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Abstract

Modern text summarizers are big neural net-
works (recurrent, convolutional, or transform-
ers) trained end-to-end under an encoder-
decoder framework. These networks equipped
with an attention mechanism, that maintains a
memory of their source hidden states, are able
to generalize well to long text sequences. In
this paper, we explore how the different mod-
ules involved in an encoder-decoder structure
affect the produced summary quality as mea-
sured by ROUGE score in the widely used
CNN/Daily Mail and Gigaword summariza-
tion datasets. We find that encoding the posi-
tion of the text tokens before feeding them to a
recurrent text summarizer gives a significant,
in terms of ROUGE, gain to its performance
on the former but not the latter dataset.

1 Introduction

Within NLP a number of tasks involve generating
text conditioned on some input information (ma-
chine translation, image caption generation, head-
line generation, single and multi-document sum-
marization).

To accomplish the task of text summarization,
a system needs the ability to capture the seman-
tic content of the source text and then predict
its grammatical, faithful and coherent summary.
Since the structure of the system summary has to
be closely related to the structure of the input text
a central challenge to this task is the problem of
alignment, i.e. the problem of how to relate sub-
elements of the input to sub-elements of the output
(Cho et al., 2015).

Similar to a human-produced summary that in-
tuitively is as good as the clarity of her thoughts
and goals, a machine-generated summary depends

heavily on the quality of its internal information.
For neural network summarizers that is equivalent
to strong representations of the source document
and of the summary generated so far, both kept as
vectors, respectively, in their encoder and decoder
hidden states.

Deep learning methods, employing end-to-end
trained neural network models, have recently
achieved significant, although not robust, ability
in generating reasonable multi-sentence abstrac-
tive summaries of long news articles. Extend-
ing the sequence-to-sequence framework, already
adapted in other sequence transduction tasks,
these models mostly consist of three cooperat-
ing modules, whose parameters are learned jointly
through gradient descent or reinforcement learn-
ing techniques.

First, an encoder mechanism that produces hid-
den representations of the source document; sec-
ond, an attention network that selects its salient
information; and third, a decoder module that pro-
duces the model summary. This decoder module
is often an autoregressive1 network that splits high
dimensional data into a sequence of small pieces
and then predicts each piece from those before.

For most languages, these neural models per-
form summarization in a left to right manner, one
word at a time, until a special stop token is gener-
ated, which ends the summary. This information
processing pipeline can be seen as a four step pro-
cess “embed – encode – attend – predict”. In the
“embed” step lexical tokens are converted from in-
dices in a vocabulary to dense vectors, encoding
distributional semantics. Then, in the “encode”
step information is passed through hidden neu-

1Autoregressive model is one in which the prediction for
every one sample is influenced by all previous ones.



ral connections (either recurrent, convolutional or
feed-forward cells) building the source document
matrix representation. Each row of this matrix en-
codes the “meaning” of each token in the context
of its surrounding tokens. Next, in the “attend”
step the previous matrix is reduced to a vector
while ensuring this reduction comes with minimal
information loss, reflecting the goal of the atten-
tion mechanism to select the most important ele-
ment from each time step. The final “predict” step
reduces this vector to a prediction of the next token
in the summary.

Recently, convolutional (Gehring et al., 2017)
and self-attentive purely feed-forward (Vaswani
et al., 2017) networks have proven able to match
the performance of recurrent neural networks
(Chopra et al., 2016; Tan et al., 2017) in the role
of encoder and decoder modules, replacing them
on several sequence generation tasks (Xie, 2017).
Used as summarizers, these models can produce
not only general but also topic-aware (Wang et al.,
2018), query-based (Hasselqvist et al., 2017), or
user-controllable (Fan et al., 2018) summaries.
However, in this work we choose to only focus on
general summaries.

Creating summaries from documents, seen as
a sequential decision making problem for the
decoder-agent, is also amenable to reinforcement
learning techniques. In this setting, the model at
each step learns to make a decision of the next to-
ken to generate while optimizing a sequence–level
objective, the full sequence ROUGE score (Lin,
2004). Here, arises the issue of the exploration-
exploitation tradeoff, a problem but also an op-
portunity for the agent to generate a more di-
verse, hence more abstract and human-like sum-
mary (Chen and Bansal, 2018).

In the standard supervised setting, the model
needs labeled summaries in the training phase to
provide the appropriate learning signal. In an un-
supervised setting, a model could potentially learn
to summarize documents without having access
to ground-truth summaries in the learning phase
(Chu and Liu, 2019).

The quality of the produced system summaries
can be rated both by automatic metrics (ROUGE,
Meteor) and by human raters. Intuitively, a high
quality summary should be a concise text that cap-
tures the salient and rejects the secondary informa-
tion of the source document. It would use gram-
matical language structures and include a signifi-

Figure 1: Example of different model generated two-
sentence summaries of the same input text (source doc-
ument). Reference denotes the ground-truth summary.
With position encoding (our model) we see more ab-
stractive ability, while without position encoding (base-
line model) we see less paraphrasing and more copying
from input text.

cant amount of novel words and phrases not found
in the source text.

The key contribution of this work is the novel
use of the token-position information in a recur-
rent neural text summarizer. We show that our
neural network approach, while requiring fewer
learnable parameters than a transformer model,
outperforms it on the CNN/Daily Mail dataset
(Hermann et al., 2015) and performs on par with it
on the Gigaword corpus (Rush et al., 2017). These
results suggest we do not need the computation-
heavy self-attention processing of the transformer
architecture in neural text summarizers.

2 Background

We describe the standard approach for supervised
abstractive summarization learning based on the
attentive sequence-to-sequence framework, and
the challenges it faces in text representation and
generation. The goal of a model under this frame-



work is to maximize the probability of generating
correct target sequences.

2.1 Sequence-to-Sequence Framework

The sequence-to-sequence framework consists of
two parts: a neural network for the encoder and
another network for the decoder. The source text,
reference summary data is tokenized and fed to the
encoder and decoder networks respectively during
training. The encoder network reads the source
text and transforms it into a potentially useful vec-
tor representation which then passes to the decoder
network to help in the prediction of the summary
sequence on a token per token basis.

Encoder Mechanism: The encoder mecha-
nism uses a deep neural network to convert a se-
quence of source words into a sequence of vec-
tors representing its contextual meaning. This en-
coding is done using recurrent, convolutional or
transformer neural networks. Word and positional
embeddings can be used before feeding the source
sequence to the deep neural encoder network.

Decoder Mechanism: The decoder network
uses the vector representation coming out of the
encoder network and its own internal state infor-
mation to represent the state of the sequence gen-
erated so far. Essentially, the decoder mecha-
nism combines specific vectorial knowledge about
the relevant context with general knowledge about
language generation in order to produce the output
sequence. Analogous to the encoder, it can also
use word and positional embeddings to the tokens
it already generated, before feeding each new to-
ken to the deep neural decoder network.

2.2 Attention Mechanism

A mapping of the decoder state at each time step
with all the encoder states into an attention vector,
helps produce a context vector which is a weighted
sum of the encoder states. Incorporating this con-
text vector at each decoding time step helps im-
prove text generation (Bahdanau et al., 2014).

Necessity for Attention: From a cognitive sci-
ence perspective, attention, defined as the ability
to focus on one thing and ignore others, allows
for picking out salient information from noisy data
and to remember one event rather than all events.
Thus, attention is selective and appears to be as
useful for deep learning as it is for people. From a
sequence-to-sequence standpoint, attention is the
action of focusing on specific parts of the input

sequence. It can be stochastic and trained with re-
inforcement learning (hard attention) or differen-
tiable and trained with back-propagation (soft at-
tention). We note that attention changes over time.
As the model generates each word, its attention
changes to reflect the relevant parts of the input.

Self-Attention: When a sequence-to-sequence
model is trying to generate the next word in the
summary, this word is usually describing only a
part of the input text. Using the whole represen-
tation of the input text (h) to condition the gener-
ation of each word cannot efficiently produce dif-
ferent words for different parts of the input. But,
if we first divide the input into n parts, we can
compute representations of each part (h1, ..., hn).
Then, when the model is generating a new word,
its attention mechanism can focus on the relevant
part of the input sequence, so that the model can
only use specific parts of the input. This is the idea
of self-attention.

2.3 Text generation

Greedy decoding: When using greedy decoding,
the model at any time step has only one single hy-
pothesis. Since a text sequence can be the most
probable despite including tokens that are not the
most probable at each time step, greedy decoding
is seldom used in practice.

Beam decoding: When using beam search de-
coding the model iteratively expands each hypoth-
esis one token at a time and in the end of each iter-
ation it only keeps the beam-size best ones. Small
beam sizes are able to yield good results in terms
of ROUGE score while larger beam sizes can yield
worse results. To make decoding efficient the de-
coder expands only hypotheses that look promis-
ing. Bad hypotheses should be pruned early to
avoid wasting time on them, but pruning compro-
mises optimality.

Challenges in text generation: In neural sum-
mary generation, a model error occurs when the
summary with the highest score under the model is
not a good summary, while a search error occurs
when the decoder network cannot find the sum-
mary with the highest score under the model.

Other challenges include the generation of trun-
cated or repetitive outputs, the production of blank
or generic text, or ungrammatical gibberish. Rare
or out of vocabulary (OOV) word generation, that
naturally arises for languages with very large vo-
cabularies can be mitigated in practice by the use



Figure 2: Model architecture. Encoder is a bi-
directional 4-layer LSTM and the decoder is a uni-
directional 4-layer LSTM. The vector containing en-
coder context and decoder state is used to compute the
distribution over the output vocabulary.

of the copy mechanism, introduced later.

Another issue is the early summary termination.
During the beam search procedure, hypotheses ter-
minate with the “eos” token. The decoder should
learn to place very low probability to this token
until the summary is fully generated. However,
sometimes “eos” does not have sufficiently low
probability resulting in production of short or trun-
cated system summaries. Length normalization, or
the coverage penalty (Koehn and Knowles, 2017)
technique that re-ranks these early terminating hy-
potheses can successfully address this issue.

Other problems for existing sequence-to-
sequence neural summarizers include generation
of factually incorrect summaries, and, importantly,
vulnerability to adversarial information suggest-
ing a crucial lack of semantic understanding. Fi-
nally, abstractive summaries can still be largely
extractive or contain redundant information ((See
et al., 2017)).

3 Model

Our model learns to generate an abstractive sum-
mary from a given source document. Based on
and extending the sequence-to-sequence frame-
work, we compute copy and coverage vectors to
address redundant and repetitive generation, and
positional encodings to achieve good source text
representation. Figure 1 shows an example of our
model generated two-sentence summary of a news
article. The overall structure of our model is illus-
trated in Figure 2.

3.1 Copy Mechanism
As some tokens that occur in the source docu-
ment are out-of-vocabulary words, a mechanism
is needed to enable their generation. We use the
copy mechanism, initially introduced in (Gu et al.,
2016), to allow copying words from the source text
thus enabling our model to produce OOV words
and not be restricted to a pre-set fixed vocabulary.

The final probability distribution from which
the model makes predictions is a weighted sum
of the probability of generating words from the
pre-set vocabulary and the probability of copying
words from the source text using the attention dis-
tribution.

To calculate the attention distribution a over the
source text at decoder time step t we use the bilin-
ear dot product of the last layer decoder output st
and encoder output hj as follows:

ut = stWchj

ajt = expujt/
∑
k

expukt

Then we calculate the copy probability gt ∈
[0, 1] which we use to adjust the model selection
between copying from the source and generating
from the vocabulary.

gt = sigmoid(Wg[st, hj ] + bg)

where Wc, Wg, bg are learnable parameters.
So, the final probability distribution P from which
the model predicts the summary token w to gen-
erate or copy at each time step t is calculated as
follows:

pt(w) = (1− gt)P vocabt (w) + gt

wi=w∑
i

ait

3.2 Coverage Mechanism
We compute a vector to discourage repetition in
our model-generated summaries. We follow ((See
et al., 2017)) and maintain a coverage vector ct as
the sum of attention distributions over all previous
decoder time steps:

ct =
t′=t−1∑
t′=0

at
′

Then, we use the coverage vector ct as an ex-
tra input to the attention mechanism to help it re-
member its previous decisions and avoid repeated
attention to the same locations in the source text.



3.3 Positional Encodings

Sinusoidal positional encodings were developed
for non-recurrent neural networks, initially for
the transformer model for machine translation
(Vaswani et al., 2017). We are the first to make
use of this feature in a recurrent neural model.
We compute positional encodings and add them to
the initial word representations as seen in Figure
2. The position computation of embedding size
512 uses sine and cosine functions of different fre-
quencies as follows:

PosEnc(pos,2i) = sin(pos/100002i/512)

PosEnc(pos,2i+1) = cos(pos/100002i//512)

with each dimension i of the encoding correspond-
ing to a sinusoid.

3.4 Learning Objective

We use a token level learning objective. During
model training, the decoder is fed the ground-truth
summary and the model parameters θ are opti-
mized maximizing the likelihood of the training
data, which is achieved by minimizing the cross
entropy loss L:

L(θ) = −
T∑
τ=1

logp(yt|X, y < t; θ)

In this method, also known as teacher forcing,
ground truth tokens are shown to the model just
before the decoder makes its next step prediction.
A more time consuming approach would be to use
a sequence level objective which incorporates pol-
icy gradient learning or a minimum risk training
strategy to maximize the ROUGE score of gen-
erated summaries as in (Carbonell and Goldstein,
1998). A mixed objective that combines word
and sequence level objectives with a fixed hyper-
parameter value was used in ((Paulus et al., 2017)).

4 Experiments

4.1 Datasets

We perform experiments on the CNN/Daily-Mail
news articles summarization dataset ((Hermann
et al., 2015)) and the Gigaword sentence summa-
rization/headline generation corpus (Rush et al.,
2017), which are both standard corpora for long
and short document summarization. For the
CNN/Daily-Mail train and validation splits, we

Dataset Train Valid Test DL SL
CNN/DM 287226 13368 11490 781 56
Gigaword 3803957 189651 1951 31.4 8.3

Table 1: Dataset statistics. DL and SL denote average
number of tokens in source document and summary,
respectively.

truncate source text to 400 tokens and target sum-
maries to 100 tokens, following standard prac-
tice. We limit both input and output vocabulary
to the 50000 most frequent words, and replace the
rest with UNK tokens. For training on the Giga-
word dataset we follow the pre-processing steps of
(Rush et al., 2017), replacing all digit characters
with # and tokens seen less than five times with
UNK. Table 1 shows the main statistics for both
corpora.

4.2 Training details

We train our models with the Adam optimizer
(Kingma and Ba, 2014) with β1 = 0.9 and β2 =
0.998. We increase (warm up) the learning rate
linearly for the first 8000 steps and then decrease it
exponentially, following the noam decay scheme.
We randomly initialize and learn during training
word embeddings of size 512, and apply posi-
tional encoding before feeding them to a four layer
LSTM stack with 512 hidden units per layer. To
regularize, we use dropout (with probability 0.2)
between the stacked LSTM hidden states. At test
time, we use a beam size of 3 and, for CNN/Daily
Mail, set the minimum length of the generated
summary to 35. We do not use the trigram repeti-
tion avoidance heuristic defined in ((Paulus et al.,
2017)), because we find it results in decreased per-
formance on both datasets. We implemented our
models using PyTorch on the OpenNMT system
(Klein et al., 2017). We ran the experiments on a
12GB Titan Xp GPU.

4.3 Models

Baselines: We consider two strong baseline mod-
els that do not use positional encodings, (1) a
four-layer transformer model with 80,68 million
parameters and (2) a four-layer recurrent model
with 67,80 million parameters, with a bidirectional
LSTM encoder and unidirectional LSTM decoder.

Our model: We form our model by simply in-
cluding fixed, sinusoidal positional encodings to
our recurrent baseline, thus keeping the same ar-
chitecture settings and parameters.



Model R-1 R-2 R-L R-AVG
LSTM 4l 37.99 16.73 35.04 29.92
Transformer 37.88 16.48 34.94 29.77
Our method 38.60 17.50 35.81 30.64
Celikyilmaz
et al., (2018)

41.69 19.47 37.92 33.02

Table 2: Rouge scores on the CNN/DM test set.

Model R-1 R-2 R-L R-AVG
LSTM 4l 33 16.31 31.11 26.80
Transformer 33.49 16.85 31.67 27.47
Our method 33.09 16.36 31.24 26.90
Cao et al.,
(2018a)

37.04 19.03 34.46 30.17

Table 3: Rouge scores on the Gigaword test set.

4.4 Evaluation Metrics
For both CNN/DM and Gigaword datasets, we re-
port the full length F-1 scores of the ROUGE-1,
ROUGE-2 and ROUGE-L metrics and their aver-
age (R-AVG).

5 Results

The main results of our neural text summarizers
for the CNN/DM corpus are listed in Table 2. The
two baseline models are shown in the top two lines
followed by our proposed model. We observe that
our position aware LSTM summarizer scores bet-
ter than our two baselines, without requiring any
additional model parameters or fine-tuning.

On the other hand, our small, cross-entropy
trained recurrent model did not match the perfor-
mance of the large recurrent model of (Celikyil-
maz et al., 2018) which uses multiple communi-
cating encoders connected to a single decoder, is
trained using reinforcement learning and sets the
state-of-the art performance in this dataset.

Table 3 shows experiments with the same three
models trained and evaluated on the Gigaword
corpus and Figure 4 shows the corresponding
model summaries. We can see that the positional-
encoding improvement compared to the baselines
did not carry over to this dataset. Here, our pro-
posed recurrent model, although marginally better
than the recurrent baseline, does not outperform
the transformer summarizer. We hypothesize this
result could be due to the better language model-
ing ability of the transformer model compared to
the LSTM models in this dataset, as shown in Fig-
ure 3 from their corresponding perplexity values.

Figure 3: Perplexity scores (lower is better) of different
models trained on Gigaword. Transformer scores better
than both lstm and posenc (best seen in color).

We note that the state-of-the-art neural model
(Cao et al., 2018a) in this dataset, is significantly
more complex and memory demanding than our
model. When generating its summaries it utilizes
an information-retrieval platform to implement a
template-based summarization approach and does
not simply depend on the source text.

6 Related work

Early approaches to text summarization were
based in first finding and then reordering (re-
ranking) the most important sentences in a doc-
ument based on their word frequency or some
sentence-similarity metric. Then, a simple extrac-
tion of the top k highest scoring sentences from
the source document could produce a grammatical
correct, albeit incoherent, summary.

The need for more human-like, abstractive sum-
mary creation led to the modern sequence-to-
sequence models with attention. These neural net-
works are able to generate any word from their
vocabulary, even novel words and phrases unseen
in the source document, but can also copy from
it when generating an out of vocabulary word is
called for.

However, problems like repetitive, generic, or
ungrammatical summary generation, with limited
abstraction and easily fooled by irrelevant infor-
mation remained intact for the standard neural net-
work summarizers. Several extensions to their ba-
sic encoder-decoder architecture or their end-to-
end learning strategy developed accordingly.

In (Lin et al., 2018) the authors use a convo-
lutional gated unit to help control the information
flow between the encoder and decoder networks
aiming to filter the secondary and preserve only
the core information, while Zhou et al. (2017) de-



Figure 4: Source article, reference and model generated
summaries from the Gigaword test set.

sign a selective gate network with the same goal.
In order to avoid generating fake facts in a sum-
mary, Cao et al. (2018b) extract actual factual de-
scriptions from the source text leveraging informa-
tion retrieval techniques. A task-agnostic diverse
beam search procedure is proposed in (Vijayaku-
mar et al., 2018) that modifies the standard beam
search algorithm in the direction of more diverse
text generation.

Other works explore abstractive sentence com-
pression with paraphrasing (Nayeem et al., 2019),
different network training regimes (Ayana et al.,
2016) or architectures that jointly learn summa-
rization and semantic parsing (Fan et al., 2018).
The authors in (Guo et al., 2018) propose a multi-
task model with parallel training of three tasks:
summary generation, question generation, and en-
tailment generation and find it provides useful
guidance for summarization. While we share their
motivation to make the model input richer, our
work presents a much simpler approach. Another
recent attempt to produce rich pre-trained encoder
representations for many downstream tasks, in-
cluding summarization, is BERT (Dev(Lin et al.,
2018)).

7 Conclusion

The application of encoder-decoder structures has
attracted growing attention in the area of longer
text summarization research. Neural networks
with recurrences, convolutions and transformers
were developed for the task of single-document
summarization. We began this work aiming to ex-
plore the causal factors with the greatest impact in
final model output. In the process, we found that
position aware recurrent networks can be a sim-
pler, better performing approach than transformers
in abstractive single document summarization.

Recent advances in word contextual representa-
tions hold the promise of richer, more abstractive
summary generation. In this paper, we show that
explicitly representing and using the positional in-
formation of source text tokens in a recurrent se-
quence to sequence summarizer helps improve its
performance.

Relative position representations, which encode
the distance between sequence elements rather
than their absolute position, could also help fur-
ther improve performance. This effect could take
place through enabling better optimization of the
information selection process in later processing
steps, an hypothesis we aim to explore in future
work.
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