels of indexing. Briefly put, this amounts to constructing a kind
of skip list (Pugh, 1990) that is laid out similarly to a B+ tree, over the whole set of postings
lists in the index.
An example of this data layout is given in figure 5. It describes a two-levels index that contains

six pages, on which are laid out the postings lists of three distinct terms x, y and z. Positions
that belong to the same postings list are represented with the same color.

1 34 226 3 8 240 662 915 930 964 20 66 205 210 � �

3 8 930 20 205 � � �

yx z

Figure 5: Representation of postings lists

95

Conclusion
We have discussed in the above several possible ways to model, in an information retrieval system,
a few peculiarities of Sanskrit phonetics and morphology, and described as well a number of
possible optimizations to reduce processing time. This however only scratches the surface of the
functionalities an information retrieval system is expected to provide.
The most pressing goal, for the time being, is to elaborate an architecture that strikes a good

balance between the system’s precision, its recall, and its efficiency in terms of time and space.
In particular, the interaction of the strategies we described above deserves special consideration,
because their compounding effect can easily lead to excessively complicated queries. It might
be necessary to adopt several distinct retrieval strategies depending on the query and the user’s
expectations. To help alleviate the issue, it is desirable to give more control to the user over
the query process, so that he can choose whether a quick but possibly incomplete or inaccurate
answer is preferable to a more accurate, but slower one. Accordingly, it is necessary to elaborate
an evaluation methodology to test the time and space efficiency of the system.
Much also remains to be improved in the area of query expressivity. We did not discuss

how to support, within our framework, Boolean operators, proximity operators and containment
operators—searching within a given number of documents, of paragraphs or of lines, for instance.
It is also desirable to formalize a query syntax that gives full control to the user over the search
process; most notably, over its linguistic features: the handling of sandhi and the expansion of
stems to their inflected forms.

Acknowledgements
I am grateful to the anonymous reviewers for their helpful corrections and suggestions.

References
Stefan Büttcher and Charles L.A. Clarke. 2005. Indexing time vs. query time trade-offs in dynamic

information retrieval systems. In University of Waterloo Technical Report CS-2005-31, Waterloo,
Canada.

Dominic Goodall and Marion Rastelli. 2013. Tāntrikābhidhānakośa III: Dictionnaire des termes tech-
niques de la littérature hindoue tantrique / A Dictionary of Technical Terms from Hindu Tantric
Literature / Wörterbuch zur Terminologie hinduistischer Tantren. Sitzungsberichte, Österreichische
Akademie der Wissenschaften, Philosophisch-Historische Klasse; Beiträge zur Kultur- und Geiste-
geschichte Asiens. Verlag der Österreichische Akademie der Wissenschaften, Wien.

Oliver Hellwig. 2009. SanskritTagger. In Gérard Huet, Amba Kulkarni, and Peter Scharf, editors,
Sanskrit Computational Linguistics: First and Second International Symposia (Institut national de
recherche en informatique et en automatique, Rocquencourt, France, Oct. 29–31, 2007 and Brown Uni-
versity, Providence, RI, USA, May 15–17, 2008), number 5402 in Lecture Notes in Artificial Intelligence,
pages 266–277, Berlin and Heidelberg. Springer.

Oliver Hellwig. 2010. Performance of a lexical and POS tagger for Sanskrit. In Girish Nath Jha, editor,
Sanskrit Computational Linguistics: 4th Symposium (Jawaharlal Nehru University, New Delhi, India,
Dec. 10–12, 2010), number 6465 in Lecture Notes in Artificial Intelligence, pages 162–172, Berlin and
Heidelberg. Springer.

Gérard Huet and Idir Lankri. 2018. Preliminary design of a Sanskrit corpus manager. In Gérard Huet
and Amba Kulkarni, editors, Computational Sanskrit & Digital Humanities: Selected Papers Presented
at the 17th World Sanskrit Conference (University of British Columbia, Vancouver, July 9–13, 2018),
pages 259–276, New Delhi. D K Publishers Distributors Pvt. Ltd.

Gérard Huet. 2003. Lexicon-directed segmentation and tagging of Sanskrit. XIIth World Sanskrit Con-
ference, Helsinki, Finland, Aug. 2003. url: http://gallium.inria.fr/~huet/PUBLIC/wsc.pdf (ac-
cessed 2018/10/10).

Gérard Huet. 2005. A functional toolkit for morphological and phonological processing, application to a
Sanskrit tagger. Journal of Functional Programming, 15(4):573–614.

96

K.A. Subramania Iyer. 1966. Vākyapadīya of Bhartṛhari with the Commentaries Vṛtti and Paddhati of
Vṛṣabhadeva: Kāṇḍa I. Number 32 in Deccan College Monograph Series. Deccan College, Postgraduate
and Research Institute, Poona.

Alistair Moffat and Justin Zobel. 1996. Self-indexing inverted files for fast text retrieval. Transactions
on Information Systems, 14(4):349–379.

Sheldon Pollock. 2018. “Indian philology”: Edition, interpretation, and difference. In Silvia D’Intino and
Sheldon Pollock, editors, L’espace du sens: Approches de la philologie indienne / The Space of Meaning:
Approaches to Indian Philology, number 84 in Publications de l’Institut de civilisation indienne, pages
3–45, Paris. Collège de France.

Martin F. Porter. 1980. An algorithm for suffix stripping. Program, 14(3):130–137.

William Pugh. 1990. Skip lists: A probabilistic alternative to balanced trees. Communications of the
ACM, 33(6):668–676.

Peter M. Scharf and Malcolm D. Hyman. 2012. Linguistic Issues in Encoding Sanskrit. Motilal Banarsi-
dass, Delhi.

Srigowri and Karunakar. 2013. Gaveṣikā: A search engine for Sanskrit. In Malhar Kulkarni and Chaitali
Dangarikar, editors, Recent Researches in Sanskrit Computational Linguistics: Fifth International
Symposium (IIT Mumbai, India, Jan. 4–6, 2013), Delhi. DK Printworld.

Trevor Strohman, Donald Metzler, Howard Turtle, and W. Bruce Croft. 2005. Indri: A language model-
based search engine for complex queries. In Proceedings of the International Conference on Intelligent
Analysis, Technical Report.

Jian Zhang, Jian-Yun Nie, Jianfeng Gao, and Zhou Ming. 2000. On the use of words and n-grams
for Chinese information retrieval. In IRAL ’00: Proceedings of the Fifth International Workshop on
Information Retrieval with Asian Languages, pages 141–148, Hong Kong, China. ACM.

97

Framework for Question-Answering in Sanskrit through
Automated Construction of Knowledge Graphs

Hrishikesh Terdalkar Arnab Bhattacharya
hrishirt@cse.iitk.ac.in arnabb@cse.iitk.ac.in

Dept. of Computer Science and Engineering,
Indian Institute of Technology Kanpur,

India.

Abstract

Sanskrit (saṃskṛta) enjoys one of the largest and most varied literature in the whole
world. Extracting the knowledge from it, however, is a challenging task due to multiple
reasons including complexity of the language and paucity of standard natural language
processing tools. In this paper, we target the problem of building knowledge graphs
for particular types of relationships from saṃskṛta texts. We build a natural language
question-answering system in saṃskṛta that uses the knowledge graph to answer factoid
questions. We design a framework for the overall system and implement two separate
instances of the system on human relationships from mahābhārata and rāmāyaṇa, and
one instance on synonymous relationships from bhāvaprakāśa nighaṇṭu, a technical text
from āyurveda. We show that about 50% of the factoid questions can be answered
correctly by the system. More importantly, we analyse the shortcomings of the system
in detail for each step, and discuss the possible ways forward.

1 Introduction and Motivation

Sanskrit (IAST1: saṃskṛta, Devanagari: सृंकत) is one of the most ancient and richest languages
in the world. Its literature boasts of text spanning every facet of life and contains works on
mathematics, arts, sciences, religion, philosophy, etc. Unfortunately, the large volume of such
works and the relative lack of proficiency in the language have kept treasures in those text hidden
from the common man. Unraveling information from these texts in a targeted and systematic
manner can not only help in enhancing the knowledge systems but can also revive an interest
in the language.

Many of these texts are technical in nature, prime examples of which include āyurveda (आयवुेद)
texts such as bhāvaprakāśa (भावपकाश). The nighaṇṭu (िनघण्टु) portion of bhāvaprakāśa is com-
piled as a glossary of the various substances (dravya, दय) and their properties (guṇa, गणु).
Although the information is generally provided in a format that enables scholars to study and
analyse it systematically, the large volume of such texts makes it harder for any individual to
extract all the information. An automated system can, therefore, greatly aid this processing of
information. However, to the best of our knowledge, there does not exist any system that can
query this knowledge trove directly and automatically.

While it can be argued that English translations of bhāvaprakāśa nighaṇṭu are available, and
building information retrieval (IR) systems for it is a routine for today’s IR/NLP tools, there
are two main shortcomings of it. First, there are many such nighaṇṭu texts and translations
in English are available for only a minuscule number of them. Second, and more importantly,
many of the translations of saṃskṛta texts had been done without a proper understanding of
the context and culture in which they were composed in the first place. They may had been
forced to use English words and phrases that are not a true reflection of the spirit of the original

1Entire paper uses the IAST encoding scheme for writing Sanskrit words in romanized format. https://en.
wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration

98

meaning. A notable case in point, as mentioned by Swami Vivekananda himself, is the word
śraddhā (शधा), for which the English translation “regards” is not enough.

Thus, it is always best to rely on the original language. The need of the hour, hence, is to use
natural language processing (NLP) of saṃskṛta itself to understand the texts in saṃskṛta.

Our aim in this work is to take the first step towards a concrete NLP task, namely, natural
language question-answering in saṃskṛta. In particular, we aim to design a framework that
processes saṃskṛta texts, extracts the information in it, and stores it in a format that can be
queried using questions posed in saṃskṛta.

We propose to store the knowledge base (KB) in a knowledge graph (KG) format. KGs have
a rich structure and store the information in the form of entities (as nodes) and relationships
(as edges between the nodes). The edges are directed, and both the nodes and edges can store
labels describing their attributes. There are multiple off-the-shelf tools available for storing and
querying KGs, including graph databases2, Property Graphs3, Resource Description Framework
(RDF) (Lassila et al. (1998)), Gremlin queries4, SPARQL queries5, etc. The popularity of KBs
such as YAGO (Suchanek et al. (2007)), DBpedia (Auer et al. (2007)) and Freebase (Bollacker
et al. (2008)) is a testament to their success.

We also propose question-answering as a concrete example of the use of such KGs and a
way of measuring the effectiveness of the system. Various online question-answering fora such as
Quora6 and quizzes serve as a motivation. We particularly choose the two epics of India, namely,
mahābhārata and rāmāyaṇa, categorized as itihāsa in saṃskṛta literature, and questions on
human relationships within them, as examples for our framework due to their popularity and ease
of establishment of the ground truth. We also work with bhāvaprakāśa nighaṇṭu to highlight
the usage for technical texts.

The framework brings to the fore multiple challenges. First, the state of the art of natural
language processing in Indian languages, unfortunately, is not as advanced as that in English or
some other European languages. Indian languages, and in particular saṃskṛta, are morphologi-
cally richer. Therefore, tasks such as lemmatization and parts-of-speech tagging are harder and
more error-prone in these languages. Second, some technical texts use their own jargon where
certain words may be used in a specific meaning. For example, aṣṭādhyāyī, a work on saṃskṛta
grammar by pāṇini uses specific combinations of grammatical cases (vibhakti) to denote which
action is to be performed.7 Third, names in saṃskṛta are meaningful words and, therefore,
identifying named entities is particularly hard. An extremely interesting example in rāmāyaṇa
is janaka (जनक), which means “father” in general, but is also the name of a prominent charac-
ter. Fourth, synonyms are often used to refer to the same person. In many cases, higher-order
grammar rules are required to parse the meaning of a word and understand that it is a synonym.
For example, it is not mentioned anywhere in the rāmāyaṇa text that dāśarathī is the son of
daśaratha and, hence, synonymous to rāma. However, saṃskṛta grammar rules make it obvious
to someone who understands the language. Unfortunately, automatic language processing tools
are incapable of using such higher-order rules at present.

Nair and Kulkarni (2010) have proposed a model for extracting implicit knowledge from ama
rakośa and storing it in a structured manner, and have constructed a tool for answering queries
using this knowledge. Kulkarni et al. (2010) have built a Sanskrit WordNet8 by expanding the

2https://en.wikipedia.org/wiki/Graph_database
3https://en.wikipedia.org/wiki/Graph_database#Labeled-property_graph
4https://docs.janusgraph.org/latest/gremlin.html
5https://www.w3.org/TR/rdf-sparql-query/
6https://www.quora.com
7The presence of nominative (prathamā), genitive (ṣaṣṭhī) and locative (saptamī) cases in the same sentence

might not convey any special meaning in a normal text, but, in aṣṭādhyāyī, it specifies a process to be followed
to transform words, e.g., rule 6.1.77 from aṣṭādhyāyī (iko yaṇaci, इको यणिच) contains words ikaḥ (ṣaṣṭhī), yaṇ
(prathamā), aci (saptamī), which is to be interpreted as “an इक ् letter which is followed by an अच ् letter is
converted to a corresponding यण ्letter”.

8http://www.cfilt.iitb.ac.in/wordnet/webswn/english_version.php

99

Hindi WordNet. A production grammar for human relationships in saṃskṛta was proposed in
Bhargava and Lambek (1992). It works for solitary words and cannot be directly used for text.
Automatic translation tools, if available, can also be used where the entire text is translated to
English and the KG is built from the translated text. However, we could not find any such tools.
Although Sanskrit-English dictionaries9 provide a word-level translation of selected words from
saṃskṛta to English, word-level translation often does not produce meaningful or grammatically
correct text. We, thus, decided to use only the text as available in saṃskṛta. In future, we will
explore the use of such tools and methods.

The rest of the paper is organized as follows. In Section 2, we explain the generic framework
of the question-answering system. There exist some excellent tools for saṃskṛta that aid us
in the analysis. For other cases, we build our own heuristic rule-based systems. In Section 3,
we describe the automatic construction of the knowledge graph while the details of the various
modules of the system are described in Section 4. Since bhāvaprakāśa nighaṇṭu is a technical
text, we highlight its specialized processing in Section 5. In Section 6, we analyse the results of
our experiments. Finally, in Section 7, we discuss the lessons learnt and future directions.

2 Proposed Framework
2.1 Knowledge Graphs (KG)
Knowledge graphs (KG) model real-world entities as nodes. Relationships among the entities are
modelled as (directed) edges. For example, in a KG about human relationships in mahābhārata,
arjuna and abhimanyu are nodes. They are connected by a directed edge from arjuna to
abhimanyu labelled by the relationship “has-son” (putra).

In English, there have been several efforts in automated KG construction, notable among
them being YAGO, DBpedia, Freebase, etc. Suchanek et al. (2007) built the YAGO ontology
by crawling the Wikipedia and uniting it with WordNet using a combination of both rule-based
as well as heuristic methods. Auer et al. (2007) built DBpedia that extracts knowledge present
in a structured form on Wikipedia by template detection using pattern matching coupled with
post-processing for quality improvement. Bollacker et al. (2008) designed Freebase, a database
of tuples that is created, edited and maintained in a collaborative manner. Unfortunately,
however, none of the above techniques are applicable for automatically building knowledge
graphs in saṃskṛta.

Processing of text for YAGO depends on many IR/NLP tools that are available only in
English and a handful of other languages, mostly European. The state of the art of these tools
in saṃskṛta is still not standardized and may not be directly useful. Sanskrit Wikipedia10 also
is not as resourceful as its counterpart in English. Hence, the amount of structured information
available there is minuscule compared to the vast saṃskṛta literature that is developed over
several millennia. Thus, a system such as DBpedia is not possible. A collaborative effort
such as Freebase is also ruled out due to a paucity of active saṃskṛta users adept in digital
technologies. To the best of our knowledge, there is no work that directly builds a knowledge
graph from saṃskṛta texts.

2.2 Triplets
A common way of encoding the relationship information is in the form of semantic triplets.
A triplet has the structure [subject, predicate, object] which indicates that the entity
subject has the relationship predicate with the entity object. Hence, the fact that arjuna
has a son abhimanyu is encoded as the triplet [arjuna, has-son (putra), abhimanyu] ([अज ुर्न, पतु,
अिभमय]ु).

The KG is built automatically by extracting such triplets from the text. We target KGs on
specific types of relationships, namely, human relationships for epics, and synonymous relation-

9https://www.sanskrit-lexicon.uni-koeln.de/
10https://sa.wikipedia.org/wiki

100

ships in nighaṇṭu. One of the foremost jobs, therefore, is to identify the relationship words.
This is a corpus-independent set and depends only on the language. However, since the text is
free-flowing (except in technical texts where there is a structure) and almost always written in
poetry in the form of śloka, even when a relationship word is identified, the subject and object
words may be anywhere around it (both before and after). śloka (लोक) is a semantic unit in
saṃskṛta and is equivalent to a verse. Sometimes, one or both of these entities may not be
even in the same śloka. Hence, a context window around the relationship word must be defined
and searched for the relevant entities. Specifying the length of such a context window is not
easy; if it is too short, relationships may be missed, while if it is too long, too many spurious
relationships may be inferred. Even identifying the śloka boundaries may not always be trivial.
Fortunately, however, these boundaries are clearly marked in the texts that we have worked on.

The details of how such triplets are extracted are explained in Section 3. The knowledge
graph is maintained in an RDF format as a set of all such extracted triplets.

2.3 Questions
The next important task in the pipeline is to parse the natural language question. Since the
question is also in saṃskṛta, we adopt similar processing as the text to extract triplets. In this
work, we assume only factoid based questions such as “Who is the son of arjuna?” (अज ुर्नय पतुः
कः?) The triplet extracted from the above question will be [arjuna, has-son, X] ([अज ुर्न, पतु, िकम]्).

Since saṃskṛta is quite free with word ordering, the above question may be asked in different
manners, such as अज ुर्नय पतुः कः? or कः अज ुर्नय पतुः? or अज ुर्नय कः पतुः? All of these should yield
the same triplet [अज ुर्न, पतु, िकम]्.

The inverse question may also be asked: “Who is the father of abhimanyu?” (कःअिभमयोः िपता?)
The above can be answered only if it is known that the inverse of “has-father” is the relationship
“has-son”. This, again, is a property of the language and must be explicitly mentioned.

Hence, we maintain a map of such inverse relationship rules. Note that it is not always one-to-
one. For example, “has-mother” is also the inverse of “has-son”, and “has-father” is the inverse
of “has-daughter” as well. Gender information, therefore, becomes important.

We augment the initially built knowledge graph by adding appropriate inverse relationship
edges. It is ensured that an inferred inverse relationship does not contradict a directly inferred
relationship from the text. The details are in Section 3.4.

Even though the questions are simple and short, they may contain multiple triplets. For
example, a question पाण्डोः पाः भाता कः? may be asked by someone who does not know what
the relation brother-of-wife is called in saṃskṛta. This question contains two relationships, पनी
and भाता. The triplet form of these relationships would be [पाण्डु, पनी, िकम]् corresponding to the
subquestion ‘Who was the wife of pāṇḍu?’ and [पनी, भाता, िकम]् corresponding to the subquestion
‘Who was the brother of wife (of pāṇḍu)?’. All of these must be extracted correctly.

Further, they must be linked properly. In the example above, we must ensure that the object
of the first triplet is the subject of the second triplet, that is, the correct triplets are [पाण्डु, पनी, X]
and [X, भाता, िकम]्. Here, a variable is used to denote the person that satisfies both the triplets.

Once these are correctly linked, a SPARQL query pattern is formed. The SPARQL query
equivalent for the above question is

SELECT ?A
WHERE {

:पाण्डु :पनी ?X .
?X :भातृ ?A .

}
This is finally directly queried against the KG, and the answer is returned. Section 4 describes
in detail the intricacies of the different steps of the question-answering system.

Figure 1 describes the overall framework. The final accuracy of the system is dependent on
each of the modules of the architecture. For example, if the extracting triplets component is

101

Text Question

Analyze

Query	TripletsRelation
Triplets

Knowledge
Graph

Answer

Enhance
Triplets

Enhance
Triplets

Query	Pattern

Extract	Triplets

Figure 1: Overall framework of the system.

very erroneous, then neither the KG information is captured correctly, nor is the intention of the
question understood. The overall error is a cascading effect of the errors in each of the individual
components. Thus, for a successful system, each component must be reasonably accurate.

3 Construction of Knowledge Graph

In this section, we describe in detail the automated construction of knowledge graph (KG).
The input consists of saṃskṛta text (in digital Unicode format) of an entire work (such as
mahābhārata, bhāvaprakāśa nighaṇṭu, etc.) and the type of relationships intended (e.g., human
relationships, synonymous words, etc.). The output is a set of triplets in the form [subject,
predicate, object] where the predicate is of the relationship type intended and subject and
object are entities. If [a, R, b] is an output triplet, then it implies that object b is relation R
of subject a.

3.1 Pre-Processing of Text
saṃskṛta is a morphologically rich language. A single word root, called prātipadika (पाितपिदक),
can yield many forms depending on the case, gender and number. Similarly, a single verb root,
called dhātu (धात)ु, can lead to many forms as well depending on the tense, person and number.
In addition, various prefixes (upasarga, उपसग र्) and suffixes (pratyaya, पयय) get affixed to these
forms to generate thousands of other forms.

Further, words are very often joined together to form compound words using either pronun-
ciation rules through a process called sandhi (सिध) or semantic rules through a process called
samāsa (समास). Often, both are invoked together, and a series of words are joined together to
form one big compound word.

Splitting these compound words into their base words is a highly complicated procedure
and may not always be unambiguous. For this step, we make use of the Sanskrit Sandhi and

102

Compound Splitter, a tool11 by Hellwig and Nehrdich (2018). For example, if the input text is
कणा र्ज ुर्नयोः को शेठः the output is कणर्अज ुर्नयोः कः शेठः.

The next task is to semantically analyze the form of the word. Again, we use a third-
party analyser tool, The Sanskrit Reader Companion12 from The Sanskrit Heritage Platform by
Goyal et al. (2012). This tool outputs the case (vibhakti, िवभित), number (vacana, वचन) and
gender (liṅga, िलग) for each word. The tool uses various abbreviations13 to convey the linguistic
information.

For the running example, the analysis yields
कणर् [‘voc.’, ‘sg.’, ‘m.’]
अज ुर्न [‘loc.’, ‘du.’, ‘m.’]
िकम ् [‘nom.’, ‘sg.’, ‘m.’]
शेठ [‘nom.’, ‘sg.’, ‘m.’]

Here, ‘nom.’, ‘loc.’ and ‘voc.’ are abbreviations used to denote nominative case (पथमा), locative
case (सतमी) and vocative case (सबोधन) respectively. Similarly, ‘sg.’ and ‘du.’ indicate singular
and dual number (एकवचन and िववचन). While ‘m.’ denotes the masculine gender (प ुिंलग).

The word शेठ gets correctly analysed: it is in the nominative case, is in singular number, and
masculine gender. However, the other words require some more adjustments. For example, the
word अज ुर्न is shown to be in dual number. This is output since the original compound word
consisted of two persons. However, now that they are separated, it should no longer be in dual
number, but adjusted to be in singular number. Similarly, the case analysis for कणर् is wrongly
output to be vocative. The reason for this again is the fact that the original structure of the
compound word was lost. We adjust the case of previous words in a compound word by adopting
the case of the last word in the compound word. Thus, the case for कणर् is changed to locative,
since that is the case for अज ुर्न .

3.2 Identifying Relationship Words
Given a particular relationship type, the set of words pertaining to it is corpus-independent and
is a property of the language. For example, if human relationships are targeted, in saṃskṛta,
the (roots of the) relevant words are pitṛ (father, िपत)ृ, mātṛ (mother, मात)ृ, putra (son, पतु), putrī
(daughter, पतुी), pati (husband, पित), patnī (wife, पनी), etc. Of course, these words can appear in
various forms. More importantly, their synonyms can also appear. For example, all the words
दुिहत,ृ तनया, आमजा mean पतुी.

While these can be learned, since the set is mostly fixed, we have employed a key-value based
approach where we have listed many of such relationship words along with their synonyms.
For each such group of synonyms, there is a canonical word (e.g., पतुी for the group of words
indicating daughter) that is used in the KG.

The identification of a relationship word is simply a match from this entire set of words.

3.3 Identification of Triplets
Once a relationship word is identified, it forms the predicate of a triplet. The next task, therefore,
is to identify the subject and object corresponding to it.

It is expected that the subject and object entities will not be too far off from the predicate
word. To bound the sphere of influence or context, we use śloka (लोक) boundaries. Each śloka
considered as a semantic unit and is akin to a verse. Fortunately, for the texts we have used,
the śloka boundaries are clearly marked. In this work, we restrict the context to be one śloka
before and after the one where the predicate is found, i.e., a total of 3 śloka.

Since subjects and objects are entities, they generally occur as nouns in a language. The
analyser tool (The Sanskrit Reader Companion) described earlier marks the parts-of-speech tags

11https://github.com/OliverHellwig/sanskrit/tree/master/papers/2018emnlp
12https://sanskrit.inria.fr/DICO/reader.fr.html
13All the abbreviations used by the tool are listed at https://sanskrit.inria.fr/abrevs.pdf.

103

of words. It, however, does not distinguish between nouns, pronouns and adjectives. Since
there is a fixed set of pronouns for saṃskṛta, we use that set to correct some of the nouns.
We, however, fail to distinguish the adjectives from the nouns in a satisfactory and consistent
manner. This is a major future work.

Within the nouns (and adjectives), we look for those that are in the genitive case (षठी िवभित).
The genitive case pertains to the ṣaṣṭhī vibhakti (genitive case) and denotes sambandha (सबध).
The word sambandha in saṃskṛta literally means relationship and, therefore, a noun exhibiting
genitive case is the most likely candidate for a subject. For example, the अज ुर्नय पतुः अिभमयःु
आसीत m्eans abhimanyu was son of arjuna. Here, ‘of arjuna’ is expressed by the genitive case of
the word (अज ुर्न), i.e., अज ुर्नय. Hence, all such nouns in the genitive case are marked as subjects.

The relationship word or the predicate can be in different cases, numbers and gender, though.
Since the object follows the predicate, according to saṃskṛta grammar, it must be in the same
case, number and gender as the predicate. We use this rule to extract objects. To be precise,
an object is a noun that exhibits the same case, number and gender as the predicate word. In
the sentence अज ुर्नय पतुः अिभमयःु आसीत ्, word पतुः is the predicate word and the word अिभमयःु is
the object and both of these words are in the nominative case (पथमा िवभित).

We insert all such extracted triplets in the KG. We assume that if an entity appears multiple
times, it refers to the same person. The above assumption is almost always correct barring some
exceptional cases.14

3.4 Enhancement of Relationships
As explained earlier (in Section 2), just the base relationships may not always be enough to
answer a question. If the triplet [arjuna, has-son, abhimanyu] ([अज ुर्न, पतु, अिभमय]ु) is stored,
the question “Who is the father of abhimanyu?” (कः अिभमयोः िपता?) cannot be answered, even
though the information is present.

To be able to answer such queries, we have enhanced the KG with inverse relationships. For
example, the inverse of “has-father” is “has-son”. This, again, is a property of the language and
are explicitly stored.

As discussed earlier, the inverse relationships are not always one-to-one. For example, “has-
mother” is also the inverse of “has-son”, and “has-father” is the inverse of “has-daughter” as
well. Hence, we use the gender information of the subject and the object to disambiguate.

The complication does not end here. Imagine a question “Who is maternal uncle of Nakula?”
(नकुलय मातलुः कः). This information may not be directly stored in the KG. The relationship
मातलु is a composition of मातृ and भात.ृ These components [नकुल, मात,ृ मादी] and [मादी, भात,ृ शय]
may be present in the KG. Again, the situation is that the KG contains the information but
cannot answer the question.

To solve this, derived relations could be broken into their component base parts. Thus,
“has-maternal uncle” is stored as “has-mother” and “has-brother” with an additional (possibly
unnamed) node in between. In particular, from the triplet [नकुल, मातलु, शय], two more triplets
[नकुल, मात,ृ X] and [X, भात,ृ शय] could be generated. If there is already such a node X, it could
be used; otherwise, a new node could be created. However, addition of such dummy nodes has
not been explored in this work.

We achieve the same result by handling this issue at the time of querying. This is discussed
in Section 4.2. We maintain a list of relationships and their possible derivations from base
relationships. Once more this mapping is rarely one-to-one. For example, “brother-of” can be
composed of “son-of-father” and “son-of-mother”. Also, the gender must be taken care of.

A particularly interesting case is “has-ancestor” and “has-descendant”. These are recursive
relationships, and the depth of recursion can be anything, i.e., a ‘father’ is an ancestor, so is an
‘ancestor-of-father’, and so on. We do not handle these cases in the current work.

14karṇa was the son of kuntī, and one of the kaurava was also named karṇa.

104

4 Question-Answering

We now describe one application, that of question-answering. We assume that the questions
are asked directly in saṃskṛta and are about factoids, i.e., about a single piece of information.
We also assume that the questions are only about the relationships that the knowledge graph
encodes. If not, the question is ignored, since clearly the KG is incapable of answering it.
Further, the questions are assumed to be short and consist of a single sentence only.

The question is first pre-processed in the same manner as the text (Section 3.1). To be
more precise, compound words are split using Sanskrit Sandhi and Compound Splitter a tool
by Hellwig and Nehrdich (2018), the component words are analysed using The Sanskrit Reader
Companion from The Sanskrit Heritage Site, and relationship words and nouns are identified.
Next, triplets are extracted.

4.1 Identifying Triplets
A blank triplet is initialized. The question words are scanned one by one. For each word, it is
determined if it can be a subject word, a predicate word or an object word. If the word is a
noun in genitive case but is not a relationship word, then it is likely to be a subject word. The
relationship words directly give the predicates. The object word is generally in the nominative
case. For example, consider the question अज ुर्नय पतुः कः? (“Who is the son of arjuna?”). Since
अज ुर्न is in genitive case, it is the subject. The word पतु is the predicate. The object is िकम ्. The
triplet formed, therefore, is [अज ुर्न, पतु, िकम]्.

Once a triplet is filled up, another new triplet is initialized. This is necessary since there may
be chain questions of the form अज ुर्नय पतुय पतुः कः? The triplets generated from this are [अज ुर्न,
पतु, X] and [X, पतु, िकम]्.

The process goes on till all the words in the question are processed.
At the end of this phase, the triplets thus formed are called query triplets.

4.2 Enhancing Triplets
Each query triplet is next enhanced to a set of triplets, called the enhanced triplet set. The
rules for enhancing the relationship of a query triplet is the same as that used in processing the
KG triplets. In particular, each complex relation is broken into its constituent parts and new
triplets are created using the aforementioned mapping of relationships to its constituents.

Suppose, a predicate (i.e., relation) R can be decomposed to two base predicates R1 and R2.
Then, if a query triplet is of the form [A, R, B], then two triplets of the form [A, R1, X]
and [X, R2, B] are generated. Note that {[A, R, B]} and {[A, R1, X], [X, R2, B]} are
equivalent expressions and either of them can return the correct answer from the KG. However,
since it is not known which information is stored in the KG, both are used.

Thus, each query triplet QTi is replaced by its enhanced triplet set ETi = {QTi} ∪ IT j
i where

IT j
i is a set of triplets inferred from QTi, as shown in the example below.
For the question अज ुर्नय मातलुय िपता कः, we first obtain the triplets {[अज ुर्न, मातलु, X], [X, िपत,ृ

िकम]्}. These triplets are then enhanced by appropriately splitting the relationship मातलु using
the rule मातलु = मातृ + भात.ृ Here, QT = [अज ुर्न, मातलु, X] and IT = {[अज ुर्न, मात,ृ Y], [Y, भात,ृ X]}. As
a result, we get two triplet sequences for this question, {[अज ुर्न, मात,ृ Y], [Y, भात,ृ X], [X, िपत,ृ िकम]्}
and {[अज ुर्न, मातलु, X], [X, िपत,ृ िकम]्}.

4.3 Query Pattern
If the question contains only one query triplet, then members of its enhanced triplet set form
the alternate query patterns. Suppose, however, the question contains n query triplets with
their corresponding n enhanced triplet sets ET1, ET2, · · · , ETn. The Cartesian product of the
elements of these sets form the alternate query patterns. Thus, if there are 2 enhanced sets with
2 and 3 elements in them, the total number of alternate query patterns is 2 × 3 = 6.

105

Each of these alternate query patterns are posed to the KG and answer triplets are returned.
The correct field of the answer triplet is returned as the factoid answer.

We have not encountered a case where alternate query patterns return different answers. If,
however, such a situation arises, a further disambiguation step (possibly using majority voting,
etc.) is required.

5 Technical Texts
We have chosen a technical text bhāvaprakāśa which is one of the important texts from
āyurveda. bhāvaprakāśa nighaṇṭu is a glossary chapter from this text, which contains detailed
information about the medicinal properties of various plants, animals and minerals written in
a śloka format. There are 23 adhyāya in this chapter. Being a technical text, bhāvaprakāśa
nighaṇṭu has more structure than rāmāyaṇa or mahābhārata.

5.1 Structure
The text bhāvaprakāśa nighaṇṭu loosely adheres to the following structure.

• Substances (dravya, दय) with similar properties or from the same class occur in the same
chapter. For example, all the flowers are in one chapter, all the metals are in another
chapter.

• Each chapter consists of various blocks (sets of consecutive śloka), where each block speaks
about one substance.

• Each block generally has the following internal components:

– Synonyms of the concerned substance
– Where that substance can be found
– Properties of the substance. e.g., colour, smell, texture, composition and other medic-

inal properties
– Differences between the different varieties of the substance

While the blocks are structured to some extent, the following deviations exist.

• The length of each block is not fixed.

• The number of synonyms of each substance are not fixed.

• The order of the components of the block varies from substance to substance to a certain
extent.

• Some of the internal components may, at times, be absent such as the varieties of a sub-
stance.

Importantly, the separation between two consecutive blocks is not marked in the text.
These points of deviation from the pattern act as hurdles in the process of understanding

and exploiting the structure of a text to extract information. Understanding the structure of
a text can be a challenging task. We have taken the help of domain experts15 to form our
understanding of the structure described above.

Properties (guṇa, गणु) are of the form (name, value). A property value can be directly
attached to a substance, or it can be attached through a property-name. For example, a
substance is “red”, or, a substance has colour “red”.

Relationships of interest can be of a number of types. Some of them are: (substance-1,
is-synonym-of, substance-2), (substance, property-name, property-value), (substance,

15We acknowledge Dr. Sai Susarla, Dean at Maharshi Veda Vyas MIT School of Vedic Sciences, Pune, India,
and his team for sharing their expertise with us.

106

Words
adhyāya 1 adhyāya 2 All adhyāya
(च, 127) (च, 56) (च, 946)
(तद,् 85) (ितत, 39) (तद,् 786)
(िकम ्, 55) (लघ,ु 37) (िपत, 461)
(कफ, 53) (कफ, 31) (कफ, 438)
(उण, 47) (त,ु 24) (त,ु 394)
(िपत, 45) (िकम ्, 24) (लघ,ु 321)
(त,ु 39) (तद,् 22) (वा, 278)
(तथा, 35) (िवष, 22) (अिप, 268)
(अिप, 34) (उण, 21) (िकम ्, 266)
(ितत, 34) (हृत ्, 20) (गरुु, 254)

Nouns
adhyāya 1 adhyāya 2 All adhyāya
(कफ, 53) (ितत, 39) (िपत, 461)
(उण, 47) (कफ, 31) (कफ, 438)
(िपत, 45) (िवष, 22) (गरुु, 254)
(ितत, 34) (उण, 21) (उण, 240)
(वात, 32) (िपत, 19) (ितत, 237)
(शलू, 29) (कुठ, 18) (वात, 204)
(कुठ, 28) (अस, 18) (मतृ, 194)
(कास, 25) (मतृ, 17) (कुठ, 177)
(कटु, 25) (कण्डु, 16) (गणु, 160)
(वास, 24) (कटु, 16) (लघ,ु 160)

Table 1: Top-10 most frequent words, nouns and their frequencies from bhāvaprakāśa nighaṇṭu.

Counts Words, Nouns, Properties, Non-Properties, Special Words, Pronouns,
Verbs, Case-i Nouns (i = 1, . . . , 8), Number-j Nouns (j = singular,
dual, plural)

Ratio to Words Nouns, Properties, Non-Properties, Special Words
Ratio to Nouns Properties, Non-Properties, Special Words, Case-i Nouns (i = 1, . . . , 8),

Number-j Nouns (j = singular, dual, plural)
Other Ratios Properties to Non-Properties, Non-Properties to Properties, Special

Words to Properties, Special Words to Non-Properties

Table 2: Features of a śloka.

has-property, property-value), (substance, found-at, location).
When a property is directly attached to a substance, we assume the relationship to be
has-property.

We have currently focused our efforts on a single relationship in the bhāvaprakāśa nighaṇṭu,
namely, is-synonym-of. In other words, the triplets that we are interested in are of the form
(substance-1, is-synonym-of, substance-2). Since the predicate is same for all triplets, we
choose to get rid of it and think of the problem as simply finding pairs of synonyms.

This task is subdivided into two tasks, (1) finding śloka that contain the synonyms, and (2)
given such a śloka, finding pairs of synonyms from it.

5.2 Property Words
The corpus is initially pre-processed in a similar manner as described in Section 3.1. However,
a next layer of processing is done to extract more information.

The set of properties is a relatively small set of words. The names and values of these properties
together are called property words. Since the property words recur heavily in every block that
describes a substance, they are expected to have much higher frequencies than the names of
substances. We test this hypothesis by performing a frequency analysis of the top words and
nouns in the entire text.

Table 1 lists the top-10 most frequent words and nouns along with their frequencies. Notice
that most frequent words also contain stopwords like च, तद ् etc., while the list of nouns indicates
that the standard property words such as वात, िपत, कफ have a high frequency. Following this
empirical evidence, we choose the top-50 most frequent nouns as “properties”. The substances
are chosen from the rest of the nouns.

107

5.3 Synonym śloka Identification
Generally, the different synonyms of a substance are listed in a single śloka at the beginning of
a block. A set {n1, n2, . . . nk} of nouns is called a synonym-group if every ni is a synonym of
every other nj . Any such (ni, nj) pair is called a synonym-pair. A śloka that gives information
about a synonym-group or synonym-pairs is referred to as a synonym śloka. The first task is to
identify instances of such synonym śloka.

To identify a synonym śloka automatically, we use various linguistic features of a śloka and
then use them in a classifier. We create a 42-dimensional feature vector per śloka. Table 2 enlists
all the features used. The features are based on counts and their ratios. Some of the notable
features include number of nouns, pronouns and verbs, number of property words present in a
śloka, ratios of property words to total number of words, number of words in each case (िवभित),
and so on. The category “specials” contains adverbs, conjunctions and prepositions.

Once each śloka is converted into a 42-dimensional feature vector, various classifiers and
ensemble methods are used to classify into a synonym śloka or otherwise.

5.4 Identifying Synonymous Nouns
Once a synonym śloka is identified, the next task is to identify the synonyms from it. Given a
synonym śloka, we first exclude all the property words from it. We next consider the list of all
the nouns in the śloka: {n1, n2, . . . , nk}.

We call a pair of nouns (ni, nj) a synonym pair if both ni and nj have the same case (िवभित)
as well as the same number (वचन). We do not use the gender (िलग) information since there are
examples of synonymous substance names that belong to different genders. For example, चय
(neuter), चियका (feminine) and ऊषणा (feminine) form a synonym group.

6 Experiments and Results

In this section, we present our experiments and discuss the results. The code is written in
Python3. All experiments are done on Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz system with
16 GB RAM running Ubuntu 16.04.6 OS. RDF is used for storing the knowledge graph, and
querying is done using SPARQL querying language. Python library RDFlib is used for working
with RDF and SPARQL.

6.1 Datasets
We have worked with texts containing two types of relationships:

1. Human Relationships: The two well-known epics of ancient India, rāmāyaṇa and mahāb
hārata, contain numerous characters and relationships among them. We have, thus, used
them as datasets for human relationships.

2. Synonymous Relationships of Substances: āyurveda, the traditional Indian system of
medicine, has a rich source of information about medicinal plants and substances. We con-
sidered bhāvaprakāśa nighaṇṭu, a glossary chapter of the āyurveda text bhāvaprakāśa as
the dataset. It enlists numerous medicinal plants and substances along with their properties
and inter-relationships. In this work, we only consider the relationship “is-synonym-of”.

Table 3 shows the statistics about the datasets considered.

6.2 Knowledge Graph from rāmāyaṇa and mahābhārata
Table 4 shows the various statistics about the knowledge graphs constructed from the datasets
rāmāyaṇa and mahābhārata.

While pre-processing the text requires a large amount of time, the other steps are significantly
faster. The querying times are in microseconds.

108

Dataset rāmāyaṇa mahābhārata bhāvaprakāśa nighaṇṭu

Type Classical Classical Technical
Chapters 7 (kāṇḍa) 18 (parvan) 23 (adhyāya)
Documents 606 2,327 23
śloka 23,934 81,603 4,244
Words (total) 2,69,603 17,49,709 31,532
Words (unique) 16,083 55,366 5,976
Nouns (total) 1,52,878 6,36,781 19,689
Nouns (unique) 9,553 20,545 3,684

Table 3: Statistics of the various datasets used.

rāmāyaṇa mahābhārata

Time taken
Preprocessing ∼ 3.5 days ∼ 13 days
Triplet Extraction 14.18 sec 57.19 sec
Triplet Enhancement 0.40 sec 2.05 sec

Before enhancement
Entities (Nodes) 1,711 3,552
Triplets (Edges) 6,155 18,936
Type of Relations 24 25

After enhancement
Entities (Nodes) 1,711 3,552
Triplets (Edges) 16,367 48,395
Type of Relations 27 27

Table 4: Statistics of the knowledge graphs for the human relationships.

6.2.1 Questions
To evaluate the performance of the question-answering system, we collected 35 questions from
rāmāyaṇa and 45 questions from mahābhārata from 12 different users, with each user contribut-
ing between 5-10 questions.

6.2.2 Performance
We evaluate the performance of the system for three tasks.

• QParse refers to the query parsing task. If the query pattern is correctly formed from the
natural language question, we count it as a success; otherwise, it is a failure.

• QCond is the conditional question answering task subject to correct query formation. A
success is counted only if the answer to the question is completely correct.

• QAll is the overall question answering task.

Table 5 demonstrates the performance of our system on the collected questions. The query
parsing task is fairly accurate. However, the accuracy of question-answering has a lot of scope
for improvement. We next analyze some of the reasons for failure.

6.3 Analysis of Wrong Answers
We analyze the wrong answers in two phases: parsing errors and answering errors.

109

Text Task Total Found Correct Precision Recall F1

QParse 35 33 27 0.82 0.77 0.79
rāmāyaṇa QCond 27 19 09 0.47 0.33 0.39

QAll 35 20 10 0.50 0.29 0.37

QParse 45 45 41 0.91 0.91 0.91
mahābhārata QCond 41 36 22 0.61 0.54 0.57

QAll 45 40 23 0.58 0.51 0.54

QParse 80 78 68 0.87 0.85 0.86
Combined QCond 60 55 31 0.56 0.46 0.50

QAll 80 60 33 0.55 0.41 0.47

Table 5: Performance of the question-answering tasks.

6.3.1 Parsing Errors
Following are some examples of queries that got incorrectly parsed.

• गाधाया र्ः पतुाणाम न्ामािन कािन → [गाधारी, पतु, िकम]्
The question expects all the names of sons of gāndhārī गाधारी but the parsed query only
asks for the name of ‘a son’ of गाधारी. This error originates from the fact that we have not
considered the number (वचन) of the relationship word while parsing the question. Strictly
speaking, however, the question is not a simple factoid question. Nevertheless, number
(वचन) can be considered, and all triplets that satisfy the criteria can be returned.

• कणा र्ज ुर्नयोः कः सबधः → [िकम ्, िकम ्, सबध]
There are patterns in the question set that are not handled by our algorithm. For example,
the algorithm did not handle the way of asking the relationship between two people using
the word सबध and, thus, results in a triplet that does not make sense. If the same question
was phrased as कणर्ः अज ुर्नय कः, our algorithm would be able to parse the question to give
[अज ुर्न, िकम ्, कण र्]. Questions like कणर्ः अज ुर्नय कः, अज ुर्नय कणर्ः कः, अज ुर्नय कः कणर्ः and कणर्ः कः
अज ुर्नय also get parsed correctly to [अज ुर्न, िकम ्, कण र्].

• िववाहः अज ुर्नय अभवत क्या सह → [अज ुर्न, िकम ्, िववाह]
The question parsing algorithm, while tolerant to some extent, is not fully robust to free
word order. An occurrence of िववाह word needs to be followed by the instrumental case
(ततृीया) word, followed by सह for it to be parsed correctly. Thus, if the question is changed
to अज ुर्नय िववाहः कया सह अभवत ्, it will get parsed correctly to yield [अज ुर्न, पनी, िकम]्.

6.3.2 Answering Errors
Out of the queries that correctly get parsed, following are the queries which we cannot find the
answer due to the inability of performing path queries.

• ऊिम र्ला दशरथय का → [दशरथ, िकम ्, ऊिम र्ला]
This question would have got answered only if there is a direct edge between दशरथ and
ऊिम र्ला. If there is no direct edge, but an edge between दशरथ and लमण exists along with the
edge between लमण and ऊिम र्ला, then this answer should have been found. Our inability to
pose it as a graph path searching query is the cause of this failure.

• हनमुतः िपता कः → [हनमुत ्, िपत,ृ िकम]्
We correctly parse this question and there exists a triplet [मारुित, िपत,ृ पवन]. However, as
the information that मारुित is another name of हनमुत ्is not present in the knowledge graph,
resulting in the failure to answer this question.

110

śloka sandhisamāsa split

अिनलय िशवा भाया र् तयाः पतुो मनोजवः। अिनलय िशवा भाया र् तयाः पतुः मनोजवः।
अिवज्ञातगितचवै वौ पतुाविनलय त॥ु२५॥ अिवज्ञातगितःचएव वौ पतुौ=अिनलय त॥ु२५॥
पयषूय िवदुः पतुमिृषं नानाऽथ दवेलम।् पयषूय िवदुः पतुम्ऋिषम न्ानाअथ दवेलम।्
वौ पतुौ दवेलयािप क्षमावतौ मनीिषणौ। वौ पतुौ दवेलयअिप क्षमावतौ मनीिषणौ।
बहृपतेत ु भिगनी वरी बमवािदनी॥२६॥ बहृपतःेत ु भिगनी वरी बमवािदनी॥२६॥
योगिसधा जगृकमसता िवचचार ह। योगिसधाः जगत्कृम्असता िवचचार ह।
पभासय त ु भाया र् सा वसनूामटमय ह॥२७॥ पभासय त ु भाया र् सा वसनूाम्अटमय ह॥२७॥

Table 6: śloka 25, 26, 27 from adhyāya 67 of ādi parvan in mahābhārata.

• परुोः कः वशंजः यय पतुः अज ुर्नः → [परुु, वशंज, िकम]्, [यद,् पतु, अज ुर्न]
Again, despite getting correctly parsed, since we cannot follow the “has-son” relationship
arbitrary number of times, this query cannot be answered.

6.3.3 Correct Answers despite Wrong Parsing
Interestingly, there are cases when despite the query being parsed incorrectly, the correct answer
exists in the result set. The following examples highlight two such cases.

• रावणय किनठतमः भाता कः → [रावण, भात,ृ िकम]्
The triplet is incorrectly formed, since we did not capture the information किनठतमः
(youngest). However, the correct answer, िवभीषण, being a brother of रावण, is captured in the
result set. The question is, thus, deemed to be answered correctly.

• भीमय अगजः कः आसीत ्→ [भीम, भात,ृ िकम]्
Similar to the previous question, we classify the formed triplet as incorrect, for missing the
quality ‘elder’. However, answers found do contain the correct answers यिुधिठर and कणर्.

6.4 Analysis of Errors in KG Triplets
We now take a look at in-depth analysis of some incorrect triplets retrieved by our method and
investigate the reasons behind the failure. For this purpose, we consider a small extract from
the corpus and follow the entire pipeline of forming the triplets.

Table 6 gives an extract containing three śloka (25, 26 and 27) from adhyāya 67 of the ādi
parvan in mahābhārata. Table 7, Table 8 and Table 9 contain the detailed analysis of these
śloka as well as a classification of the errors in the analysis.

6.4.1 Types of Errors
We now discuss the possible errors, as exemplified in the analysis tables 7, 8 and 9.

• AnalysisError:
This is an error in the analysis obtained from The Sanskrit Heritage Parser. For example,
the word भाया र् in śloka 25 is analysed as a form of भािर instead of a form of भाया र्. Thus, the
prātipadika identified is wrong. This also results in the other analysis details such as case,
gender and number, being wrong. It should be noted that words can be analyzed differently
in different contexts. For example, the word भाया र्, if analyzed standalone as a word, can get
analyzed correctly; however, in the current context, it results in an erroneous analysis.16

• OversplitError:
This is an error in the sandhi and samāsa splitter, where a word that should not have been
split is split. For example, in śloka 26, वरी is wrongly oversplit as वर and ी, and बमवािदनी

16Erroneous analysis of भाया र्: https://sanskrit.inria.fr/cgi-bin/SKT/sktreader.cgi?lex=SH&st=t&us=f&
cp=t&text=anilasya+zivaa+bhaaryaa+tasyaa.h+putra.h+manojava.h&t=VH&mode=p

111

Word Root Analysis Is-Noun Is-Verb Error

अिनलय अिनल [‘g.’, ‘sg.’, ‘m.’] True False
िशवा िशव [‘nom.’, ‘sg.’, ‘f.’] True False
भाया र् भािर [‘i.’, ‘sg.’, ‘f.’] True False AnalysisError
तयाः तद ् [‘g.’, ‘sg.’, ‘f.’] False False
पतुः पतु [‘nom.’, ‘sg.’, ‘m.’] True False
मनो जवः मनोजव [‘nom.’, ‘sg.’, ‘m.’] True False Corrected
अिवज्ञा अिवज्ञ [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
आत अत ् [‘pft.’, ‘ac.’, ‘pl.’, ‘2’] False True OversplitError
गितः गित [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
च च [‘conj.’] False False
एव एव [‘prep.’] False False
वौ व [‘acc.’, ‘du.’, ‘m.’] True False
पतुौ पतु [‘acc.’, ‘du.’, ‘m.’] True False
अिनलय अिनल [‘g.’, ‘sg.’, ‘m.’] True False
त ु त ु [‘conj.’] False False

Table 7: Analysis of śloka 25.

as बम and वािदन ्. Sometimes a word is erroneously oversplit by the analyser as well. Again,
in śloka 26, for example, वािदन ्is erroneously split as वा and आिदन ्.

• SandhiSamaasaError:
There can be error in analyzing the correct sandhi and samāsa in a word. In other words,
when a word is broken, the constituent words can be erroneous. For example, in śloka 27,
योगिसधा जगत ्is split as योग, िसधाः and जगत ्, where योगिसधा, in addition to being oversplit, is
also changed into plural form.

6.4.2 Extracting Triplets
After obtaining the analysis, when we proceed to extract triplets as mentioned, we tried using
4 different filters for extracting triplets. In every filter, the case of the subject word must be
sixth (षठी) and the gender of the object word must match with the gender of the predicate word.
Filters differ in the allowed positions of subject and object words relative to the predicate word
as well whether the number (वचन) of the object is matched or not.

Table 10 describe the different filters. Filter 1 is the superset of other filters and Filter 2 is
the superset of Filter 3 and Filter 4.

Through empirical evidence, we found that Filter 2, although being stricter than Filter 1, still
captures roughly the same number of triplets while reducing the errors. Filter 3 and Filter 4,
while exhibiting fewer mistakes, find fewer correct triplets as well. While we acknowledge that
such an analysis is required on a larger scale to decide among the filters, for our purposes, we
choose Filter 2 based on the empirical evidence, and proceed further.

6.4.3 Analysis of Incorrect Triplets
In this section, we take a look at some wrong triplets that were retrieved and the reasons behind
their retrieval.

• (पयषू, पतु, मनीिषन)्
śloka 26, listed in Table 6 contains two relationship words, पतुम a्nd पतुौ. The first one is used
in relation to दवेल who is the son of पयषू, and the triplet (पयषू, पतु, दवेल) is found correctly.
However, because of the presence of the second word पतुौ, which is actually used with दवेलय,
a wrong triplet (पयषू, पतु, मनीिषन)् is formed. Due to the same reason, (पयषू, पतु, क्षमावत)् is also

112

Word Root Analysis Is-Noun Is-Verb Error
पयषूय पयषू [‘g.’, ‘sg.’, ‘m.’] True False
िवदुः िवद ् [‘pft.’, ‘ac.’, ‘pl.’, ‘3’] False True
पतुम ् पतु [‘acc.’, ‘sg.’, ‘m.’] True False
ऋिषम ् ऋिष [‘acc.’, ‘sg.’, ‘m.’] True False
नाना नामन ् [‘adv.’] False False
अथ अथ [‘conj.’] False False
दवेलम ् दवेल [‘acc.’, ‘sg.’, ‘m.’] True False
वौ व [‘acc.’, ‘du.’, ‘m.’] True False
पतुौ पतु [‘acc.’, ‘du.’, ‘m.’] True False
दवेलय दवेल [‘g.’, ‘sg.’, ‘m.’] True False
अिप अिप [‘conj.’] False False
क्षमावतौ क्षमावत ् [‘acc.’, ‘du.’, ‘m.’] True False
मनीिषणौ मनीिषन ् [‘acc.’, ‘du.’, ‘m.’] True False
बहृपतःे बहृपित [‘g.’, ‘sg.’, ‘m.’] True False
त ु त ु [‘conj.’] False False
भिगनी भिगनी [‘nom.’, ‘sg.’, ‘f.’] True False
वर वर [‘voc.’, ‘sg.’, ‘m.’] True False OversplitError
ी ी [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
बम बमन ् [‘acc.’, ‘sg.’, ‘n.’] True False OversplitError
वा वा [‘conj.’] False False OversplitError
आिदनी आिदन ् [‘acc.’, ‘du.’, ‘n.’] True False OversplitError

Table 8: Analysis of śloka 26.

Word Root Analysis Is-Noun Is-Verb Error

योग योग [‘voc.’, ‘sg.’, ‘m.’] True False OversplitError,
AnalysisError

िसधाः िसध [‘acc.’, ‘pl.’, ‘f.’] True False OversplitError,
SandhiSamaasaError

जगत ् जगत ् [‘acc.’, ‘sg.’, ‘n.’] True False
कृम ् कृ [‘acc.’, ‘sg.’, ‘m.’] True False
असता असत [‘nom.’, ‘sg.’, ‘f.’] True False
िवचचार िवचर ् [‘pft.’, ‘ac.’, ‘sg.’, ‘3’] False True
ह ह [‘part.’] False False
पभासय पभास [‘g.’, ‘sg.’, ‘m.’] True False
त ु त ु [‘conj.’] False False
भाया र् भाय र् [‘nom.’, ‘sg.’, ‘f.’] True False
सा तद ् [‘nom.’, ‘sg.’, ‘f.’] False False
वसनूाम ् वस ु [‘g.’, ‘pl.’, ‘m.’] True False
अटमय अटम [‘g.’, ‘sg.’, ‘m.’] True False
ह ह [‘part.’] False False

Table 9: Analysis of śloka 27.

found. Since the context for finding relationships covers the full śloka, when a single śloka
contain multiple relationships, such errors occur. If sentences were instead used, the error
could have been reduced. However, there do not exist clear sentence boundaries.

113

Filter Position of subject Position of object Number (वचन) of object
1 Either side of predicate Either side of predicate Does not matter
2 Either side of predicate Either side of predicate Must match predicate
3 Before predicate After predicate Must match predicate
4 After predicate Before predicate Must match predicate

Table 10: Filters for extracting triplets.

Scenario Training Set Testing Set
S1 First 20% of adhyāya 1 Rest 80% of adhyāya 1
S2 First 20% of adhyāya 2 Rest 80% of adhyāya 2
S3 adhyāya 1 adhyāya 2
S4 adhyāya 2 adhyāya 1

Table 11: Training and testing scenarios on bhāvaprakāśa nighaṇṭu.

• (बहृपित, भिगनी, ी)
As discussed in Section 6.4.1, the word वरी gets oversplit wrongly into वर and ी, and
the split words are analysed separately, resulting in the wrong triplet. Even if this split
did not occur, we would have got वरी as the object in this triplet. This is wrong since
this is actually an adjective used for the sister of बहृपित. Since we currently do not have
any mechanism of distinguishing between nouns and adjectives, it would have resulted in
incorrect triplets.

We next examine some triplets that should have been found but were not found and the
reasons behind their non-retrieval.

• (अिनल, पनी, िशवा)
The relationship word that occurs in śloka 25 in Table 6 is भाया र्, which suffers an Anal-
ysisError and is identified as ततृीया of भािर instead of पथमा of भाया र्. Due to the root word
(पाितपिदक) itself being misidentified, it is not recognized as a relationship word and thus,
does not satisfy the filtering criterion. Consequently, the triplet (अिनल, पनी, िशवा) is missed.

• (पभास, पनी, बमवािदनी)
In śloka 27, भाया र् of पभास is referred to with a pronoun सा, which is connected to a noun in
the previous śloka. To correctly identify the triplet (पभास, पनी, बमवािदनी), we would need a
mechanism to connect pronouns to their proper subjects. We do not handle this currently.

6.5 Synonym Identification from bhāvaprakāśa nighaṇṭu
Questions for the bhāvaprakāśa are implicit, as we are considering only the synonymous re-
lationship. Therefore, the evaluation is performed on the synonym groups and synonym pairs
identification. We created ground truth for the first two adhyāya of bhāvaprakāśa nighaṇṭu.
adhyāya 1 contains 261 śloka, while adhyāya 2 contains 131 śloka. For each of these śloka,
we first identified if it is a synonym śloka. If it is so, we next extracted the list of synonymous
words contained in it.

6.5.1 Classification
Using the feature vectors obtained for each śloka, we used various classifiers to classify each
śloka as a synonym śloka or otherwise. We tried four practical scenarios of training and testing
set choices as described in Table 11.

114

Scenario Train Size Test Size P P ′ TP Accuracy Precision Recall F1
S1 52 209 84 56 42 0.73 0.75 0.50 0.60
S2 26 105 44 43 31 0.76 0.72 0.71 0.71
S3 261 131 54 45 36 0.79 0.80 0.67 0.73
S4 131 261 90 99 66 0.78 0.67 0.73 0.70

Table 12: Performance of classifiers in identifying synonym śloka.

False Positives (9) False Negatives (18)

कामरूपोभवा कृणा नपैाली नीलवण र्यकु ् शीखण्डं चदनं न ी भद शीतलैपिण र्कः
काश्मीरी किपलछाया कतरूी ितिवधा मतृा ॥६॥ गधसारो मलजयतथा च यिुतच सः ॥११॥
मिहषाक्षो महानीलः कुमदुः पम इयिप भद मुतच गुा च तथा नागरमुतकः
िहरण्यः पचमो ज्ञयेो गगु्गलुोः पच जातयः ॥३३॥ मुतं कटु िहमं गािह ितंत दीपनपाचनम ॥्९३॥

Table 13: Examples of errors in classification (scenario S3).

The size of training sets were chosen to be smaller than those of test sets to resemble the
real-world scenario where the ground truth can be created for only a small portion of the text,
and predictions are needed to be made on the rest.

Table 12 shows the performance of the best classifier under various scenarios in identifying
the śloka containing synonyms.

Table 13 shows some examples of wrongly classified śloka for the best performing scenario S3.

6.5.2 Synonym Identification
We next evaluate the performance of finding synonymous pairs from a synonym śloka. Table 14
shows the performance in identifying groups of synonymous substances. We say that a group of
substances is covered even if a single pair in the group is identified. The result shows that even
this has a scope for improvement.

Table 15 shows an example of a synonym śloka where none of the pairs are extracted correctly.
The correct synonyms are चिका, चम र्ही, पशमुहेनकािरका, निदनी, कारवी, भदा, वासपुपा, सवुासरा. We find
the pairs (कािरका, हत)ृ, (कािरका, भद), (कािरका, सपुप), (निदन ्, रिव), (भद, हत)ृ, (भद, सपुप), (सपुप, हत)ृ, none
of which are correct. The reasons for the errors are shown in Table 16. Almost all the nouns
are analysed incorrectly, resulting in the group being completely missed.

In addition to the errors discussed in Section 6.4.1, an additional error occurs here, that of
TextError. This refers to an error in the text corpus that we are working with. In particular,
the original śloka contains the word चिका while the corpus we are working with, has that word
split as चि and का, which results in this word not being analysed correctly. After correcting
this error manually, we now obtain a valid pair (चिका, भदा), thus covering this group.

We next analyse the finer errors that occur when some members of a synonymous group are
identified correctly, but not all. Table 17 shows the performance.

Table 18 shows a synonym śloka from adhyāya 1 (हरीतयािदवग र्ः).
This śloka contains a total of 11 synonyms. We find pairs of synonyms involving 9 out of

Synonym śloka Groups present Groups found Group coverage
adhyāya 1 90 87 60 0.69
adhyāya 2 54 53 39 0.74

Table 14: Group coverage in synonym pair identification.

115

Synonym śloka sandhisamāsa split

चि का चमर्ही च पशमुहेनकािरका। चि का चमर्ही च पशमुहेनकािरका।
निदनी कारवी भदा वासपुपा सवुासरा ॥९६॥ निदनी कारवी भदा वासपुपा सुवासराः ॥९६॥

Table 15: śloka 96 from adhyāya 1 of bhāvaprakāśanighaṇṭu and its sandhisamāsa split.

Word Root Analysis Is-Noun Is-Verb Error

चि चि [‘?’] False False TextError
का िकम ् [‘nom.’, ‘sg.’, ‘f.’] False False TextError
चमर् चम र्न ् [‘acc.’, ‘sg.’, ‘n.’] True False OversplitError
ही हतृ [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
च च [‘conj.’] False False
पशमुहेन पशमुहेन [‘voc.’, ‘sg.’, ‘n.’] True False OversplitError
कािरका कािरका [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
निदनी निदन ् [‘acc.’, ‘du.’, ‘n.’] True False AnalysisError
का िकम ् [‘nom.’, ‘sg.’, ‘f.’] False False OversplitError
रवी रिव [‘acc.’, ‘du.’, ‘m.’] True False OversplitError
भदा भद [‘nom.’, ‘sg.’, ‘f.’] True False
वा वा [‘conj.’] False False OversplitError
सपुपा सपुप [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
स ु स ु [‘?’] False False OversplitError
वासराः वासर [‘voc.’, ‘pl.’, ‘m.’] True False OversplitError

Table 16: Analysis of śloka 96.

these, synonym pairs involving 8 of which are correct. We show examples of some of the false
negatives and false positives among the pairs of synonyms identified.

• False Positive: (अमतृा, अवी)
The word अयथा is split wrongly as अवी and अथा, and are then analysed separately. This
results in both अमतृा and अवी being in the same case (पथमा) and same number (एकवचन), thus
getting wrongly marked as a synonymous pair.

• False Negative: (अभया, अमतृा)
The word अभया gets analysed as instrumental (ततृीया) case of अभा instead of nominative (पथमा)
case of अभया. This results in a case mismatch with अमतृा and the pair is not extracted as a
synonymous pair.

7 Conclusions and Future Work
In this paper, we have designed a framework to build a knowledge graph (KG) directly from
saṃskṛta texts, and use it for question-answering in saṃskṛta. Our framework has multiple
components and is based on rules and heuristics developed using the knowledge of grammar of
saṃskṛta language and structure of the text.

However, for almost all the components, the accuracy can be improved. Improvements on any
of these components by us or by others will make the system better. In future, we would like to
work on improving the modules in a systematic manner. The biggest source of improvement can
possibly come from a better word analyser. Usage of dictionaries, thesauri (such as amarakośa)
and Sanskrit WordNet will be explored to see if they can help in understanding the structure
of a word better. Crowd sourcing tools as well as human experts can also help refine some of

116

śloka Synonym śloka P P ′ TP Precision Recall F1
adhyāya 1 231 90 534 562 369 0.66 0.69 0.67
adhyāya 2 161 54 300 348 214 0.62 0.71 0.66

Table 17: Performance of finding synonym pairs.

Synonym śloka sandhi-samāsa split P P ′ TP

हरीतयभया पया कायथा पतूनाऽमतृा हरीतकीअभया पया कायथा पतूनाअमतृा 11 9 8हमैवययथा चािप चतेकी शयेसी िशवाः ॥६॥ हमैवतीअयथा चअिप चतेकी शयेसी िशवाः ॥६॥

Table 18: Example of wrong pairs from adhyāya 1 of bhāvaprakāśa nighaṇṭu.

the steps. We would also like to expand the question-answering framework to work with longer
questions that are not necessarily of the type factoid.

To conclude, we hope that this effort serves as a step towards the ultimate aim of automatically
building a full-fledged knowledge graph from a saṃskṛta corpus.

Acknowledgements
We thank Dr. Sai Susarla, Dean at Maharshi Veda Vyas MIT School of Vedic Sciences, Pune,
India, and his team, for sharing their expertise in āyurveda with us. We thank Shubhangi
Agarwal and Rujuta Pimprikar for the help in creating ground truth as well as providing valuable
feedback from time to time. We thank Dr. Kripabandhu Ghosh and Garima Gaur for the
discussions and valuable feedback. We thank our saṃskṛta teacher Pralay Manna for enabling
us in understanding the language better. We also thank the anonymous reviewers for their
comments and suggestions.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.

2007. DBpedia: A nucleus for a web of open data. In The Semantic Web, pages 722–735.

Mira Bhargava and Joachim Lambek. 1992. A production grammar for Sanskrit kinship terminology.
Theoretical Linguistics, 18(1):45–60.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: A collab-
oratively created graph database for structuring human knowledge. In ACM SIGMOD International
Conference on Management of data, pages 1247–1250.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In 24th International Conference on Computational Linguistics
(COLING).

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recur-
rent and convolutional neural networks. In Conference on Empirical Methods in Natural Language
Processing, pages 2754–2763.

Malhar Kulkarni, Chaitali Dangarikar, Irawati Kulkarni, Abhishek Nanda, and Pushpak Bhattacharyya.
2010. Introducing Sanskrit WordNet. In 5th Global Wordnet Conference (GWC 2010), pages 287–294.

Ora Lassila, Ralph R Swick, et al. 1998. Resource Description Framework (RDF) model and syntax
specification.

Sivaja S Nair and Amba Kulkarni. 2010. The knowledge structure in Amarakośa. In International
Sanskrit Computational Linguistics Symposium, pages 173–189.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. YAGO: A core of semantic knowledge.
In 16th International Conference on World Wide Web, pages 697–706.

117

Introduction to Sanskrit Shabdamitra: An Educational Application of
Sanskrit Wordnet

Malhar Kulkarni, Nilesh Joshi, Sayali Khare, Hanumant Redkar, Pushpak Bhattacharyya
Center for Indian Language Technology
Indian Institute of Technology Bombay

malharku@gmail.com, joshinilesh60@gmail.com, sayali.khare92@gmail.com,
hanumantredkar@gmail.com, pushpakbh@gmail.com

Abstract

This paper introduces a digital tool, viz., Sanskrit Shabdamitra, for learning and teaching
of Sanskrit in active classroom environment as well as in other formal and informal set-
up. It is based on an existing digital resource called Sanskrit Wordnet created at IIT
Bombay. Thus, this paper also describes a direct application of Sanskrit Wordnet in
particular, and Wordnet in general in the education domain. It describes the structure
and various features of Sanskrit Shabdamitra.

1 Introduction

Sanskrit Wordnet1 (SWN) was created at IIT Bombay as a major and unique lexical resource of
Sanskrit (Kulkarni et al., 2010a). Kulkarni (2017) describes this effort in detail and demonstrates
the contribution itmade to the digital lexical resources of Indian languages. The effort of enrich-
ing SWN continues and scholars have tried to study it from the point of view of various natural
language processing (NLP) tasks. Bhingardive et. al. (2014) developedwell researchedmethod
based on SWN to populate oneWordnet using another lexical resource and Redkar et. al. (2016)
have developed tool to populate one synset using two synsets with the help of SWN.Wordnet2
and IndoWordNet3 has been used at various NLP tasks and applications. One such application
is ‘IndoWordNet::Similarity’ developed by Bhingardive et. al. (2016) which measures seman-
tic similarity and relatedness between two synsets in IndoWordNet. Similarly, IndoWordNet
has been used for tasks such as Word Sense Disambiguation (Bhingardive and Bhattacharyya,
2017) for finding the most frequent sense using word and sense embeddings. This justifies the
importance of IndoWordNet for word sense disambiguation for Indian languages. Similar to
this, Sanskrit Wordnet can be used for the development of such tools, methods and utilities.
Furthr, SWN can be helpful in explaining तम (tatsama) and तव (tadbhava) words which ap-
pear in any Indian languages. In this way Wordnet as a resource can be useful in many NLP
tasks. Can Wordnet also be used as a base in creating an educational tool to teach and learn
language? YES. We found that Wordnet can certainly be used as a base to create a tool to teach
and learn Sanskrit. In this paper, in what follows, we elucidate how Sanskrit Wordnet can be
used to develop educational application for teaching and learning Sanskrit language. Thus, a
digital aid, Sanskrit Shabdamitra, has been introduced in this paper.
The paper is organized as follows - section 2 provides the literature survey; section 3 briefly

mentions the related work; section 4 introduces the Sanskrit Shabdamitra, its structure, and its
features in detail, explains how Shabdamitra enriches Wordnet, provides some applications;
next section concludes the paper; this is followed by the future work.

1http://www.cfilt.iitb.ac.in/wordnet/webswn/wn.php
2https://wordnet.princeton.edu/
3http://www.cfilt.iitb.ac.in/indowordnet/

118

2 Literature Survey
Sanskrit, belonging to the Indo-Aryan family of languages, is one of the ancient languages in the
world. There is a rich tradition of developing a vast vocabulary in Sanskrit literature (Kulkarni
et al., 2010a). Most of the languages in the Indo-European language family can be traced back
to Sanskrit (Kulkarni et al., 2010b). There are various grammatical features and properties of
Sanskrit which may not be present in other Indian languages (Redkar et al., 2014).
With the increase in the digital presence across the globe, content digitization and digital

language learning have been growing enormously. Vocabulary is a crucial part of language
learning. Learning Sanskrit vocabulary is one of the challenging tasks for any language learner.
There are several applications and platforms available for curriculum based education, but very
few are meant for language learning and active classroom. The Indian government is now sup-
porting digital education and has taken several steps in digital language education. Following
are government-driven platforms in digital language education:

• NCERT4 provides e-textbooks and supplementary books for students. It also provides
guidelines for teachers for effective teaching.

• NROER5 is a Pan-Indian collaborative platform for teachers, students and professionals
from various educational institutes. It allows uploading the digital content such as articles,
text, poems, etc. which can be publicly available to the internet users.

• Swayam6 is another government designed program, collaborating with several govern-
ment organisations, such as UGC7, AICTE8, NCERT, IGNOU9, etc. It covers courses from
secondary education to post graduation. It teaches subjects like English, Hindi, and San-
skrit through video lectures and provides reading material, self-assessment tests, etc., and
has an online discussion forum.

Apart from the above, there are some other non-government platforms engaged in digital
language education. They are as follows:

• Openpathshala10 is an online platform for Sanskrit language teaching using lessons and
video tutorials for learning Sanskrit grammar.

• pANini aShTaadhyaayii sUtra paaThaH11 contains the audio pronunciation of the entire
treatise on Sanskrit grammar (8 chapters of sūtras), called aṣṭādhyāyī by maharṣi pāṇini.

• shaale12 provides the traditional methods of teaching Sanskrit using videos, live streaming
(webcast), video on demand, audio documentation service, etc.

• Sanskrit Documents13 has the vast variety of documents which provides a collection of
various links to various repositories useful for Sanskrit language learning.

• Vyoma14 introduces a guide of Sanskrit to generate a sentence, viz., Sanskrit vocabulary
builder, Sanskrit pronunciation, Yogasutraparichaya, Saptāhastotra Saṅgrahaḥ, Sanskrit
games, Learn Sanskrit through Hindi and English, etc.

4http://ncert.nic.in/
5https://nroer.gov.in/
6https://swayam.gov.in/
7https://www.ugc.ac.in/
8https://www.aicte-india.org/
9http://www.ignou.ac.in/
10https://openpathshala.com/
11http://surasa.net/music/samskrta-vani/ashtadhyayi.php
12https://www.shaale.com/
13http://sanskritdocuments.org/learning_tools/index.php
14http://www.sanskritfromhome.in/

119

• learnsanskrit.org15 aims to teach Sanskrit grammar, providing a generative grammar guide
of Sanskrit.

• Push to learn16 is a platform where students learn vocabulary from the school’s course-
books. However, this plaform is not meant for Sanskrit.

• Spoken tutorial17 offers self-paced, multi-lingual courses. Anybody with a computer and
a desire for learning can access this platform.

• Robomate18 is a curriculum based language learning app which has interactive study ma-
terial for students like attractive video lessons.

• Byju’s19 is a platform for interactive learning consisting of video lessons for Science, Maths,
Economics and Business studies for school education. However, this platform does not
have language learning facility.

• Duolingo for Schools20 is a blended learning mate for the classrooms. Duolingo lessons
provide personalized feedback to each student and help them to get the most out of class-
room instruction. It also provides language specific class tips for teachers; such as phonetic
inventory of a language, morphology, syntactic and semantic information. However, this
tool does not facilitate Sanskrit language learning.

Other online resources for Sanskrit are bilingual dictionaries and thesauriwhich provide only
the meanings of the words, such as Monier-Williams Dictionary21, Apte’s Dictionary22, Spoken
Sanskrit Dictionary23, etc. Apart from these, there are some online dictionaries and thesauri in
Sanskrit viz., Amarakosha24, Sabda-kalpadruma25, Vacaspatyam26, etc. These online resources
have domain-specific ontology, i.e., mythological ontology. Whereas, Wordnet does has been
considered an upper ontology (Navigli and Velardi, 2004).
Most of these tools and platforms are in the form of text material, presentations, videos, les-

son plan, etc. However, they do not provide relational semantics. Majority of them are not
interactive and curriculum specific vocabulary learning is not available. It should be noted
that one common thing among all the above resources is that they are more focused on indi-
vidual learning and do not provide the active classroom learning. This is the desideratum as
the knowledge of words or concepts in Sanskrit is not available as per the school curriculum.
On the other hand, Sanskrit Shabdamitra, introduced here, is a digital language learning plat-
form designed for Sanskrit vocabulary learning as per the school curriculum and for individual
learning as well. This shall be explained in detail in section 4.

3 Related Work
Semantic relations of words helps in better understanding of new vocabulary (Lin, 1997). One
such rich lexical resource based on semantic relations is viz., the PrincetonWordNet 27, i.e., the
WordNet(Miller, 1995), has been explored for vocabulary learning and other language learn-
ing applications (Hu et al., 1998; Sun et al., 2011; Brumbaugh, 2015; Hiray, 2015). Recently,

15http://learnsanskrit.org
16http://pushtolearn.com/features
17https://spoken-tutorial.org
18https://roboestore.com/
19https://byjus.com/
20https://schools.duolingo.com
21http://www.sanskrit-lexicon.uni-koeln.de/monier/
22http://www.aa.tufs.ac.jp/~tjun/sktdic/
23http://spokensanskrit.org/
24https://sanskritdocuments.org/sanskrit/amarakosha/
25http://www.sanskrit-lexicon.uni-koeln.de/scans/SKDScan/2013/web/webtc2/index.php
26https://archive.org/details/vacaspatyam02tarkuoft
27https://wordnet.princeton.edu/

120

Figure 1: Shabdamitra as a friend of a word by providing word-meaning, example usage, pro-
nunciation, picture, synonyms, other grammatical features, etc.

HindiWordnet28 (HWN) has been used to build a teaching and learning digital aid, Hindi Shab-
damitra, for Hindi language education in formal (schools) and informal (self-learning) setups
(Redkar et al., 2017a). Additionally, the development of Marathi Shabdamitra, using Marathi
Wordnet as a resource, is also under process.
A study of current digital resources used by the various educational institutions was also

done as part of the background study. The outcome showed that there is a lack of quality
resources which can cover all aspects of language learning such as grammar, concepts, usage,
and pronunciations in an effective manner.
This motivated us to develop a digital aid, viz., Sanskrit Shabdamitra, that would fill this gap

for Sanskrit language teaching and learning in both formal and informal learning environment.

4 Sanskrit Shabdamitra: an educational application using Sanskrit Wordnet
4.1 Shabdamitra
Shabdamitra is an umbrella of multilingual digital aid of language teaching and learning for In-
dian languages. It is built using IndoWordNet (Bhattacharyya, 2010) as a resource and is related
toHindi Shabdamitra (Redkar et al., 2017b), which is an initiative of IIT Bombay, India29, explor-
ing the applications of wordnet in education domain. The term Shabdamitra and its meanings
were originally conceived by Malhar Kulkarni. The term Shabdamitra, शिमऽ is coined from
two words ‘shabda’, श, i.e., ‘a word’ and ‘mitra’, िमऽ, i.e., ‘a friend’; also means ‘the Sun’.
Therefore, Shabdamitra means a friend which helps in understanding a given word/concept.
Using the second meaning of the word ‘mitra’ mentioned above, the word Shabdamitra would
mean an illuminator of a word or concept. Thus, the function this tool aims to perform and the
goal it wants to achieve is aptly expressed by the word ‘Shabdamitra’ itself. Thus, this term
‘Shabdamitra’ can be called self-explanatory. (anvartha-saṁjñā). This has been visualised in
figures 1 and 2.
In Shabdamitra, the IndoWordNet data such as gloss, example sentence(s), synonyms and

lexico-semantic relations are used and further augmented in order to cater to language learning
needs. It is proposed to develop Shabdamitra for 18 Indian languages viz., Assamese, Bodo,
Bengali, Gujarati, Hindi, Kannada, Kashmiri, Konkani, Manipuri, Malayalam, Marathi, Nepali,
Odia, Punjabi, Tamil, Telugu, Urdu and Sanskrit, which are present in the IndoWordNet30.

28http://www.cfilt.iitb.ac.in/wordnet/webhwn/wn.php
29http://www.iitb.ac.in/
30http://www.cfilt.iitb.ac.in/indowordnet/

121

Figure 2: Shabdamitra as an illuminator for a word where it provides multiple senses, lexico-
semantic and ontological relations, etc. of the same word

Figure 3 illustrates the IndoShabdamitra for IndoWordNet languages.
Shabdamitra is a multifaceted model which acts as a platform, as a resource and as a brand

for the multilingual Indian scenario.

• As a Platform, various Indian languages which are present in IndoWordNet are made
available at a single place.

• As a Resource, the multilingual Shabdamitra can be easily developed using the shared and
not-shared data available in all the wordnets in the IndoWordNet database.

• As a Brand, all the wordnets can be branded under the umbrella of Shabdamitra which can
be seen in figure 3.

Synset Category
Common
Uncommon

Common in Indian languages
Region and Language Specific

Table 1: Classification of Synsets by Bhattacharyya (2010)

4.2 Sanskrit Wordnet
Wordnet is a lexical resource composed of synsets, lexico-semantic relations and ontological
information. Synset is the basic building block of a wordnet and it contains a gloss, an example
sentence and synonyms. Wordnet is linked by semantic relations like hypernymy-hyponymy
(is-a), meronymy-holonymy (part-of), troponymy (manner-of), etc. and by lexical relations like
antonymy, gradation, etc. (Bhattacharyya, 2017). IndoWordNet is a linked structure of word-
nets of 18 Indian languages from Indo-Aryan, Dravidian and Sino-Tibetan language families
(Bhattacharyya, 2010).

122

Figure 3: IndoShabdamitra: Shabdamitra of all IndoWordNet Languages

Sanskrit Wordnet is a part of IndoWordNet and is constructed using an expansion approach
in which Hindi wordnet is used as a source (Kulkarni et al., 2010a). As Sanskrit has both the
vedic as well as the modern literature, it has a greater scope of vocabulary than that of Hindi.
Therefore, though the Sanskrit wordnet was built using an expansion approach from HWN,
all Sanskrit synsets could not be developed. Hence, Sanskrit was developed in versions. And
this development is an ongoing process. In this approach, the following part-of-speech wise
method has been adapted for creating synsets (Kulkarni et al., 2010a):

Nouns
In the case of nouns in Sanskrit, a gender information is included in the word itself. In SWN, all
nouns are stored in nominative singular form, however other Indian WordNets store nouns in
their root forms. For example, दवेः (devaḥ), मितः (matiḥ), etc. are stored in nominative singular
form in SWN; while in HWN, दवे (deva), मित (mati), etc. will be stored in root form.

Adjectives
Adjectives in general have no gender of their own. However, in Sanskrit, they take the gender
of the nouns which they qualify. Hence, in the synsets of adjectives, only the root forms are
included. For example, भि (bhadra), िनम ल (nirmala) are stored in root form.

Adverbs
In SWN, adverbs are in their root from, however, it is observed that some of the adverbs have
case-ending suffixes. These suffixes indicate the closed form of the word in that particular case-
ending. Hence, these adverbs are regarded as frozen adverbs. In such cases, adverbs are stored
with their case-ending suffixes. For example, ितरकेेण (vyatirekeṇa) is stored as instrumental
singular form; रहिस (rahasi) is stored as locative singular form. While, साध ु (sādhu) is stored in
root form.

Verbs
In SWN, verbs are also stored in their root from. For example, भू (bhū); कृ (kṛ); are stored in root
form.

123

Apart from the above parts-of-speech information, other information such as gloss, ex-
amples are stored in the SWN database. Synsets in wordnet are interlinked by means of
conceptual semantic and lexical relations. A combination of the glosses given in traditional
dictionaries like Shabdakalpadruma31, vācyaspatyam 32 and the translation of the gloss of the
HWN synset is used to create SWN gloss for nouns, adjectives and adverbs. In the case of
verbs, though these traditional Sanskrit dictionaries contain etymology based glosses, they are
not appropriate for verbs which has ontology based wordnet structure. Hence, Navyanyāya
terminology has been adapted for verbal glosses to construct synsets (Kulkarni et al., 2010b).
All these data, features and properties of SWN can be effectively used and utilised for teach-

ing and learning Sanskrit. This is the base for building Sanskrit Shabdamitra which uses SWN
data for language education purpose. This has been explored in detail in the next section.

4.3 Sanskrit Shabdamitra: Structure, Features and Applications
Sanskrit Shabdamitra (सृंत शिमऽ) is a digital language teaching and learning tool for Sanskrit
language education. It uses Sanskrit Wordnet (SWN) as a resource. SWNwas originally devel-
oped for the research purpose in the area of natural language processing. Soon, it was realized
that this rich resource can be applied and used in developing educational applications. Sanskrit
Shabdamitra is one such application of SWN.
Shabdamitra has been devised by taking into consideration the various stakeholders of this

application. The major stakeholders of Sanskrit Shabdamitra are: Teachers, Students and Par-
ents. Teachers’ concern is that he/she should be able to convey the entire content to students
in all the possible nuances and make them competent in language learning, and prepare them
for examinations. Students’ concern is that he/she should learn and understand the content
as exhaustively as possible in all nuances and grow in terms of competence and be prepared
for examinations. Parents’ concern is that their child should get quality education and obtain
competitive results. All these stakeholders and their concerns were consideredwhile designing
this digital aid.
4.3.1 Structure
In this tool, SWNdata, features and properties are further augmented, simplified and presented
in the form of educational application in order to cater to language teaching and learning re-
quirements of Sanskrit language education.
SWN data such as gloss, example(s), synonyms, ontological information, lexico-semantic re-

lations, etc. forms the content of Sanskrit Shabdamitra. Some of this information is customized
and modified as per the language learning requirement and the learning levels of the individ-
uals. Apart from this, Sanskrit Shabdamitra has various other features which are stored in the
Shabdamitra database. The details of these features are presented in the next section.
Broadly, Sanskrit Shabdamitra has two types of interfaces, viz., Class-Wise and Level-Wise.

Following sections elaborate on the same:

Class-wise interface
Class-Wise interface is designed specifically for classroom or formal setup wherein Sanskrit
teacher uses this digital aid. Here, the data is presented in the interface, lesson by lesson. In
this interface, the teacher chooses a school curriculum board (CBSE, ICSE, State Board, etc.);
followed by a class to which he/she wants to teach; followed by a lesson/chapter. Once he/she
clicks on a chapter, all the words from that chapter appear in the order in which they appeared
in the textbook. While teaching, teacher can simply click on any of the word from the list and
the word-specific information with the same sense is displayed accordingly in the interface. In
most schools in India, Sanskrit is considered as second or third language. Hence, students have
Sanskrit as a subject in the secondary. Therefore, the provision is made to include Sanskrit as

31https://www.sanskrit-lexicon.uni-koeln.de/scans/SKDScan/2013/web/webtc2/index.php
32https://www.sanskrit-lexicon.uni-koeln.de/scans/VCPScan/2013/web/webtc2/index.php

124

a 2nd or 3rd language in the school setup. Figure 5 shows the class-wise interface of Sanskrit
Shabdamitra.

Level-wise interface
Level-Wise interface is designed for non-formal setup where any individual can learn Sanskrit
depending upon his/her prior knowledge and language acquisition capabilities. In this sce-
nario, Sanskrit Shabdamitra is focused on self-learning, which is as per the convenience of an
individual. However, we should take into the account the nature of mother tongue (L1) and
second language (L2) acquisition. Figure 6 shows an interface of Sanskrit Shabdamitra.
The level-wise interface is a big challenge as very few people have Sanskrit as their mother

tongue. The majority of people study Sanskrit as their second or even third language. Hence,
the levels are determined according to the knowledge of an individual. In order to get a better
idea of L1 acquisition, researchers have tried to explain how children progress from “no lan-
guage” or “blank slate” to their mother tongue. Whereas, for L2 acquisition, the process is more
complicated as learners already have the knowledge of their mother tongue (Ipek, 2009).
Hence, the level-wise interface is different for first and second language learners. Taking the

above scenario into the consideration and taking help from the National Curriculum Frame-
work (NCF)33 devised by NCERT - Government of India, and Common European Framework
of Reference (CEFR)34 by the Council of Europe the following levels for Sanskrit Shabdamitra
are determined:

• Novice ूारिकः (prārambhikaḥ) -
Novice is considered as a basic user where he/she is provided with the ba-
sics/fundamentals of language, like, varṇamālā (i.e., Sanskrit alphabet), word formation,
etc.

• Intermediate मािमकः (mādhyamikaḥ) -
Intermediate is an independent user who has mastered the basics of Sanskrit and can com-
municate simple and basic needs. Here, most frequent words are provided.

• Advanced ूवीणः (pravīṇaḥ) -
Advanced is a proficient user. Here concept meaning with grammatical information is
provided.

• Superior िवशषेः (viśeṣajñah) -
Superior is a well versed language user. Here, multiple senses along with their grammati-
cal and lexico-semantic features are provided.

Figure 4 depicts the levels of Sanskrit Shabdamitra.

4.3.2 Features
Sanskrit Shabdamitra has numerous features. Keeping standardization and language educa-
tion need as a focus, features of Sanskrit Shabdamitra have been designed. In Sanskrit Shab-
damitra, there are tool specific features and lexico-semantic features. Tool specific features are
designed considering the usability and accessibility of the tool while teaching and learning San-
skrit. Lexico-semantic features are features which are specific to the word in picture. Lexico-
semantic features are given in tables 2 and 3, there are two wide sections of features, viz., ‘De-
rived features’, which are derived from Sanskrit Wordnet and ‘Advanced features’, which are
additional features specially designed considering the properties of Sanskrit language along-
with the interest of various stakeholders of this digital aid. Sanskrit Wordnet does not provide

33http://www.ncert.nic.in/rightside/links/pdf/framework/english/nf2005.pdf
34https://www.babbel.com/en/magazine/how-and-why-to-determine-language-proficiency/

125

Figure 4: User levels of Sanskrit Shabdamitra

Figure 5: Class-Wise Interface for Sanskrit Shabdamitra

morphological features, however, Sanskrit Shabdamitra provides them. Table 2 shows the De-
rived features and Table 3 shows the Advanced features of Sanskrit Shabdamitra. These fea-
tures rendered along with input word (search word) in interface of the Sanskrit Shabdamitra.
Following are the details of these features.

Tool Specific Features
• Standardization: Standardization is an unique feature of Shabdamitra wherein all Shab-
damitra of all Indian languages are interlinked. This inter-linkage is established using a
unique identifier of a synset, called as a synset id. This feature has been inherited from
IndoWordNet in which different wordnets are interlinked on the basis of sysnet id. Hence
someone who is learning Hindi can see Sanskrit word for the same concept. Similarly,
common Sanskrit words in Hindi for e.g., animals, numbers, flowers, body parts, etc. are
unique across all the languages. This way we can attain standardization. Under standard-
ization, we can separate synsets as per the classification of synsets as shown in Table 1;
Similarly, illustrations can be shared across all the Indian languages.

• Varṇamālā: Sanskrit varṇamālā (alphabets) in Devanagari form is made available in the
interface. Here, each of the letter of varṇamālā is displayed in animated form. This can
help a learner in understanding the pattern of alphabet writing. Also, pronunciation of the

126

Figure 6: Level-Wise Interface for Sanskrit Shabdamitra

same is provided separately in the interface.

• Picture depiction: In Sanskrit Wordnet, there are several concepts which are difficult
to explain using the gloss itself. For example, the concept of चषकः (caṣakaḥ, a glass) in
Sanskrit is explained as -
कषायािदपानाथ म ् उपयंु मृाािदिभः िविनमतं पाऽम।् (kaṣāyādipānārtham upayuktaṃ mṛd-
dhātvādibhiḥ vinirmitaṃ pātram, a container for holding liquids while drinking).

Figure 7: Picture depicting the concept चषकः (caṣakaḥ, a glass)

This gloss seems to be difficult for lower level learners to understand the concept due to
the presence of some difficult words. However, as shown in figure 7, this can be easily un-
derstoodwith the help of a picture. Hence, pictures and illustrations help in differentiating
the fine-grained senses found in Wordnet.

• Audio pronunciation: Shabdamitra interface has two types of audio pronunciation viz.,
मम ्(mandam, slow) and सामाम ्(sāmānyam, normal). The slow-paced pronunciation
provides the syllable-based output wherein each syllable is pronounced slowly, one at a
time. This helps in understanding the sound structure of a syllable. Whereas for the normal

127

DERIVED FEATURES
1. Word (in a synset form):
2. Original Gloss (पिरभाषा)
3. Original Example (वाे ूयोगः उरणं वा):
4. Gender (िलम)
5. Synonyms (समानाथ शः)
6. Antonyms (िवाथ शः)
7. Holonymy (अवयवी)
8. Meronymy (अवयवः)
9. Hypernymy (पराजाितः)
10. Hyponymy (अपराजाितः)

Table 2: Derived Features of Sanskrit Shabdamitra

paced pronunciation, the words are pronounced at a normal pace. These audio features
provided with Shabdamitra help in understanding the pronunciation and getting audio
clarity of a word.

Derived Features
• Word (in a synset form) - The word which is stored and available in Sanskrit Wordnet
synset is shown in this field.

• Original Gloss (पिरभाषा) - If gloss is simple enough to understand then the original Sanskrit
Wordnet gloss having same sense and synset id is kept as it is and rendered in this field,
else a simplified gloss is rendered (This has been explained in the section ’Simplified Gloss’
below).

• Original Example (वाे ूयोगः उरणं वा) - Similarly, by default the original example sentence
is retained.

• Gender (िलम)् - A gender of theword is directly taken from the SanskritWordnet database.

• Synonyms (समानाथ शः) - Most frequent synonymous words of input word are displayed
here. Right now the tool allows to display maximum of 5 words.

• Antonyms (िवाथ शः) - Antonyms of input word are displayed in this field.

• Holonymy (अवयवी) - A semantic relation that holds between a whole and its parts.

• Meronymy (अवयवः) - Relation between lexical units where the objects, etc., denoted by one
are parts of those denoted by other.

• Hypernymy (पराजाितः) - A semantic relation between two synsets to capture super-set hood.

• Hyponymy (अपराजाितः) - A semantic relation between two synsets to capture sub-set hood.

Advanced Features
• Word (inflected form) - This particular feature is specific to a class-wise interface wherein
an input word (i.e., word appeared in the textbook) which is having an inflected form is
displayed.

• Word [in root form] (ूाितपिदकम)् - This is applicable only to nouns which are in nominative
singular form. Here, root word of the noun is displayed.

128

ADVANCED FEATURES
1. Word (inflected form)
2. Word [in root form] (ूाितपिदकम)्
3. Simplified Gloss (पिरभाषा)
4. Simplified Example (वाे ूयोगः उरणं वा)
5. Type of Noun (संायाः ूकारः)
6. Type of Adjective (िवशषेण ूकारः)
7. Type of Verb (िबयायाः ूकारः)
8. Type of Adverb (िबयािवशषेण ूकारः)
9. Case (िवभिः)
10. Lakāra (लकारः)
11. Person (पुषः)
12. Number (वचनम)्
13. Affix, Suffix (ूयः)
14. Preposition, Prefix (उपसग ः)
15. Accent (र:)
16. Dhātuprakāraḥ (धात ुू कारः)
17. Gaṇaḥ (गणः)
18. Padam (पदम)्
19. With Augment ‘इ्’
20. Transitivity (कम कम)्

Table 3: Advanced Features of Sanskrit Shabdamitra (feature numbers 1, 2, and 9 to 19 are
morphological features)

• Simplified Gloss (पिरभाषा) - Concepts which are difficult to understand are simplified.
For example, in SWN for a word ‘अः’ (akṣaḥ) the original gloss is ‘का वा अिनः
आयताकृितघनः यने तूकाराः दीि’ (kāṣṭhasya vā asthinaḥ āyatākṛtighanaḥ yena dyūtakārāḥ
dīvyanti, a cubical shaped piece made of wood or bone used by gamblers for playing).
Such a gloss, being too elaborate and difficult to follow at the beginner’s level, has been
simplified to: आयताकृितघनः यने तूकाराः दीि (āyatākṛtighanaḥ yena dyūtakārāḥ dīvyanti, a
cubical shaped piece used by gamblers for playing).

• Simplified Example (वाे ूयोगः उरणं वा) - Similarly, examples are simplified.

• Type of Noun (संायाः ूकारः) - If the input word is a noun then it is assigned with the pre-
scribed types of nouns. This information is usually taken from ontological database of
IndoWordNet.

• Type of Adjective (िवशषेण ूकारः) - If the input word is an adjective then it is assigned
with the prescribed types of adjectives. This information is usually taken from ontological
database of IndoWordNet.

• Type of Verb (िबयायाः ूकारः) - If the input word is a verb then it is assigned with the pre-
scribed types of verbs. This information is usually taken from ontological database of In-
doWordNet.

• Type of Adverb (िबयािवशषेण ूकारः) - If the input word is an adverb then it is assigned
with the prescribed types of adverbs. This information is usually taken from ontological
database of IndoWordNet.

129

• Countability (गणनीयता) - Nouns can be either countable or uncountable. Accordingly, the
countability is assigned to the nouns. Countable nouns are those that refer to something
that can be counted. On the other hand nouns which do not typically refer to things that
can be counted, are Uncountable nouns 35.

• Case (िवभिः) - The inputword can belong to any of the eight cases. They are listed as below:
– Nominative - ूथमा (prathamā)
– Accusative - ितीया (dvitīyā)
– Instrumental - ततृीया (tṛtīyā)
– Dative - चतथु (caturthī)
– Ablative - पमी (pañcamī)
– Genitive - षी (ṣaṣṭhī)
– Locative - समी (saptamī)
– Vocative - सबंोधन (saṁbodhana)

• Lakāra (लकारः) - This is verb specific property of a word which helps in identifying the
tense, aspect and modality of a word. The input word can belong to any of the 10 types of
lakāra. They are listed as below:
– laṭ - लट ्(laṭ)
– laṅ - लङ् (laṅ)
– loṭ - लोट ्(loṭ)
– vidhiliṅ - िविधिलङ् (vidhiliṅ)
– āśīrliṅ - आशीलङ् (āśīrliṅ)
– liṭ - िलट ्(liṭ)
– luṭ - ट ्(luṭ)
– luṅ - ङ् (luṅ)
– lṛṭ - लृट ्(lṛṭ)
– lṛṅ - लृङ् (lṛṅ)

• Person (पुषः) - This is a verb specific property of a word wherein the verb can appear in
the sense of person viz. the first (उमः), second (ममः) and third (ूथमः) (Pāṇini and Vasu,
1962) [1.4.101]

• Number (वचनम)् - Inflectional category basically distinguishing reference to one individual
from reference to more than one.

• Affix, Suffix (ूयः) - There are six main kinds of affixes given in Sanskrit grammar viz.,
सपु , ितङ,् कृत ्, तित, धात ुू यः [(i.e. सन ्, प ्, etc.)] and ीूयः. Right now, in Sanskrit
Shabdamitra only first 3 types of affixes i.e. सपु ्, ितङ,् कृत a्re shown.

• Preposition, Prefix (उपसग ः) - Theword उपसग originallymeant only ‘a prefixedword’. These
prefixes are always used along with a verb (Abhyaṅkara and Shukla, 1977) [pg 88]

• Accent (र:) - This property is possessed only by vowels and not by consonants (Ab-
hyaṅkara and Shukla, 1977) [pg 438]. Accents are basically found in vedic texts. Except
traditional schools, vedic texts are not part of the school syllabus viz., CBSE, ICSE, etc.
Hence, accents are not introduced in primary level of Sanskrit Shabdamitra. However,
words with accents shall be introduced in advanced levels. Following are the types of ac-
cents:

35https://www.lexico.com

130

– उदाः the acute accent defined by Panini (Pāṇini and Vasu, 1962) [1.2.29]. The acute is
the prominent accent in a word (Abhyaṅkara and Shukla, 1977) [pg 81]. According to
the position in the word, the acute accent has following sub-types:
* आदुाः a word beginning with an acute accent i.e. which has got the first vowel
accented acute.

* मोदाः the acute accent to the middle vowel which is neither the initial nor the
final.

* अोदाः a word with its last vowel accented acute.
– अनदुाः the grave accent defined by Panini (Pāṇini and Vasu, 1962) [1.2.30].
– िरतः the circumflex accent defined by Panini (Pāṇini and Vasu, 1962) [1.2.31].

• Dhātuprakāraḥ (धात ुू कारः) - There are different types of root verb as follows:

– औपदिेशकधातःु (पािणनीयधातपुाठे उपिदाः) Panini has given a long list of roots under ten groups
named as औपदिेशकधातःु or primary roots.

– आदिेशकधातःु (सनाािदधातवः). There are two types of them, they are as follows:
* roots derived from roots. These are classified into three types:
· causative (िणज)
· desiderative (स)
· intensive (यङ)

* roots derived from nouns.
– विैदकधातःु roots found in vedic literature.
– सौऽधातःु roots mentioned specifically in paninian rule only.

• Gaṇaḥ (गणः) - There is a long list of roots under the following ten groups. They are as
follows:
– ािदगणः (bhvādigaṇaḥ)
– अदािदगणः (adādigaṇaḥ)
– जहुोािदगणः (juhotyādigaṇaḥ)
– िदवािदगणः (divādigaṇaḥ)
– ािदगणः (svādigaṇaḥ)
– तदुािदगणः (tudādigaṇaḥ)
– धािदगणः(rudhādigaṇaḥ)
– तनािदगणः (tanādigaṇaḥ)
– ािदगणः (kryādigaṇaḥ)
– चरुािदगणः (curādigaṇaḥ)

• Padam (पदम)् - A technical term for the affixes. There are three types of padam:

– parasmaipadam परपैदम t्erm used in grammar with reference to the personal affixes
ित (ti),तः (ta), etc.

– ātmanepadamआनपेदम a् technical term for the affixes त (ta), आताम ् (ātām), etc.
– ubhayapadam उभयपदम ्a technical term in which a specific group of verbs are from
both parasmaipada and aatmanepada (Abhyaṅkara and Shukla, 1977) [pg 92]

• With Augment ‘इ्’ - Here इ (i) is prefixed in the case of root.
– अिनट ्(aniT) roots अिनट ्does not allow the augment इ् to be prefixed.
– सटे ्roots सटे ्always allows the augment इट ्to be prefixed.
– वटे ्roots optionally admit the application of the augment इ.

131

CBSC Syllabus All words Unique words
Class VI 1499 813
Class VII 2655 1604
Class VIII 3072 1987
Class IX 2701 1814
Class X 2902 1989
Total 12829 8207

All class
unique words 6784

Table 4: Sanskrit word-collection statistics

• Transitivity (कम कम)् - karmakatvam can be one among the two as follows:

– सकमकः sakarmakaḥ, transitive
– अकमकः akarmakaḥ, intransitive

4.3.3 Shabdamitra Enriches Wordnet
It is noticed that the development of Sanskrit Shabdamitra leads to the enrichment of SWN.
It is a two-way process in which SWN helps Sanskrit Shabdamitra by providing the resource,
while Sanskrit Shabdamitra helps SWN by providing additional words and properties, hence
enriching the same. Table 4 depicts the count of words which are collected and unique words
from classes VI to X under the CBSE board.

4.3.4 Applications
There are various applications of Sanskrit Shabdamitra. Some of them are listed as below:

• Sanskrit Shabdamitra is an educational tool for teaching and learning Sanskrit vocabulary.

• It also acts as a teaching and learning aid for teachers in school setup.

• It can also be used for testing the Sanskrit language knowledge of an individual.

• This tool can be of great help for conducting and preparing Sanskrit competitive exams.

• It can be used to explain tatsama and tadbhava words in other languages.

5 Conclusion
In this paper, how Sanskrit Wordnet can be used for developing educational application has
been explained. It is also demonstrated how a semantically rich lexical resource like Wordnet,
originally developed for research purpose can be remodeled for practical usage in education
domain.
Sanskrit Shabdamitra is one such comprehensive e-learning aid which helps in learning San-

skrit language, pronunciation, grammar and understanding the concepts through images, def-
inition and examples. It caters to a wider range of audience ranging from school children to
individual learners at different levels, i.e., from novice to the superior. The tool, Sanskrit Shab-
damitra presented here is amulti-modal, multi-layered Sanskrit language teaching and learning
aid which can be used for formal and informal learning environments. Further, Shabdamitra
acts as a platform, as a resource as well as a brand. It helps in enriching the Sanskrit Wordnet
and vice versa.

132

6 Future Work
In Future, we plan to incorporate question answering system which can help in understanding
the knowledge of the user, also which can help in understanding the level at which he can start
learning Sanskrit. Also, the tool will be improved with the inclusion of gamification, bilingual
as well as multilingual learning and teaching under Shabdamitra platform.

Acknowledgements
Wewould like to thank the entire Hindi Shabdamitra Team; Center for Indian Language Tech-
nology (CFILT), and Indian Institute of Technology Bombay (IITB) for providing us necessary
resource and support. We further thank TCTD, IIT Bombay36 for providing the necessary sup-
port. Finally, we thank reviewers for their comments, positive remarks and encouragements.

References
K.V. Abhyaṅkara and J.M. Shukla. 1977. A Dictionary of Sanskrit Grammar. Number no. 134 in A
dictionary of Sanskrit grammar. Oriental Institute.

Pushpak Bhattacharyya. 2010. Indowordnet. In Proceedings of Lexical Resources Engineering Confer-
ence (LREC), Malta.

Pushpak Bhattacharyya. 2017. Indowordnet. In The WordNet in Indian Languages, pages 1–18.
Springer.

Sudha Bhingardive and Pushpak Bhattacharyya. 2017. Word sense disambiguation using indowordnet.
In The WordNet in Indian Languages, pages 243–260. Springer.

Sudha Bhingardive, Tanuja Ajotikar, Irawati Kulkarni, Malhar Kulkarni, and Pushpak Bhattacharyya.
2014. Semi-automatic extension of sanskrit wordnet using bilingual dictionary. In Proceedings of the
Seventh Global Wordnet Conference, pages 324–329.

Sudha Bhingardive, Hanumant Redkar, Prateek Sappadla, Dhirendra Singh, and Pushpak Bhat-
tacharyya. 2016. Indowordnet:: Similarity computing semantic similarity and relatedness using in-
dowordnet. In Global WordNet Conference, page 39.

Heidi Brumbaugh. 2015. Self-assigned ranking of L2 vocabulary: using the Bricklayer computer game
to assess depth of word knowledge. Ph.D. thesis, Arts & Social Sciences:.

Amit C. Hiray. 2015. Teaching and Learning of EAP Vocabulary: A Web-based Integrative Approach
at the Tertiary Level in India. Ph.D. thesis, Dept. of HSS, IIT Bombay.

X Hu, AC Graesser, Tutoring Research Group, et al. 1998. Using wordnet and latent semantic analysis
to evaluate the conversational contributions of learners in the tutorial dialog. In Proceedings of the
international conference on computers in education, volume 2, pages 337–341.

Hulya Ipek. 2009. Comparing and contrasting first and second language acquisition: Implications for
language teachers. English Language Teaching, 2(2):155–163.

Malhar Kulkarni, Chaitali Dangarikar, Irawati Kulkarni, Abhishek Nanda, and Pushpak Bhattacharyya.
2010a. Introducing sanskrit wordnet. In Principles, Construction and Application of Multilingual
WordNets, Proceedings of the 5th GWC, edited by Pushpak Bhattacharyya, Christiane Fellbaum and
Piek Vossen, Narosa, page 257–294. Narosa Publishing House, New Delhi.

Malhar Kulkarni, Irawati Kulkarni, Chaitali Dangarikar, and Pushpak Bhattacharyya. 2010b. Gloss
in sanskrit wordnet. In Proceedings of Sanskrit Computational Linguistics, pages 190–197. Berlin:
Springer-Verlag / Heidelberg.

Malhar Kulkarni. 2017. Sanskrit wordnet at indian institute of technology (iitb) mumbai. In The Word-
Net in Indian Languages, pages 231–241. Springer.
36http://www.tatacentre.iitb.ac.in/

133

Chih-Cheng Lin. 1997. Semantic network for vocabulary teaching. Journal of National Taiwan Normal
University, (42):43–54.

GeorgeAMiller. 1995. Wordnet: a lexical database for english. Communications of theACM, 38(11):39–
41.

Roberto Navigli and Paola Velardi. 2004. Learning domain ontologies from document warehouses and
dedicated web sites. Computational Linguistics, 30(2):151–179.

Pāṇini and Srisa Chandra Vasu. 1962. The Ashṭādhyāyī of Pāṇini. Motilal Banarsidass.

Hanumant Redkar, Jai Paranjape, Nilesh Joshi, Irawati Kulkarni, Malhar Kulkarni, and Pushpak Bhat-
tacharyya. 2014. Introduction to synskarta: An online interface for synset creation with special ref-
erence to sanskrit. In 11th International Conference on Natural Language Processing (ICON-2014),
Goa, India, page 229.

Hanumant Redkar, Nilesh Joshi, Sandhya Singh, Irawati Kulkarni, Malhar Kulkarni, and Pushpak Bhat-
tacharyya. 2016. Samāsa-kartā: An online tool for producing compound words using indowordnet.
In 8th Global WordNet Conference.

Hanumant Redkar, Sandhya Singh, Meenakshi Somasundaram, Dhara Gorasia, Malhar Kulkarni, and
Pushpak Bhattacharyya. 2017a. Hindi shabdamitra: A wordnet based e-learning tool for language
learning and teaching. In Proceedings of the 4th Workshop on Natural Language Processing Tech-
niques for Educational Applications (NLPTEA 2017), pages 23–28, Taipei, Taiwan, December. Asian
Federation of Natural Language Processing.

Hanumant Redkar, Nilesh Joshi, Sayali Khare, Lata Popale, Malhar Kulkarni, and Pushpak Bhat-
tacharyya. 2017b. Hindi shabdamitra: A wordnet based tool for enhancing teaching-learning pro-
cess. In Proceedings of the 14th International Conference on Natural Language Processing (ICON
2017), Jadavpur University, Kolkata, India, December.

Koun-Tem Sun, Huang Yueh-Min, and Liu Ming-Chi. 2011. A wordnet-based near-synonyms and
similar-looking word learning system. Journal of Educational Technology & Society, 14(1):121.

134

Vaijayantīkośa Knowledge-Net

Aruna Vayuvegula∗, Satish Kanugovi†, Sivaja S Nair‡Shivani V§and Mahalakshmi¶
Karnataka Samskrit University

Bangalore, India
33aruna@gmail.com, satishk.rao@gmail.com,

sivaja.s.nair@gmail.com, shivani.ksu@gmail.com and prasmax@gmail.com

Abstract
A kośa (lexicon) is a literary work that provides a comprehensive understanding of words
by arranging them along with their synonyms and other words that are semantically
related. Its format has been designed to include not just ontological classification, but
to give a holistic idea of a concept represented by the word. This allows a thorough
understanding of the words, and also the knowledge they embody. Vaijayantīkośa is a
popular Sanskrit lexicon that contains words from spoken language as well those used
in Vedic literature. To facilitate dissemination of this knowledge, a web-based tool,
Vaijayantīkośa Knowledge Net, is created for easy access and analysis of the words in
the kośa. The objective of the tool is to provide information to researchers from different
fields of study to explore the knowledge contained in the kośa with the help of synsets
and ontological structure.

Key words: Vaijayantīkośa, Synset, Ontology, KnowledgeNet, Semantic relations

1 Introduction
Sanskrit is rich with domain-specific and subject-specific kośa literature. They are written in
verse format enabling them to be memorized easily by students. Generally kośa, in the Indian
tradition of knowledge representation, is a grouping of words with semantic relations to
provide comprehensive understanding of the word and its ontological classification. The
ontological classification and knowledge structure in Sanskrit kośas have been described in
detail by Kulkarni, A (2010).

Patkar (1981) in his book “History of Sanskrit Lexicography”, lists at least 81 lexicons that
were written in Sanskrit between 400 BC and 1800 AD. Vogel (1975) in his work, ‘Indian
Lexicography’ details the characterization of Indian lexica and lists down over forty unique
dictionaries, many special, bilingual and multilingual dictionaries. Unfortunately, many of
these works have been lost and we are left with very few of these treasures. Hence, there is a
need to ensure that the existing lexicons are well-preserved for posterity and technology can be
a great asset to achieve this goal.

Amarakośa is the most authoritative and ancient thesaurus of Sanskrit. There have been
several commentaries and translations of the lexicon (Patkar, 1981, pp. 19-21) both in Indian
as well as foreign languages. In recent times, it has also captured the interest of computational
linguists. Nair, in her PhD thesis (Nair, 2011) has detailed the knowledge structure of
Amarakośa and developed the tool, Amarakośa Knowledge Net (AKN), that systematically
represents the links between words based on a structured table in a dynamic manner. She has
suggested in her thesis that AKN can serve as a model for developing tools for other kośas.

As part of the Post-graduate diploma in Sanskrit computational linguistics program, we take
this suggestion forward and develop the Vaijayantīkośa Knowledge Net (VKN) tool to capture

135

the knowledge structure of Vaijayantīkośa. The paper introduces Vaijayantīkośa and details the
different aspects of the VKN development in the following sections.

2 Vaijayantīkośa (VK)

VK is written by Yādavaprakāśa between 10th and 11th century (Bühler, 1887). He lived in
the southern part of India, near the present day Kanchipuram in Tamilnadu (Oppert, 1893, p.
2). VK not only has a rich vocabulary of words for common usage, it also has a large number
of terms from the Vedas.

Though there are many manuscripts on VK, in different Indian languages, none of them is
complete, except one manuscript in Malayalam language. (Oppert, 1893, pp. 3-4).
For the purpose of this work, we have referred to the following two texts of VK.

1. The Vaijayantī of Yādavaprakāśa compiled by Gustav Oppert
This version has introduction by Gustav in English and an elaborate section of vocabulary
with meanings in English. Gustav has painstakingly referred to 11 manuscripts and
consolidated all the kāṇḍas as one entity (Oppert, 1893).

2. Vaijayantīkośa compiled by Sri. Pandit Haragovindashastri.
This version has introduction by Pandit Haragovindashastri in Hindi and appears, to a
large extent, based on Gustav Oppert’s work itself. He gives a brief commentary on the
uniqueness of the lexicon and adds glossary of words at the end with references to the ślokas
where the words appear (Haragovindashastri, 1971).

Bühler (1887) gives an overview of VK, its structure and information about its author.
Kulkarni refers to VK while giving an overview of lexicographic traditions in India and
Sanskrit (Kulkarni, 2010). Kaur also touched upon VK through a taxonomical analysis of
early Sanskrit literature (Kaur & Singh, 2018). Vogel touches upon VK while chronicling
Indian Lexicography and gives brief details about the style and classification adopted by the
author (Vogel, 1975). Some regional scholars have also referred to VK in their works. For
example, Mallinatha, in Amarapadapārijāta (commentary on Amarakośa) provides close to 212
citations from VK (Nair, 2011).

For this project, the compilation of VK by Gustav Oppert has been taken because of the
comprehensiveness of his work as well as the detailed vocabulary of words with meanings in
English.

2.1 Structure of VK
The author, Yādavaprakāśa has arranged the words into kāṇḍas and adhyāya�s based on a clear
ontological structure. The kāṇḍas are named according to the major topic covered. For
example, the antarikṣakāṇḍa consists of all the words related to the sky, universe, astronomy,
astrology etc.

Each kāṇḍa is further divided into adhyāya�s with semantically related words, arranged together
according to context, in the form of ślokas. The classification is detailed in the Figure 1.

1. VK consists of nearly 20000 entries of words listed in verse form.

2. It begins with a maṅgalaśloka followed by nine and a half verses of paribhāṣaślokas which
provide pointers to decode the gender information of the words.

ʒीपुʁपुसंकं Ǻलɣं सɡीणȂ तɧ पɪधा।

136

नृʒी नृषȘडȬषȘडʒी िɑǺलɣं वाȏयǺलɣकम्॥१.१.३॥1

......................................
समासे ȭयःु पृथक् सवǼ शȡदा बहुवचोऽȝतके॥१.१.५॥

More rules for interpreting the liṅga (gender) of the words are described in 58 ślokas of
Liṅgasaṅgrahādhyāya (of Śeṣakāṇḍa).

3. There are two major divisions of the kośa - Paryāyabhāga (synonymous words) and
Nānārthabhāga (polysemous words).

4. There are five kāṇḍas under Paryāyabhāga and three under Nānārthabhāga.

5. The kāṇḍas are further divided into adhyāya�s; they are 43 in total.

6. The structure of VK is represented below (Figure 1).

Figure 1: Classification of VK

7. Ślokas in VK contain words, their synonyms and meanings. In some cases, probably where
the author found it necessary, information pertaining to gender, brief description of the
term may also be included.

8. VK emphasizes understanding a concept at greater depth and precision.

2.1.1 Semantic Arrangement of Words in VK
In VK, the kāṇḍas are arranged based on a particular theme. Kāṇḍas are further divided into
adhyāyas which are based on sub-themes. Adhyāyas contain ślokas that mostly follow semantic
order with occasional violations. Ślokas contain words that are related to a concept. A given
word is typically followed with its synonyms and subsequently other relations, like
प˃त-पșनीभावः (husband – wife relation), जȝय-जनकभावः (child – parent relation), ȭव-ȭवािमभावः
(owner – property relation), सेȪय-सेवकभावः (lord - servant relation), धमȁ-धȺमभावः (property -
locus relation), गुण-गुʺणभावः (quality - qualifier relation) etc. For example, in concept Viṣṇu,
first 53 words form a synset. Subsequently, the author lists words that refer to powers of
Viṣṇu. They are followed by possessions of Viṣṇu and so on. Nevertheless, there is a pattern
that perhaps reflects the logic of the times it was written.

Given below is the example of the word how Viṣṇu is dealt in VK.

1Śloka reference: The position of a śloka in the VK is represented numerically as x.y.z, where x=adhyāya
number, y = kāṇḍa number in the adhyāya, and z = the śloka number in the kāṇḍa. For example in this śloka
1.1.3.

137

Example 1: Concept of िवȬणःु
The ślokas 1.1.10 to 1.1.38 from ādidevādhyāya of svargakāṇḍa describe the concept of Viṣṇu
with different relations. See Figure 2.
field 1 : word in sanskrit, field 2 : English equivalent in (), field 3 : number in synset in (), field
4 : kāṇḍa.adhyāya.śloka in ()

िवȬणःु (epithet of Viṣṇu)(53)(1.1.10 - 1.1.15)
वȬैणवी (power of Viṣṇu)(9)(1.1.16)
कौȭतुभः (jewel of Viṣṇu)(1)(1.1.17)
ȅीवșसः (mark on Viṣṇu)(1)(1.1.17)
नȝदकः (sword of Viṣṇu)(1)(1.1.17)
शाɣȁ ः (bow of Viṣṇu)(1)(1.1.17)
पाɪजȝयम् (conch of Viṣṇu)(1)(1.1.17)
सुदशȁनम् (discus of Viṣṇu)(1)(1.1.17)
कौमोदकɃ (mace of Viṣṇu)(1)(1.1.18)
नरʸसहः (incarnation of Viṣṇu)(1)(1.1.18)
वामनः (incarnation of Viṣṇu)(10)(1.1.19 - 1.1.20)
परशुरामः (incarnation of Viṣṇu)(2)(1.1.20)
ȅीरामः (incarnation of Viṣṇu)(15)(1.1.20 - 1.1.24)
बलभɒः (incarnation of Viṣṇu)(20)(1.1.22 - 1.1.24)

संवतȁकम् (Plough of Balabhadra)(1)(1.1.24)
सौनȝदनम् (pestle of Balabhadra)(1)(1.1.25)

कृȬणः (incarnation of Viṣṇu)(10)(1.1.25 - 1.1.26)
दाʕकः (Charioteer of Kriṣṇa)(1)(1.1.26)
वसुदेवः (father of Kriṣṇa)(3)(1.1.26)

मȝमथः (god of love, son of Viṣṇu)(25)(1.1.27 - 1.1.29)
अिनʕɺः (son of Manmatha)(3)(1.1.29)

नरनारायणः (incarnation of Viṣṇu)(2)(1.1.30)
हयɎीवः (incarnation of Viṣṇu)(2)(1.1.30)
आिदशेषः (incarnation of Viṣṇu)(1)(1.1.30)
Ȫयासः (incarnation of Viṣṇu)(6)(1.1.30)
दȇाɑेयः (incarnation of Viṣṇu)(1)(1.1.31)
कȥȧकः (incarnation of Viṣṇu)(1)(1.1.31)
किपलः (incarnation of Viṣṇu)(3)(1.1.31)
Ȫयासः (incarnation of Viṣṇu)(6)(1.1.31- 1.1.32)
बुɺः (incarnation of Viṣṇu)(32)(1.1.32 - 1.1.35)
लȷमीः (wife of Viṣṇu)(10)(1.1.36)
गʕडः (vehicle of Viṣṇu)(12)(1.1.37 – 1.1.38)

Figure 2: Relations of Viṣṇu

138

Example 2: Concept of कालः
In VK, the reference to kāla is from śloka 2.1.52 to 2.1.54, which is a total of 43 words in the
jyotiradhyāya of antarikṣakāṇḍa. The concept of kāla starts with the smallest unit of time
which is referred to as तुिट: (moment). Subsequently, higher units of time are mentioned as
depicted below:
कालः (time)(3)(2.1.52)

तुिट: (moment)(2)(2.1.52)
लȍवȈरक: (space of two moments)(1)(2.1.52)

अȈरपातक: (space of two laghvakṣarakas)(1)(2.1.52)
िनमेषः (space of two akṣarapātakas)(1)(2.1.53)

Ǻलिʂका (space of two nimeṣas)(1)(2.1.53)
काʋा (space of nine liptikās)(1)(2.1.53)

लवः (space of two kāṣṭhas)(1)(2.1.53)
कला (space of five lavas)(1)(2.1.53)

लेशः (space of twelve kalās)(1)(2.1.54)
Ȉणः (space of 16 leśas)(1)(2.1.54)

नाडी (space of six kṣaṇas)(1)(2.1.54)
मुहूतȁः (space of twelve nāḍis)(1)(2.1.54)

घिटका (space equal to one muhūrta)(2)(2.1.54)

Here we can see the hierarchical order of the words which is connected through the relation
अवयव-अवयिवसȣबȝधः. Subsequent ślokas i.e. 2.1.55 to 2.1.73 also deal with the concept of kāla
but has not been depicted here due to lack of space. A few observations on examining the
concept of the word kāla are as follows:

• A very logical and precise structure of division of time has been adopted starting from the
lowest measure of time.

• A very systematic division of time until it spans 24 hours or one day is seen. Then, there
is the first violation of nesting where day is followed by night and the author goes on to
describe night, different kinds of night. Within the nesting of night too, after describing
different kinds of night, he suddenly introduces darkness and then goes on to describe
different types of darkness.

• After this, there is the third violation of nesting when he goes back to day and then defines
different parts of the day followed by different parts of night. Next, he picks terms that
talk about space of three hours (which is relevant to both day and night), lucky portion of
the day, dawn and twilight. He then ends by addressing a lunar day and different days in
a lunar month.

• The list is followed by months, seasons, years, yugas etc.

The author often describes the qualities of a particular term. For example, under the main word
‘sun’, the term sunray is given. The author lists down 22 words under the concept of sunrays.
These words do not appear to be synonymous but indicate a more complex idea that needs
further research.

तासां शतािन चșवाȼर रȫमीनां वृिʊसजȁने।
शतɑयं िहमोșसगǼ तावșघमȁȭय सजȁने॥ २.१.१७2

3 Vaijayantīkośa Knowledge Net (VKN)
VKN is a web-based tool to access knowledge embodied in VK by providing comprehensive
information related to the word including meanings, synonyms and relations with other words.

2This śloka is only a small extract of the group of verses that are referred under sunrays.

139

3.1 Scope of the present project
VK is a voluminous lexicon with approximately 20,000 entries of words. However, for
developing this version of the web-tool, the first two kāṇḍas mainly the svargakāṇḍa and
antarikṣakāṇḍa have been taken, which contain 3,000 entries. The output of the web-tool is
the synset and the set of related words of a given input - padam (word in its first person
singular form) or prātipadikam (stem). The tool consciously confined to the first 3,000 entries
as new fields and features kept evolving through the research. For example, including English
meanings was not part of the initial plan but was included as it would help users. Once the
web-tool is fine-tuned in all respects, it is easier to scale it up to include the entire database.

An Android Application version of the tool is also currently under development. An initial
version is available for volunteer testing to get feedback and suggestions on usability. The
Android App is briefly described in Section 3.8.

3.2 Data Structure
The first step towards the creation of the web-tool is to digitise the entire kośa. The following
categories of information are extracted from the ślokas.

ɓा˃तपिदकम् (stem), पदम् (nominative form), सȝदभȁसूची (reference), Ǻलɣम् (gender), अȜयायः
(chapter) and काȘडः (section)

For example, the śloka number 47 in the lokapālādhyāya reads as follows:

वातो वायजुȁगșɓाणȫशुिषलȫʉसनोऽिनलः।
गȝधवाहो गȝधवहो मातȼरʉा समीरणः॥१.२.४७॥

The words are extracted and categorized as in Table 1.

ɓा˃तपिदकम् पदम् सȝदभȁसूची Ǻलɣम् अȜयायः काȘडः आȎȌलाथȁः अथȁः मुȋयपदम्
वात वात: 1.2.47.1.1 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
जगșɓाण जगșɓाण: 1.2.47.1.2 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
शुिषल शुिषल: 1.2.47.1.3 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
ʉसन ʉसन: 1.2.47.1.4 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
अिनल अिनल: 1.2.47.1.5 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
गȝधवाह गȝधवाह: 1.2.47.1.5 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
गȝधवह गȝधवह: 1.2.47.2.1 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
मातȼरʉन् मातȼरʉा 1.2.47.2.2 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु
समीरण समीरण: 1.2.47.2.3 पु.ं लोकपालाȜयायः ȭवगȁकाȘडः epithet of vāyu ȭपशȁगुणकः पɪभूतभेदः वायःु

Table 1: Information extraction of the synset वायःु

It is to be noted that words from वात: till समीरण: are synonyms, i.e. words with the same
meaning.

1. ɓा˃तपिदकम् is the stem of the tokens from śloka and has been used so that it is compatible
with other computational resources such as morphological generator and analyser, various
e-lexicons etc.; many of them use ɓा˃तपिदकम् as input and not the पदम् .

2. पदम् field contains the nominative singular form of the ɓा˃तपिदकम्, generated using the
morphological generator. In the case of िनșयबहुवचनाȝत words, the nominative plural form
will be taken. If a ɓा˃तपिदकम् has more than one gender, and masculine form is one of
them, the masculine singular form is taken. In case the word has feminine and neuter
forms the neuter form of the ɓा˃तपिदकम्, will be used. These guidelines are based on the

140

rules of the dictionaries such as Śabdakalpadruma, Vācaspatya etc. This option does not
appear in AKN but has been introduced in VKN web-tool to allow users to search for a
word using पदम् option in case they are unsure about ɓा˃तपिदकम् of a particular word. It is
hoped that this feature will make the tool user-friendly.

3. सȝदभȁसूची is the reference indicating the precise position of the word in VK using a 5-tuple
number as kāṇḍa, adhyāya, śloka, pāda and word number in the pāda. The pāda number
and word number in the pāda are entered manually into the database, whereas the other
fields are derived automatically.

4. Ǻलɣम् - gender information of the word. The gender of a word is decided by the meta-
information mentioned by Yādavaprakāśa. Cross reference to ǺलɣसȎɎहाȜयाय as well as
Oppert’s vocabulary is also consulted.

5. अȜयायः refers to the chapter or the adhyāya name to which the entry belongs. The adhyāyas
are named based on the topic or subject that the word is categorized under. Thus, this field
gives an ontological idea about the word.

6. काȘडः refers to the specific section of VK or kāṇḍa to which the entry belongs.

7. आȎȌलाथȁः or the meaning in English is an additional field that has been included to document
from the translation that Oppert compiles under the vocabulary section of the book. This
has been included to ensure VKN is accessible to those who may not be Sanskrit scholars.

8. अथȁः refers to the meaning in Sanskrit given by Yādavaprakāśa in VK. Where ever the
meaning is not found in VK, other dictionaries have been referred.

9. मुȋयपदम् or headword represents the synset with synonymous words. Headword is chosen
as follows - if the headword used in AK appears in VK synset, that word is chosen as the
headword. In case, there is no equivalent word in AK, Oppert’s vocabulary at the end of
the kośa is referred to choose the headword. There are some challenges in choosing the
headword because there are no commentaries on VK that a researcher can refer to in case
of doubt. However, effort has been made to ensure that words are chosen as far as possible
based on the available resources - Compatibility with AKN and Oppert’s vocabulary being
a primary guiding forces.

As compared to AKN, three categories, namely - पदम् , meaning in English and meaning in
Sanskrit are additional fields incorporated into VKN. The decision to incorporate these
additional fields was taken mid-way through the research as it was found to be a useful
improvisation over the AKN.

3.3 Relations in VKN
The various relations amongst different headwords are marked in the database. Twelve
hierarchical or associative relations are marked in different fields - two kinds of ontological
categories, class and attribute are marked in the last two fields. Except ontological categories,
all other relations are marked using headwords.

3.3.1 पयाȁयवाची (Synset)
The set of words that have similar meaning is defined as a synset. See the example of वातः in
table 2. The output synset is displayed in the Figure 6 in the appendix.

3.3.2 अवयव-अवयिवभावः (Part-whole Relation)
The अवयव-अवयिव relation is marked to indicate part and whole relation. For example - the
synset पȈः is a part of the synset पȈी. Each member of the synset पȈः is related to the members
of पȈी through this relation3.

3See Figure 7. in appendix

141

3.3.3 परा-अपरासȣबȝधः (Superset-subset Relation)
This field marks परा-अपरासȣबȝधः. For example - the synset मृदवुातः is a kind of वायःु. So the
synset मृदवुातः is related to the synset वायःु with परा-अपरा relation. Each member of the synset
मृदवुातः is marked to the synset वायःु4.

3.3.4 जȝय-जनकभावः (Child-parent Relation)
This field marks जȝय-जनकभावः of two concepts. For example - the synset of पावȁती is related to
the synset िहमवान् through जȝय-जनक relation. पावȁती is daughter of िहमवान् and िहमवान् is father of
पावȁती.5

3.3.5 प˃त-पșनीभावः (Husband-wife Relation)
This field is meant for marking प˃त-पșनी relation. For example - the synset of शची is related to
the synset इȝɒः with Husband-wife relation. Here इȝɒः is the husband of शची and शची is the wife
of इȝɒः.

3.3.6 ȭव-ȭवािमभावः (Owner-property Relation)
ȭव-ȭवािम relation is marked to indicate owner-property relation. For example - the synsets of
वजैयȝतः - the house of इȝɒः and अमरावती - the city of इȝɒः are related to the synset इȝɒः with
owner-property relation. इȝɒः is the ȭवामी of वजैयȝतः and अमरावती.

3.3.7 सेȪय-सेवकभावः (Lord-servant Relation)
सेȪय-सेवक relation is marked to indicate lord-servant relation. For example - the synset of गʕडः,
the vehicle of िवȬणःु is related to the synset िवȬणःु with lord-servant relation. िवȬणःु is the सेȪयः of
गʕडः and गʕडः is the सेवकः of िवȬणःु.

3.3.8 धमȁ-धȺमभावः (Property-locus Relation)
धमȁ-धȺम relation is marked in this field. For example - the synsets of वȬैणवी, the power of िवȬणःु
is related to the synset िवȬणःु with property-locus relation. िवȬणःु is the धमɁ of वȬैणवी and वȬैणवी is
the धमȁः of िवȬणःु.

3.3.9 गुण-गुʺणभावः (Quality-qualificand Relation)
गुण-गुʺण relation is marked in this field. For example - the synsets of ȅीवșसः, the mark of िवȬणःु
is related to the synset िवȬणःु with quality-qualificant relation. िवȬणःु is the गुणी of ȅीवșसः and
ȅीवșसः is the गुणः of िवȬणःु.

3.3.10 उपजीȪय-उपजीवकभावः (Life-livelihood Relation)
उपजीȪय-उपजीवक relation is marked to indicate livelihood. For example - the synset of मșȭयः is
related to the synset धीवरः with life-livelihood relation. मșȭयः is the उपजीȪयम् of धीवरः and धीवरः
is the उपजीवकः of मșȭयः.

3.3.11 अवतारः (Incarnation)
In this field the incarnation or अवतार relation is marked. For example - the synsets of वामनः,
ȅीरामः and ȅीकृȬणः are related to the synset िवȬणःु with अवतार relation.

3.3.12 अȝयसȣबȝधाः (Associated With)
This field is meant for other relations which are not defined. For example - the synset देवः may be
related to the synset ȭवगȁः with a relation अावाससȣबȝधः, is not taken care of. The other relations
such as बȝधुता, सौɖाɑम्, ɖातृșवम् etc. are also not considered here. All such relations are marked
as अȝयसȣबȝधाः. These relations will be categorised later.

4See Figure 8. in appendix
5See Figure 9. in appendix

142

3.4 Ontological Categories
The ontological categories are handled based on the corresponding ontological charts as described
in the जा˃तः and उपा˃धः sections below.

3.4.1 जा˃तः (Ontological Class)
The universal property of a word is considered as jāti. The ontological categories are marked
according to the ontological chart proposed by Nair S S. et. al. (2013). The जा˃त chart is given
in the appendix in Figure 12. Each and every entry has ontological class mentioned in the field6.

3.4.2 उपा˃धः (Attribute)
Any property ie. qualified to be the universal as per the conditions mentioned in the article of
Nair S S. et. al. (2013) is considered as upādhi. The उपा˃ध classes are marked according to the
उपा˃ध chart proposed. The उपा˃ध chart is given in the Figure 13 in the appendix.

3.5 Frequency Analysis
For frequency analysis set of 3,000 words are considered. Among them 2876 words are found
unique. 2719 words have single sense, 191 words are having two senses, 81 words are having
3 senses and nine words are having four senses. Out of 3000 words 659 Synsets are created.
For each word, one or more relations are marked using headwords. Hierarchical relations such
as परा-अपरासȣबȝधः and अवयव-अवयवीसȣबȝधः are the highly frequent relations. The frequency of
high frequent occurrences is detailed in the Table 2.

Relation Total Words Total Synsets
परा-अपरासȣबȝधः 1631 356
अवयव-अवयिवभावः 391 117
जȝय-जनकभावः 286 15
अȝयसȣबȝधाः 275 83
प˃त-पșनीभावः 175 21
ȭव-ȭवािमभावः 149 68
अवतारः 106 15

Table 2: Relational statistics

3.6 Data Implementation
Once the lexicon table was ready with the data, three databases were created using dbm engines
of Unix using hashing techniques. Three hash tables were created to represent a data structure
to map a given key to value.

• i. Hash table for मुȋयपदम् _headword (key = पदम् _word and value = मुȋयपदम् _headword)

• ii. Hash table for synset (key = मुȋयपदम् _headword and value = synset)

• iii. Hash table for पदम् _word info (key = word and value = िनगम:_Reference &
Ǻलɣम्_Gender)

With the help of this data structure, a user can key in a desired word and get output in the
form of synonyms, meaning and related information about the word.

The ontological structure adopted for creating the web-tool for Amarakośa has been replicated
here with modifications for two reasons. Firstly, the division of various kāṇḍas and
categorization of words in both the lexicons are very similar and therefore what has been

6See Figure 6. in appendix

143

created earlier can be easily adapted to VK as well. Secondly, this also enables for technical
integration of the two tools in future that will facilitate easy cross-reference.

As this is an ongoing project, the other relations will be supplied in due course as appropriate. It
was felt that the first step to get the synsets in order will provide vital wealth of information to
researchers and students on this lexicon and the emphasis was thus on categorizing the headword
first.

3.6.1 Processing Flow
The input word, the type of requested information (meaning and relation with other words)
along with parameters like input encoding for the identification of input and output encoding
for formatting of the result on the webpage is processed by a series of scripts in the server. The
scripts identify the word and the relation for which the information is requested. They access
the databases corresponding to the relations that have been created a-priori, and extract
information from the database(s) corresponding the selected relation and format the output
into HTML file.

When “All Relations” is chosen as the input, a pictographic representation of all relations is
created and embedded in the resultant HTML file. Refer Figure 11. for the output in the
appendix.

This HTML file is returned as response to the requesting browser for display to the user. The
following flowchart describes the steps in the processing in Figure 3.

Figure 3: Flowchart for processing in the web tool

144

3.7 Architecture of VKN
Figure 4 illustrates the architecture of the Vaijayantīkośa KnowledgeNet (VKN) tool. It consists
of the following functional components.

• Web user interface

• Webserver

• VK datasets

Figure 4: Architecture of the VKN tool

3.7.1 Web User Interface
The user interface for the tool is a HTML web page (currently, first version of the tool is
available at http://13.235.131.68/CompLing/vk/) It provides a means to input the word from
the VK lexicon that needs to be analysed for the specific set of relations. See Figure 5.

Figure 5: VKN tool

Multiple input encoding forms are provided including Devanagari and WX encoding. The input
word can either be ɓा˃तपिदकम् or ɓथमा एकवचनʖपम् . The desired semantic relation can be extracted
from the lexicon from the drop-down list. The tool supports analysis of the relations mentioned
in the section 3.3.

3.7.2 Webserver
An Apache webserver hosted on an ubuntu instance running on AWS, is used to interact with
the Web user interface. It captures the inputs from the HTML webpage and passes onto the
CGI script in the backend for processing. The result of the processing is sent as HTML response
to the requesting webpage for display to the user.

145

3.7.3 VK Datasets
WX encoded original VK ślokas and database (see secton 3.2 and 3.3) that contain manually
created and verified metadata for each word are the input files. The databases are created as per
the data implementation described in section ”Data Implementation”. The processing scripts
analyse the inputs for requested information/relations associated with the words in VK, retrieve
desired information from these datasets and display the results in the tool as results.

3.8 VKN Android Application
VKN Android App provides a convenient interface to Android smartphone users to access and
analyse information in the Vyjayantīkośa. It uses the same input data set, words and relation
information used for the web-tool. The Android App collects inputs from the user i.e - the
word and its relation. It then communicates the input parameters to a webserver hosted in the
cloud, where python scripts are used to search and formulate the response using the input data
set. The response is conveyed back to the App on the smartphone for display.

The VKN android App is available for download from the VKN tool webpage. The tool is under
development and has been released for volunteer testing and collecting feedback on usability. It
currently allows input in Devanagari format and supports the synset relation analysis. The App
is being enhanced to support relations and features supported by the web tool as discussed in
the previous sections.(See Figure 10)

4 Conclusions

VK has a rich repository of words from the Sanskrit language and literature. The VKN web-tool
enables convenient access to this knowledge. It is also designed to enable analysis in specific
areas of research by providing a list of words related to that area, which can be used to trace
information related to that area in Sanskrit literature. For example, in a paper published in
the Indian Journal of History of Science, the use of the term hemaghna (destroyer of Gold),
for lead metal was examined in detail (Dube, 2010), and this uncovered, unique properties of
the metal lead, when interacting with Gold. There is scope for deeper research for experts from
different fields - geology, geography, ornithology, metallurgy, sociology, biology and more. In this
context, this tool becomes significant as it provides preliminary information to researchers in
their respective fields with synsets and ontological structure and could become a starting point
for a more comprehensive research. The inclusion of meaning in English, bridges the language
divide, connecting this knowledge base with the large number of English speaking researchers.

5 Future Research

Few suggested future work is as follows:

• Continue updating the kośa with all the remaining entries.

• The child-parent, master-possession, husband-wife relations and other such relations (see
section 3.2)were captured at this stage. There are possibilities of including other relations
such as siblings, dwellings etc.

• Linking each synset to Amarakośa Knowledge Net.

• Linking it with various other computational linguistic tools.

• Using for Word sense disambiguation.

• Currently only four layers of nesting depth is represented in “all relations”. This can be
expanded to more layers in future.

146

Acknowledgement
The Authors would like to thank Prof. Amba Kulkarni, Department of Sanskrit Studies,
University of Hyderabad, Hyderabad for providing technical support at various levels. The
project team also acknowledges the valuable guidance of Prof. Shrinivasa Varakhedi,
Vice-chancellor, Kavikulaguru Kalidasa Samskrita University, Nagpur. The team of Post
Graduate Diploma in Sanskrit Computational Linguistics at Karnataka Samskrit University,
Bangalore is also acknowledged.

References
Bühler, G. (1887). Gleanings from Yâdavaprakâśa’s Vaijayantî. Wiener Zeitschrift für die Kunde des

Morgenlandes, 1, 1-7. Retrieved April 1, 2019, from https://www.jstor.org/stable/23858800

Dube, R. K. (2010). An Assessment of the Sanskrit Word Hemaghna used for Lead Metal. Indian Journal
of History of Science, 395-401.

Haragovindashastri, P. (1971). Vaijayantikośa. Varanasi: Chowkhamba Sanskrit Series Office.

Kaur, S., & Singh, L. (2018). Indian Arthropods in Early Sanskrit Literature: A Taxonomical Analysis.
Indian Journal of History of Science, 59-64.

Kulkarni Amba. & Nair S Sivaja. (2010) Knowledge Structure in Sanskrit Kosas. Proceedings of 8th
ICON, Indo-wordnet Workshop, IIT Khragpur.

Nair, S Sivaja. (2011). The Knowledge Structure in Amarakośa. Hyderabad: University of Hyderabad.

Nair, S Sivaja, Varakhedi Shrinivasa & Shivani V (2013). Extended Nyaya-Vaiseshika Ontology as Applied
to Amarakośa KnowledgeNet, Proceedings of 5th ISCLS, IIT Bombay, DK Print world, New Delhi

Oppert, Gustav. (1893). The Vaijayanti of Yadavaprakasa. Madras: Madras Sanskrit and Vernacular
Text Publication Society.

Patkar, M. M. (1981). History of Sanskrit Lexicography. New Delhi: Munshiram Manoharlal.

Popescu, F. (2019). A Paradigm of Comparative Lexicology. UKNewcastle upon Tyne, UK: Cambridge
Scholars Publishing.

Sun, M. H., Safwanah, N. L., & Tan, D. (2017). Lexicology: The Importance
of Words in Society. Universiti Sains Malaysia. Retrieved April 19, 2019, from
https://www.researchgate.net/profile/Ernest_Mah/publication/320839664_Lexicology_The_
Importance_of_Words_in_Society/links/59fcb88baca272347a22773b/Lexicology-The-Importance-
of-Words-in-Society.pdf

Varakhedi, Shrinivasa., Jaddipal, Viroopaksha. & Sheeba, V. (2007). An effort to develop a tagged
lexical resource for Sanskrit. Sanskrit Computational Linguistics, 339-345. Retrieved April 19, 2019,
from https://hal.inria.fr/inria-00207962/d

147

A Appendix - 1
VKN Sample Outputs

Figure 6: Example of Ontology

Figure 7: Example of अवयवः

Figure 8: Example of अपराजा˃तः

148

Figure 9: Example of जनकः

Figure 10: VKN Android Application

149

Figure 11: Example of All-relations of Viṣṇu

150

Figure 12: Jāti Chart

151

Figure 13: Upādhi Chart

152

Utilizing Word Embeddings based Features for Phylogenetic Tree
Generation of Sanskrit Texts

Diptesh Kanojia†,♣,⋆, Abhijeet Dubey†, Malhar Kulkarni†, Pushpak Bhattacharyya†, Reza Haffari⋆
†IIT Bombay

♣IITB-Monash Research Academy
⋆Monash University

†{diptesh,abhijeet,pb}@cse.iitb.ac.in, †malhar@iitb.ac.in,
⋆reza.haffari@monash.edu

Abstract

Tracing the root of a text i.e., the original version of the text, by inferring phylogenetic
trees has been a topic of interest in philological studies. However, existing methods
face meaning conflation deficiency due to the usage of lexical similarity based measures
which feed the distance matrix to clustering algorithms. In this paper, we utilize word
embeddings as features to compute the distances among manuscripts. We conduct this
pilot study on using word embeddings to compute inter-manuscript distances and pro-
vide an effective distance matrix to infer phylogenetic trees. We conduct experiments
on the historical Sanskrit text known as Kāśikāvrtti (KV) and infer phylogenetic trees
using this approach. For comparison, we also develop baseline methods using lexical
distance-based measures to infer phylogenetic trees for KV. We show that our method-
ology produces better trees which club closely related manuscripts together compared
to the baseline methods.

1 Introduction
Phylogenetics is defined as the task of creating a Phylogenetic Tree which represents a hypoth-
esis about the evolutionary ancestry of a set of genes, species or any other taxa. It is the study of
evolutionary history and relationships among various taxa. A Taxon represents a group of one
ormoremanuscripts written in Sanskrit in our case, where we analyze how themanuscripts are
related to each other. These relationships are discovered through phylogenetic methods that
compute observed heritable traits in a manuscript, such as spelling errors, variations in text,
text deletion, the morphology of the text etc. under a model of the evolution of these traits. The
result of these analyses is a phylogeny (also known as a phylogenetic tree) – a diagrammatic hy-
pothesis about the history of the evolutionary relationships of a group of manuscripts (usually
belonging to the same text).
The computational purviewof our problemdealswith developing newmethodologies for the

estimation of the said trees. Computational historical linguistics, which involves the develop-
ment of methods for estimating evolutionary histories of languages and, of models of language
evolution, is another research problem based on phylogenetics. Phylogenetic methods are de-
signed to recover the “true” evolutionary tree as often as possible. They do not guarantee to
do so with high probability under reasonable conditions. Some which offer this guarantee vary
considerably in their requirements (Warnow et al., 2001). To rigorously establish the validity of
such a phylogenetic approach, a fundamental question that must be addressed is whether the
models in use are identifiable. Parameters for simple models include the topology of the evo-
lutionary tree, edge lengths on the tree, and rates of various types of substitution, though more
complicated models have additional parameters as well. If a model is non-identifiable, one
cannot show that performing inference with it will be statistically consistent. Informally, even
with large amounts of data produced by an evolutionary process that was accurately described
by the model, we might make erroneous inferences if we use a non-identifiable model. Under
other models, many methods will be able to recover the tree if given long enough sequences.

153

The latter techniques are said to be statistically consistent under the model of evolution. Un-
der some models of evolution, no method can be guaranteed to recover the true tree with high
probability, due to unidentifiability.
Using the currently available models, finding optimal phylogenetic trees using compatibility

criteria is, in its general case, NP-Complete (Warnow, 1993). Also, finding a maximum compat-
ible tree is NP-Hard (Roch, 2006). As a consequence, this will mean that efficient algorithms to
solve the problem, probably, can not exist. On the other hand, by restricting the kinds of input
to the problem, we may be able to solve it efficiently. Our work restricts the input of data to
a distance matrix which consists of distances between various manuscripts. We hypothesize
inter-manuscript distance by using two methodologies and are able to construct phylogenetic
trees based on both of them. Phylogenetic reconstruction and analysis is based on a data matrix
where the rows represent the manuscripts to be studied, and the columns represent a linguis-
tic feature or character (Nichols and Warnow, 2008). Moreover, the methods inspired from
glottochronology take a boolean matrix as input, which denotes the change in the state of the
‘characters’ (the ‘characters’ can be lexical, morphological or phonological) to infer the phy-
logenetic trees. In our case, the distance matrix consists of manuscripts to be studied in both
rows and columns, but the distances calculated are based on either character-based features
(which is our baseline methodology) or word embeddings based distances which is our novel
contribution to the area.
Our work is based on an earlier published sample edition of the KV on A 2.2.6 (Kulkarni,

2009). This edition was prepared using seventy manuscripts written in several scripts and col-
lected from various parts of the world. This earlier work did not utilize the computational
method to establish inter-relations between manuscripts. Kulkarni and Kahrs (2018) also pub-
lished a manually drawn tree based on the edition mentioned above. In this work, we apply
the computational methods on the same data mentioned above and automatically infer phylo-
genetic trees that show the inter-relations between manuscripts.

1.1 Motivation
Texts are important sources of intellectual history. In the Indian context, texts have travelled in
the course of time both orally and written. Establishing a particular text using extant available
resources enables us to have an authenticated base for the reconstruction of intellectual history.
In order to create an authenticated base, we need to apply technological tools and methods.
Thesewill ensure objectivity and scientific explanation in the establishment of the text. Previous
work on creating phylogenetic trees have not explored the usage of word embeddings which
foray in the semantic space of linguistics. Word embeddings can provide a highly accurate
representation of the context for a given word (Rong, 2014)
Rama and Singh (2009) use corpus-basedmeasures to compute the distancematrix containing

inter-language distances and construct phylogenetic trees for a linguistic area1. Corpus-based
measures can calculate the inter-language distance, but they use feature n-grams and cognate
identification methods which loosely take into account the semantics of a word. It is well
known that word meaning can be represented with a range of senses/concepts. The methods
above do not take into account the ‘semantics’ in a language and measure the inter-language
distance only based on associated words pairs. Recently, an increasing boom on large-scale
pre-trained word embedding models e.g., FastText (Bojanowski et al., 2017), ELMo (Peters
et al., 2018), BERT (Devlin et al., 2018) have attracted considerable attention in the field of
NLP. Inspired by the above works, this paper proposes to use word embeddings (Mikolov et
al., 2013) created using fasttext approach (Conneau et al., 2017) to find the inter-manuscript
distance based on functional units in a text.

1The term linguistic area or Sprachbund (Emeneau, 1956) refers to a group of languages that have become similar
in someway as a result of proximity and language contact, even if they belong to different families. The best-known
example is the Indian (or South Asian) linguistic area.

154

The question that we try to answer in this paper is:

“Can word embeddings with sub-word information help build more accurate phyloge-
netic trees from multiple versions of a manuscript ?”

2 Related Work

Computational phylogenetics has, in recent years, developed various methodologies under the
purview of computational biology (Felsenstein and Felenstein, 2004; Huelsenbeck et al., 2001;
Saitou andNei, 1987; Swofford et al., 1996). The growth of phylogenetics as an area with signif-
icance to statistical methods is captured by Felsenstein (2001) in an article where he explains the
developments of numerical methods for the creation of phylogenies. These methods have been
widely adopted in computational linguistics for the construction of phylogenetic trees. Amajor
disadvantage of using these character-based or lexical distance-based methods is the need for
manually curated word lists. Csernel and Patte (2007) discuss the LCS algorithm for preparing
a critical edition of Sanskrit texts and provide amethod for comparison of Sanskrit manuscripts.
Among the many available methods (Huelsenbeck, 1995) to construct phylogenetic trees, UP-
GMA (Gronau and Moran, 2007) is widely used in historical linguistics. It assumes a constant
rate of evolution and is not a well-regarded method for inferring relationships unless this as-
sumption has been tested and justified for the data set being used. The UPGMA method con-
structs phylogenetic trees based on a distance matrix which can be computed in various ways.
Saitou and Nei (1987) proposed neighbour joining method to construct phylogenies based on
sequence analysis, which uses genetic distance as a clustering metric. Moret et al. (2002) study
the sequence lengths required by neighbour-joining, greedy parsimony, and a phylogenetic re-
construction method based on disk-covering and the maximum parsimony criterion and show
improvements in large scale phylogenetic reconstruction. Symmetric cross-entropy is one of the
methodswhich is purely a letter n-gram basedmeasure similar to the one used by Singh (2006b)
for language and encoding identification. Singh and Surana (2007) used corpus-basedmeasures
to show that corpus can be used for a comparative study of languages. They used both character
n-gram distances and surface similarity (Singh, 2006a) to identify the potential cognates, which
in turn are being used to estimate the inter-language distance. Rama and Singh (2009) also used
measures based on cognate identification, and feature n-grams to infer this matrix. Ellison and
Kirby (2006) discussed establishing a probability distribution for every language through intra-
lexical comparison using confusion probabilities and estimate distances using KL divergence
and Rao’s distance (Atkinson and Mitchell, 1981). Automatic Cognate Detection (ACD) is an
important task which can help phylogenetic reconstruction and complement current research
on language phylogenies (Rama et al., 2018). Rama (2016) come up with siamese architectures
that jointly learn phoneme level feature representations and language relatedness from raw
words for cognate identification. Rama et al. (2017) explore the use of unsupervised methods
for detecting cognates in multilingual word lists. They use online EM to train sound segment
similarity weights for computing similarity between two words. Kanojia et al. (2019) utilize
wordnets and identify cognates among Indian languages for improvement in the construction
of the phylogenetic trees. They used lexical similarity based measures to find the similarity
among Indian language word lists and induced the cognates in clustering methods to gener-
ate phylogenies. Kulkarni (2012) builds a phylogenetic tree for Malayalam manuscripts of the
Kāśikāvrtti, and show that M is the archetype source and Ma, Mb and Mc are its hyperarche
child nodes. M is decided as a source based on the analysis made on the manual reading of the
manuscripts. In this process, manuscripts are grouped together and named as M1, M2, M3 …,
M11. Kulkarni (2003) and Kulkarni (2008) build a similar tree for the Sharada manuscripts of
the KV.

155

To the best of our knowledge, no one has utilized word embeddings to construct the
distance matrix for inter-manuscript distances. We deploy lexical similarity-based methods
as a baseline for inter-manuscript distance and compare the tree with the trees generated via
our approach i.e., using word-embeddings to construct the distance matrix for the clustering
methods (UPGMA and Neighbour Joining).

We contribute the following through this work:

• We hypothesize inter-manuscript distance and create efficient distance matrices for phy-
logenetic tree construction.

• We build baseline methodology using lexical similarity based measures for comparison
with our approach and generate phylogenetic trees.

• We construct a distance matrix through a word embeddings based approach as a novel
contribution and show that the trees generated are better than the baseline method.

3 Dataset and Experiment Setup
3.1 Dataset
We collect the following data for performing our experiments and tree construction.

3.1.1 KV Dataset
For distance matrix generation, we focus on specific portions of the KV. We collect seventy
different versions of the KV on AST 2.2.6. We perform cleaning and manual analysis with the
help of philologists. These versions were available in different parts of the country from where
we accumulated them in a single repository. We observe different kinds of changes in these
versions and describe them in Section 6.

3.1.2 Raw Corpus for obtaining Word embeddings
We obtain raw monolingual Sanskrit corpus from various sources. We download the Sanskrit
Wikimedia dump and collate all the articles as a single corpus. We, also, add Glosses and Ex-
ample sentences from the Sanskrit Wordnet to this corpus. We obtain raw corpus from other
sources available online2. We perform cleaning for this corpus by removing any other ASCII
characters apart from the Devanagari script. The final cleaned coprus used for creating em-
beddings contains 5,38,323 lines. Eventually, We use binarized vectors to compute the distance
between two words.

3.2 Experimental Setup
The Neighbor Joining method and the UPGMA method are both distance-based methods as
described in Section 4. They require a distance matrix which specifies the distance between the
Taxa being used to populate the phylogeny. We also describe the methodologies used to obtain
thesematrices in Section 4. For our experiments, we divide the KVdata into different functional
units. The functional unit division in KV depends on the type of sutra. The sutra that we use
for our experiments, namely AST 2.2.6, is of the type vidhi.
The functional unit division of this type is as follows:

• vidhi: This type of sutra prescribes either a verbal element or an operation. The KV on this
sutra contains the following functional parts (Sutra AST 2.2.6):
1. The sentence explaining the meaning of the words in the sutra.
2. Examples

2Available on the School of Sanskrit and Indic Studies, J.N.U. and NLP for Sanskrit from GitHub

156

These functional units help us understand the text in a better manner, and for computational
purposes, they create separate divisions in the text so that the versions are compared to each
other in an efficient manner. We compare each functional unit only with its counterpart from
the versions. For e.g., In AST 2.2.6 dataset, we compare the examples from one version only
with the examples of the other version.
For training the word embeddings based model, we use Gensim3. We choose FastText (Bo-

janowski et al., 2017) for training the word embeddings and obtaining vectors as it utilizes
subword-level information within the text. Sanskrit is an agglutinative language which is also
highly morphological. To capture the morphology and semantics within each word, we also
need to take into account the sub-word level information. We train the models with the follow-
ing hyperparameters. We create these models based on 100 and 50 dimensions due to a limited
amount of the corpus collected4. The rest of the parameters were the same for both the models.
We restrict the context window to 5 and use 0.1 as the learning rate. The maximum length of
word n-gramwe use is one word. We retain the sampling threshold at a default 0.0001. We use
softmax as the loss function and train the models for five epochs5.

4 Methodology
In this section, we describe the variousmethodologies used for calculating the inter-manuscript
distances and tree construction.

4.1 Computing the Inter-Manuscript Distances
We use two approaches for constructing the inter-manuscript distances. The baseline ap-
proach utilizes various lexical similarity based measures and later, we also provide weights to
them, using empirical approaches, to increase their efficiency. In our approach, we use word-
embedding based models and compute distances using vectors obtained from them. Since an-
gular cosine distance distinguishes nearly parallel vectors better (Cer et al., 2018), we also in-
clude this in our approach, apart from cosine distance to generate more trees and discuss the
outcome in Section 5.

4.1.1 Lexical Distance based measures: A Baseline Approach
We use the following lexical similarity based measures to compute the distances among
manuscripts:

Normalized Edit Distance Method (NED)
The Normalized Edit Distance (also known as Levenshtein Distance) approach computes the
edit distance (Nerbonne and Heeringa, 1997) for all word pairs in a functional unit of the text
and then provides as output the average distance between all word pairs (we term it as ‘Unit
Distance’). In each of the operations has unit cost (except that substitution of a character by
itself has zero cost), so NED is equal to the minimum number of operations required to trans-
form ‘word a’ to ‘word b’. A more general definition associates non-negative weight functions
(insertions, deletions, and substitutions) with the operations.

Cosine Distance (CoD)
The cosine similarity measure (Salton and Buckley, 1988) is another similarity metric that de-
pends on envisioning preferences as points in space. Itmeasures the cosine of the angle between
two vectors projected in amulti-dimensional space. The cosine similarity is particularly used in
positive space, where the outcome is neatly bounded in [0,1]. The name derives from the term

3Gensim Source
4The standard number of dimensions for word embeddings, given a big corpus, is 300
5More epochs usually lead to a better learned/trained model; we retain the best epoch output with a minimum

loss to be utilized for our work

157

“direction cosine”: in this case, unit vectors aremaximally “similar” if they’re parallel andmax-
imally “dissimilar” if they’re orthogonal (perpendicular). This is analogous to the cosine, which
is 1 (maximum value) when the segments subtend a zero angle and 0 (uncorrelated) when the
segments are perpendicular. In this context, the two vectors are the arrays of character counts
of two words. We calculate the cosine distance as (1 - Cosine Similarity).

Jaro-Winkler Distance (JWD)
Jaro-Winkler distance (Winkler, 1990) is a string metric measuring similar to the normalized
edit distance deriving itself from Jaro Distance (Jaro, 1989). Here, the edit distance between
two sequences is calculated using a prefix scale Pwhich givesmore favourable ratings to strings
that match from the beginning, for a set prefix length L. The lower the Jaro–Winkler distance
for two strings is, the more similar the strings are. The score is normalized such that 1 equates
to no similarity and 0 is an exact match.

Distance Matrix Computation
The above similarity metrics use different ways to compute the distance between each word
pair and hence, produce varying distance matrices. We compute the distance between a sutra
by averaging over each ‘Unit Distance’ present in a sutra. We computer these distances between
all the manuscript pairs. Thus, we generate three inter-manuscript distance matrices based on
the methods described above.
Since all the matrices above use different ways to compute distances, we performed another

set of experiments for coming up with a more homogenous approach. For computational pur-
poses, we provide all the metrics equal weightages initially, and compute a single the distance
matrix using the average score of all three methods. So, for manuscripts p and q, the average
inter-manuscript distance is defined as:

LDpq =
(NEDpq + CoDpq + JWDpq)

3
(1)

We, also, experiment over weightages and later provide different weightages to each method.
Empirically, we find best results by setting the weight of NED to 50%, CoD to 25%, and JWD to
25%. For masnucripts p and q, the weighted average inter-manuscript distance is defined as:

LDpq = (NEDpq ∗ 0.5) + (CoDpq ∗ 0.25) + (JWDpq ∗ 0.25) (2)

Using the baseline methodology, we create a total of 5 matrices for the text in the AST 2.2.6
dataset.

4.1.2 Word embeddings based distance measures: Our Approach
We calculate the cosine distance between all word pairs belonging to the same functional unit
from the embedding space. Thus, the average over the word pair distances gives us ‘Unit Dis-
tance’. Similar to the baseline method, we average over all unit distances to find out the inter-
manuscript distance for each manuscript pair and compute the distance matrix. Since angular
cosine distance distinguishes nearly parallel vectors better (Cer et al., 2018), we also use angular
cosine distance and calculate the inter-manuscript distance for eachmanuscript pair, in a similar
fashion. We perform this experiment using two different models described in the experimental
setup.
Thus, for each dataset, our approach generates four matrices i.e., a matrix which utilizes

Cosine Distance from the model with 100 dimensions, another which utilizes Cosine Distance

158

from the model with 50 dimensions and another pair of matrices with Angular Cosine Distance
from the models with 100 and 50 dimensions each. Using this approach, we create a total of
four matrices.

Using all of the methodologies described above (both baseline and our approach), we
create a total of 9 matrices for the text in AST 2.2.6 dataset.

4.2 Tree generation using distance-based clustering methods
We choose two distance-based methods for our work, namely, the Neighbor Joining method
and the UPGMAmethod. We further describe these methods below, along with the reasons for
choosing these methods.

4.2.1 Distance-based Methods
Distance analysis compares two alignedmanuscripts at a time and builds amatrix of all possible
sequence pairs. During each comparison, the number of changes (base substitutions and inser-
tion/deletion events) is counted and presented as a proportion of the overall sequence length.
These final estimates of the difference between all possible pairs of manuscripts are known
as pairwise distances. A variety of distance algorithms are available to calculate the pairwise
distance (between versions), for example, Proportional (p) distances. We use the baseline ap-
proach and our approach to compute these pairwise distances. Once the pairwise distances are
calculated, they must be arranged into a tree. There are many ways to “arrange” the Taxa ac-
cording to their distances. One way to cluster or optimize the distances is to join Taxa together
according to their increasing differences, as embodied by their distances. Other ways use vari-
ous coefficients to measure howwell the branch lengths of the tree reflects the original pairwise
distances.
Distance-matrix methods of phylogenetic analysis explicitly rely on a measure of “genetic

distance” between the manuscripts being classified, and therefore they require an MSA (multi-
ple sequence alignment) as an input. Distance is often defined as the fraction of mismatches at
aligned positions, with gaps either ignored or counted as mismatches (David, 2001). The main
disadvantage of distance-matrix methods is their inability to efficiently use information about
local high-variation regions that appear across multiple subtrees (Felsenstein and Felenstein,
2004). Distance methods attempt to construct an all-to-all matrix from the sequence query set
describing the distance between each sequence pair. From this is constructed a phylogenetic
tree that places closely related manuscripts under the same interior node and whose branch
lengths closely reproduce the observed distances between manuscripts. Distance-matrix meth-
ods may produce either rooted or unrooted trees, depending on the algorithm used to calculate
them. They are frequently used as the basis for progressive and iterative types of multiple se-
quence alignment. The distance-based methods which we use are:

UPGMAMethod
The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method (Sokal and
Rohlf, 1962) produces rooted trees and requires a constant-rate assumption, i.e. they assume
an ultrametric tree in which the distances from the root to every branch tip are equal. At each
step, the nearest two clusters are combined into a higher-level cluster. The distance between
any two clusters A and B, each of size (i.e., cardinality) |A| and |B|, is taken to be the average of
all distances D(x,y) between pairs of objects x in A and y in B, that is, themean distance between
elements of each cluster. In other words, at each clustering step, the updated distance between
the joined clusters and a new cluster X is given by the proportional averaging of the distance
between A given X and the distance between B given X.
We use the UPGMAmethod to construct phylogenetic trees for all the manuscript pairs. The

input to the UPGMA method is the distance matrix created via the methodologies described
above. We use the implementation of UPGMA provided by PHYLIP (Felsenstein, 1993) and

159

generate baseline trees forNED, CoD, JWD,Average, andWeightedAverage distancematrices.
We also generate trees for distance matrices obtained using our approach of cosine distances
and angular cosine distances from word embeddings space.

Neighbor Joining Method
Neighbour-Joining (Saitou and Nei, 1987) is a bottom-up (agglomerative) clustering method
for the creation of phylogenetic trees. It applies general data clustering techniques to sequence
analysis and uses genetic distance as a clustering metric. The simple version of the neighbour-
joining method produces unrooted trees, but it does not assume a constant rate of evolution
(i.e., a constant timeline) across lineages. Neighbour-joining may be viewed as a greedy algo-
rithm for optimizing according to the ‘balanced minimum evolution’ (BME) criterion. For each
topology, the tree length (sum of branch lengths) is a particular weighted sum of the distances
in the distance matrix, with the weights depending on the topology. The optimal topology (as
per BME) is the one which minimizes this length. At each step, it greedily joins the pair of taxa
which provides the greatest decrease in the estimated tree length. This procedure is not guar-
anteed to find the topology which is optimal by the BME criterion, although it often does and
is usually quite close.
Similarly, we use the neighbour-joining method to construct phylogenetic trees for all the

manuscript pairs. The input to this method is also the distance matrix created via the method-
ologies described above. Weuse the implementation of neighbour-joining provided by PHYLIP
(Felsenstein, 1993) and generate all the trees from the matrices described above.

5 Results
We generate trees using both the neighbour-joining and the UPGMA methods for all the ma-
trices described above and compare them with the trees manually created by our philologists.
The basis of this evaluation was the expert knowledge of our philologists who have studied
the KV and are aware of the origin, groupings, and a vague timeline of all these manuscript
versions. Their findings indicate that the trees generated via our approach of using word em-
beddings were closest to the manually created trees and required a few corrections among the
subgroupings to be accurate. Although, among the baseline approaches, the weighted average
methodology also reached the closer to the manually created phylogenetic tree, but it was still
a few corrections behind. We can not present the complete set of 18 trees (9 x UPGMA and 9 x
Neighbour Joining) here hence show the best tree generated by the baseline method in Figure
1a for the text in 2.2.6 dataset. We obtain this tree using our novel approach of using word-
embeddings based model and using Neighbour-joining as the tree generation methodology. In
Figure 1b for the text in 2.2.6 dataset, we also show the tree obtained by the weighted average
lexical similarity measure, which was also generated using the Neighbour-joining method.
Among the word embeddings based approach, the trees generated via cosine distance are

reported to be more accurate than the trees generated via angular cosine distance, as per our
philologists.
We compared the matrices generated by both cosine distance and angular cosine distance

and found out that the distance values did not have a lot of difference. This is probably due
to the lack of a large raw monolingual corpus for creation of word embeddings for Sanskrit.
Despite being one of the most ancient languages, the availability of the resource for Sanskrit is
scarce, which motivates us further to keep exploring this area. We discuss the results of our
work and the merits of our methodology in the next section. We also provide justifications of
our philologists’ view in the forthcoming section.

6 Discussion
Wediscuss the functional units of theAST 2.2.6 dataset in the section above in brief and generate
results based on the comparison of each unit. The division of KV data for the AST 2.2.6 text is

160

(a) Tree Generated using Neighbour-joining method.
Distance matrix computed using the word-embeddings
based method

(b) Tree Generated using Neighbour-joining method.
Distance matrix computed using the lexical similarity-
based method (See Equation 2)

161

shown in Table 1.

2.2.6. नञ ्
2.2.6.1 नञ स्मथन सबुने सह समते तुष समासो भवित।
2.2.6.2 न ॄाणो अॄाणः। अवषृलः।।

Table 1: Example of Functional Unit based Division for sūtra AST 2.2.6

As can be seen in Figure 1a above, the sub-groupings for manuscripts has been done more
accurately. Manuscripts io1, g3, gjri, asb, v1, bh8, bu1 and jm6 have been grouped together
since they do not contain a common functional unit. The same can be said about the tree in
Figure 1b but it does not group bh1 and ld0 in the same sub-group which should not have been
the case.
Differences among the manuscript variants in this edition (Kulkarni, 2009) are mainly divided
into four categories. The apparatus of this edition contains the mention of the following types
of variants:

Omission (Om.): absence of a word.

Addition (Add.): presence of an additional word

Change of word (CW): lexical changes in the word due to morphological inflection, or due to
the opinion of the scribe who created the manuscript variant.

Change in the place of a word (CPW): change in the positioning of a word among the func-
tional unit in a text.

We develop both the baseline approach andword embeddings based approach keeping these
variants in mind. Our approaches handle these variants in the following manner:

Ommission (Om.)
Ommission reflects the omitted portion of the text derived after comparing the critical edition
with themanuscripts of the text. Our approaches calculate the distances between all word pairs
of each functional unit, on both sides. When we perform the comparison between an omitted
word on one side and do not find its counterpart on the other side, it results in a higher penalty
and a greater distance like it should for an omitted word.

Addition (Add.)
Addition refers to the added portion of the text as available in the manuscripts. It can be one or
more words depending on the variant. When we average of all the distances between all word
pairs, and in the comparisons made, do not find the added words; it results in a high penalty a
greater overall distance like it should for an added portion.

Change of word (CW)
CW refers to a change of word, in the manuscript, in comparison with the critical edition i.e.,
a word may undergo some morphological inflection or takes some other form but retains a se-
mantic notion. In such a case, the baseline approach measures the lexical changes in a word
but penalise this change relatively lower in magnitude. In our approach, since the semantic no-
tion is maintained, the embeddings would provide with nearby vectors and thus also penalise
relatively lower in magnitude, which is what should be done for such a variance.

162

Change in the place of a word (CPW)
CPW refers to the change in the place of the word in the manuscript in comparison with the
critical edition. CPW implies that the words in question exist in the manuscript but changes its
place. This is not the case with the previous three types of changes. Our methodology counters
this variance when we average over all the word pairs. Since the word is indeed present in
the functional unit of the text, we should be able to find its occurrence on the other side, and
thus this would result in a penalty of lower magnitude in terms of distance. We discuss these
approacheswith our philologists and their views are in accordancewithwhat ourmethodology
does in penalising computing distances.

Figure 2: Phylogenetic Tree for the dated manuscripts generated using our method

Availibility of the timeline
Ancient Sanskrit text and its manuscripts are scarcely found dated. The unavailability of a
timeline (or a temporal reference of versions) of how these texts evolved is a primary reason
phylogenetic methods are needed to derive the root version (or the critical edition). We also
note that some manuscripts among all the versions are dated, which do help identify the accu-
racy of a generated tree. Among the seventy versions of KV, we currently have the temporal
references for eleven versions. We also generate phylogenetic trees for these versions using the
neighbour-joiningmethod based on the distance matrix computed using the word embeddings
based approach they provided us with the best trees for AST 2.2.6. We depict this tree in Figure
2. In this tree, we have not yet implemented a method to refer to the timeline which is avail-
able. We plan to refine and generate such sub-trees based on the temporal references available
to implement more accurate sub-trees of this type.

7 Conclusion and Future Work
In this paper, we presented a novel word embeddings based approach to create inter-
manuscript distances and hypothesize functional units as a part of the text. We devised a base-
line approach for drawing a comparison from our approach, which is based on lexical distance-
based measures. We collect manuscript versions from different sources and accumulate them
in a single repository and compute the inter-manuscript distance between all manuscript pairs,
thus formulating a distance matrix for each approach. We collect raw Sanskrit corpus from
various sources and create a word embeddings model using the state-of-the-art library. We re-
lease this word embeddings model publicly for the use of other researchers looking to explore
this area. Also, we compute inter-manuscript distances using this model and generate trees
for both using both the baseline and this approach. We compare the trees manually, evaluate
them with the help of expert philologists where we go on to show that the trees generated via
word embeddings based models were better in subgrouping and required the least number of
corrections to reach the state of manually drawn trees. We discuss the merits of our approach

163

with examples and provide justifications of our results. Our approach clearly outperforms the
baselinemethod and thus should help the researchers in this area to create better, more accurate
phylogenetic trees in the near future.
In future, we would like to extend our dataset of the KV text to complete all the containing

sutras and perform the same experiments for all such portions of the KV text. We plan to divide
each of such portions of text into functional units and perform the same experiment for the text.
We aim to include the other material like text commentaries and earlier texts as a part of the
experiment in the future, as they provide important references to the text.

References
[Atkinson and Mitchell1981] Colin Atkinson and Ann FS Mitchell. 1981. Rao’s distance measure.

Sankhyā: The Indian Journal of Statistics, Series A, pages 345–365.

[Bojanowski et al.2017] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the Association for Computa-
tional Linguistics, 5:135–146.

[Cer et al.2018] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence
encoder. arXiv preprint arXiv:1803.11175.

[Conneau et al.2017] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and
Hervé Jégou. 2017. Word translation without parallel data. arXiv preprint arXiv:1710.04087.

[Csernel and Patte2007] Marc Csernel and François Patte. 2007. Critical edition of sanskrit texts. In
Sanskrit Computational Linguistics, pages 358–379. Springer.

[David2001] W Mount David. 2001. Bioinformatics: sequence and genome analysis. Bioinformatics, 28.

[Devlin et al.2018] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.
Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

[Ellison and Kirby2006] TMark Ellison and SimonKirby. 2006. Measuring language divergence by intra-
lexical comparison. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics, pages 273–280. Asso-
ciation for Computational Linguistics.

[Emeneau1956] Murray B Emeneau. 1956. India as a lingustic area. Language, 32(1):3–16.

[Felsenstein and Felenstein2004] Joseph Felsenstein and Joseph Felenstein. 2004. Inferring phylogenies,
volume 2. Sinauer associates Sunderland, MA.

[Felsenstein1993] Joseph Felsenstein. 1993. PHYLIP (phylogeny inference package), version 3.5 c. Joseph
Felsenstein.

[Felsenstein2001] Joseph Felsenstein. 2001. The troubled growth of statistical phylogenetics. Systematic
Biology, pages 465–467.

[Gronau and Moran2007] Ilan Gronau and Shlomo Moran. 2007. Optimal implementations of upgma
and other common clustering algorithms. Information Processing Letters, 104(6):205–210.

[Huelsenbeck et al.2001] John P Huelsenbeck, Fredrik Ronquist, Rasmus Nielsen, and Jonathan P Boll-
back. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. science,
294(5550):2310–2314.

[Huelsenbeck1995] John PHuelsenbeck. 1995. Performance of phylogenetic methods in simulation. Sys-
tematic biology, 44(1):17–48.

[Jaro1989] Matthew A Jaro. 1989. Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Journal of the American Statistical Association, 84(406):414–420.

164

[Kanojia et al.2019] Diptesh Kanojia, Malhar Kulkarni, Pushpak Bhattacharyya, andGholemrezaHaffari.
2019. Cognate identification to improve phylogenetic trees for indian languages. In Proceedings of the
ACM India Joint International Conference on Data Science and Management of Data, pages 297–300.
ACM.

[Kulkarni and Kahrs2018] Malhar Kulkarni and Eivind Kahrs. 2018. Materials for the critical edition of
kāśikāvrtti 1.1.

[Kulkarni2003] Malhar Kulkarni. 2003. The sharada manuscripts of the kāśikāvrtti. pages 353–364.

[Kulkarni2008] Malhar Kulkarni. 2008. The sharada manuscripts of the kāśikāvrtti: Part ii. pages 419–
428.

[Kulkarni2009] Malhar Kulkarni. 2009. A sample of the new edition of the kāśikāvrtti: 2.2.6. LXV:116–
127.

[Kulkarni2012] Malhar Kulkarni. 2012. The malayalam manuscripts of the kāśikāvrtti: A study. 6:103–
112.

[Mikolov et al.2013] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119.

[Moret et al.2002] Bernard ME Moret, Usman Roshan, and Tandy Warnow. 2002. Sequence-length re-
quirements for phylogenetic methods. In International Workshop on Algorithms in Bioinformatics,
pages 343–356. Springer.

[Nerbonne and Heeringa1997] John Nerbonne and Wilbert Heeringa. 1997. Measuring dialect distance
phonetically. In Computational Phonology: ThirdMeeting of the ACL Special Interest Group in Com-
putational Phonology.

[Nichols and Warnow2008] Johanna Nichols and Tandy Warnow. 2008. Tutorial on computational lin-
guistic phylogeny. Language and Linguistics Compass, 2(5):760–820.

[Peters et al.2018] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365.

[Rama and Singh2009] Taraka Rama and Anil Kumar Singh. 2009. From bag of languages to family trees
from noisy corpus. In Proceedings of the International Conference RANLP-2009, pages 355–359.

[Rama et al.2017] Taraka Rama, Johannes Wahle, Pavel Sofroniev, and Gerhard Jäger. 2017. Fast and
unsupervised methods for multilingual cognate clustering. arXiv preprint arXiv:1702.04938.

[Rama et al.2018] Taraka Rama, Johann-Mattis List, Johannes Wahle, and Gerhard Jäger. 2018. Are au-
tomatic methods for cognate detection good enough for phylogenetic reconstruction in historical lin-
guistics? arXiv preprint arXiv:1804.05416.

[Rama2016] Taraka Rama. 2016. Siamese convolutional networks for cognate identification. In Proceed-
ings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical
Papers, pages 1018–1027.

[Roch2006] Sebastien Roch. 2006. A short proof that phylogenetic tree reconstruction by maximum like-
lihood is hard. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(1):92–94.

[Rong2014] Xin Rong. 2014. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

[Saitou and Nei1987] Naruya Saitou and Masatoshi Nei. 1987. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–425.

[Salton and Buckley1988] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management, 24(5):513–523.

[Singh and Surana2007] Anil Kumar Singh and Harshit Surana. 2007. Can corpus based measures be
used for comparative study of languages? In Proceedings of ninthmeeting of the ACL special interest
group in computational morphology and phonology, pages 40–47. Association for Computational
Linguistics.

165

[Singh2006a] Anil Kumar Singh. 2006a. A computational phonetic model for indian language scripts. In
Constraints on Spelling Changes: Fifth International Workshop on Writing Systems. Nijmegen, The
Netherlands.

[Singh2006b] Anil Kumar Singh. 2006b. Study of some distance measures for language and encoding
identification. In Proceedings of the Workshop on Linguistic Distances, pages 63–72. Association for
Computational Linguistics.

[Sokal and Rohlf1962] Robert R Sokal and F James Rohlf. 1962. The comparison of dendrograms by
objective methods. Taxon, pages 33–40.

[Swofford et al.1996] DL Swofford, GJ Olsen, PJ Waddell, and DM Hillis. 1996. Phylogenetic inference,
p. 407–514. Molecular Systematics (second edition). Sinauer Associates, Sunderland, Massachusetts.

[Warnow et al.2001] TandyWarnow, Bernard MEMoret, and Katherine St John. 2001. Absolute conver-
gence: true trees from short sequences. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 186–195. Society for Industrial and Applied Mathematics.

[Warnow1993] Tandy J Warnow. 1993. Constructing phylogenetic trees efficiently using compatibility
criteria. New Zealand Journal of Botany, 31(3):239–247.

[Winkler1990] William E Winkler. 1990. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage.

166

An Introduction to the Textual History Tool
Diptesh Kanojia†,♣,⋆, Malhar Kulkarni†, Pushpak Bhattacharyya†, Sayali Ghodekar†,

Irawati Kulkarni†, Nilesh Joshi†, Eivind Kahrs♠
†IIT Bombay

♣IITB-Monash Research Academy
⋆Monash University

♠University of Cambridge
†{diptesh,pb,malhar}@iitb.ac.in, †sayalighodekar26@gmail.com,

†irawatikulkarni@gmail.com, †joshinilesh60@gmail.com, ♠egk1000@cam.ac.uk

Abstract

This paper describes a digital tool called the Textual History Tool in detail. This tool
captures the historical evolution of a text through various temporal stages, and inter-
related data culled fromvarious types of related texts. This tool also provides a historical
view of the transmission of a text through the manuscript tradition. This tool provides
an online interface which allows philologists to enter manuscript data for a text. It also
provides an online interface which helps philologists compare the variants in a separate
mode. It allows the user to generate phylogenetic trees, for the text, based on distance
methods using the data entered in the tool. It also contains the facility to generate critical
edition using a semi-supervised approach. This tool also divides the text intomeaningful
functional units and helps achieve a better comparison among themanuscripts. The text
of the KV and its textual history is mentioned as a specific example to demostrate the
features of this tool.

1 Introduction
In the twentieth century, before computers came to be used in the effort of preparing the critical
edition of a text, philologists used paper-based methods for various purposes viz. collation,
description of manuscripts, inter-relation of manuscripts, apparatus creation etc. With the
advent of computers and development in technology, we can now have tools with us, that can
facilitate the data entry, storage and display of the aforementioned functions, all on the same
interface. The tool described in this paper is of the same kind.

A text is, generally a structured verbal expression of intellectual processes. This definition is
derived from:

बिुिनबा म इिभधीयते | स िधा मौिखक आो िलिखतोऽ की त े ||

It can exist and get transmitted in both forms, oral as well as written.

वायुपो मखु े ितन म्ो मौिखक उते | पऽे मँयािदिभिै मो िलिखत उते ||
मौिखकः कण िनमा ो िलिखतदुशनः | मखुाखुं मौिखको िह ूसरथ कालतः ||
िलिखत पनुलखःै स व ै समः उते | एवं मे पनुमिैतं सम वै ||
िवकास पनुब ुःे कालतो दशेतोऽिप वा | मिैतमहाये योिजतं स पिरौमम |्|1

Oral transmission led to the development of various vikṛtis i.e., methodologies used tomemo-
rize Vedic lore, based on cognitive features. Written transmission is carried out through copies
of the text, also known as manuscripts. Historically, manuscripts were written or copied by
one or more scribes. Transmission of the text from one source to another generates variants

1This definition comes from an Unpublished Sanskrit Work मिेतहासोोगः by Malhar Kulkarni.

167

which differ significantly when compared to each other. In terms of expression, the text un-
dergoes various changes in terms of spellings, word replacements etc. Texts are used as the
primary sources by scholars in reconstructing the History. The texts assume more significance
as a source when it comes to reconstructing the history of an intellectual tradition. These texts
represent important stages in the development of thought that contributes to the continuation of
the intellectual tradition. What makes the process of reconstruction of intellectual history more
complex and therefore, perhaps, more interesting as well as challenging, is the fact that these
texts, themselves, are part of a historical process, also known as transmission, and have evolved
in certain typical manners and ways in the course of time. It becomes necessary, therefore, in
order to study the history of intellectual tradition, the history of the text used as a primary
resource.
In the Indian context, we know that the transmission of texts happened in two major ways:

oral and written. Texts like Vedas were transmitted from one generation to another, primarily,
orally and were written down eventually. So is the case of Epic poems like Ramayana and
Mahabharata2. In the case of Vedas, though, there is no scope of evolution of the text as such,
as it was orally transmitted in a regulated manner with components of the texts noted down in
great details up to the level of single letters and accent marks. In the case of Epics, however,
the evolution of the text was observed by scholars and traditionally as well, it is believed that
Mahabharata, for example, originally consisted ofmerely 10000 verseswhich grew in the course
of time and has now become a text of one hundred thousand verses (Satasahari Samhita).
When we study the texts in the Indian grammatical tradition, that too, the paninian one, tra-

ditional commentators like Madhava and Bhattoji Dikshita etc. (Kulkarni, 2002b; Kulkarni and
Kahrs, 2015), and modern scholars like Kielhorn (1887) and Kulkarni (2012a) observe that the
text of the Aṣṭãdhyāyī (AST) has evolved in the course of time. The text of the sutras that Patan-
jali had in front of him is not the same as we have it today. As shown by Kulkarni (2015b) and
Kulkarni (2016), the traditional commentators quoted above, consider the text of the KV as an
important stage of evolution of the text of the AST because the KV brought about numerous
modifications in the text of the AST, by sometimes adding a word or two in the sutra, split-
ting one sutra into two, converting a later vārttika into a sutra etc. Joshi et al. (1995) also state
that the KV also preserved a tradition of interpretation of the AST, independent of Patanjali.
Bronkhorst (2009) showed that the KV also has an interface with other, non-paninian, Sanskrit
grammatical traditions. Therefore it becomes important for scholars interested in the develop-
ment of an intellectual tradition of linguistic thought in India to study the evolution of the text
of the KV seriously through various sources like commentaries and manuscripts3. In order to
study this stage of evolution further, when we turn to the printed text of the KV as available to
us through more than 10 editions, as of now, we notice that the printed editions do not present
to us a picture of a uniform text and rather suggest that this text of the KV that we have with
us today, must have evolved in a particular manner historically. Kulkarni (2012c) studied the
‘ganapathas’ and after analyzing the data frommanuscripts showed how the number of words
in a ‘gana’ increased in the course of time and also formulated the stages of this historical de-
velopment4.

2When Malhar Kulkarni delivered his lecture on ’Text and Transmission with special reference to Classical San-
skrit Texts’ in Almaty, Kazakhstan on 25th August 2015, some members of the audience remarked that there exist
texts even in Kazakhstan, which were committed to memory and were handed down from one generation to the
next orally. For oral traditions of India, see (Falk, 1993) and for more recent discussions, see (Kulkarni, 2015a).

3There is no evidence that theKVwas ever handeddownorally. So oral transmission cannot be used as a resource
in the reconstruction of the evolution of the KV. A modern counterexample will also make this point more clear:
The text of the VaiyakaranaSiddhantaKaumudi was handed down orally, and even Malhar Kulkarni memorised it
as part of his traditional education. In fact, it can be said that the primary focus of the structure of the text of the
VSK is oral transmission.

4Also, Kulkarni presented another paper at the WSC 2018 studying in detail the printed editions of the KV on
various Ganas (accepted for publication).

168

A Brief History of the Critical Edition of the KV in the Post-1990 era
It is this state of affairs with reference to the printed editions of the KV that led to Johannes
Bronkhorst and Saroja Bhate to undertake the project of critically editing the text of the KV.
Malhar Kulkarni joined this project in 1994 and collected manuscripts from various parts of
India and successfully defended his dissertation submitted to the University of Pune in 2000 in
which he prepared a critical edition of the KV on A 2.2. Following suit, Deo (2001) submitted
her dissertation on the critical edition of the KV on A 3.1 and Dash (2004) on the KV on A 4.1.
Malhar Kulkarni also published a sample edition of the KV on A 2.2.6 in a 2005 volume of a
journal published by Bharatiya Vidya Bhavan, Mumbai. He also published his studies about
the interrelation of groups of manuscripts of the KV (manuscripts written in Sharada script in
2003 (Kulkarni, 2003) and 2008 (Kulkarni, 2008) and manuscripts written in Malayalam script
in 2012). In 2010, Eivind Kahrs and Malhar Kulkarni jointly got awarded by British Academy
for their proposal to restart editing of the text of the KV critically. Kahrs and Kulkarni worked
on preparing the critical edition of the KV on A 1.1 and also collected manuscripts for the same.
This effort was further supported by the University of Cambridge through its funds and also
by IIT Bombay. Through these funds, they paid their assistants5 and assigned various tasks to
prepare data for the purpose of critically editing the text of the KV. Through these funds, they
could also get the entire manuscript collection earlier stationed at the University of Lausanne,
Switzerland shipped to IIT Bombay. The outcome of this support was in the form of a book
entitled “Material for the critical edition of the KV” published in April 2018. In 2018, Malhar
Kulkarni was awarded another grant by Rashtriya Sanskrit Sansthan, India to critically edit the
text of the KV onA 1.1. These grants are the base of ourwork for the purpose of critically editing
the text of the KV. Textual history tool is part of our work to edit the text of the KV critically.

1.1 Functional Divisions of the text of KV
The text of KV, as mentioned above, can be, generally, divided into its functional parts. There
are two basic divisions in the text of KV, one that of the sūtra and other of the KV. Within the
KV, the text can further be divided according to its functional properties based on the type of
sūtra it is commenting upon. We present below the functional divisions in the KV on the saṁjñā
sūtra. Functional parts of the KV on vidhi sutra is described in (Kulkarni, 2012b).

• saṁjñā: this type of sūtra introduces a technical term, and hence the KV on this sūtra con-
tains the following functional parts:
1. Introduction of the words in the sūtra and meaning of the sūtra.
2. Examples.
3. Mention of other sūtras in which this technical term appears.

An example of the functional division of a sūtra is presented in Table 1.

1.1.1. Sutra विृरादचै|् (१॥१॥१)

1.1.1.1 Introduction & Meaning विृशः संाने िवधीयते ूकेमादचैां वणा नां सामाने तािवतानामतािवतानां च|
तपरकरणमजैथ तादिप परपर इित खरैकािदष ु िऽमाऽचतमुा ऽूसिनवृय|े

1.1.1.2 Examples आलायनः| ऐितकायनः| औपगतः| औपमवः| शालीयः| मालीयः|
1.1.1.3 Other Occurences of the term विृूदशेाः| िसिच विृः परपैदषे ु इवेमादयः||

Table 1: Example of Functional Unit based Division of the KV on AST 1.1.1

1.2 Motivation
The Textual History Tool is required because at one go it can present to a reader, the entire
history of a text. A text in the Indian context can have a predecessor text as well as a successor

5Mukta Tilak, Prajakta Deodhar, Anuja Ajotikar, Trupti Kulkarni, Tanuja Ajotikar and Samhita Joshi.

169

text. It is an outcome of the intellectual activity based on one or more predecessor texts as
well as textual traditions. It becomes a part of intellectual discourse and is commented upon
by critical scholars within the same tradition. It gets quoted in the successor texts of the same
tradition as well as other traditions and disciplines. It gets copied down in written form for
various generations across different geographical regions and in different scripts. In this
process, the text itself undergoes various stages of evolution, which can be marked as historical
landmarks in the development of thought. Capturing the history of this intellectual world, at
a glance, is the aim of this tool.

Currently, available tools do not present the historical information in a form which is
coherent, and they do not provide an efficient data-entry interface which can help compu-
tational phylogenetics. There are multiple toolkits available which perform computational
phylogenetics given the data is formatted in their required input format; none of them takes
raw manuscript data to automate the complete pipeline which is the eventual aim of this tool.
We allow users to enter raw manuscript data and create functional divisions to easy the task of
phylogenetics which is a novel contribution of our work.

The key contribution of our work is:

‘Building a comprehensive tool for visualizing the transmission and history of a text - a tool
which can,
(i) Visualize the multiple versions of the same text which also allows data entry for manuscript
versions and thus, helping one compare these versionswith each other and aids one in adapting
them to a graphical model viz. a phylogenetic tree.
(ii) Visualize the data from earlier texts.
(iii) Visualize the data from testimonia.
(iv) Visualize the data from commentaries.’

2 Related Work
Currently, a lot of texts written in Sanskrit are available in the electronic format available at
SARIT6, GRETIL7, DCS8 etc. Many of them are in searchable format. DCS presents texts with
various other applied tools like Morphological Analyzer, POS tagger etc. However, no tool
presents historical information the way it is needed i.e., with manuscript versions which can
be compared/edited at the same time. KWIC is an acronym for Key Word In Context (KWIC)
and is the most common format for concordance lines. DCS employs KWIC to be used in the
concordance functionality it provides on its interface. Some tools for visualization of data are
available online. Csernel and Patte (2007) discuss the LCS algorithm for preparing a critical
edition of Sanskrit texts and provide a method for comparison of Sanskrit manuscripts using
XML and HTML formats. BabelNet (Navigli and Ponzetto, 2010) is an important lexical re-
source as far as computational aspects are concerned. Navigli and Ponzetto (2012) design an
explorer to visualize its database. It uses the tree layout for visualization which, in the con-
vention, is similar to the phylogenetic visualization of texts. Visuwords9 is an online graphical
dictionary designed for accessing Princeton WordNet and uses a force-directed graph layout
for visualizing the synset structure. Nodebox visualizer10, on the other hand, provides a very
static layout. WordTies (Pedersen et al., 2013) is a WordNet visualizer designed for Nordic and

6http://sarit.indology.info/
7http://gretil.sub.uni-goettingen.de/
8http://www.sanskrit-linguistics.org/dcs/
9https://visuwords.com/
10https://www.nodebox.net/code/index.php/WordNetwo

170

Baltic wordnets. Chaplot et al. (2014) present such a visualizer for IndoWordNet- which is a
lexical resource for Indian language WordNets.
Overlapping textual structures can be accurately modelled either as a minimally redundant

directed graph, or, more practically, as an ordered list of pairs, each containing a set of versions
and a fragment of text or data (Schmidt and Colomb, 2009). On a similar note, Hanneder (2010)
writes about text genealogy and textual criticism. Maas (2009) discusses the textual versions
of Carakasaṃhitā Vimānasthāna and uses computer stemmatics to aid them in the construc-
tion of a Phylogenetic tree later (Maas, 2010). Sathaye (2017) present an analyses of Vetāla-
pañcaviṃśati, in the context of ‘fluid’ textual dynamics and discuss the differences in oral folk-
lore when compared to written text. Phillips-Rodriguez et al. (2009) discuss the transmission
of the Mahābhārata and the bifurcations within the diagrams about its written transmission.
Kulkarni (2002a) discuss the transmission of KV and conclude that there seems to be no Vt
(version) on 2.2.6 in the KV. Kulkarni (2015a) discuss the pespectives on how memory acts as
an important device in the tradition of oral transmission of texts.
The TEI Critical Edition11 Toolbox is a tool for preparing a digital TEI critical edition which

allows you to check for the encoding of the text. It also facilitates the parallel look-up of the
manuscript version by visualizing them on a web-based GUI. Although the software is not
available for download and offline use, yet. In the current state, it accepts only TEI format XML
files but does not allow one to generate versions. A technique for textual criticism is also pro-
vided by West (1973). Classical Text Editor12 allows one to build a critical edition and critical
apparatus manually. It also allows one to prepare the phylogenetic trees but does not provide
a visualization interface. It allows one to collate the textual versions and edit them on an offline
interface. Our work is significantly different from CTE as our online interface allows multiple
users to collaborate and enter data for the same text. It allows the users to create functional
divisions in the sutra text being entered and thus helps our novel phylogenetic methodology.
In philosophy, our tool is focussed on the entire textual history of which manuscripts are an
important part. Our tool preserves testimonia, printed editions, commentaries etc. which the
CTE does not. PAUP is a tool for Phylogenetic Analysis based on Maximum Parsimony (Fitch,
1971) and other related methodologies, has been created by Swofford (1999) and is available
online13. To the best of our knowledge, there is no tool which presents a comprehensive pic-
ture of the history of a text by presenting various resources useful for the reconstruction of the
history of a text like testimonia, commentaries, earlier texts, printed editions etc.

3 Tool Architecture and Description

The Textual History Tool14 allows users/philologists15 to register and the registration to be ap-
proved by the tool administrator, which is authenticated based on a username/password based
login interface. It also provides philologistswith a data entry interfacewhich allows the creation
of a text with multiple manuscript versions in the tool database, which is a novel contribution
of this work. It also encompasses a viewmode, a compare mode, and a tree visualization mode
(Kanojia et al., incorporated in Kulkarni and Kahrs, 2018). We describe the tool interface in the
form of these modes, in the following subsections.

11http://ciham-digital.huma-num.fr/teitoolbox/
12http://cte.oeaw.ac.at/
13http://paup.sc.fsu.edu/
14The idea of developing such a tool was originally conceived byMalhar Kulkarni. He called it मिेतहास-यम i्n his

Sanskrit workmentioned in Footnote 1. He thanks the other authors of this paper for the successful implementation.
He wishes to dedicate this tool to the community of Indologists past, present and future. An earlier version of this
tool was presented in the demo session at World Sanskrit Conference (2018), Vancouver, Canada.

15Further, we shall use users and philologists interchangeably depending on the usage of the tool.

171

3.1 Data Entry
The Data entry interface, based on the user login, allows the user to start with the creation
of a new manuscript, or takes them back directly to the last entry they made in a previous
manuscript they were working on. At any point, a user can choose to start a new manuscript
creation. In such a case, the tool requests the entry of the manuscript label. Upon the entry of
the manuscript label, the tool presents the user with an option to enter the manuscript data in
a functional unit division or directly in a text box.
We provide this option because manuscripts are different in nature and may not contain that

text or may contain the text in a different form. More importantly, the user can choose to enter
text directly if they do not feel the need to divide the text into logical units. In such a case,
the tool presents the users with text boxes with next and previous buttons, which allows the
user to enter the text and move on the next text entry from the manuscript. In the case where
the user chooses to enter the text in a functional unit division, they are presented with a text
ID along with a text entry field for data. Such fields can be added or removed by the user
as per the manuscript text. The user is allowed to create multiple logical divisions, and even
leave a functional unit entry empty if the manuscript data requires them to do so. The tool
requests the user to enter vulgate data which can be a basic building block for manuscript data
for phylogenetic analysis, if the vulgate data is not present the user can ignore the request, and
the phylogenetic analysis can then be carried out without it; although they can enter vulgate
data at any point later in time. The data entry interface also allows a user to enter commentaries
and quotations into the database. These optional entries can allow a philologist to evaluate the
phylogenetic tree constructed, and can also aid the tree construction.

(a) View Mode Snapshot (b) Comapre Mode Snapshot

Figure 1: Screenshot from the Textual History Tool

3.2 View Mode
In this mode, the user can view the manuscript version on the interface based on the label.
They can select a label from the list labels in the database or search for a label and view the
sūtra entries, one at a time; this mode also provides the option to correct an entry based on
user privileges. We have added the functionality of viewing the sūtras in the form of functional
unit division if they were created with one. This can also be used to instantaneously compare
the current version with the Vulgate text, which appears on the top in view mode for each
manuscript (if present in the database). A snapshot of the said mode is shown in Figure 1a.

3.3 Compare Mode
It allows a user to view different manuscript versions on the interface based on user selection.
The data fromVulgate, if present in the database, is always shown on top for a base comparison.
This mode does not facilitate editing of the manuscript versions but allows one to compare
versions, the outcome of which can be utilized during a manual analysis later. It allows the
user to select one to four versions for comparison. A snapshot of this mode is shown in Figure
1b.

172

3.4 Phylogenetic Tree Mode

Figure 2: A sample tree produced in the Phylogenetic Tree Mode

This mode is a novel contribution of our work, where based on functional unit distances, a
distance matrix can be created. These functional units are part of a text, and thus the user has a
choice for selecting one ormore textswherein the functional unit division has been created in the
Data Entry mode described in a subsection above. We use two different approaches to create a
distance matrix. The baseline approach, which uses the notion of lexical similarity, uses Cosine
Distance, Jaro-WinklerDistance, andNormalizedEditDistance to compute these distances. The
second approach utilizes word-embeddings learned from Sanskrit corpora, which are stored in
a model. These approaches are further detailed in Section 3.5.2.
Eventually, the distance matrix is used to cluster similar manuscripts in the same sub-group,

and then the tree can be created using one of the distance based methods viz. Neighbor Joining
or UPGMA. These methodologies are also explained in detail in Section 3.5.3. The tree visual-
ization is shown on the interface in the form of manuscript labels being shown as leaf nodes,
which can be seen in Figure 2. The user is allowed to view the tree on the interface as well as
download it in PDF format for further analysis.

3.5 Technical Development Details
This section provides a detailed technical description of the tool interface frontend and backend.
Alongwith the interface description, it also entails themethodologies used to create the distance
matrix which is used for tree generation in the Phylogenetic Tree mode (Section 3.4). The tool
architecture is shown as a diagram in Figure 3.

Figure 3: The basic architecture of our tool

173

3.5.1 Tool Interface
The tool is built as an onlineweb-based interface16 hosted locally on anApache Server. It is built
using PHP, Javascript and utilizes jQuery for querying the backend. The tool backend utilizes
MySQL to efficiently store the manuscript data in a relational database format. MySQL queries
from the tool frontend are sanitized before they are sent towards the backend to escape injection
attacks. The tool comprises of an authentication interface which is based on username/pass-
word based login. The users have to be approved by an administrator after registration, which
is available on the login page. The tool users can be granted different privileges based on their
usage and expertise in the area. The tool source code can be downloaded and stored offline for
local usage17.

3.5.2 Methodologies for Distance Computation
The phylogenetic tree mode utilizes distance matrix creation based on code written in Python,
which can be run for selected manuscripts. Our methodology requires as input the distance
matrix between manuscript versions to infer the phylogenetic trees. This distance matrix is
computed based on the distance among the functional units, which are divisions in the text
as described in Section 1. In case of the unavailability of the division of functional units, the
matrix can be computed based on the complete text acting as a single functional unit. The
computation of this matrix can be done based on lexical similarity based measures as a baseline
method. Our novel approach utilizes word embeddings from a large Sanskrit Corpus-based
model, the details of which are below in this section.

Lexical Similarity-based Distance: Baseline Approach
The baseline approach utilizes three different metrics for the computation of lexical similar-
ity. We use Cosine Distance, Normalized Edit Distance, and Jaro-Winkler Distance to compute
three scores, which are later averaged into a single score. We also come up with a weighted
average mechanismwhich provide 50%weight to NED, and 25%weight to each CoD and JWD
to generate a more efficient tree.

• Normalized Edit Distance Method (NED): The Normalized Edit Distance approach com-
putes the edit distance (Nerbonne and Heeringa, 1997) for all word pairs in a functional
unit and then provides as output the average distance between all word pairs or ‘Unit Dis-
tance’.

• Cosine Distance (CoD): The cosine similaritymeasure (Salton and Buckley, 1988) is another
similarity metric that measures the cosine of the angle between two vectors projected in a
multi-dimensional space. In this context, the two vectors are the arrays of character counts
of two words. We calculate the cosine distance as (1 - Cosine Similarity).

• Jaro-Winkler Distance (JWD): Jaro-Winkler distance is a string metric measuring an edit
distance between two sequences. It uses a prefix scale P which gives more favourable
ratings to strings that match from the beginning, for a set prefix length L.

The above similarity metrics use different ways to compute similarity between each word
pair and hence produces varying distance matrices. For computational purposes, we provide
all the metrics equal weightages initially, and compute the distance matrix using the average
score of all three methods. For manuscripts p and q, the average inter-manuscript distance is
defined as:

LDpq =
(NEDpq + CoDpq + JWDpq)

3
16Tool URL ANONYMIZED
17Tool Source Code ANONYMIZED

174

We experiment over weightages and later provide different weightages to eachmethod. Em-
pirically, we find best results by setting the weight as described above. For languages p and q,
the weighted average inter-manuscript distance is defined as:

LDpq = (NEDpq ∗ 0.5) + (CoDpq ∗ 0.25) + (JWDpq ∗ 0.25)

Word embeddings based distance measures: Our Approach
We calculate the cosine distance between all word pairs belonging to the same functional unit
from the embedding space. Thus, the average over the word pair distances gives us ‘Unit Dis-
tance’. Similar to the baseline method, we average over all unit distances to find out the inter-
manuscript distance for each manuscript pair and compute the distance matrix. Since angular
cosine distance distinguishes nearly parallel vectors better (Cer et al., 2018), we also use angu-
lar cosine distance and calculate the inter-manuscript distance for each manuscript pair, in a
similar fashion.
We train the models with the following hyperparameters. We create the SKIPGRAM model

based on 100 dimensions due to a limited amount of the corpus collected18. We restrict the
context window to 5 and use 0.1 as the learning rate. The maximum length of word n-gram we
use is one word. We retain the sampling threshold at a default 0.0001. We use softmax as the
loss function and train the models for five epochs19.

3.5.3 Tree generation using distance-based clustering methods
We implement two distance-based methods for our work, namely, the Neighbor Joining
method and the UPGMA method. We further describe these methods below, along with the
reasons for choosing these methods.

Distance-based Methods
Distance analysis compares two alignedmanuscripts at a time and builds amatrix of all possible
sequence pairs. During each comparison, the number of changes (base substitutions and inser-
tion/deletion events) is counted and presented as a proportion of the overall sequence length.
These final estimates of the difference between all possible pairs of manuscripts are known
as pairwise distances. A variety of distance algorithms are available to calculate the pairwise
distance (between versions), for example, Proportional (p) distances. We use the baseline ap-
proach and our approach to compute these pairwise distances. Once the pairwise distances are
calculated, they must be arranged into a tree. There are many ways to “arrange” the Taxa ac-
cording to their distances. One way to cluster or optimize the distances is to join Taxa together
according to their increasing differences, as embodied by their distances.

UPGMAMethod
The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method (Sokal and
Rohlf, 1962) produces rooted trees and requires a constant-rate assumption, i.e., they assume
an ultrametric tree in which the distances from the root to every branch tip are equal. At each
step, the nearest two clusters are combined into a higher-level cluster. The distance between
any two clusters A and B, each of size (i.e., cardinality) |A| and |B|, is taken to be the average
of all distances D(x, y) between pairs of objects x in A and y in B, that is, the mean distance
between elements of each cluster. In other words, at each clustering step, the updated distance
between the joined clusters and a new cluster X is given by the proportional averaging of the
distance between A given X and the distance between B given X .

18The standard number of dimensions for word embeddings, given a big corpus, is 300
19More epochs usually lead to a better learned/trained model; we retain the best epoch output with a minimum

loss to be utilized for our work

175

Neighbor Joining Method
Neighbour-Joining (Saitou and Nei, 1987) is a bottom-up (agglomerative) clustering method
for the creation of phylogenetic trees. It applies general data clustering techniques to sequence
analysis and uses genetic distance as a clustering metric. The simple version of the neighbour-
joining method produces unrooted trees, but it does not assume a constant rate of evolution
(i.e., a constant timeline) across lineages.

4 Tool Features and Functionalities
The tool comprises of the following additional features and functionalities as described below:

4.1 Manuscript Pictures

Figure 4: Screenshot of view mode displaying manuscript picture along with the text in the view mode

In addition to the tree generation and other salient features like a comprehensive data entry
mode, the tool comprises of an additional feature where it enables the user to view the pictures
of the manuscript document as a proof to substantiate the data. Philologists can attach pictures
of the manuscript entry in the data entry mode as an option along with typing the manuscript
data for the database entry. This picture (shown in Figure 4 as a screenshot), if uploaded by the
philologist, is shown with the data entry in the view mode (Section 3.2).

4.2 Critically Edited Text
The tool also allows one to view the critically edited text in the view mode of the tool. The
critically edited text allows a user to have a summarized view with additional opinions for the
philologists. This helps a user decide which portion of the manuscript they want to consider
for creating phylogenetics trees.

4.3 Critical Apparatus
The critically edited text is usually accompanied by a critical apparatus. The critical apparatus
for a text consists of the set of variations made to the critically edited text. These changes are
important to note down as they are an essential part of the preservation of historical texts. These
changes allow one to notice the originally written text and how it changed over some time. The
tool allows a user to view the critical apparatus in view mode as well.

4.4 Text Visualizer
Manuscripts can be envisioned as a tree in a hierarchical manner which helps philologists anal-
yse them, conventionally. We propose a different method of viewing the manuscripts based on
their distance. This text visualizer of themanuscripts allows one to view themanuscripts as leaf
nodes connected using edges where one can manually change the leaf nodes in the visualizer
setting. The visualizer uses the database and computes a distancematrix to visualize the graph.
The graph is then creating using javascript based library which enlists all the manuscripts in an

176

interactive way where one can manually change the leaf nodes and create their own version of
a tree.
Additionally, we also implement the visualizer to depict the relation between the text and

earlier texts. It can also display the inter-relations between the text and its commentaries along
with the testimonia. It provides the user with an option to view these visualizations together
and also as separate visualization. This feature allows the user to gather temporal information
from the visualization as the database contains dated entries for the testimonia, commentaries,
and some manuscripts. This will help the reader to study the evolution of the text as happened
in the course of time.

4.5 Text Commentaries
There are some direct and indirect commentaries available which comment on the KV text. The
two direct commentaries are Nyāsa (Ny) and Padamañjarī (Pm).
The tool allows a user to view these commentaries on each sūtra by providing a button, click-

ing on which, the commentary available for this sūtra is displayed to the user. This button acts
dynamically on the page and is only visible as a clickable button if a commentary is available
for the said sūtra which is under view on that page. This option provides additional insight
into the text and allows a more holistic view of the work done on the KV text. Another button
to view a sub-commentary is also provided. We also provide the option to view a consolidated
version of the textual evidences available through the commentaries, as mentioned above.
Kulkarni (2002b) mentions the effort on the part of its author to collect information from the

Ny and the Pm, which can act as an evidence to reconstruct the text of the KV. Kulkarni and
Kahrs (2019b) enlist the variants of the text of the KV as found in the Pm through more than
300 quotations.

“There are instances where both the Ny and Pm record the same pratīka. There we
can say that both the commentaries received the text of the KV in a similar form. There
are also cases when both these commentaries are silent about certain readings. And
when they remain silent about certain important units of the text, say a vārttika, then
it increases the probability that that vārttika might not have been there in the original
text of the KV as received by these two commentaries. There are also cases when the
pratīka recorded by the N and Pm vary. Such cases pose a problem for an editor. In
these cases, the problem gets another dimension if the reading of both N and Pm is
seen recorded in some number of mss.”

Kulkarni and Kahrs (2019a) show that the textual evidence available in these two commen-
taries can be classified under two broad categories: Direct and Indirect. While Direct evidence
is clearly visible in the text of the Ny and Pm, indirect evidence can be further classified under
two categories: paroksha and atiparoksha. They, in turn, can further be classified into six and
three categories, respectively. This categorization is shown below in Figure 5. The button in
this tool does show all these categories of evidence, thereby displaying the text of the KV as
known to these two commentaries.
Indirect commentaries are the commentaries on the direct commentaries. Tantrapradipa (Tp)

is a commentary on Ny. Therefore, it becomes and indirect commentary on the KV. Some por-
tions of Tp which are available are used in this work. Tp allows us to determine readings in the
Ny, thereby indirectly helping reconstruct the text of the KV.

4.6 Earlier Texts
On the interface, we also provide an option to view the earlier texts. The purpose of this is to
provide the reader with the historical view of the text. After clicking on the earlier texts button,
the user is provided with an option to choose between “Paninian” and “Non-Paninian” texts.
By choosing the option to view “Paninian” texts, the interface shows the earlier texts in the

177

Figure 5: Classification of evidence from the commentaries on the KV(Kulkarni and Kahrs, 2019a).

Paninian tradition, in this context, the Vyakarana Mahabhashya (VMbh). This allows the user
to see whether there is any historical connection between the KV and the VMbh. It is noted
that VMbh is not available on at least more than 2300 sūtras. In those cases, obviously, the tool
shows “Text Not Available”.
When viewing “Non-Paninian” texts, the interface shows the earlier texts in the Non-

Paninian traditions namely Katantra, Chaandra, etc. This allows the user to seewhether there is
any historical connection between the KV and these traditions. This historical connection is also
presented in the text visualizer. The visualizer also provides and option to comparemanuscript
version in the database with the earlier texts. This allows the user to study the inter-relation of
a particular version of the text of the KV and the earlier paninian and non-paninian texts.

4.7 Testimonia
The text of the KV is quoted in the later texts grammatical as well as non-grammatical. Kulka-
rni (2002b) collected and arranged chronologically more than 1000 such quotations as available
from the later paninian grammatical tradition. Kulkarni (2002c) studied one quotation of the
KV as found in the Shabdkaustubha and showed the inter-relation of KVmanuscripts and Shab-
dkaustubha. The testimonia button displays all these quotations for the sūtra under study.

4.8 Printed Editions
The KV was printed for the first time in 1876. Kulkarni (2000) traced the manuscript sources of
this edition. Ever since then, the text of the KV got printed more than ten times (See Footnote
4). When “Printed Editions” is clicked, the interface displays all the printed editions’ text of the
sūtra. This historical development in the printed editions is also presented in the text visualizer.
It is hoped that the amount of variation available in the printed editions will serve as a basis to
understand the manuscript variants.

4.9 Reverse Engineering and the Critical edition
This functionality allows a user to create the manuscript versions of the text based on the crit-
ical edition and the apparatus. We use the critical edition of the text and apply the variations
mentioned in the apparatus to populate the manuscript versions. We believe that this function
acts as a validator for the data present in the tool database.

178

5 Conclusion and Future Work
In this paper, we describe a tool which captures the historical evolution of a text and allows
a user to view the transmission of a text through its history in a comprehensive manner. The
tool allows a user to digitize a complete text and its versions through a data entry mode. The
data entry mode allows one to partition the text data, based on functional units for a more
accurate phylogenetic evaluation. The tool also comprises of view mode, and compare mode
which can allow a user to view various parts in the text, along with the comparison of the parts
in different manuscripts. Based on the data entry and/or division of functional units in the
data, the tool also allows one to compute a distance matrix in the backend, which can be further
used to compute a phylogenetic tree in the tree mode. The tool comprises of more features
like showing manuscript pictures, visualization of manuscripts like a graph etc. In this paper,
we show how this tool successfully digitizes one specific text, and we hope this can also be
applied in a general domain. Utilizing all the features of the tool described above, it enables us
to identify 19th Century as an important stage, in the evolution and development of this text, as
the manuscripts belonging to this period add 2.2.6.3 to the main text. The justifications for this
observation are noted by Kulkarni (2002a). The tool may have its technological advantages but
still needs humans to interpret the text. We believe this tool can help the community digitize
and view the manuscript data in a format which can be helpful to philologists for drawing
further insights from the text and to understand the text for better.
In future, we would like more functionalities and different tree inferring methods to the tool.

Currently, it only supports distance-basedmethods as described in the paper above. Wewould
also like to provide options such as fuzzy matching between the text and the commentaries
based on which a portion of the commentary can be aligned to a particular portion of the text.
This automation can ease the philologists’ work by automatically showing them alignments be-
tween the commentary portions and themain text. Wewould also like to implement generation
of phylogenetic trees at the micro level (sūtras) as well as the macro level (padas, adhyayas and
entire text).

References
[Bronkhorst2009] Johannes Bronkhorst. 2009. The importance of the kasika. Studies in the Kasikavrtti.

The Section on Pratyaharas: Critical Edition, Translation and Other Contributions, pages 129–140.

[Cer et al.2018] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence
encoder. arXiv preprint arXiv:1803.11175.

[Chaplot et al.2014] Devendra Singh Chaplot, Sudha Bhingardive, and Pushpak Bhattacharyya. 2014.
Indowordnet visualizer: A graphical user interface for browsing and exploring wordnets of indian
languages. In Proceedings of the Seventh Global Wordnet Conference, pages 338–345.

[Csernel and Patte2007] Marc Csernel and François Patte. 2007. Critical edition of sanskrit texts. In
Sanskrit Computational Linguistics, pages 358–379. Springer.

[Dash2004] Sasmita Dash. 2004. Critical edition of kashika 4.1.

[Deo2001] Pooja Deo. 2001. Critical edition of kashika 3.1.

[Falk1993] Harry Falk. 1993. Schrift im alten Indien: ein Forschungsbericht mit Anmerkungen, vol-
ume 56. Gunter Narr Verlag.

[Fitch1971] Walter M Fitch. 1971. Toward defining the course of evolution: minimum change for a
specific tree topology. Systematic Biology, 20(4):406–416.

[Hanneder2010] Jürgen Hanneder. 2010. Text genealogy, textual criticism and editorial technique: guest
ed. Jürgen Hanneder... Verlag der Österr. Akad. der Wiss.

179

[Joshi et al.1995] Shivram Dattatray Joshi, JAF Roodbergen, et al. 1995. The Aṣṭādhyāyī of Pāṇini, vol-
ume 4. Sahitya Akademi.

[Kielhorn1887] Franz Kielhorn. 1887. Notes on the mahabhashya, 6. the text of panini’s sutras, as given
in the kasika-vritti, compared with the text known to katyayana and patanjali. Indian Antiquary,
16:178–184.

[Kulkarni and Kahrs2015] Malhar Kulkarni and Eivind Kahrs. 2015. On unah um and evidence for one
undivided sutra in the text of the Kāśikāvrtti. pages 1–14.

[Kulkarni and Kahrs2019a] Malhar Kulkarni and Eivind Kahrs. 2019a. Some more reflections on the
role of the Nyāsa and the Padamañjarī in reconstructing the textual history of the transmission of the
Kāśikāvrtti. pages 35–48.

[Kulkarni and Kahrs2019b] Malhar Kulkarni and Eivind Kahrs. 2019b. Variant readings in the text of the
Kāśikāvrtti as noted by the Padamañjarī. Journal of the Oriental Institute (Vadodara), 67:143–159.

[Kulkarni2000] Malhar Kulkarni. 2000. On identifying the manuscript(s) at the base of the first printed
edition of the Kāśikāvrtti. pages 203–212.

[Kulkarni2002a] Malhar Kulkarni. 2002a. On a vārttika on p. 2.2.6 in the Kāśikāvrtti. Annals of the
Bhandarkar Oriental Research Institute, 83:201–205.

[Kulkarni2002b] Malhar Kulkarni. 2002b. A study of quotations of the Kāśikāvrtti in the late paninian
grammatical tradition. pages 73–78.

[Kulkarni2002c] Malhar Kulkarni. 2002c. A study of quotations of the Kāśikāvrtti in the late paninian
grammatical tradition. pages 73–78.

[Kulkarni2003] Malhar Kulkarni. 2003. The sharada manuscripts of the Kāśikāvrtti. pages 353–364.

[Kulkarni2008] Malhar Kulkarni. 2008. The sharada manuscripts of the Kāśikāvrtti: Part ii. pages 419–
428.

[Kulkarni2012a] Malhar Kulkarni. 2012a. Franz kielhorn and the text of aṣṭãdhyāyī as given in the
Kāśikāvrtti: A study. 84:31–50.

[Kulkarni2012b] Malhar Kulkarni. 2012b. The malayalam manuscripts of the Kāśikāvrtti: A study.
6:103–112.

[Kulkarni2012c] Malhar Kulkarni. 2012c. Some issues in editing the ganapathas in theKāśikāvrtti. 6:213–
258.

[Kulkarni2015a] Malhar Kulkarni. 2015a. Memory: a device in traditional sanskrit learning. Memory
andHumanWellbeing: Interdisciplinary Perspectives, pages 57–72. Edited by Yahei Kanayama, Mal-
har Kulkarni and Toshiya Unebe.

[Kulkarni2015b] Malhar Kulkarni. 2015b. Quotations in grammatical texts and the tradition of
manuscript transmission of the Kāśikāvrtti. 43:182–190.

[Kulkarni2016] Malhar Kulkarni. 2016. Franz kielhorn and the text of the aṣṭãdhyāyī as given in the
Kāśikāvrtti: A study - ii. 32:205–212.

[Maas2009] Philipp A Maas. 2009. Computer aided stemmatics-the case of fifty-two text versions of
carakasaṃhitā vimānasthāna 8.67-157. Wiener Zeitschrift für die Kunde Südasiens/Vienna Journal
of South Asian Studies, 52:63–119.

[Maas2010] Philipp A Maas. 2010. On what became of the carakasaṃhitā after dṛḍhabala’s revision.
eJournal of Indian Medicine, 3(1):1–22.

[Navigli and Ponzetto2010] RobertoNavigli and Simone Paolo Ponzetto. 2010. Babelnet: Building a very
large multilingual semantic network. In Proceedings of the 48th annual meeting of the association for
computational linguistics, pages 216–225. Association for Computational Linguistics.

[Navigli and Ponzetto2012] Roberto Navigli and Simone Paolo Ponzetto. 2012. Babelnet: The automatic
construction, evaluation and application of awide-coveragemultilingual semantic network. Artificial
Intelligence, 193:217–250.

180

[Nerbonne and Heeringa1997] John Nerbonne and Wilbert Heeringa. 1997. Measuring dialect distance
phonetically. In Computational Phonology: ThirdMeeting of the ACL Special Interest Group in Com-
putational Phonology.

[Pedersen et al.2013] Bolette Pedersen, Krister Linden, Kadri Vider, Markus Forsberg, Neeme Kahusk,
Jyrki Niemi, Lars Nygaard, Mitchell Seaton, Heili Orav, Lars Borin, et al. 2013. Nordic and baltic
wordnets aligned and compared through “wordties”. Proceedings of NODALIDA 2013.

[Phillips-Rodriguez et al.2009] Wendy J Phillips-Rodriguez, Christopher J Howe, and Heather F Win-
dram. 2009. Some considerations about bifurcation in diagrams representing the written transmis-
sion of the mahābhārata. Wiener Zeitschrift für die Kunde Südasiens/Vienna Journal of South Asian
Studies, 52:29–43.

[Saitou and Nei1987] Naruya Saitou and Masatoshi Nei. 1987. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–425.

[Salton and Buckley1988] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management, 24(5):513–523.

[Sathaye2017] Adheesh Sathaye. 2017. The scribal life of folktales inmedieval india. SouthAsianHistory
and Culture, 8(4):430–447.

[Schmidt and Colomb2009] Desmond Schmidt and Robert Colomb. 2009. A data structure for represent-
ing multi-version texts online. International Journal of Human-Computer Studies, 67(6):497 – 514.

[Sokal and Rohlf1962] Robert R Sokal and F James Rohlf. 1962. The comparison of dendrograms by
objective methods. Taxon, pages 33–40.

[Swofford1999] DL Swofford. 1999. Phylogenetic analysis using parsimony (and other methods) paup*
4.0. Sinauer, Sunderland.

[West1973] Martin L West. 1973. Textual criticism and editorial technique applicable to Greek and Latin
texts. Walter de Gruyter.

181

Pāli Sandhi – A Computational Approach

Swati Basapur
Research Scholar

Karnataka Samskrita University
dswatisrini@gmail.com

Shivani V
Professor

Karnataka Samskrita University
shivani.ksu@gmail.com

Sivaja S Nair
Post Doctoral Fellow

Karnataka Samskrita University
sivaja.s.nair@gmail.com

Abstract
For any Indian language, the accuracy of the morphological analyser, depends on the
pre-edition of the input text. In Pāli language, like any other Indian language, the
combination of words like sandhis and samāsas are frequently seen. This poses difficulty
in the proper analysis of the source text. It is essential to have computational tools that
help to split the words, useful in the analysis of the text. This paper discusses complexities
involved in creating a computational grammar for sandhi tool in Pāli language.

1 Introduction
Pāli is a widely studied classical language, mainly because it is the language of Pāli canon. A
growing interest in Pāli makes it important to develop computational tools for the language.
Morphological analyser/generator is one such effort in this direction. All the combined words,
(sandhis, samāsās, etc.) used in the text have to be manually split before using it as an input to
the morphological analyzer in Pāli language. Since it is a tedious effort, pre-editing tools such as
sandhi splitter/joiner and samāsa analyser were envisaged. Though similarities were observed in
Pāli and Samskrita grammar, it was observed that Pāli grammar was much more complex. This
paper discusses the computational approach taken to develop a sandhi splitter/joiner module
and the complexities involved therein. In order to develop sandhi module discussed in this paper
Kaccāyana grammar1 has been referred to; as it’s rules are comprehensive and supported with
a lot of examples.

2 Nature of Pāli Sandhi
Words in Pāli language, end in vowel or anusvāra (niggahita). This feature distinguishes it from
Samskrita sandhi structure. Pāli sandhis can be divided into internal and external sandhis.
Internal sandhis occur within a word and external sandhis are between words. Mainly sandhis
are divided based on what pūrvapada (preceding word) ends with and what uttarapada (following
word) begins with. They are divided as follows.

2.1 Svarasandhi
When vowels come in proximity as the end of the pūvapada and the beginning of uttarapada
following changes may occur. Say x is the ending vowel of Pūrvapada, y is the beginning vowel
of uttarapada.

1. x may get elided,y remains same.
e.g. समेतु + आयस्मा –> समेतायस्मा2

2. x remains same y may get elided.
e.g. चत्ारो + इमे –> चत्ारोमे3

1Tiwari, Laxminarayan and Sharma Birbal (1962) ‘Kaccayana vyakarana[Pāli Grammar]’, Tara Publications,
Varanasi

2सरा सरे लोपं १.२.१
3वा परो असŕपा १.२.२

182

3. x gets elided and y could be replaced by asavarṇa vowel
e.g. न + उपेित –> नोपेित4

4. x gets elided and y could be replaced by savarṇa long vowel.
सĹा + इध –> सĹीध5

5. x might get converted to semivowel.
e.g. ते + अस्स –> त्यस्स6

6. a consonant may get added between x and y.
e.g. लहą + एस्सित –> लहąमेस्सित7

न + इमस्स –> नियमस्स

2.2 Pakatibhāva
When a word ends with a vowel and is followed by a consonant at the beginning of the
uttarapada then both the words remain the same.8

e.g. ितण्णो + पारगतो –> ितण्णो पारगतो

When a word ends with a vowel and is followed by a vowel at the beginning of the uttarapada
then both the words remain the same.9

e.g. को + इमं –> को इमं

If the preceding vowel is long it may become short.10

e.g. भोवादी + नाम –> भोवािद नाम

If the preceding vowel is short, it may become long.11

e.g. मुिन +चरे =मुनी चरे

2.3 Vyañjanasandhi
In sandhi, if a word ends with a vowel and is followed by a consonant, it is considered as
vyañjanasandhi.

e.g. इध + पमादो –> इधप्पमादो12

The rule for the above example says, if a word ends with a vowel and is followed by a
consonant at the beginning of the following word, the latter gets doubled optionally. This word
“optionally’ is frequently found in the sūtra or its vṛtti. Following is an example where the
doubling of consonant does not happen.

e.g. इध + मोदित –> इध मोदित

2.4 Niggahitasandhi
If a word ends with niggahita, followed by a word beginning with a vowel or a consonant, it is
considered as niggahita sandhi where niggahita undergoes changes.

4क्वचासवण्णं लुत्े १.२.३
5दीघं १.२.४
6यमेदन्तस्सादेसो १.२.६
7यवमदनतरळा चागमा १.४.६
8सरा पकित व्यञ्ने १.३.१
9सरे क्विच १.३.२

10रस्सं १.३.४
11दीघं १.३.३
12परĿेभावो ठाने १.३.६

183

e.g. धम्मञ्रे = धम्मं +चर.े
Here, niggahita changes to ञ् according to the rule वग्गन्त वा वग्गे १.४.२.

According to this rule, if a vargīya consonant is preceded by niggahita, niggahita gets replaced
with अनुना¶सक of the same varga. This rule is similar to Pāṇinian rule यरोऽनुना¶सकेऽनुना¶सको वा
८.४.४५.

3 Computational rules for Sandhi Joiner/Splitter
Pāli sandhi rules stated in the Pāli grammar books of Kacchayana and others are discussed
above. Keeping these rules in view, the computational rules for developing module were drawn
based on Paninian rules of Sandhi. Following instances were considered:

3.1 Svara + Savarṇasvara
A svara (x) followed by a savarṇa svara (y), there are five possibilities:

1. lopa of x and y remains.

2. lopa of x and y gets elongated.

3. anusvāra or y/v/m/d/n/t/r/L may be inserted between x and y.

4. prakṛtibhāva.

For e.g अ +अ –> अ/आ/अनुस्वार insertion/य,व,द,म,त,र,ळ insertion/remain the same

ततर् + अयं –>
–>ततर्यं (replaced with अ) (1)
–>ततर्ायं (replaced with आ) (2)
–>ततर्ं अयं (अनुस्वार insertion) (3)
–>ततर्रयं (र insertion) (4)
–>ततर् अयं (remain the same) (5)

Outputs (3), (4) and (5) are not seen in sample gold data. Hence, these options can be hidden
in the display.

3.2 Svara + Asavarṇasvara
A svara (x) followed by an asavarṇa svara (y), there are seven possibilities:

1. x remains and lopa of y.

2. lopa of x and y gets guṇa.

3. all rules of section 3.1

For e,g. आ +इ –> इ/आ/ई/अनुस्वार insertion/remain the same

लता +इव –>
–>लताव (1)
–>लतेव (2)
–>लितव (3)
–>लतीव (4)
–>लतां इव (5)
–>लतािमव (6)
–>लता इव (7)

Outputs (5), (6) and (7) are not seen in sample gold data. Hence, these options can be hidden
in the display.

184

3.3 svara + vyañjana
A svara (x) followed by vyañjana (y), there are six possibilities:

1. elongation of x and y remains.

2. x may get replaced with अ and ओ and y remains.

3. anusvāra may be inserted between x and y.

4. prakṛtibhāva.

इ +च –>ई/अनुस्वार insertion/इ ->अ/इ ->ओ/remain the same e.g.1 मुिन +चरे —>

–>मुनी चरे (1)
–>मुनो चरे (2)
–>मुन चरे (2)
–>मुिनच्चरे (3)
–>मुिनं चरे (4)
–>मुिन चरे (5)

e.g.2 इध +पमादो —>
–>इधा पमादो (1)
–>इधो पमादो (2)
–>इध पमादो (2)
–>इधप्पमादो (3)
–>इधं पमादो (4)
–>इध पमादो (5)

Outputs (4) and (5) are not seen in sample gold data. Hence, these options can be hidden in
the display.

3.4 niggahita(anusvāra) + svara
A niggahita (x) followed by svara (y), there are four possibilities:

1. lopa of x, elongation of upadha and y remains.

2. lopa of x and y remains.

3. lopa of x and म् /द् may be inserted between x and y.

4. x remains and lopa of y

5. prakṛtibhāva.

For e.g. anusvāra +अ –>elision of anusvāra and elongation of upadha/elision of
anusvāra/elision of अ /insertion of म
तासं +अहं –>

–>तासाहं (1)
–>तासहं (2)
–>तासमहं (3)
–>तासं हं (4)
–>तासं अहं (5)

Outputs (4) and (5) are not seen in sample gold data. Hence, these options can be hidden in
the display.

185

3.5 niggahita(anusvāra) + vyañjana
A niggahita (x) followed by vyañjana (y), there are three possibilities:

1. x gets replaced with nasal of the same varga.

2. lopa of x and y remains.

3. lopa of x and म् /द् may be inserted between x and y.

4. prakṛtibhāva.

For e.g. anusvāra + च –> elision of anusvāra/anusvāra ->nasal of same varga/remain the same
धम्मं + चरे –>

–>धम्मञ्रे (anusvāra to nasal of same varga) (1)
–>धम्मचरे (elision of anusvāra) (2)
–>धम्मं चरे (remain the same) (3)

Outputs (2) and (3) are not seen in sample gold data. Hence, these options can be hidden in
the display.

3.6 Apavāda rules
pūrvapada (x) and is followed by vyañjana (y):

3.6.1 Apavāda 1
1. if x = पुथ, last letter is replaced by उ and y remains.

2. if x = पुथ, last letter is replaced by उ and y may get doubled.

3. prakṛtibhāva. पुथ + भूतं –> पुथुभूतं
पुथ + जनो –> पुथुज्जनो

3.6.2 Apavāda 2
1. if x = अव, x is replaced with ओ and y remains.

2. prakṛtibhāva. अव + नĹा –> ओनĹा
अव + नĹा –> अवनĹा

3.6.3 Apavāda 3
1. if x = पित, x is replaced with पिट and y remains

पित + हञ्ञित –> पिटहञ्ञित

pūrvapada (x) and is followed by vyañjana (y):

3.6.4 Apavāda 4
1. if x = पा, last letter of x is shortened and ग् is inserted between x and y.

2. prakṛtibhāva. पा + एव –> पगेव
पा + एव –> पाएव

3.6.5 Apavāda 5
1. if x = अिभ, x is replaced with अब्भ् and y remains

अिभ + उदीøरतं –> अब्भुदीøरतं

3.6.6 Apavāda 6
1. if x = अ¶ध, x is replaced with अज्झ् and y remains

अ¶ध + ओकासो –> अज्झोकासो

186

3.6.7 Apavāda 7
1. if x = अिभ/अ¶ध and y = इ, lopa of last letter of x.

2. if x = अिभ and y = इ, lopa of last letter of x.

3. Apavāda 5 and 6 are applicable here.
अिभ + इáज्झतं –> अिभáज्झतं
अिभ + इáज्झतं –> अáब्भáज्झतं
अ¶ध + ईøरतं –> अधीøरतं
अ¶ध + ईøरतं –> अज्झीøरतं

3.6.8 Apavāda 8
1. if x = अित, and y = इ, lopa of last letter of x.

अित + ईøरतं –> अतीøरतं

3.6.9 Apavāda 9
1. if x = पित, x is replaced with पिट, lopa of last letter of x and y remains.

पित + अ¶ग्ग –> पट¶ग्ग

From sutra सरा पकित व्यञ्ने १.३.१ and सरे क्विच १.३.२ together, it can be derived that, if ending
vowel of a word comes in proximity of beginning vowel/consonant of the following word, both
remain the same (prakṛtibhāva). Therefore the output of this instance need not be shown in the
display. Because every instance of sandhi, prakrutibhāva can happen. Similarly, sūtra िनग्गिहतञ्
१.४.८ indicates insertion of anusvāra for every sandhi instance. Hence output here also can be
selectively shown.

4 Complexities Involved
While drawing rules for Pāli sandhi computation, the following complexities were encountered.
In the first place, we notice words like क्वचा, वा which means sometimes or optional in many
sutras. That makes most of the sandhis optional or having multiple results based on the situation
of x and y. Below are some examples to demonstrate the complexities.

4.1 Occurrence of words क्वचा and वा
Majority of sutras i.e. out of 41 kaccāyana sandhi sutras almost 27 sutras have क्वचा and
वा in sutra itself or the vṛtti. For e.g वमोददुन्तानं rule क्वचा is in the vṛtti. 13 This gives rise
to multiple outputs for a given instance when generated computationally. In the case of
Sanskrit this ambiguity is mostly fixed by rules themselves. If there are exceptions, they
are grouped and gaṇa information is provided. In Pāli, one has to depend heavily on lit-
erature to get the forms that are used rather than those which can be generated computationally.

4.2 Inconsistency in examples from literature
Following are examples from piṭakasahitya:

िभक्खवे+इित => िभक्खवेित
ए+ इ => ए + _ वा परो असŕपा

आवुसो +इित => आवुसोित
ओ+ इ => ओ + _ वा परो असŕपा

It is observed that वा परो असŕपा rule is followed in the above examples. This rule is optional
but it is applied most of the time wherever dissimilar vowels come in proximity of each other in

13Pg 19 Tiwari, Laxminarayan and Sharma Birbal(1962) ‘Kaccayana vyakarana[Pāli Grammar]’, Tara Publi-
cations, Varanasi

187

sandhi.
But in the following example from the same text, though dissimilar vowels are in proximity of
each other, it is seen that सरा सरे लोपं and दीघं are applied. So this seems to be an exception to
the above rule.

च + इध => चीध
अ + इ => _ +इ सरा सरे लोपं
_ + इ =>_ + ई दीघं

Whereas in the examples below सरा सरे लोपं and दीघं are followed where similar vowels are in close
contact in sandhi.

भुञ्ािम+इित => भुञ्ामीित इ+ इ => _ + इ सरा सरे लोपं
_ + इ =>_ + ई दीघं Another example from the same text

पमुच्छित+इित => पमुच्छतीित
न+अáत्थ => नáत्थ14 सरा सरे लोपं

Here elongation of vowel has not occurred. Therefore even from literature, joining or splitting
has to be done with caution.

4.3 Ambiguous Rules for Insertion of Letters
Insertion of letters in Pāli sandhi is ambiguous. For e.g.application of the rule called यवमदनतरळा
चागमा. This rule says if uttarapada begins with svara then optionally य/व/म/द/न/त/र/ळ can
be inserted. In the examples given in the vṛtti:

सम्मा + अञ्ञा –> सम्मदञ्ञा–> आ + अ –> द insertion
भन्ता + उिदक्खित –> भन्तावुिदक्खित –> आ + उ –> व insertion
अज्ज + अग्गे –> अज्जतग्गे–> अ + अ –> त insertion
अत् + अत्थिभञ्ञाय –> अत्दत्थिभञ्ञाय–> अ + अ –> द insertion

It is observed that for a given instance, the letter inserted is different for a similar condition.
Extracting rules from such sutrās is difficult.

4.4 Multiple Possibilities while Splitting
Multiple sutrās are available for splitting the same instance.

For e.g. लतेव can be split as
लता + एव — 1 सरा सरे लोप
लता + इव — 2 क्वचासवण्ण लुत्े

Above example shows that the split has to be context-based.
In Sanskrit लतेव can be split in only one way i.e.लता + इव and this can be context-independent.

5 Sandhi Joiner
Sandhi Joiner was developed applying the rules enumerated in the previous section. The input
to the tool is pūrvapada and uttarapada. The result is all possible combined words based on
the rules that are applicable to a given instance. It also indicates the respective rules which
are applied to get that particular output. Sandhi Joiner has three modules - svarasandhi,
vyañjanasandhi, and niggahitasandhi. Pseudocode for the tool is given section 4.1. Flow chart
is given below. The kaccāyana rules used in the respective modules are listed in A Appendix -
1. The screenshots are attached in B Appendix-2. The computational module for the Sandhi
Splitter is the reverse of sandhi joiner. The work for this module is under process.

5.1 Pseudocode
Begin
Input pūrvapada and uttarapada
If exceptions exist then

Derive required output
14Muller E.(1962) ’A simplified grammar of Pāli Language’, Trubner and company, London

188

Display output
Exit program

Assign X as ending varna(character) of pūrvapada
Assign Y as beginning letter of uttarapada
If X and Y are vowels then

Go to svarasandhi module
Derive required output
Display output
exit the program

If Y is vyañjana then
Go to vyañjanasandhi module

Derive required output
Display possible output

If X is niggahita then
Go to niggahitasandhi module

If Y is svara then
Go to niggahita-svara module
Derive required output
Display output
exit the program

If Y is vyañjana then
Go to niggahita-vyañjana module
Derive required output
Display output
exit the program

End

5.2 Statistics
For validating the tool, 398 sandhi examples are collected from various Pāli grammar and other
texts. This data was put through the sandhi tool and compared with gold data. Following are
the statistics of the output.

189

Total number of words 398
Total number of outputs matching atleast one gold data 356
svarasandhi 158
vyañjanasandhi 82
niggahitasandhi 158
apavāda 13
single output matching gold data 26
two outputs matching gold data 13
three outputs matching gold data 130
five outputs matching gold data 19
six outputs matching gold data 14
seven outputs matching gold data 76
eight outputs matching gold data 58
Nine outputs matching gold data 19
outputs not matching gold data 44

By examining the statistics, we notice that svarasandhi and niggahitasandhi are equal in
number. Out of 398 words, 84% outputs had at least one output matching with gold data.
We observed that multiple outputs are. more in case of svarasandhi. Since our focus is on the
complexities of sandhi rules, limited examples are taken for validation. More sandhi data will
be analyzed later.

6 Scope for Future work
1. More examples from Pali literature have to be collected to validate the tool.

2. Exhaustive Statistical study of the Pali literature has to be undertaken to decide which
sandhi rule is frequently applied to a given instance.

3. Pruning the outputs based on statistics.

4. Integrating with a dictionary to reduce multiple outputs.

7 Conclusion
Making a full-fledged sandhi splitter/joiner is a complex process due to the ambiguous sandhi
rules. As seen by the results of Sandhi Joiner, for a given instance, there is a probability of
multiple outputs. This is because of the nature of Pāli words and the complex nature of the
grammatical rules. With the understanding of the nature of language, to prune the outputs, a
wider study of literature is required.

References
Tiwari, Laxminarayan and Sharma Birbal (1962) ‘Kacchayana vyakarana[Pāli Grammar]’,Tara Publica-

tions, Varanasi

Duroiselle Charles (1921)A practical grammar of the Pāli Language. British Burma Press,Rangoon

Muller E.(1962) ’A simplified grammar of Pāli Language’,Trubner and company,London

Childers, Robert Caesar (1875) “A dictionary of Pāli language”, Trubner and co., London

Davids, Rhys and William Stede (1921-25) “Pāli – English Dictionary”, Pāli Text Society.

D’Alwis, James (1863) “Introduction to kachchayanas grammar of the Pāli language”, Colombo

190

Kashyap, Jagadish Bhikshu (1940) “Pāli Mahavyakarana”, Mahabodhi Sabha, Saranath, Banaras.

Saddhatissa, (1949) “Saral Pāli Shiksha”, Mahabodhi society, Saranath, Banaras

Silananda, Venerable U “Pāli roots in Saddaniti”, e-book.

Tungar, Na Va (1939) “Pāli Bhasha Pravesha”, Samarth Bharat, Pune.

A Appendix - 1
Kaccāyana rules used in various sandhi modulewise

A.1 Case 1 : vowel + vowel

सरा सरे लोपं १.२.१
वा परो असŔपो १.२.२
क्वचासवण्ण लुत्े १.२.३
दीघं १.२.४
पुब्बो च १.२.५
यमेदन्तस्सादेसो १.२.६
वमोददुन्तानं १.२.७
सब्बो चáन्त १.२.८
दो धस्स च १.२.९
इवण्णो यŀ वा १.२.१०
एवािदस्स øर पुब्बो च रस्सो १.२.११

A.2 Case 2 : vowel + consonant

सरा पकित व्यञ्ने १.३.१
दीघं १.३.३
रस्सं १.३.४
लोपश्च ततर्ाकारो १.३.५
परĿेभावो ठाने १.३.६
वग्गे घोसाघोसानं तितयपठमा १.३.७

A.3 Case 3 : niggahita + vowel

मदा सरे १.४.५
यवमदनतरळा १.४.६
क्विच लोप १.४.९
व्यञ्ने च १.४.१०
परो वा सरो १.४.११
व्यञ्नो च िवसञ्ञोगो १.४.१२

A.4 Case 4 : niggahita + consonant

अं व्यञ्ने िनग्गहीतं १.४.१
वग्गन्त वा वग्गे १.४.२

191

एहेय्यं १.४.३
सये च १.४.४

A.5 Case 5 : special sandhis

क्विच ओ व्यञ्ने १.४.७
िनग्गिहतञ् १.४.८
गो सरे पुथुस्सागमो क्विच १.५.१
पास्स चन्तो रस्सो १.५.२
अब्भो अिभ १.५.३
अज्झो अ¶ध १.५.४
ते न वा इवण्णे १.५.५
अितस्स चन्तस्स १.५.६
क्विच पिट पितस्स १.५.७
पुथुस्स व्यञ्ने १.५.८
ओ अवस्स १.५.९
अनुपिदट्ान वुत्योगतो १.५.१०

B Appendix - 2
Screenshots of sample input and sample outputs are given below.

Figure 1: Input

192

Figure 2: Output

193

	Proceedings of the 6th International Sanskrit Computational Linguistics Symposium
	ISBN
	Preface
	Table of Contents
	Full Papers
	Sanskrit Sentence Generator
	Dependency Parser for Sanskrit Verses
	Revisiting the Role of Feature Engineering for Compound Type Identification in Sanskrit
	A Machine Learning Approach for Identifying Compound Words from a Sanskrit Text
	LDA Topic Modeling for pramaa Texts: A Case Study in Sanskrit NLP Corpus Building
	Vedavaapi: A Platform for Community-sourced Indic Knowledge Processing at Scale
	On Sanskrit and Information Retrieval
	Framework for Question-Answering in Sanskrit through Automated Construction of Knowledge Graphs
	Introduction to Sanskrit Shabdamitra: An Educational Application of Sanskrit Wordnet
	Vaijayantıkosa Knowledge-Net
	Utilizing Word Embeddings based Features for Phylogenetic Tree Generation of Sanskrit Texts
	An Introduction to the Textual History Tool
	Pali Sandhi – A computational approach

