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Abstract

Most neural machine translation systems
are built upon subword units extracted by
methods such as Byte-Pair Encoding (BPE)
or wordpiece. However, the choice of num-
ber of merge operations is generally made
by following existing recipes. In this pa-
per, we conduct a systematic exploration
on different numbers of BPE merge oper-
ations to understand how it interacts with
the model architecture, the strategy to build
vocabularies and the language pair. Our
exploration could provide guidance for se-
lecting proper BPE configurations in the
future. Most prominently: we show that
for LSTM-based architectures, it is neces-
sary to experiment with a wide range of
different BPE operations as there is no typ-
ical optimal BPE configuration, whereas
for Transformer architectures, smaller BPE
size tends to be a typically optimal choice.
We urge the community to make prudent
choices with subword merge operations, as
our experiments indicate that a sub-optimal
BPE configuration alone could easily re-
duce the system performance by 3–4 BLEU
points.

1 Introduction

While achieving state-of-the-art results, it is a com-
mon constraint that Neural Machine Translation
(NMT) (Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015; Vaswani et al., 2017) sys-
tems are only capable of generating a closed set of
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symbols. Systems with large vocabulary sizes are
too hard to fit onto GPU for training, as the word
embedding is generally the most parameter-dense
component in the NMT architecture. For that rea-
son, subword methods, such as Byte-Pair Encoding
(BPE) (Sennrich et al., 2016), are very widely used
for building NMT systems. The general idea of
these methods is to exploit the pre-defined vocab-
ulary space optimally by performing a minimum
amount of word segmentations in the training set.

However, very few existing literature carefully
examines what is the best practice regarding appli-
cation of subword methods. As hyper-parameter
search is expensive, there is a tendency to simply
use existing recipes. This is especially true for
the number of merge operations when people are
using BPE, although this configuration is closely
correlated with the granularity of the segmentation
on the training corpus, thus having direct influ-
ence on the final system performance. Prior to
this work, Denkowski and Neubig (2017) recom-
mended 32k BPE merge operation in their work
on trustable baselines for NMT, while Cherry et
al. (2018) contradicted their study by showing that
character-based models outperform 32k BPE. Both
of these studies are based on the LSTM-based ar-
chitectures (Sutskever et al., 2014; Bahdanau et
al., 2015; Luong et al., 2015). To the best of our
knowledge, there is no work that looks into the
same problem for the Transformer architecture ex-
tensively.1

In this paper, we aim to provide guidance for
this hyper-parameter choice by examining the in-
teraction between MT system performance with
the choice of BPE merge operations under the low-

1For reference, the original Transformer paper by Vaswani et
al. (2017) used BPE merge operations that resulted in 37k joint
vocabulary size.
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Figure 1: Histogram of BPE merge operations used for in
WMT papers from 2017-2018.

resource setting. We conjecture that lower resource
systems will be more prone to the performance
variance introduced by this choice, and the effect
might vary with the choice of model architectures
and languages. To verify this, we conduct ex-
periments with 5 different architecture setup on
4 language pairs of IWSLT 2016 dataset. In gen-
eral, we discover that there is no typical optimal
choice of merge operations for LSTM-based ar-
chitectures, but for Transformer architectures, the
optimal choice lays between 0–4k, and systems us-
ing the traditional 32k merge operations could lose
as much as 4 points in BLEU score compared to
the optimal choice.

2 Related Work

Currently, the most common subword methods are
BPE (Sennrich et al., 2016), wordpiece (Wu et al.,
2016) and subword regularization (Kudo, 2018).
Subword regularization introduces Bayesian sam-
pling method to incorporate more segmentation va-
riety into the training corpus, thus improving the
systems’ ability to handle segmentation ambigu-
ity. Yet, the effect of such method is not very thor-
oughly tested. In this work we will focus on the
BPE/wordpiece method. Because the two methods
are very similar, throughout the rest of the paper,
we will refer to the BPE/wordpiece method as BPE
method unless otherwise specified.

To the best of our knowledge, no prior work
systematically reports findings for a wide range of
systems that cover different architectures and both
directions of translation for multiple language pairs.
While some work has conducted experiments with
different BPE settings, they are generally very lim-

ited in the range of configurations explored. For
example, Sennrich et al. (2016), the original pa-
per that proposed the BPE method, compared the
system performance when using 60k separate BPE
and 90k joint BPE. They found 90k to work better
and used that for their subsequent winning WMT
2017 new translation shared task submission (Sen-
nrich et al., 2017). Wu et al. (2016), on the other
hand, found 8k–32k merge operations achieving op-
timal BLEU score performance for the wordpiece
method. Denkowski and Neubig (2017) explored
several hyperparameter settings, including number
of BPE merge operations, to establish strong base-
line for NMT on LSTM-based architectures. While
Denkowski and Neubig (2017) showed that BPE
models are clearly better than word-level models,
their experiments on 16k and 32k BPE configura-
tion did not show much difference. They therefore
recommended “32K as a generally effective vocab-
ulary size and 16K as a contrastive condition when
building systems on less than 1 million parallel sen-
tences”. However, while studying deep character-
based LSTM-based translation models, Cherry et al.
(2018) also ran experiments for BPE configurations
between 0–32k, and found that the system perfor-
mance deteriorates with the increasing number of
BPE merge operations. Recently, Renduchintala et
al. (2018) also showed that it is important to tune
the number of BPE merge operations and found no
typical optimal BPE configuration for their LSTM-
based architecture while sweeping over several lan-
guage pairs in the low-resource setting. It should
be noticed that the results from the above studies
actually contradict with each other, and there is still
no clear consensus as to what is the best practice for
BPE application. Moreover, all the work surveyed
above was done with LSTM-based architectures.
To this day, we are not aware of any work that ex-
plored the interaction of BPE with the Transformer
architecture.

To give the readers a better landscape of the cur-
rent practice, we gather all 44 papers that have
been accepted by the research track of Conference
of Machine Translation (WMT) through 2017 and
2018. We count different configurations used in
a single paper as separate data points. Hence, af-
ter removing 8 papers for which BPE is irrelevant,
we still manage to obtain 42 data points, shown
in Figure 1. It first comes to our attention that
30k–40k is the most popular range for the number
of BPE merge operations. This is mostly driven
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by the popularity of two configurations: 30k and
32k. 80k–100k is also pretty popular, which is
largely due to configurations 89.5k and 90k. Upon
closer examination, we realized that most papers
that used 90k were following the configuration in
Sennrich et al. (2017), the winning NMT system
in the WMT 2017 news translation shared task, but
this setup somehow became less popular in 2018.
On the other hand, although we are unable to con-
firm a clear trend-setter, 30k–50k always seems to
be a common choice. Moreover, although smaller
BPE size got more popular among configurations in
2018, none of the work published in WMT has ever
explored BPE size lower than 6k. All of the above
observations support our initial claim that we as a
community have not yet systematically investigated
the entire range of BPE merge operations used in
our experiments.

3 Analysis Setup

Our goal is to compare the impact of different num-
bers of BPE merge operations on multiple language
pairs and multiple NMT architectures. We exper-
iment with the following BPE merge operation
setup: 0 (character-level), 0.5k, 1k, 2k, 4k, 8k, 16k,
and 32k, on both translation directions of 4 lan-
guage pairs and 5 architectures. Additionally, we
include 6 more language pairs (with 2 architectures)
to study the interaction between linguistic attributes
and BPE merge operations.

3.1 Dataset
Our experiments are conducted with the all the data
from IWSLT 2016 shared task, covering translation
of English (en) from and into Arabic (ar), Czech
(cs), French (fr) and German (de). As this dataset
contains multiple dev and test sets, we concatenate
all the dev sets into a single dev set and do the same
for the test set as well. To increase language cov-
erage, we also conduct extra experiments with 6
more language pairs from the TED corpus (Qi et
al., 2018). We use Brazilian Portuguese (pt), He-
brew (he), Russian (ru), Turkish (tr), Polish (pl)
and Hungarian (hu) as our extra languages, paired
with English. All the data are tokenized and true-
cased using the accompanying script from Moses
decoder (Koehn et al., 2007) before training and
applying BPE models.2

We use subword-nmt3 to train and apply BPE
2Data processing scripts available at https://github
.com/shuoyangd/prudent-bpe.
3
https://pypi.org/project/subword-nmt/0.3.5/

to our data. Unless otherwise specified, all of our
BPE models are trained on the concatenation of
the source and target training corpus, i.e. the joint
BPE scheme in Sennrich et al. (2016). We use
SacreBLEU (Post, 2018) to compute BLEU score.4

3.2 Architecture

We build our NMT system with fairseq (Ott
et al., 2019). We use two pre-configured
architectures in fairseq for our study,
namely lstm-wiseman-iwslt-de-en
(referred to as tiny-lstm) and trans-
former-iwslt-de-en (referred to as deep-
transformer), which are the model architec-
ture tuned for their benchmark system trained on
IWSLT 2014 German-English data. However, we
find (as can be seen from Table 1) that the number
of parameters in lstm-tiny is a magnitude
lower than deep-transformer mainly due
to the fact that the former has a single-layer
uni-directional encoder and a single-layer decoder,
while the later has 6 encoder and decoder layers.
For a fairer comparison we include a deep-lstm
architecture with 6 encoder and decoder layers
which roughly matches the number of parameters
in deep-transformer. To study the effect
of BPE on relatively smaller architectures, we
also include shallow-transformer and
shallow-lstm architectures, both with 2
encoder and decoder layers. The shallow-lstm
also use bidirectional LSTM layers in the encoder.
These two architectures also roughly match each
other in terms of number of parameters. With these
5 architectures, we believe we have covered a wide
range of common choices in NMT architectures,
especially in low-resource settings. We use Adam
optimizer (Kingma and Ba, 2014) for all the
experiments we run. For Transformer experiments,
we use the learning rate scheduling settings in
Vaswani et al. (2017), including the inverse square
root learning rate scheduler, 4000 warmup updates
and initial warmup learning rate of 1× 10−7. For
most LSTM experiments, we just use learning
rate 0.001 from the start and reduce the learning
rate by half every time the loss function fails to
improve on the development set. However, we find
that for deep-lstm architecture, such learning
rate schedule tends to be unstable, which is very
similar to training Transformer without the warmup

4SacreBLEU signature:BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.2.12.
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bi-dir denc ddec demb l Nh Np

shallow-transformer N/A 512 512 512 2 4 18.8M
deep-transformer N/A 512 512 512 6 4 39.8M
tiny-lstm no 256 256 256 1 1 5.6M
shallow-lstm yes 384 384 384 2 1 16.4M
deep-lstm yes 384 384 384 6 1 35.3M

Table 1: Information of the 5 architectures used for analysis. bi-dir is a boolean representing whether the encoder is bi-
directional. denc, ddec and demb are dimension of encoder, decoder and source/target word embedding, respectively. l is the
number of encoder/decoder layers. Nh is the number of attention heads, while Np is the number of parameters of the model at
8k BPE merge operations.

learning rate schedule. Applying the same warmup
schedule as Transformer experiments works for
most deep-lstm architecture except for de-en
experiments as BPE size 16k and 32k, for which
we have to apply 8000 warmup updates. Per the
experiment setting in Vaswani et al. (2017), we
also apply label smoothing with εls = 0.1 for all of
our Transformer experiments.

4 Analysis

4.1 Analysis 1: Architectures
Table 2 shows the BLEU score for Transformer
systems with BPE merge operations ranging from
0 to 32k. The Transformer experiments show a
clear trend; large BPE settings of 16k-32k are not
optimal for low-resource settings. We see that re-
gardless of the direction of translation, the best
BLEU score for Transformer-based architectures
are somewhere in the 0-1k range. Although there is
not much drop for 2k-4k, there is generally a dras-
tic performance drop as the number of BPE merge
operation is increased beyond 8k. It should also
be noted that the difference between the best and
the worst performance is around 3 BLEU points
(refer to the δ column in Table 2), larger than the
improvements claimed in many machine translation
papers.

Table 3 shows the BLEU score for LSTM-based
architectures trained with BPE merge operations
ranging from 0 to 32k. Among the three ta-
bles, the shallow-lstm architecture has the
minimal variation with regard to different merge
operation choices. For tiny-lstm, we ob-
serve a drastic performance drop between BPE
merge operations 0/500 or 500/1k. But aside
from these two settings, the variation is of simi-
lar scale to shallow-lstm. For deep-lstm,
the variation is even larger than the Transformer
architectures, and compared to tiny-lstm and
shallow-lstm, the optimal BPE configuration

shifts to BPE sizes on the smaller end. How-
ever, we have also noticed that the overall abso-
lute BLEU score of deep-lstm is lower than
shallow-lstm despite more parameter is being
used. We conjecture that the larger variation and
lower BLEU score from the deep-lstm exper-
iments is largely due to the overfitting effect on
the small training data. Despite this effect, mov-
ing from tiny to deep model, we observe a trend
that deeper models tends to make use of smaller
BPE size better. In general, we conclude that un-
like Transformer architecture, there is no typical
optimal BPE configuration setting for the LSTM
architecture. Because of this noisiness, we urge that
future work using LSTM-based baselines tune their
BPE configuration in a wider range on a develop-
ment set to the extent possible, in order to ensure
reasonable comparison.

4.2 Analysis 2: Joint vs Separate BPE

Another question that is not extensively explored
in the existing literature is whether joint BPE is
the definitive better approach to apply BPE. The
alternative way, referred to here as separate BPE,
is to build separate models for source and target
side of the parallel corpus. Sennrich et al. (2016)
conducted experiments with both joint and sepa-
rate BPE, but these experiments were conducted
with different BPE size, and not much analysis was
conducted on the separate BPE model. Huck et al.
(2017) is the only other work we are aware of that
used with separate BPE models for their study. It
was mentioned that their joint BPE vocabulary of
59500 yielded a German vocabulary twice as large
as English, which is an undesirable characteristic
for their study.

Before comparing the system performance, we
would like to systematically understand how the
resulting vocabulary is different when jointly and
separately applying BPE. Table 4 shows the two
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0 0.5k 1k 2k 4k 8k 16k 32k δ

deep-
transformer

ar-en 30.3 30.8 30.6 30.5 30.4 29.8 28 27.5 3.3
cs-en 24.6 23.3 23.0 22.7 21.2 22.6 20.6 21.0 4.0
de-en 28.1 28.6 28.0 28.4 27.7 27.5 26.7 25.2 3.4
fr-en 28.8 29.8 29.6 29.3 28.7 28.5 27.5 26.6 3.2

en-ar 12.6 13.0 12.1 12.3 11.8 11.3 10.7 10.6 2.4
en-cs 17.3 17.1 16.7 16.4 16.1 15.6 14.7 13.8 3.5
en-de 26.1 27.4 27.4 26.1 26.3 26.1 25.8 23.9 3.5
en-fr 25.2 25.6 25.3 25.5 25.3 24.7 24.1 22.8 2.8

shallow-
transformer

ar-en 26.4 27.9 28.7 28.5 28.6 27.7 26.2 25.5 3.2
cs-en 22.4 22.6 22.3 21.8 21.7 21.1 21.1 20.1 2.5
de-en 25.5 27.4 27.1 27.3 27.1 25.9 24.6 23.7 3.7
fr-en 26.3 28.0 28.9 28.0 28.0 27.4 26.1 26.1 2.7

en-ar 11.7 11.2 11.5 11.0 11.3 10.5 9.5 9.0 2.7
en-cs 16.4 16.7 16.0 16.2 14.4 14.2 13.9 13.9 2.8
en-de 23.8 25.7 25.4 25.3 25.2 24.3 24.1 22.1 3.6
en-fr 23.5 24.7 25.1 24.6 24.5 23.8 22.7 22.1 3.0

Table 2: BLEU score for Transformer architectures with multiple BPE configurations. Each score is color-coded by its rank
among scores from different BPE configurations in the same row. δ is the difference between the best and worst BLEU score of
each row.

0 0.5k 1k 2k 4k 8k 16k 32k δ

tiny-
lstm

ar-en 20.6 22.1 22.4 23.0 24.1 24.2 24.2 24.0 3.6
cs-en 17.8 19.1 18.8 19.0 19.2 19.5 20.7 19.1 2.9
de-en 21.1 22.5 23.2 23.1 23.1 23.1 23.6 23.0 2.5
fr-en 21.8 25.3 25.3 25.4 25.1 25.3 25.1 24.7 3.6

en-ar 8.5 8.7 9.3 8.8 8.8 8.6 8.8 8.8 0.8
en-cs 11.5 12.3 13.7 13.2 13.0 14.1 14.4 13.2 2.9
en-de 18.2 20.8 21.4 21.1 21.9 21.6 21.0 21.6 3.7
en-fr 19.9 20.4 20.7 21.8 21.3 21.0 21.3 21.3 1.7

shallow-
lstm

ar-en 27.5 27.2 27.1 27.6 27.4 26.7 27.5 26.3 1.3
cs-en 22.2 22.2 22.2 22.9 22.7 23.0 22.8 21.6 1.4
de-en 25.7 25.9 26.0 25.9 26.4 26.3 26.1 26.5 0.8
fr-en 27.6 26.7 27.7 28.4 27.9 27.7 28.5 27.5 1.8

en-ar 11.0 11.0 10.7 10.4 10.6 10.6 10.4 10.1 0.9
en-cs 16.1 15.7 15.8 15.3 15.8 15.5 15.8 15.6 0.8
en-de 24.9 25.1 23.9 24.2 25.4 25.2 25.5 25.0 1.6
en-fr 24.3 23.8 23.7 24.2 23.5 24.1 23.9 23.0 1.3

deep-
lstm

ar-en 21.2 25.7 27.2 27.1 25.6 24.8 25.1 22.9 4.3
cs-en 19.8 22.0 18.5 21.1 20.9 21.2 20.3 15.8 6.2
de-en 25.7 25.2 24.9 24.1 24.5 23.5 23.5 23.1 2.6
fr-en 25.6 26.8 27.1 26.0 26.9 25.6 17.9 22.8 9.2

en-ar 10.9 10.2 10.3 7.5 9.5 9.4 7.2 8.0 3.7
en-cs 13.7 14.6 15.3 14.6 12.2 12.6 11.9 12.6 3.4
en-de 22.4 24.9 23.6 23.9 22.4 24.0 24.3 23.4 2.5
en-fr 23.1 22.9 23.5 23.1 22.2 22.0 18.0 20.0 5.5

Table 3: BLEU score for LSTM architectures with multiple BPE configurations. Each score is color-coded by its rank among
scores from different BPE configurations in the same row. δ is the difference between the best and worst BLEU score of each
row.
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Char Separate BPE Joint BPE

2k 8k 32k 2k 8k 32k

ar-en src 0.49k 2.48k 8.47k 32.36k 2.46k 7.98k 26.11k
tgt 0.24k 2.23k 8.17k 30.45k 1.27k 4.06k 13.45k

fr-en src 0.30k 2.30k 8.26k 31.23k 2.18k 7.14k 24.48k
tgt 0.23k 2.22k 8.16k 30.40k 1.94k 6.10k 20.45k

Table 4: Vocabulary size after applying separate and joint BPE for ar-en and fr-en language pair.

Best
Sep.

Best
Joint

Worst
Sep.

Worst
Joint

tiny-
lstm

ar-en 24.3 24.2 20.6 20.6
cs-en 20.2 20.7 17.8 17.8
de-en 23.3 23.6 21.1 21.1
fr-en 25.0 25.4 21.8 21.8

en-ar 9.1 9.3 8.3 8.5
en-cs 15.2 14.4 11.5 11.5
en-de 21.8 21.9 18.2 18.2
en-fr 21.1 21.8 19.9 19.9

deep-
transformer

ar-en 31.0 30.8 26.8 27.5
cs-en 24.6 24.6 19.0 20.6
de-en 28.1 28.6 24.8 25.2
fr-en 28.8 29.8 27.3 26.6

en-ar 12.0 13.0 9.6 10.6
en-cs 17.3 17.3 13.0 13.8
en-de 27.3 27.4 23.8 23.9
en-fr 24.0 25.6 22.5 22.8

Table 5: Best and worst BLEU score with tiny-lstm and
deep-transformer for joint and separate BPE models.

most typical cases for this comparison, namely
the Arabic-English language pair and the French-
English language pair. The reason these two lan-
guage pairs are typical is that for Arabic-English,
the scripts of the two languages are completely dif-
ferent, while the French and English scripts only
have minor difference. It could be seen that for
Arabic-English language pair, the Arabic vocabu-
lary size is always roughly twice the size of the
English vocabulary. Upon closer examination, we
see that roughly half of the Arabic vocabulary is
consisted of English words and subwords, scatter-
ing over around 2% of the lines in the Arabic side
of the training corpus.5 Hence, for most sentence
pairs in the training data, the effective Arabic and
English vocabulary under joint BPE model is still
roughly the same size. On the other hand, because
of extensive subword vocabulary sharing, at lower

5These English tokens are generally English names, URLs or
other untranslated concepts or acronyms.

BPE size, the vocabulary size for French and En-
glish is always roughly the same as the number
of BPE merge operations regardless of separate or
joint BPE. However, this equality starts to diverge
as more BPE merge operations are conducted, be-
cause the vocabulary difference between French
and English starts to play out in this scenario. Un-
like Arabic-English, it is hard to predict what is
the resulting BPE size from the number of merge
operations used, because it is hard to know how
many resulting subwords will be shared between
the two languages.

Table 5 shows our experimental results with sepa-
rate/joint BPE and our base architectures.6 With the
configurations we explore, the difference between
the best separate/joint BPE performance seems min-
imal. On the other hand, while the worst BPE
configuration remains the same for separate BPE
models, we see even worse performance for Trans-
former at 32k separate BPE most of the time. We
think this is a continuation of the trend observed in
our main results, as the vocabulary size tends to be
even larger than joint BPE when applying separate
BPE models.

Given the negligible difference in model perfor-
mance, we think it is not necessary to sweep BPE
merge operations for both joint and separate set-
tings. It is sufficient to focus on the setting that
makes the most sense for the task at hand, and fo-
cus on hyper parameter search within that setting.

4.3 Analysis 3: Languages
We are interested in what properties of the lan-
guage have the most impact on the variance of
BLEU score with regard to different BPE con-
figurations. For our main experiments, we can
already see a pretty consistent trend that for
deep-transformer architecture, 0.5k and 32k
merge operations always roughly correspond to the
best and worst BPE configurations, respectively.
6We only run experiments on 2k, 8k and 32k to save computa-
tion time.
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0.5k 32k δ 0.5k 32k δ

pt-en 36.3 34.7 1.6 en-pt 38.5 35.6 2.9
he-en 31.1 28.6 2.5 en-he 26.2 22.9 3.3
tr-en 20.9 17.8 3.1 en-tr 13.0 9.8 3.2
ru-en 19.9 18.0 1.9 en-ru 19.1 16.6 2.5
pl-en 19.3 16.7 2.6 en-pl 16.7 13.4 3.3
hu-en 20.8 16.8 4.0 en-hu 16.0 12.6 3.4

Table 6: BLEU score for the 6 extra language pairs in
multilingual-TED dataset with deep-transformer archi-
tecture.

coef. std. error p-value

f1 0.575 1.345 0.677
f2 -0.460 1.345 0.738
f3 -1.998 1.983 0.333
f4 0.304 0.360 0.415
f5 1.060 0.639 0.123
f6 1.169 0.516 0.043
f7 0.913 0.314 0.013
f8 0.340 0.367 0.373
f9 1.280 0.755 0.116

Table 7: Coefficient from regression analysis and their corre-
sponding standard error and p-values. f1 and f2 are source
and target type/token ratio, respectively. f3 is alignment ratio.
f4–f6 are binary features for source-side morphological type
(fusional, introflexive and agglutinative) and f7–f9 are the
same for target.

To add more data points, we assume 0.5k and 32k
are always the best and the worst configurations
and build systems with these two configurations
with both translation directions of 6 more languages
pairs, namely, translating of English into and out
of Brazilian Portuguese (pt), Hebrew (he), Russian
(ru), Turkish (tr), Polish (pl) and Hungarian (hu).
Table 6 shows the result with these 6 language pairs.
We note that our observation for the 4 language
pairs generalize well for the extra 6 language pairs,
and we observe a similar magnitude of performance
drop as the other language pairs moving from 0.5k
to 32k.

To acquire insights for the aforementioned prob-
lem, we conduct a linear regression analysis using
the linguistic features of the the 10 language pairs as
independent variables and BLEU score difference
between 0.5k and 32k merge operation settings as
the dependent variable.7 The linguistic features of
our interest are described as follows:

• Type/Token Ratio: Taken from Bentz et al.
7Note that for language pairs in our main results, these may
not necessarily the best or the worst system. But the readers
shall see that the difference is pretty minimal.

(2016) this is the ratio between number of to-
ken types and the number of tokens in the train-
ing corpus, ranging [0, 1]. These are computed
separately for source and target language and
denoted as f1 and f2 respectively.

• Alignment Ratio: Also taken from Bentz et
al. (2016), this is the relative difference be-
tween the number of many-to-one alignments
and one-to-many alignments in the training
corpus, ranging [−1, 1]. We follow the same
alignment setting as in Renduchintala et al.
(2018). This is computed together for each
parallel training corpus and denoted as f3.

• Morphological Type: We then use a set of
binary features to indicate if a language ex-
hibits a certain morphological patterns. We
take morphological features from Gerz et al.
(2018), where for each language a morpholog-
ical type from the following categories was
assigned: Isolating, Fusional, Introflexive and
Agglutinative. None of the languages we use
exhibit Isolating morphology which leaves us
with 6 binary features. The features f4, f5
and f6 indicates the presence (or absence) of
fusional, introflexive and agglutinative mor-
phological patterns respectively for the source
language and f7, f8, f9 indicate the same for
the target side.

The 9 features are re-normalized to the [0, 1] re-
gion with the min-max normalization. Our linear re-
gression analysis is conducted with Ordinary Least
Squares (OLS) model in the Python statsmodels8

package.
Table 7 shows the regression result. Surprisingly,

we don’t see any strong correlation between the
type/token ratio, alignment ratio and the variance in
BPE. On the other hand, the regression points out
that having agglutinative language on the source
side and fusional language on the target side in-
creases such variance. While we have seen signif-
icant BPE variances for all the experiments with
Transformer, we think future work should be espe-
cially cautious with systems that translate out of
agglutinative language and into fusional language
(note that English is classified as fusional language
in this regime).

4.4 Analysis 4: Variance with Random Seeds
Since our experiments are under low-resource set-
tings, it is important to examine whether the trends
8
https://pypi.org/project/statsmodels/0.9.0/
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Figure 2: Scatter plots for the variance analysis of deep-transformer system. Each dot in the plot represents the BLEU
score for one random restart, while the color code follows the result ranking of its corresponding system configuration in Table 2.

we observe above are due to different system con-
figurations or mostly variance of random seeds.
As it is expensive to re-run all the systems mul-
tiple times, we only conduct such analysis on the
deep-transformer architecture and ar-en and
en-ar language pairs. We choose to focus on Trans-
former architecture because we observe more con-
sistent trend for Transformer than LSTM. Hence, it
is more interesting to see how well it holds against
the randomness in training. To conduct such anal-
ysis, we run each system configuration for three
more times with different random seeds resulting
in four points for each system configuration.

Figure 2 shows the scatter plots of BLEU scores
for each random restart under each system config-
uration. Ideally, the BLEU scores from multiple
random restarts of the system configurations should
preserve the same ranking as the results in Table 2.
It can be seen that, the results from the top-3 BPE
configurations are often clustered together (indi-
cating low variance) and the rankings of the other
configurations are preserved pretty well. Specifi-
cally, even best instances among multiple random
restarts with 16k and 32k BPE merge operations
fall pretty far from those with top configurations,
further verifying our previous observations on the
Transformer architecture.

4.5 Analysis 5: High-Resource Setting

While this paper focuses on low-resource settings,
we conduct one set of experiments with a high-
resource language pair to see if our results gener-
alize to high-resource settings. This experiment
is conducted with all WMT 2017 Russian-English

(ru-en) data except the UN dataset, which includes
2.61M sentence pairs in total. We use the test sets
from news translation shared task of WMT 2012-
2016 as the development data and test on WMT
2017 test set. Due to computation constraints, we
only experiment with deep-transformer ar-
chitecture. All the other configurations are exactly
the same as the low-resource experiments.

Table 8 summarizes the results. First, notice that
the overall variance of results under different BPE
configurations is relatively smaller than the low-
resource experiments, verifying our intuition that it
is especially important to tune BPE size under low-
resource settings. Besides, the trend in this setting
is also very different from what is shown in Table 2.
Specifically, the best results are often obtained with
larger BPE sizes, which explains why these con-
figurations were preferred by previous analysis. It
could hence be concluded that the analysis results in
this paper should not be generalized to high-source
settings. We leave comprehensive analysis with
high-resource language pairs for future work.

5 Conclusion

We conduct a systematic exploration over various
numbers of BPE merge operations to understand its
interaction with system performance. We conduct
this investigation over 5 different NMT architec-
tures including encoder-decoder and Transformer,
and 4 language pairs in both translation directions.
We leave systematic study on the effect of BPE on
high-resource settings and more language pairs, es-
pecially morphologically isolating languages, for
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0 0.5k 1k 2k 4k 8k 16k 32k δ

ru-en 29.3 30.4 30.0 30.3 30.6 30.9 31.0 30.9 1.7
en-ru 28.0 29.1 29.1 29.5 29.5 29.8 30.0 30.0 2.0

Table 8: BLEU score for deep-transformer architecture under high-resource setting, with multiple BPE configurations.
Each score is color-coded by its rank among scores from different BPE configurations in the same row. δ is the difference
between the best and worst BLEU score of each row.

future work. Subword regularization could also be
studied in this manner.

Based on the findings, we make the following
recommendations for selecting BPE merge opera-
tions in the future:

• For Transformer-based architectures, we rec-
ommend the sweep be concentrated in the
0− 4k range.

• For Shallow LSTM architectures, we find no
typically optimal BPE merge operation and
therefore urge future work to sweep over 0−
32k to the extent possible.

• We find no significant performance differ-
ences between joint BPE and seperate BPE
and therefore recommend BPE sweep be con-
ducted with either of these settings.

Furthermore, we strongly urge that the aforemen-
tioned checks be conducted when translating into
fusional languages (such as English or French)
or when translating from agglutinative languages
(such as Turkish).

Our hope is that future work could take the ex-
periments presented here to guide their choices re-
garding BPE and wordpiece configurations, and
that readers of low-resource NMT papers call for
appropriate skepticism when the BPE configuration
for the experiments appears to be sub-optimal.
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