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Johannes Tröger, Jan Alexandersson
German Research Center for

Artificial Intelligence (DFKI),
Saarbrücken, Germany

johannes.troeger@dfki.de
jan.alexandersson@dfki.de

Josef Van Genabith
German Research Center for

Artificial Intelligence (DFKI),
Saarbrücken, Germany

jan.alexandersson@dfki.de

Christoph Kaller
Faculty of Medicine,

Freiburg Brain Imaging Center,
University of Freiburg,

Freiburg, Germany
christoph.kaller@uniklinik-freiburg.de

Abstract
Phonemic Verbal Fluency (PVF) is a cogni-
tive assessment task where a patient is asked
to produce words constrained to a given alpha-
betical letter for a specified time duration. Pa-
tient productions are later evaluated based on
strategies to reveal crucial diagnostic informa-
tion by manually scoring results according to
predetermined clinical criteria. In this paper,
we propose four alternative similarity metrics
and evaluate them in a two-fold argument, us-
ing the clinical criteria as a baseline. First, we
consider the capacity of each metric to model
PVF production using a rank-based approach,
and then consider the metrics ability to com-
pute finer resolution clinical measures that are
indicative of the underlying strategy. Automa-
tion of the clinical criteria and proposed met-
rics are evaluated on PVF performances for
16 letters from 32 healthy German students
(n=512). Weighted phonemic edit distance
performed best overall for modelling both pro-
duction and strategy.

1 Introduction

Phonemic Verbal Fluency (PVF) is a standard neu-
ropsychological test that is used to assess cogni-
tive abilities. During this task, a person is asked
to produce as many words as possible starting
with a given letter in a specified amount of time.
Classically, the PVF performance is then scored
by counting the total number of unique words
produced, however more fine-grained measures

of performance (i.e. strategy) have been estab-
lished to differentiate between multiple patholo-
gies (Gruenewald and Lockhead, 1980). Troyer et
al. (Troyer et al., 1997) first proposed a framework
for assessing the strategy of a PVF performance:
a rule-based system to determine phonemic clus-
ters by manually defining criteria for phonemic
similarity (Vonberg et al., 2014). According to
this criteria, consecutive words in a production are
lumped into categories if they share common first
letters (e.g. arm & art), rhyme (e.g. stand &
sand), share first and last sounds (e.g. sat, seat
& soot) or are homonyms (e.g. some & sum).

While modelling production strategy (i.e., clus-
tering and switching measures) is crucial for clini-
cal cognitive considerations, the traditional man-
ual approach is subjective and time consuming.
There is a clear need for a data-driven automatic
approach that addresses these limitations. Novel
computational approaches to the analysis of se-
mantic verbal fluency (SVF), where patients are
asked to produce words based on a semantic cue
(e.g. animals), could help to overcome the current
limitations in PVF analysis (Woods et al., 2016;
Linz et al., 2017; Clark et al., 2016; Troeger et al.,
2019). The underlying rationale is to use a global
similarity metric that is learned from data to derive
a notion of relatedness between produced words,
which can later be used to determine structures of
related clusters as proxy for production strategy.



In the case of SVF, the similarity metric is seman-
tically motivated.

Given the sparse body of research on automatic
PVF analysis schemes modelling both production
and strategy, further investigation on more sophis-
ticated data-driven modelling approaches to PVF
is needed. The goal of this paper is two-fold:

(1) First, we aim to introduce and compare
the performance of five different similarity met-
rics for modelling production of PVF–in cog-
nitively healthy participants–across sixteen letter
categories, including an automated version of the
current clinical criteria.

(2) Second, we propose a data-driven cluster-
ing scheme for determining phonemic clusters as
a means of evaluating production strategy. In both
experimental conditions, we compare the novel
metrics to an implementation of the classic clinical
Troyer baseline, described previously, to evaluate
performance.

2 Related Work

Little previous research has proposed similar data-
driven approaches for PVF evaluation which re-
quires a phonemic similarity metric, respectively.
Ryan et al. (Ryan et al., 2013) determined
phonemic clusters in PVF tasks using a phone-
mic similarity score, based on edit-distance be-
tween phoneme representations from a pronunci-
ation dictionary, and a common biphone score, a
binary variable encoding the presence of a com-
mon initial and/or final biphone. They compared
PVF performances (letter F ) of martial arts fight-
ers with high and low exposures (according to
number of fights) and found significant differ-
ences in the groups mean and maximum cluster
length for both biphone and phonemic similar-
ity score approaches, and significant differences
for the mean pairwise phonemic similarity pro-
vided by the common biphone method. This ex-
ploratory result demonstrates the potential of au-
tomated qualitative PVF analysis in the context of
neurocognitive syndromes.

However, this approach does not capture the
effect that phonemic properties might influence
strategy, e.g. that some phonemes are closer
in articulation than others. Previously, authors
have proposed methods to weight edit-distance
between phonemic representations with features
reflective of the similarity between phonemes.
Fontan et al.(Fontan et al., 2016) used Leven-

shtein (Levenshtein, 1966) distance between dif-
ferent phonemes, weighted by common features
shared between them. Through this, they propose
a new metric to evaluate automatic speech recog-
nition systems, that seem to be consistent with hu-
man perception. Zampieri et al. (Zampieri and
de Amorim, 2014) proposed a metric to enhance
target word recovery for spell checking in English
where they combined two weighted instances of
Levenshtein distance. First, between the edit dis-
tance between two words normal spelling is cal-
culated and then between the four digit Soundex
code representations, where the Soundex algo-
rithm represents similar sounding words as the
same representation. This was combined with
clustering techniques to improve spell checking.
Similar methods have been used to measure pro-
nunciation differences of dialects in Norwegian
where weighted Levenshtein distance using pho-
netic representations and acoustic features were
used with clustering techniques (Heeringa, 2005).

Given this, there is a substantial gap in advanc-
ing the state of the art in data-driven modelling of
PVF speech output that can be leveraged for clini-
cal applications.

3 Methods

Closing this gap, this section describes four pro-
posed distance metrics for measuring similarity as
well as the clinical baseline and details a rank-
cost evaluation criteria to compare all metrics’
ability to model PVF productions. Furthermore,
this methodology is used in a second performance
evaluation of each metric for modelling clinical
clustering and switching strategy based on clus-
ters defined by the affinity propagation clustering
algorithm (Frey and Dueck, 2007).

3.1 Modelling Production
3.1.1 Metrics
Levenshtein distance (Levenshtein, 1966) is com-
puted as the number of insertions, deletions and
substitutions that are necessary to transform one
word into another word. Let d, i and s represent
the cost of deletions, insertions and substitutions
respectively.

1. LD: The Levenshtein distance between the
orthographic representation of words

2. phon: the Levenshtein distance between
phonetic representations, weighted for pho-



netic similarity. Phonological feature vectors
are obtained from Epitran using Panphon’s
database of International Phonetic Alpha-
bet (IPA) symbol features (Mortensen et al.,
2016). Each phonetic symbol is represented
by a fixed-length vector of integers between
-1 and 1 representing the presence (+1), ab-
sence (0), or lack (-1) of 21 phonological fea-
tures. The weighted similarity score for s is
the hamming distance between the phonetic
vector representations. d and i are held con-
stant at 1.

3. pos: Levenshtein distance between pho-
netic representations, weighted for position
in word, d, i and s are set as q, where q
is drawn from the exponential distribution at
position i, with λ = 0.5.

4. sem: The semantic distance between word
vector representation. Semantic representa-
tions of word vectors were obtained from the
German fastText model (Grave et al., 2018;
?) and similarity is approximated as the co-
sine distance between the vectors.

5. Troyer: Implementation of Troyer clinical
criteria for phonemic clustering (Troyer et al.,
1997). Values were calculated by (1) string
matching the first or last 2 letters, (2) match-
ing the first two sounds of phonetically tran-
scribed words, (3) for rhyming, matching the
last two sounds of phonetically transcribed
words and (4) for homophones, matching
phonetic transcriptions of the whole word.
Each criteria was weighted as 1 and the sum
of criteria present was used as a score. The
max score was a 4 and the lowest 0. Words
with equivalent scores where sorted alphabet-
ically.

Phonetic transcriptions were obtained with Epi-
tran, a python library that translates orthographic
to phonetic representations (Mortensen et al.,
2018).

For each letter category, c, in our data set a vo-
cabulary of the set of all words produced, Vc, is
constructed. The vocabulary Vc has length N . For
each of the described similarity metrics f , a table
of size NxN is created where the similarity be-
tween every word in vocabulary is calculated. The
result is a square, symmetric similarity matrix, Sc,
for each metric.

3.1.2 Evaluation
Difference of scale for each of the metrics ren-
ders direct comparison impossible, therefore per-
formance of the metrics is evaluated via ranking
tables.

For each similarity matrix of a letter category
Sc, a list is generated for every word in the vocab-
ulary, Vc, of the most similar to the least similar as
determined by the metric f . To formalize this, a
rank table T is created for every word w in each
letter vocabulary Vc.

Once all tables are populated, the rank cost of
the PVF samples RCf are calculated by c for each
f . Given a production P = w1...wn, a metric f
and ranking tables for each word T f

w1 ...T
f
wn the

rank cost of P , given f , is determined as

RCf (P ) =

n−1∑
j=1

T f
wj [wj+1]

n− 1

Using rank based comparison is motivated by
a two arguments. First, ranking makes different
similarity metrics comparable, by rendering issues
of scale irrelevant while preserving the individual
metrics outcome. Second, the resulting RCf can
be interpreted directly as the offset of the mean
rank, when used for predicting the next word from
our vocabulary. The similarity metric f which is
better at modelling production will have a lower
RCf .

3.2 Modelling Strategy
3.2.1 Metrics
After modelling production, it is crucial to con-
sider that the clinical Troyer metric is not a method
of modelling production, but rather a clustering
strategy to explore the underlying cognitive pro-
cess of this clinical task. Taking this into account,
the following methodology aims to compare each
metric’s ability to model the underlying strategies
of the PVF task.

Affinity Propagation Clustering (AP clustering)
is a clustering algorithm based on each point in
a data set—in this application, the similarity ma-
trix Sc for each metric f—passing messages si-
multaneously through two matrices, representing
either responsibility or availability. The end result
is an emergence of data points—or words from
Vc—that are considered exemplars, having high
responsibility, while remaining points are then
grouped around the exemplars to create clusters,
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Figure 1: Median RCf for each letter and method f as
a function of vocabulary size. Different f are indicated
by color. Lines indicate fit of a linear model.

or better suited by availability (Frey and Dueck,
2007). A unique point of AP clustering is that the
number of clusters is not predefined, but emerges
from the data. This concept lends itself naturally
to the idea of clustering in PVF, as exemplars can
be seen as the general topic that is being searched
for during the production.

To apply this to the data, for every letter cate-
gory c, the generated similarity matrix Sc for each
metric f is used to create a set of clusters as deter-
mined by AP clustering algorithm. The resulting
clusters are then saved and applied to each produc-
tion in the data set to consider the strategy esti-
mated by each metric. Consecutive words in each
participant production are compared to see if they
belong in a cluster as determined by each similar-
ity metric.

For example, if a participant was given the letter
category C, they might produce the following:

cat, crab, crawl, crib, cash, cache

The clusters generated from a selection of the sim-
ilarity metrics using the AP clustering algorithm to
cluster the PVF performance would yield the fol-
lowing, where words within a set of brackets indi-
cate a computed cluster:

Troyer: [cat], [crab, crawl, crib], [cash, cache]
sem: [cat, crab], [crawl, crib], [cash], [cache]

3.2.2 Evaluation
The quality of the AP clustering technique on
this task is evaluated using the silhouette coeffi-
cient. This measure is ideal as it does not require

a ground truth. This measure looks at the fit of a
cluster by considering if every point is in its closest
cluster, or if another cluster would be more suit-
able. Each point in the dataset is considered. First,
the average distance between the chosen point and
all points in its own cluster (distancecohesion) is
calculated. Then, the average distance between the
same point and all points in next nearest cluster is
calculated (distanceseparation).

distanceseparation − distancecohesion
max(distanceseparation, distancecohesion)

The silhouette coefficient is bounded from -1
to 1, where positive values indicate higher quality
clusters and negative values typically indicate that
a point has been incorrectly clustered (Rousseeuw,
1987).

The ability of the metrics to model strategy
is evaluated by looking at the average rank cost
within clusters as well as the average rank cost
between clusters, or switches. The rank cost ta-
bles created previously are used to calculate this
respectively.

The average rank cost of clusters is calculated
by looking at the rank cost of transitions between
words in each cluster and normalized by the num-
ber of transitions in a cluster.

The average rank cost of switches in a produc-
tion is calculated by summing the rank costs of
transitions between cluster boundaries and nor-
malizing by the number of switch transitions.

Metrics with a lower average rank cost within
clusters and higher average rank cost of switching
are seen to better model strategy.

4 Experiment 1: Modelling Production

For the first experiment, one minute PVF perfor-
mances of 32 German students (9 male, 23 female;
Age 22.88) from 16 different letter categories (i.e.
A, B, D, F, G, H, K, L, M, N, P, R, S, T, V, Z) were
collected. These were manually transcribed on
a word level into sequences of correct responses.
Words were converted into phoneme (IPA) repre-
sentations using the python epitran1 package. For
each letter category c, a vocabulary Vc was con-
structed to calculate the RCf of each sample as
described in Section 4.

Statistical analysis was performed using R
(software version 3.4.0). Performance of metrics
over all letters was examined with a linear mixed

1https://github.com/dmort27/epitran

https://github.com/dmort27/epitran
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Figure 2: Comparison of RCf values for distance metrics f and letter categories. Each boxplot represents one
letter category and contains results from the five distance metrics defined in Section 3.1. In the case of black and
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effects analysis using the lme4 (Bates et al., 2014)
package. Each RCf was modelled as a single data
point and letter and metric were represented as
fixed effects. The participant identifier was mod-
elled as a random intercept.

5 Experiment 2: Modelling Strategy

The affinity propagation clustering algorithm was
implemented in python from scikit-learn frame-
work (Pedregosa et al., 2011). The same param-
eters were used to determine all models. The pref-
erence parameter serves as an indicator of how fit a
word in the vocabulary is to be an exemplar, higher
values indicate that it is more likely where as lower
values indicate that it is less likely. This also in-
fluences the number of clusters produced, where
higher preference values lead to more clusters and
lower preference values lead to fewer cluster. The
preference parameter was set for each word in
the vocabulary as the Zipf word frequency as de-

termined by the python wordfreq package (Speer
et al., 2018). The zipf word frequency represents
the frequency of the word in a large, in this case
German, corpus on a ’human-friendly’ scale. The
result is a value between 1.0 and 8.0, where the
larger the value, the more frequent the word is
in the language. The goal of using the word fre-
quency during clustering is to give a high exem-
plar weight to more frequent words to make the
clusters relevant to the PVF production task. The
remaining parameters were left at their default val-
ues; the damping factor was set to 0.5 and conver-
gence iteration rate at 200. Each previously com-
puted similarity matrix Sc was used as an input to
generate clusters for each metric f .

The average rank cost of clusters in a production
was computed as described in 3.2.2.
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erage rank cost of clustering and switching across all
letter categories, by metric. The left distribution is for
clustering and the right distribution is for switching.
The long bar in the distribution represents the median.

6 Results

6.1 Experiment 1

Results are displayed in Figure 2, where a better fit
is indicated by lower RCf . One boxplot is shown
for each letter category. The threshold for reject-
ing a null hypothesis and determining statistical
significance is set at 0.05 for all tests performed.

The linear models were created as described in
3.1.2 and revealed that RCf values were signifi-
cantly lower for the phon and significantly greater
for the sem metric. Performances varied across let-
ter categories with the lowest overall RCf values
being observed for the letter N and the highest for
S.

6.2 Experiment 2

Evaluation of cluster quality as produced by the
AP clustering algorithm is monitored via their sil-
houette coefficients as described in section 3.2.2

and are shown in Table 1.
The highest quality clusters were produced by

the phon metric. The pos metric had the second
highest quality on average. The remaining metrics
all produced relatively close values for all letter
categories with Troyer performing slightly better
than LD and sem. Overall, all metrics on average
produced positive cluster values.

LD phon pos sem Troyer
0.025 0.738 0.330 0.083 0.170

Table 1: silhouette coefficients

Figure 3 uses beanplots to compare each met-
ric by the distribution of average rank cost within
a cluster and the average rank cost of switches.
Phon had a much lower average rank cost within
clusters where as all other metrics were relatively
equal, with Troyer having slightly lower than LD.
Sem had the highest average cluster rank cost.

For each metric, a paired-samples t-test was
conducted to compare average RCf , aggregated
across letter categories, between clustering and
switching conditions. There were significant dif-
ferences in average rank cost for clustering and
switching for phon (t(222)=-20.17, p<0.05), sem
(t(222)=3.69, p<0.05) and pos (t(222)=-2.372,
p<0.05). No significant differences were found
for the metrics LD or Troyer.

7 Discussion

For modelling the entire production, phon outper-
formed the troyer and LD metrics in every letter
category, showing an improvement from our base-
line measurements. Overall, the metric that best
modeled the data based on the ranked cost evalu-
ation was phon. The semantic similarity measure
sem had the highest average rank cost across all
letter categories, leading us to believe that the task
as a whole is not semantically motivated.

For modelling strategy based on clustering and
switching, the phonetically weight edit distance
phon continued to have the highest quality clus-
ters as indicated by a low rank cost across all let-
ter categories. This metric also best modelled the
switching procedure between clusters as indicated
by a high rank cost. In addition,

While the semantically motivated sem metric
performed poorly on modelling the overall pro-
duction it was able to capture the relationship of
clustering strategy, albeit not as well as phon. This



could be due to the lower quality of clusters pro-
duced by the sem metric, as determined by the
silhouette coefficient, however the overall score is
within a reasonable range. Another consideration
is that the phonemic task has little semantic un-
derlying notions for producing clusters and phone-
mically derived measures are more suited to the
task. There is also a possibility that within phone-
mic verbal fluency there are phonemic and seman-
tic strategies that motivate clustering and switch-
ing. For example, a cluster of the words ”grand-
mother”, ”grandfather”, and ”grandstand” would
be both semantically and phonemically motivated.

8 Conclusion

This paper compared different similarity metrics
for their ability to model production in PVF for
multiple letter categories. The proposed phon
approaches significantly outperformed the simple
LD baseline and automated troyer methods for
both modelling production and strategy. Surpris-
ingly, the sem metric performed poorly in compar-
ison to all other metrics when modelling the entire
production sequence, but was able to capture the
notion of underlying strategies of clustering and
switching.

Further development of the newly proposed
metrics should be continued by tuning parameters
for AP clustering per evaluated metric to achieve
higher quality clusters rather than the uniform con-
figurations demonstrated in this paper. Further
investigations could also combine semantic and
phonemic methods by classifying clusters as be-
ing either semantically motivated or phonemically
motivated. The next step in this line of research
would be to apply these new PVF techniques in a
clinical application and evaluate the effectiveness
of these features to distinguish between different
pathological groups. Similar evaluations should
be conducted for other languages, since results
may vary due to phonemic differences.
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Pinquier, and Xavier Aumont. 2016. Using phono-
logically weighted levenshtein distances for the pre-
diction of microscopic intelligibility.

Brendan J. Frey and Delbert Dueck. 2007. Clustering
by passing messages between data points. Science,
315(5814):972–976.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Paul J Gruenewald and Gregory R Lockhead. 1980.
The Free Recall of Category Examples. Journal
of Experimental Psychology: Human Learning and
Memory, 6:225–240.

Wilbert Heeringa. 2005. Measuring dialect pro-
nunciation differences using levenshtein distance.
Zeitschrift fr Dialektologie und Linguistik, pages
205–208.

Vladimir I Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals.
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