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Abstract

Among recent progresses of neural ma-
chine translation models, the invention of
the Transformer model is one of the most
important progresses. It is well-known that
the key technologies of the Transformer
include multi-head attention mechanism.
This paper introduces the multi-head atten-
tion mechanism into the traditional RNN-
based neural machine translation model.
Moreover, inspired by the existing multi-
hop architectures such as end-to-end mem-
ory networks and convolutional sequence
to sequence learning model, this paper pro-
poses an RNN based NMT model with a
multi-hop attention mechanism. The pro-
posed multi-hop attention model has two
heads, where for each head, a context vec-
tor is calculated based on the states of the
encoder and the decoder. Then, in the
second turn of the context vector calcu-
lation, those context vectors are updated
depending not only on one’s own con-
text vector but also on the context vec-
tor of the other head. Experimental re-
sults show that the proposed model signifi-
cantly outperforms the baseline in BLEU
score in Japanese-to-English/English-to-
Japanese machine translation tasks with
and without extended context.

1 Introduction

RNN encoder-decoder model (Bahdanau et al.,
2015; Luong et al., 2015; Sutskever et al.,
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2014) was the state-of-the-art in machine trans-
lation. However, it is outperformed by non-
recursive encoder-decoder models such as Trans-
former (Vaswani et al., 2017) and Convolutional
Sequence-to-Sequence (Gehring et al., 2017) in re-
cent years. However, RNN is not considered to be
inferior to Transformer in all respects. For exam-
ple, according to Tran et al. (2018), it is reported
that Transformer is not good at decoding sentences
whose length is not included in the training data
and it is weak to long distance dependency. In
other words, it is weak against long sentence trans-
lation. It seems that Transformer became more
powerful than RNN by increasing the number of
parameters, but it became weak to long sentences
for the same reason.

We propose an RNN based source-to-target at-
tention mechanism where the number of parame-
ters increases by repeating the calculation of multi-
head attention for a single-source encoder like
multi-hop attention in end-to-end memory net-
works (Sukhbaatar et al., 2015). In the proposed
mechanism, those increased number of parameters
are well-tuned so that the overall translation accu-
racy improves, in particular, for long sentences.
The proposed multi-hop attention mechanism is
based on the hierarchical attention (Libovický and
Helcl, 2017) for multi-source encoders, although,
in the hierarchical attention (Libovický and Helcl,
2017), the number of parameters for one input does
not increase, unlike in the proposed multi-hop at-
tention mechanism.

In evaluation, we compared the performance of
the proposed method with Transformer and RNN
encoder-decoder using OpenSubtitles 2018 (Lison
et al., 2018) and Asian Scientific Paper Excerpt
Corpus (ASPEC) (Nakazawa et al., 2016). To test
the power of translating long sentences, we also
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(a) Baseline RNN-based model (b) Multi-head RNN model

(c) Hierarchical attention model (d) Proposed method: Multi-hop attention model

Figure 1: Baseline attention and proposed attention

made a context-aware translation model, called 2-
to-2 (Bawden et al., 2018; Tiedemann and Scher-
rer, 2017) for OpenSubtitles 2018. In the Japanese-
to-English translation of the ASPEC corpus, the
proposed method achieved a significantly better
score than the Transformer for long sentences with
more than 120 tokens.

In the following sections, we first show pre-
vious works on baseline RNN and multi-head
RNN encoder-decoders in Section 2. We then de-
scribe the proposed multi-hop method in Section 3.
We then show the performance for Japanese-to-
English and English-to-Japanese translation tasks,
focusing on long sentences in Section 4.

2 Neural Machine Translation

2.1 RNN based sequence to sequence NMT

There are two distinctive features in sequence-to-
sequence model (Bahdanau et al., 2015; Luong et
al., 2015) using RNN (Figure 1(a)). One point is
that its encoder and decoder can naturally handle
time series and the other point is that it can decide
which encoder states in the time series the decoder
should pay attention to by introducing a mecha-
nism called source-target attention (Bahdanau et
al., 2015; Luong et al., 2015).

In other words, the source-target attention of
RNN is designed to deal with time series compared
with the self-attention of Transformer where time
series are artificially represented using positional
embeddings (Vaswani et al., 2017). In this paper,
considering this point, we propose a novel model

suitable for long sentences by efficiently increas-
ing the number of parameters for source-target at-
tention.

2.2 Multi-head Attention

In this paper, we define multi-head attention with
N heads as follows, where k (= 1, . . . , N ) denotes
the index of the k-th head and i (= 1, . . . , I) de-
notes the index of the i-th word.

s
(k)
i = W (k)

a di (1)

c
(k)
i = softmax(s

(k)
i HT)H (2)

In equation (1), the output of RNN decoder di

is duplicated and converted differently with the
weights into multi-head. W

(k)
a is a learnable pa-

rameter, which duplicated and converted di to s
(k)
i .

In equation (2), dot product attention (Luong et
al., 2015; Vaswani et al., 2017) is used to calcu-
late the context vector c

(k)
i between k-th head of a

decoder state s
(k)
i and encoder states H .

When the model has two heads (N = 2), the
equation (1) and the equation (2) becomes as fol-
lows.

s
(1)
i = W (1)

a di (3)

s
(2)
i = W (2)

a di (4)

c
(1)
i = softmax(s

(1)
i HT)H (5)

c
(2)
i = softmax(s

(2)
i HT)H (6)
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Figure 2: Proposed method detail

As shown in the equation (5) and the equation (6),
by using multiple parallel attention via the param-
eters W

(k)
a , we expect that each head will attend to

a different part of the encoder states.
Chen et al. (2018) attempted to incorporate the

various mechanisms of the Transformer into RNN
encoder-decoder. They used multi-head attention
as shown in Figure 1(b) in source-target attention.
Our method becomes the same as their method
when we use single-hop attention.

3 Multi-Hop Attention RNN

3.1 Multi-Hop Dependent Attention
To the best of our knowledge, multi-hop at-
tention is first used in end-to-end memory net-
work (Sukhbaatar et al., 2015) to extend the ex-
pressive power of RNN. To introduce multi-hop at-
tention into translation, we refer to hierarchical at-
tention (Libovický and Helcl, 2017) in multimodal
translation, which combines the context vector ob-
tained from the text and the intermediate expres-
sion vector for an image obtained using CNN.

e
(k)
i = vT

b tanh(Wbs
(k)
i + U

(k)
b c

(k)
i ) (7)

β
(k)
i =

exp(e
(k)
i )

∑N
n=1 exp(e

(n)
i )

(8)

c
′(k)
i = β

(k)
i U (k)

c c
(k)
i (9)

Equation to compute context vector is defined as
equation (7), equation (8), and equation (9). Fig-
ure 2 is a detailed diagram of the proposed method.

Table 1: Difference between the proposed method and previ-
ous studies

Method source head hop
Baseline RNN single single single

Multi-head RNN single multi single
Hierarchical attention multi single multi

Proposed method single multi multi

To illustrate the difference, the proposed method
and hierarchical attention are shown in Figure 1(d)
and Figure 1(c) and their difference is summarized
in Table 1.

In hierarchical attention, since attention is cal-
culated between states of each encoder for multi-
ple source and states of a single decoder, it uses
a single-head for each source. On the other hand,
our method uses multiple heads for a single source,
where attention is directed to different parts of
the source sentence and each head influences each
other to learn better feature representation. In
equation (7), we calculate the attention score be-
tween a decoder state s

(k)
i and output of the head

of the previous hop c
(k)
i using Multi Layer Percep-

tron (MLP) attention (Luong et al., 2015).
The reason for adopting the MLP attention for

the second hop instead of the dot product atten-
tion used in the first hop (equation (2)) is that the
weight of each head can be shared. Since the pa-
rameters Wb and vb in the equation (7) and Fig-
ure 2 are shared by all heads, we expect each head
can influence each other. According to the report
of Vaswani et al. (2017), it is said that dot product
attention is superior to MLP attention. However,
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since it has no parameters to be shared, we assume
it is not suitable as an attention mechanism for the
second hop.

The equation (8) normalizes the attention score
of each head to β

(k)
i by softmax where n ranges

over all heads1. Finally, a new context vector c
′(k)
i

is calculated by learnable parameter U
(k)
c , β

(k)
i ,

and c
(k)
i .

When the number of heads N is 2, the above
calculation procedure becomes the following:

e
(1)
i = vT

b tanh(Wbs
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exp(e
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exp(e
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(12)
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exp(e
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exp(e
(1)
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(2)
i )

(13)

c
′(1)
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(1)
i U (1)

c c
(1)
i (14)

c
′(2)
i = β

(2)
i U (2)

c c
(2)
i (15)

Finally, we concatenate the N context vectors c
′(k)
i

with the RNN decoder state di to obtain the predic-
tion of the output word distribution p(yi|yi−1, X)
where Wo is a learnable parameter.

oi = tanh(Wo[di; c
′(1)
i ; ...; c

′(k)
i ]) (16)

p(yi|yi−1, X) = softmax(oi) (17)

When the number of heads N is 2, equation (16)
becomes the following:

oi = tanh(Wo[di; c
′(1)
i ; c

′(2)
i ]) (18)

3.2 Multi-Hop Independent Attention

In the multi-hop dependent attention described in
the previous subsection, we use the information of
other heads and share parameters of MLP atten-
tion (Wb and vb) over all heads (equation (7)) to
1Haddow et al. (2018) evaluated a similar multi-head
and multi-hop attention mechanism, although Haddow et
al. (2018) employed the vector concatenation over the multi-
ple heads in stead of normalization. Haddow et al. (2018) also
reported that the multi-head and multi-hop attention mecha-
nism outperformed the baseline RNN model in the evaluation
of the language pairs of CS-EN, EN-CS, ET-EN, EN-ET, FI-
EN, and EN-FI, where the length of the training sentences is
limited to 50 words or less. In this paper, on the other hand,
in the evaluation of the language pairs of JA-EN and EN-JA,
the proposed multi-head and multi-hop attention mechanism
outperformed the Transformer when the number of tokens is
120-129.

calculate the secondary context vector c
′(k)
i (equa-

tion (9)).
We also implemented multi-hop independent at-

tention, where the secondary attention is calculated
by feed forward neural networks whose parame-
ter is U

(k)
c without using MLP attention. In this

method, equation (9) is changed as follows.

c
′(k)
i = U (k)

c c
(k)
i (19)

In this method, since there are no parameters to
be shared among heads and no scaling parameters
such as β

(k)
i in equation (8), information of other

heads are not used in the secondary attention.

4 Evaluation

In order to confirm the usefulness of the proposed
method, this section describes experimental eval-
uation results in Japanese-to-English/English-to-
Japanese machine translation tasks with and with-
out extended context. we used BLEU (Papineni et
al., 2002) as the evaluation measure.

4.1 Data
We used the Japanese-English parallel corpora
obtained from OpenSubtitles 2018 (Lison et al.,
2018) and Asian Scientific Paper Excerpt Corpus
(ASPEC) (Nakazawa et al., 2016).

In OpenSubtitles 2018, the total 2,083,576 par-
allel sentences are divided into 90.0% training
data (1,872,077 sentence pairs), 5% development
data (102,724 sentence pairs), and 5% test data
(108,775 sentence pairs). OpenSubtitles 2018 is
a parallel corpus composed of movie subtitles,
and their sentences are ordered along the line of
the story of the movie. Therefore, in addition to
the data used in machine translation tasks with-
out extended context, we created data for context-
aware translation according to Tiedemann and
Scherre (2017) as follows.

First, given a single pair of a source sentence
and a target translated sentence, the source sen-
tence and its immediately preceding sentence are
concatenated with a ⟨CONCAT⟩ token, and sim-
ilarly, the target sentence and its immediately
preceding sentence are also concatenated with a
⟨CONCAT⟩ token. By translating the concatenated
source sentence pair, a pair of translated target sen-
tences concatenated with a ⟨CONCAT⟩ token is
obtained. Then, only the second sentence after
the ⟨CONCAT⟩ token is extracted and evaluated.
In context translation, this 2-to-2 (Tiedemann and

Proceedings of The 8th Workshop on
Patent and Scientific Literature Translation

Dublin, Aug. 20, 2019 | p. 27



Table 2: Evaluation Result

OpenSubtitles 2018 ASPEC OpenSubtitles 2018
with context

Model head hop ja→en en→ja ja→en en→ja ja→en en→ja
RNN baseline 1 1 12.12 9.27 26.41 36.39 13.85 10.24

Multi-head RNN
(single-hop attention)

2 1 12.38‡ 9.36† 26.63 36.60† 14.14‡ 10.32
3 1 12.42‡ 9.55‡ 26.98† 36.55 14.28‡ 10.53‡

Proposed Method
(multi-hop

independent attention)
2 2 12.47‡ 9.61‡ 26.95† 36.31 14.16‡ 10.18

Proposed Method
(multi-hop

dependent attention)

2 2 12.87‡ 9.89‡ 27.33‡ 36.91‡ 14.41‡ 10.74‡
2 3 12.88‡ 9.87‡ 27.39‡ 37.41‡ 14.79‡ 10.79‡
3 2 13.03‡ 9.83‡ 27.27‡ 37.54‡ 14.83‡ 10.55‡
3 3 13.03‡ 9.76‡ 27.21‡ 37.49‡ 14.52‡ 10.76‡

Transformer 4 1 15.20 10.95 27.50 38.25 15.98 11.44
Proposed methods that significantly outperform the RNN baseline are indicated by †(p ≤ 0.05) and ‡(p ≤ 0.01).

[1]ja→en [2]en→ja

Figure 3: BLEU per sentence length (ASPEC)

Scherrer, 2017) method is a major and increases
the number of length per sentence. So, context
translation faces long sentence translation.

For ASPEC, among the 3,000,000 training sen-
tence pairs, 1,000,000 sentence pairs with the
highest sentence alignment scores were used.
Other than the training sentence pairs, 1,790 sen-
tence pairs as the development data as well as
1,812 sentence pairs as the test data are provided
by Nakazawa et al. (2016). Also, held out sentence
pairs other than those training/development/test
data sets are used for the evaluation per sentence
length in Section 4.3.

For ASPEC, we conducted an evaluation per
sentence length. The widths of the sentence length
are segmented with the intervals of 10 words such
as 0-9 words, 10-19 words, . . ., etc. Each subset
for a range of the sentence length is constructed
by collecting sentences within that range accord-
ing to the criterion that the total number of word

tokens within each subset is kept as 20,000. Here,
for several subsets of short sentences as well as
long sentences, held out development sentence
pairs with the highest sentence alignment scores
are used so as to keep the total number of word
tokens within each subset as 20,000. We do not
set any upper bound of sentence length in train-
ing/development/test. This is for the purpose of
evaluating the capability of the proposed method
against long sentences.

For tokenization, we used the SentencePiece
tool (Kudo and Richardson, 2018) to set the vo-
cabulary size of 32,000 each for both Japanese and
English in order to avoid unknown words. Before
splitting into subword units by SentencePiece, tok-
enization is performed by the morphological anal-
ysis tool MeCab2 for Japanese, and by Moses To-
kenizer (Koehn et al., 2007) for English3.

2http://taku910.github.io/mecab/
3By performing tokenization before splitting into subword
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Table 3: BLEU per sentence length (ASPEC ja→en)

sentence length 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100-109 110-119 120-129 130-139
number of sentences 1594 1248 810 579 457 372 315 272 238 214 192 176 162 151

RNN baseline 5.94 18.47 27.10 27.16 25.44 22.97 23.71 21.70 21.34 20.96 23.14 21.18 19.78 18.73
multi-hop dependent

(head2, hop2) 6.40‡ 19.43‡ 27.62 27.78 26.49† 24.08‡ 25.02‡ 22.42 22.74‡ 22.72‡ 23.11 20.62 20.56†† 20.62‡††

Transformer 7.50 19.70 27.29 28.83 25.67 23.62 24.31 22.39 22.34 21.90 22.89 20.80 17.88 17.36

Proposed methods that significantly outperform the RNN Baseline are indicated by †(p ≤ 0.05) and ‡(p ≤ 0.01). Proposed

methods that significantly outperform the Transformer are indicated by †(p ≤ 0.05) and ††(p ≤ 0.01).

Table 4: BLEU per sentence length (ASPEC en→ja)

sentence length 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100-109 110-119 120-129 130-139
number of sentences 2531 1303 823 591 458 373 314 272 239 213 193 177 162 108

RNN baseline 24.44 32.41 36.60 36.16 35.58 33.29 31.75 28.65 29.72 28.43 27.14 25.21 20.82 16.86
multi-hop dependent

(head2, hop2) 24.90† 32.83 37.03 37.28‡ 35.91 33.17 33.40‡ 30.12† 30.54 28.52 26.33 25.43 24.18‡†† 20.01†

Transformer 25.06 34.41 38.79 38.69 37.09 34.10 33.95 31.49 32.35 29.49 27.00 24.43 21.90 18.22

4.2 Experimental Setup

The baseline is the bidirectional sequence-to-
sequence model (Luong et al., 2015) using Long
Short-Term Memory (LSTM) which is a kind of
RNN. We used fairseq (Gehring et al., 2017) for
implementation.

As training, we used Nesterov’s Accelerated
Gradient (Sutskever et al., 2013) as optimizer with
a learning rate of 0.005. The embedding size was
512, the hidden size was 1024, and the encoder and
the decoder are of one layer each. For compari-
son, we also conducted evaluation with the Trans-
former, where the number of heads was set to 4
according to the default setting4 of fairseq, and its
learning rate was set to 0.0001 following the re-
sult of investigating the value at which its loss con-
verged. For all the models, the number of epochs
in training was 20. The number of tokens per batch
was 2,000 and two GPUs were used in parallel5.

4.3 Result

Evaluation results are shown in Table 2. Hereafter,
as the proposed method without any specific no-
tice, we refer to the model with two heads and two
hops of multi-hop dependent attention, which is
the model described in Section 3 and Figure 2.

In the evaluation of Japanese-to-English transla-
tion of ASPEC, the BLEU of the proposed method
was 27.33, which significantly outperforms 26.41
BLEU of RNN baseline. And English-to-Japanese

units by SentencePiece, it is guaranteed that any subword unit
concatenating over tokenization boundaries is avoided.
4Its embedding size is 512, its hidden size is 512, the opti-
mizer used is adam, the encoder and the decoder are of 6 lay-
ers each.
5The speed of the decoder of the proposed multi-head and
multi-hop dependent attention model is roughly two-thirds of
that of the baseline RNN model where the numbers of heads
and hops are 2.

translation of ASPEC, the BLEU of the proposed
method was 36.91, which significantly outper-
forms 36.39 BLEU of RNN baseline. In addi-
tion to that, when we measured BLEU for each
sentence length, the proposed method significantly
outperforms Transformer when the sentence length
was between 120 and 129 tokens both direction
(Figure 3 [1], Table 3, Figure 3 [2], Table 4). Also,
there is no long sentence which has over 120 to-
kens in the English side of the training corpus.

In multi-hop dependent attention, each head
used the information of another head when calcu-
lating secondary attention, and two heads shared
their parameters. We also evaluated the multi-
hop independent attention, where their two heads
do not share any information. According to AS-
PEC’s Japanese-to-English translation, the multi-
hop dependent attention model achieved the BLEU
of 27.33, while the BLEU of the multi-hop in-
dependent attention model was 26.95. In the
English-to-Japanese translation, the dependent
model achieved the BLEU of 36.91, while that of
the independent model was 36.31. Both differ-
ences are significant at the level of 1% respectively.

In addition, the single-hop attention refers to
a model that introduces multi-head attention into
source-target attention of RNN and simply in-
creases the number of heads. In the single-hop
model with two heads, the BLEU in the eval-
uation of Japanese-to-English translation of AS-
PEC was 26.63, which was lower than that of the
proposed multi-hop dependent attention model as
27.33. The single-hop attention model is infe-
rior to the proposed multi-hop dependent atten-
tion model for all the data sets and both translation
directions. Thus, this result supports the useful-
ness of the proposed multi-hop dependent attention
model.
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Table 5: Model Parameters

Model head hop Parameter
RNN baseline 1 1 68,460,544

Multi-head RNN
(single-hop attention)

2 1 70,557,696
3 1 72,654,848

Proposed Method
(multi-hop

independent
attention)

2 2 72,654,848

Proposed Method
(multi-hop
dependent
attention)

2 2 75,800,576
2 3 81,043,456
3 2 79,994,880
3 3 87,334,912

Transformer 4 1 81,604,608

5 Related Works

Dehghani et al. (2019) proposed Universal Trans-
former for solving the problems of Transformer
including the weakness for long distance depen-
dency. Although it has a mechanism to repeat up-
dating the states for each word with parameters
shared, it requires a larger number of parameters
than Transformer. There could be an approach
like BERT (Devlin et al., 2019) where the number
of parameters is increased significantly to make a
more powerful Transformer model. Our approach,
on the other hand, improves the strength of RNN
with a little increase of parameters as shown in Ta-
ble 5. Moreover, Iida et al. (2019) also applied the
multi-hop attention mechanism to the Transformer
and reported that the Transformer augmented with
the multi-hop attention mechanism significantly
outperformed the Transformer. Among other ex-
isting approaches to neural machine translation, it
is known that ConvS2S (Gehring et al., 2017) is
equipped with multiple decoder layers where each
decoder layer has a separate attention module. The
attention of each of those multiple layers is com-
puted and is then fed to another layer, which then
takes the fed information into account when com-
puting its own attention etc. The way those multi-
ple attentions are computed is similar to the multi-
head and multi-hop attention mechanism proposed
in this paper.

6 Conclusion

We proposed a novel multi-hop and multi-head at-
tention mechanism for RNN encoder-decoder in
which each head depends on each other repeat-
edly. We found that the proposed method sig-
nificantly outperforms the baseline attention-based

RNN encoder-decoder. We also found that it out-
performs Transformer when the input sentence is
very long.

As we showed in Table 2, among the numbers
of multi-head and multi-hop, the pair of the num-
bers of multi-head and multi-hop with the highest
BLEU score varies according to the data sets. Con-
sidering this fact, one future work is to study how
to estimate the pair of the numbers of multi-head
and multi-hop with the optimal BLEU score by in-
troducing a held-out development data set.
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