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Abstract

Today’s machine translation systems out-
put the same translation for a given in-
put, despite important differences between
users. In practice, translations should be
customized for each reader, for instance
when translating for children versus in a
business setting. In this paper, we in-
troduce the task of reading level control
to machine translation, and provide the
first results. Our methods can be used to
raise or lower the reading level of output
translations. In our first approach, source-
side sentences in the training corpus are
tagged based on the reading level (read-
ability) of the matching target sentences.
Our second approach alters the traditional
encoder-decoder architecture by specify-
ing a joint encoder and separate decoders
for simple and complex decoding modes,
with training data partitioned by reading
level. We demonstrate control over output
readability score on three test sets in the
Spanish–English language direction.

1 Introduction

Though the goal of machine translation is to
generate semantically accurate translations from
one language to another, there are other fac-
tors which affect whether a translation is “good”.
One often-neglected factor is the reading level of
the translation—different contexts require differ-
ent reading levels. When translating for less-
skilled readers, one may desire a translation with
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common vocabulary and simple sentence struc-
tures. In a professional setting, however, one often
requires concise language with advanced vocabu-
lary and syntactic structure.

For instance, when translating a Spanish web
page about machine translation to an English-
speaking 7-year-old, one might output, “machine
translation is a way to take a sentence from one
language and turn it into a sentence in another lan-
guage”. When advertising new machine transla-
tion software to a potential investor, one might ex-
plain, “machine translation is the automated pro-
cess by which a sentence in a source language
can be converted into a sentence in another lan-
guage”. Both sentences carry the same meaning
and do not require specialist technical knowledge,
but decreasing the complexity in the first makes it
easier for a child to understand, and increasing the
complexity in the second makes it sound more pro-
fessional and sophisticated. Furthermore, for na-
tive speakers of low-resource languages where ma-
chine translation quality may currently be poor but
who can read basic phrases in a second language
where translation quality is high, they may prefer
to read a lower complexity but semantically accu-
rate translation in their second language over an
inaccurate, garbled message in their native tongue.

In this paper, we introduce the task of reading
level control (readability control) to machine trans-
lation. We develop two methodologies that con-
trol the reading level of a translation in the Span-
ish–English language direction, focusing on lexi-
cal complexity as a first step. For professional set-
tings, we aim to produce advanced vocabulary. For
less-skilled readers, the translation should use sim-
ple words while maintaining the meaning of the
source sentence. Accordingly, we build a system
where a user can specify the reading level (“sim-

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 193



ple” or “complex”) of the translation they wish to
be output. Future work should examine controlling
other factors that affect the readability of a sen-
tence, such as syntactic structure.

2 Background: Readability Tests

To quantitatively evaluate the reading level of En-
glish sentences, we use three commonly-used au-
tomated readability1 tests.

2.1 Dale-Chall Readability
The Dale-Chall (DC) readability score utilizes a
list of 3000 common English words, which cap-
tures lexical information of text (Chall and Dale,
1995). Words not in the list are considered “diffi-
cult”. The metric is computed using the percentage
of difficult words and the average number of words
per sentence, as below:

0.1579(
#difficult words

#words
×100)+0.0496(

#words
#sentences

)

2.2 Flesch-Kincaid Grade Level
One of the most widely-used readability metrics,
Flesch-Kincaid Grade Level (FKG) approximately
corresponds to grade level in the US schooling
system (Kincaid et al., 1975). The score consid-
ers only two basic features of the text—the aver-
age number of words per sentence and the average
number of syllables per word. It is computed as
below:

0.39(
#words

#sentences
) + 11.8(

#syllables
#words

)− 15.59

2.3 Flesch Reading Ease
We also evaluate translations with Flesch Reading
Ease (FRE) (Flesch, 1948), where higher scores
indicate “easier” text. FRE was the basis for FKG,
and is computed as:

206.835− 1.015(
#words

#sentences
)− 84.6(

#syllables
#words

)

2.4 Readability Tests for Other Languages
Apart from the three tests above for English, there
are many readability tests available for other lan-
guages, such as Amstad readability index for Ger-
man (Amstad, 1978), GulpEase index for Italian
(Lucisano and Piemontese, 1988), and LIX for a
wide range of languages (Björnsson, 1968). There
1Throughout this paper, we use the terms “readability”, “read-
ing level”, and “text complexity” interchangeably.

are also various approaches to reading level scor-
ing based on machine learning and natural lan-
guage processing techniques (François and Milt-
sakaki, 2012).

In this work, we focus on the three traditional
English readability tests mentioned above as a first
step for the Spanish–English language direction.
Though the readability tests aren’t perfect, they
achieve good results in our work and are easy to
implement. We anticipate that our general frame-
works will work with various target languages
and readability scorers, provided the correspond-
ing readability tests effectively estimate reading
level.

3 Factors Affecting the Reading Level of
the Output Translation

At test time, it is reasonable to anticipate that ad-
vanced vocabulary and phrases in a source sen-
tence will be translated into advanced vocabulary
and phrases in a target sentence, and simple lexi-
cal features of a source to simple lexical features
in a target. This leads to a problem in the typical
setting where there is a single source document at
test time. Since the source has fixed complexity,
users do not have control over the reading level of
the output. As a result, we must find other ways
of controlling output reading level besides altering
the source.

In this section, we demonstrate that the reading
level of output translations is also affected by the
overall reading level of target-side sentences dur-
ing training. We train four OpenNMT (Klein et al.,
2017) default RNN models on four separate train-
ing corpora in the Spanish–English language di-
rection. The corpora have different overall target-
side readability (Table 1). We then test the read-
ability of each model’s translation of WMT new-
stest20132 (Table 2). Please see Section 5 for im-
plementation details and description of datasets.

Corpus DC FKG FRE
OpenSubtitles 3.43 2.28 89.39

OpenSubtitles+Europarl 6.08 7.27 69.43
ParaCrawl 7.92 11.17 56.43
Europarl 8.80 12.41 48.94

Table 1: Overall readability scores of the target-side sen-
tences in different training corpora. Lower DC score, lower
FKG score, and higher FRE score indicate simpler sentences.

2http://www.statmt.org/wmt13/translation-task.html
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DC FKG FRE
gold 8.11 9.49 59.83

OpenSubtitles 7.09 8.25 67.52
OpenSubtitles+Europarl 7.61 9.15 63.40

Europarl 7.75 9.48 61.84
ParaCrawl 7.92 9.36 61.11

Table 2: Effect of the training corpus on translation readabil-
ity for newstest2013. Lower DC score, lower FKG score, and
higher FRE score indicate simpler sentences.

Examining Tables 1 and 2, we observe that the
readability of the translation tends to mimic the
readability of the target sentences in the training
corpus. This effect inspired us to partition the
training data into “simple” and “complex” subsets
so the model can learn how sentences of lower and
higher reading level should look.

4 Proposed Approaches

In this paper, we develop two training methods
which allow some control over the reading level
of machine translation output.

4.1 Data Tagging

Inspired by Sennrich et al. (2016)’s work control-
ling politeness, our first approach utilizes a short
text token added to the end of each source-side
training sentence, which corresponds to the match-
ing target-side sentence’s readability. The intuition
behind this method is that the attention mechanism
will learn to pay attention to the complexity token
when decoding in the simple or complex setting.

A token indicating whether each training sen-
tence pair is of low or high reading level is used
if the target sentence meets a preset readability
threshold. A third token indicating intermediate
reading level is added to sentences that do not meet
the chosen thresholds, so that the model can learn
other knowledge—such as a better language model
and alignment—from these examples.

The data tagging approach requires no cus-
tomization of model architecture or training proce-
dure. At test time, we append a “simple” or “com-
plex” token to the test source sentences to specify
the desired reading level of the output. We choose
tokens that are unlikely to appear in the target lan-
guage to avoid overloading the symbols with mul-
tiple meanings.

4.2 Double-Decoder

The second approach is an encoder-decoder model
with a shared encoder and two decoders—one for
“complex” decoding, and the other for “simple”
decoding as shown in Figure 1. When training a
complex sentence, the joint encoder is paired with
the “complex” decoder and loss is calculated based
on that encoder-decoder pair. For a simple sen-
tence, the encoder is paired with the “simple” de-
coder. In this way, the encoder learns a shared rep-
resentation for all source sentences, while separate
decoders tune themselves to sentences that have
the desired reading level. At inference time, we
pass a flag indicating whether we want the output
to be “simple” or “complex”. The corresponding
decoder then translates the test set.

Figure 1: Encoder-decoder model with separate decoders for
simple vs. complex output settings.

4.3 Data Selection

4.3.1 Partitioning by Readability Level
We use a method of data selection to partition

our data into “simple” and “complex” training sets.
We first score the readability of each target-side
sentence in the corpus. Next, we select which sen-
tences to include in the training sets based on their
percentile rank for readability. For instance, in the
30-30 setting for the double-decoder architecture,
we include the bottom 30% of available training
sentences as the simple set, the top 30% as the
complex set, and discard the remaining sentences.
In the data tagging approach, we equivalently tag
the bottom and top 30% as simple/complex, and
the remaining as neutral. We experiment with mul-
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tiple thresholds.

4.3.2 Oversampling
Though more extreme data partitioning endows

more effective control over output readability, it
also brings potential problems; the data tagging ap-
proach has limited “simple” and “complex” exam-
ples from which to gain knowledge about reading
level, and the double-decoder approach discards
so much data that it could suffer translation qual-
ity degradation. We therefore use oversampling
to reinforce the effect of data with extreme read-
ability. For the data tagging approach, we use an
extreme data partition (e.g., 15-15) and oversam-
ple all examples tagged as “simple” or “complex”;
for the double-decoder approach, we use the 50-
50 data partition but oversample the extreme parts
(top 15% and bottom 15%).

5 Technical Implementation

5.1 Datasets

We use three Spanish–English training sets:
the European Parliament Proceedings (Europarl)
(Koehn, 2005), OpenSubtitles2018 (OS) corpus
(Lison and Tiedemann, 2016), and ParaCrawl3.
Europarl contains transcripts of European Parlia-
mentary proceedings, OpenSubtitles2018 is a cor-
pus of movie subtitles, and ParaCrawl consists of
data scraped from the web.

For training each model and for the prelimi-
nary experiments in Table 2, we use either: ∼2
million randomly-selected lines from OpenSubti-
tles2018, the∼2 million line Europarl training set,
a concatentaion of the aforementioned two corpora
(OS+Europarl), or 14.7 million randomly-selected
lines from ParaCrawl.

Development sets are: 10,000 held-out lines
from OpenSubtitles2018 for the OpenSubtitles
baseline, newstest2012 for the Europarl baseline,
the concatenation of newstest2012 and the Open-
Subtitles development set for the OS+Europarl
baseline, and 3,000 held-out lines from ParaCrawl
for the ParaCrawl baseline. Double-decoder mod-
els are validated by assessing the performance of
each decoder separately on the development set.

The test sets are newstest2013 (3,000 lines),
a combined test set of newstest2013 plus 10,000
held-out lines from OpenSubtitles2018, and 3,000
held-out lines from ParaCrawl.

3https://ParaCrawl.eu/releases.html, version 1

5.2 Data Preprocessing

All data were punctuation-normalized, tokenized,
truecased, and cleaned to a maximum sentence
length of 100 words using the standard Moses
scripts (Koehn et al., 2007). We applied BPE (Sen-
nrich et al., 2015) to all data using 32,000 merge
operations. Training and development data were
again cleaned with clean-corpus-n.perl
using default parameters and a maximum length
of 100 BPE tokens.

To select “simple” and “complex” data for
the two approaches, we apply the data selection
method of Section 4.3 using the Dale-Chall read-
ability score. All readability scores in this work
were calculated after removing BPE, detruecasing,
and detokenizing the data.

5.3 Models & Training

The basic model architecture is the default RNN-
based encoder-decoder model with attention (Lu-
ong et al., 2015) from OpenNMT. The encoder
and decoder are two-layer LSTMs (Hochreiter and
Schmidhuber, 1997) with a 500-dimension hid-
den size and 500-dimension word embeddings.
The models were trained with batch size 64 using
stochastic gradient descent with the default initial
learning rate of 1.0. We decay the learning rate by
a factor of 0.5 starting at 50,000 steps, and further
decay every subsequent 10,000 steps.

Each model was trained until performance on
the validation set ceased to improve. For testing,
we chose the model with lowest validation per-
plexity. For double-decoder models, lowest per-
plexity did not typically occur at the same timestep
for simple and complex decoders. In that case, we
chose a model that had good performance on both
validation sets.

Readability was scored using the textstat4 im-
plementations of the Dale-Chall, Flesch-Kincaid
(Grade Level), and Flesch Reading Ease formulas.
BLEU was scored using multi-bleu-detok.
perl from the Moses toolkit (Koehn et al., 2007).
Statistical significance was assessed using SciPy
(Jones et al., 2001 ).

6 Results

6.1 Quantitative Results

Tables 3 and 4 show the readability performance
of data tagging and double-decoder approaches on

4https://github.com/shivam5992/textstat
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newstest2013 at different levels of data partition-
ing. (For example, a 30-30 partition corresponds
to the case where the bottom/top 30% of data are
labeled as simple/complex.) “Baseline” hereafter
refers to the single encoder-decoder model trained
on the original, unpartitioned dataset. These ta-
bles demonstrate effective control over average
output readability for both approaches. We also
conducted two-tailed paired samples t-tests5 which
demonstrated that DC, FKG, and FRE results in
both decoding modes are significantly different
from the baseline (p<0.001).

Partition Mode DC FKG FRE BLEU

- gold 8.11 9.49 59.83 -
- baseline 7.92 9.36 61.11 27.38

50-50
simple 7.72 9.15 62.87 27.32
complex 8.21 9.53 59.72 27.27

30-30
simple 7.45 8.98 64.41 27.14
complex 8.58 9.79 57.57 27.09

15-15
simple 7.26 8.80 65.60 26.74
complex 8.72 9.83 56.57 26.62

15-15*
simple 6.96 8.45 67.78 25.91
complex 8.96 9.93 55.42 25.47

13-13
simple 7.23 8.82 65.69 26.71
complex 8.69 9.82 56.68 26.74

Table 3: Performance on newstest2013 of data tagging ap-
proach trained on ParaCrawl. DC, FKG, and FRE are read-
ability measures (lower indicates simpler for DC/FKG, and
higher for FRE). e.g., 7.72 is the average DC score of the
output in simple mode using a 50-50 partition. 15-15*
means oversampling the top/bottom 15% of data (3x). All
DC/FKG/FRE results are significant (p<0.001).

For all models, translations in complex mode
are slightly shorter than in simple mode, and have
slightly more bytes per word. In the data-tagging
15-15 mode, complex mode translations averaged
18.4 words per line, versus 19.3 in simple mode.
The bytes-per-word were 6.0 and 5.7 for com-
plex and simple mode, respectively. As data splits
became less aggressive, the difference decreased.
This suggests that in complex mode, the mod-
els attempt to be more concise while using longer
words.

Figure 2 demonstrates that as the constraints for
categorizing a sentence as “simple” or “complex”
become more strict, the gap widens between the
mean readability score in simple mode and com-
5https://docs.scipy.org/doc/scipy-1.1.0/
reference/generated/scipy.stats.ttest_
rel.html

Partition Mode DC FKG FRE BLEU

- gold 8.11 9.49 59.83 -
- baseline 7.92 9.36 61.11 27.38

50-50
simple 7.57 9.00 63.71 26.41
complex 8.30 9.59 59.16 26.71

50-50*
simple 7.41 8.87 64.59 25.71
complex 8.43 9.66 58.46 26.01

30-30
simple 7.22 8.60 66.18 25.56
complex 8.72 9.84 56.79 25.89

20-20
simple 6.69 7.97 69.75 23.51
complex 9.05 9.99 54.99 24.08

15-15
simple 5.93 7.30 74.24 20.85
complex 9.36 10.16 53.19 22.04

Table 4: Performance on newstest2013 of double-decoder
models trained on ParaCrawl data. In the 50-50* setting, 50%
of data is designated “simple”, 50% “complex”, and the most
extreme 15% of simple/complex data are oversampled (3x).
All DC/FKG/FRE results are significant (p<0.001).

Figure 2: Readability results of newstest2013 translation in
simple and complex mode for data tagging (T) and double-
decoder (D) models trained on ParaCrawl.

plex mode. This holds for all three readability met-
rics, on all three test sets and the two training cor-
pora that with which we experimented.

In Table 3, we see little negative effect on BLEU
(Papineni et al., 2002) for the data tagging ap-
proach. In Table 4, however, we see that BLEU
suffers as the double-decoder model receives less
data. In the 13-13 partition, BLEU drops to 18.52
in simple mode, when the simple decoder receives
only ∼1.9 million sentences, many of which are
very short.

Table 5 compares the two approaches with dif-
ferent training and test sets, reporting the differ-
ence between the baseline Dale-Chall score and
the readability of translated test sets in simple and
complex modes. We observe that both methods
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Training Corpus Approach Test Set
ParaCrawl OpenSubtitles+Europarl Newstest2013

ParaCrawl
T-15/15 -0.84 / +0.73 -0.74 / +2.79 -0.67 / +0.79
D-15/15 -2.41 / +1.53 -1.74 / +4.36 -1.99 / +1.44

OpenSubtitles+Europarl
T-40/40 -0.90 / +0.61 -0.64 / +2.67 -0.80 / +0.70
D-40/40 -1.99 / +0.66 -1.11 /+2.53 -1.69 / +0.67

Table 5: Performance of high-performing models with double-decoder (D) and data tagging (T) approaches on three test sets.
The left/right number is the difference in Dale-Chall score between the baseline and the simple/complex translation. Model
with the larger difference is bolded.

System BLEU Human Eval
Baseline 27.38 6.54
Weaker Baseline 24.34 5.64
Complex 24.08 5.75
Simple 23.51 5.84

Table 6: Average model score in human evaluation for mod-
els trained on Paracrawl. Complex and Simple represent com-
plex and simple modes for the double-decoder approach with
a 20-20 data partition.

work well for all six train-test pairs, and that the
double-decoder method generally makes the sim-
ple translations simpler and the complex trans-
lations more complex, than the data tagging ap-
proach.

6.2 Qualitative Results

The qualitative examples in Tables 7 were pro-
duced when translating newstest2013 using the
data tagging and double-decoder approaches.

We observe from the examples that both ap-
proaches successfully control the complexity of
output sentences. Furthermore, the baseline ap-
pears an appropriate intermediary between the two
complexity levels; For the baseline translation
“This attitude is a deplorable vision of future.”,
the data tagging approach changes “deplorable vi-
sion” to “terrible view” in simple mode to de-
crease complexity. In complex mode, however, the
model changes “is” to “implies” to make the sen-
tence even more complex, keeping “deplorable vi-
sion”. We also see change in sentence structure.
For example, in simple mode the data tagging ap-
proach produces, “there is...”, while in complex
mode it produces, “...occurred” or “...existed”.

In the double-decoder approach we observe
some loss in meaning for certain sentences as the
threshold for training sentences to be qualified as
simple or complex becomes more restrictive.

6.3 Human Evaluation

We performed human evaluation to determine
whether the lower BLEU score observed in more
extreme data-partitioning conditions in the double-
decoder approach was the result of true loss in
translation quality, or desirable swapping of sim-
ple/complex words. We randomly sampled 50
translations from newstest2013 and obtained the
translations from the double-decoder 20-20 par-
tition setting, along with the baseline model and
a weaker baseline trained to achieve comparable
BLEU to that of the double-decoder approach.
Nine English-speaking adults each scored approx-
imately one-third of the sampled translations on
a 10-point scale so that each translation received
three scores. Reviewers were instructed to score
how well each translation matched the meaning of
the reference, along with the fluency of the transla-
tion. Examples were presented in blocks with the
reference translation followed by the four system
translations in a random order for each block. Par-
ticipants each scored 15 or 20 blocks.

In Table 6, we show the average score that trans-
lations from each system received. We observe
that while the drop in BLEU in Table 4 reflects
some lowered translation quality as judged by hu-
man reviewers, the loss in quality is smaller than
the BLEU depreciation makes it seem. When com-
pared to a baseline model with comparable BLEU
to that of the “simple” and “complex” modes
(the “weaker” baseline), the double-decoder ap-
proaches fair better in human evaluation despite
having lower BLEU scores. This indicates that
BLEU over-penalizes models trained to control
readability level, and that readability-controlled
translations are better than they appear based on
BLEU alone.

Note that in this section we only performed
human evaluation on outputs from the double-
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Src Por este motivo, no creo que se haya producido una ruptura tan drástica como en el caso
de Libia.

Ref Therefore I do not think that this was as dramatic a fracture as was the case in the matters
regarding Libya.

Baseline For this reason, I don’t believe that there was such a drastic rupture as in the case of Libya.
Simple For this reason, I don’t believe that there is a drastic break as in Libya.
Complex For this reason, I don’t believe that a drastic rupture occurred as in Libya’s case.
Src Esta actitud supone una deplorable visión de futuro.
Ref This is woefully short-sighted.
Baseline This attitude is a deplorable vision of future.
Simple This attitude is a terrible view of the future.
Complex This attitude implies a deplorable vision of future.
Src Pero mis provocaciones están dirigidas a que se inicie una conversación.
Ref But my provocations are aimed at starting conversation.
Baseline But my provocations are directed to start a conversation.
Simple But my provocations are meant to start a conversation.
Complex But my provocations are directed to initiate a conversation.
Src No todos se sienten contentos con el hecho de que...
Ref Not everyone is happy that...
Baseline Not everyone feels happy with the fact that...
Simple Not everyone feels happy with the fact that...
Complex Not all are satisfied with the fact that...

Table 7: Example translations of newstest2013 in simple/complex mode from models trained on ParaCrawl (15-15). The
first two examples come from the data tagging approach (15-15), and the second two come from the double-decoder approach
(15-15).

decoder 20-20 model (which had a ∼3–4 BLEU
drop compared to the baseline) whereby we do
observe some loss in translation quality from the
baseline. However, for the models which achieve
very similar BLEU scores to the baseline, such
as the data-tagging 50-50 and 30-30 model, there
may be no loss in translation quality. Human eval-
uation could verify this notion.

6.4 Attention Visualization

In Figure 3, we see a heatmap of attention when the
data tagging approach translated the same sentence
in simple and complex modes. When choosing the
word “adversely” in complex mode versus “neg-
atively” in simple mode, we see attention placed
on the complexity indicator tags “czxc” and “szxc”.
This suggests that the model attended to the com-
plexity tag when deciding which word to use.

In many cases, however, the difference in word
choice is not reflected by attention to the complex-
ity tag. This could be because the difference in at-
tention values is too small for humans to detect the
color difference in the heatmap. A more plausible
explanation is that information about the reading

level has been passed to the hidden states at all po-
sitions by the bi-LSTM, so that the decoder doesn’t
need to pay attention to the complexity token (the
last hidden state) to make different word choices.

6.5 Adaption to Multiple Reading Level
Setting

Our approaches can be adapted to the multiple
reading level setting. We experimented using
the data tagging approach with the data equally-
partitioned into five reading levels (Reading Level
A-E), with A being the lowest and E the highest.
The results are given in Table 8. We observe ef-
fective control over reading level at this finer level
of granularity. Similar BLEU scores to that of
the baseline indicate that different modes maintain
translation quality.

6.6 Analysis and Discussion

We have demonstrated success both raising and
lowering the reading level of test sets using two
different methods. The results on multiple test
sets and training corpora suggest that our meth-
ods are general and applicable beyond the scope
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Figure 3: Attention visualization in simple vs. complex mode of data tagging approach (40-40 partition, trained on ParaCrawl).

Specified Readability FKG DC BLEU

Baseline 9.36 7.92 27.38

Reading Level A 8.66 7.22 26.81
Reading Level B 9.01 7.67 27.14
Reading Level C 9.34 8.10 27.29
Reading Level D 9.61 8.49 27.12
Reading Level E 10.03 9.06 26.17

Table 8: Readability performance of the data tagging method
at five levels of readability, trained on ParaCrawl and tested
on newstest2013.

of the datasets we chose. Our qualitative examples
demonstrate that though BLEU score depreciates,
some of the decrease reflects correct changes to-
wards our goal of adjusting reading level.

Translations in “simple” mode sometimes end
early or are too short (in the double-decoder
ParaCrawl 15-15 model, specifically). Simple
training sentences tend to be shorter than complex
training sentences, which may teach the simple de-
coder to produce short sentences.

We observe that the double-decoder is generally
able to pull the mean readability of sentences trans-
lated in simple vs. complex mode farther apart
than the data tagging approach. The separated de-
coders become more specialized towards creating
sentences of particular relative readability levels,
which may explain this observation.

We also observed the data tagging approach re-
taining higher BLEU than the double-decoder. We
suspect this is because in the data tagging ap-
proach, we retain sentences of an intermediate

complexity level during training, and this extra
data helps maintain high BLEU. On the other hand,
the double-decoder model with a 15-15 data par-
tition receives ∼2.2 million simple sentences and
∼2.2 million complex sentences. This means that
the encoder is trained on less than 30% of the data
as the baseline, and each decoder is trained on ap-
proximately 15% of the data. This lower-data con-
dition likely contributes to the lower BLEU score
for double-decoder models, and explains why the
data tagging approach does not suffer the same
loss in BLEU. This also suggests that the data tag-
ging approach may be preferable in low-resource
settings. That said, human evaluators rated trans-
lations from the double-decoder approach higher
than a baseline with similar BLEU performance.

7 Related Work

Our work is similar to style transfer and work con-
trolling style during natural language generation
(e.g., (Carlson et al., 2017; Fu et al., 2017; John
et al., 2018; Ficler and Goldberg, 2017)), and to
the text simplification literature (e.g., (Napoles and
Dredze, 2010; Nisioi et al., 2017)). In style trans-
fer, NMT methods using double-decoder architec-
tures have been used, for instance, to output formal
vs. informal or positive vs. negative versions of a
source sentence (e.g., (Fu et al., 2017; Prabhumoye
et al., 2018)). Sennrich et al. (2016) use tokens
similar to our complexity tags in NMT to specify
politeness in their English-German output. Van-
massenhove et al. (2018) and Kobus et al. (2016)
retain gender information and domain information,
respectively, in NMT through a tag to improve the
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translation quality.
As far as we are aware, we are the first authors

to use NMT to both reduce and increase the com-
plexity of translations. Unlike most of the text
simplification literature, we simplify output cross-
linguistically and also increase text complexity.
In statistical machine translation, Stymne et al.
(2013) translate and simplify output, while Niu
et al. (2017) control formality in French–English
translation. Štajner and Popović (2016) investigate
how simplifying source-side sentences affects ad-
equacy and fluency in English–Serbian translation.
Interestingly, we notice qualitative similarities be-
tween our “complex” translations and the formal
output of Niu et al. (2017), though the authors did
not frame these qualitative differences as increases
in complexity.

Prior work in machine translation and NLP has
focused on readability assessment and text simpli-
fication. For readability assessment, a data-driven
method is proposed in Le et al. (2018) for as-
sessing the readability of document text, whereas
Ciobanu et al. (2015) investigated the readability
of the MT system output with standard metrics.
Jones et al. (2005) also investigated the readabil-
ity of MT and ASR system output but with human
evaluation. As for text simplification, Hardmeier
et al. (2013) proposes a document-level decoder
for SMT and mentioned a case study that utilizes
document-wide features to improve the readability
of text. Contrary to Stymne et al. (2013), Xu et al.
(2016) designed a new training objective for SMT
text simplification. Similar to Le et al. (2018),
Ciobanu et al. (2015), and Jones et al. (2005),
we adopted evaluation metrics for assessing the
MT output. However, the readability constraint
is taken into account during training in our pro-
posed approaches. Stymne et al. (2013) introduces
document-level features such as type/token ratios
and lexical consistency as input to the MT system.
On the other hand, our approaches at most require
an additional simplicity/complexity tag. Different
from Xu et al. (2016) in which new training objec-
tive is proposed for text simplification, our NMT
training objective remains the same.

8 Conclusion

In this work, we are the first authors to address the
important task of controlling the reading level of
machine translation output, and provide the first re-
sults. This work is important for practitioners who

wish to control the simplicity or complexity of text
that their machine translation system produces.

We develop two methods for controlling the
reading level of output translations in NMT. Both
of our proposed models successfully increase or
decrease the reading level of multiple test sets
when trained on different corpora, and have good
qualitative results. Furthermore, our human evalu-
ation indicates that the readability-level controlled
translations are better than a baseline which had
higher BLEU.

Notably, our data tagging approach can be de-
ployed immediately on existing NMT systems
with no architectural changes. We demonstrate a
trade-off between more effective control of read-
ing level and BLEU score, particularly with the
double-decoder approach. As the data partition be-
comes more aggressive, the difference in reading
level between the two modes increases, but BLEU
score drops. We show that this effect can be miti-
gated by oversampling.

In the future, we plan to experiment with dif-
ferent language pairs and readability scorers. We
also plan to discard sentences with very low read-
ability scores and filter training corpora to exclude
low-quality examples, which Junczys-Dowmunt
(2018) demonstrated can severely degrade model
performance. We expect these methods will help
us retain better BLEU. Furthermore, we will use
the state-of-the-art transformer model which we
expect to provide improved BLEU and greater
control over reading level in the data tagging
method, because the complexity tag will contribute
to each word’s representation via self-attention
(Vaswani et al., 2017).

Finally, we observed exciting effects related to
formality which are outside the scope of this paper.
Particularly when training on Europarl and Open-
Subtitles2018 data, we observed that sentences
trained in “complex” mode appeared more formal
than those trained in “simple” mode; most contrac-
tions were removed, and words appeared more for-
mal. We plan to repeat these experiments, and have
observed promising first results.
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Nisioi, Sergiu, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2,
pages 85–91.

Niu, Xing, Marianna Martindale, and Marine Carpuat.
2017. A study of style in machine translation: Con-
trolling the formality of machine translation output.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2814–2819.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Prabhumoye, Shrimai, Yulia Tsvetkov, Ruslan
Salakhutdinov, and Alan W Black. 2018. Style
transfer through back-translation. arXiv preprint
arXiv:1804.09000.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40.
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