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Abstract

Phrase-based machine translation provides
the system developer with controls that
enable fine-grained control over machine
translation output. One approach to provide
similar control in neural machine transla-
tion is placeholding (herein called mask-
ing), which replaces input tokens with
masks which are replaced with the origi-
nal input text in post-processing. But is
this a good idea? We undertake an explo-
ration of masking in French–English and
Japanese–English using Transformer archi-
tectures. We attempt to quantify whether
(and where) masking is necessary with anal-
ysis of a baseline system, and then explore
numerous parameterization of masking, in-
cluding post-processing techniques for re-
placing the masks. Our analysis shows this
to be a thorny matter; masks solve some
problems but are not perfectly translated
themselves.

1 Introduction

Neural machine translation generally produces
higher quality output than phrase-based machine
translation, especially in high-resource training set-
tings and on in-domain data. However, this im-
provement has come at the expense of a certain
loss of control over how words get translated, since
there is no longer a direct link between source
words, their translation options, and the ordered
decoder output. While nearly everyone has con-
sidered this trade to be worthwhile, there lingers
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src En 2017 Bernard Arnault a gagné...
mask En NUM NAME NAME a gagné...

out In NUM NAME NAME a gagné...
align In NUM1 NAME1 NAME2 a gagné...
detok In 2017 Bernard Arnault won...

Figure 1: A translation pipeline with masking (placeholding).
The indexes denote a permutation of each mask type, and may
or may not be an explicit part of the tag.

a concern about the stability and dependency of
NMT performance. Input words are not all equally
important, and there are many settings where one
would be willing to sacrifice translation quality for
a translation guarantee that certain input tokens
be translated with perfect recall. Common exam-
ples include prices on a product page, names and
places in a news article, or contact and location
information, and other data types, such as URLs.

One attempt to providing these guarantees is the
use of placeholders (or masks, the term we will use
in this paper), where input tokens in a category are
replaced by a masked label token (Figure 1). These
are then passed through to the output and replaced
with the correct translation in post-processing. This
ostensibly guarantees that the input term (or its
preferred translation) will correctly appear in the
output, while at the same time restoring a capability
that was easily handled in the old phrase-based
paradigm. At the same time, doing so reflects a
lack of confidence in the decoder to get this right.
This approach has not received much attention in
the research literature.

In this paper, we look at this topic in more detail.
We focus our attention on copy or pass-through
tokens, which is to say, input tokens that are not
translated, but which are simply copied to the out-
put sentence. This includes many different token
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types that can be recognized by regular expressions
(numbers, URLs, email addresses, and Emojis), as
well as types for which we can provide a dictionary.

We ask the following questions:

• Are translation guarantees necessary for these
types?

• How effective is masking at producing these
guarantees?

We experiment in both high resource (FR→EN)
and low-resource (JA→EN) language settings.

2 Related Work

The first application of hard masking in neural ma-
chine translation was in Luong et al. (2015) and
Long et al. (2016), which address the translation of
rare words and technical items, but the approach
was largely abandoned when sub-word methods
(Sennrich et al., 2016) obviated the need. Most sim-
ilar to this work in spirit is Crego et al. (2016), who
mentioned that masking could be used to translate
many “pass-through items” but did not conduct any
further analysis towards the problem or the solution.

Another solution for handling pass-through items
is to add them as constraints during beam search. A
number of approaches introduced modifications to
beam search that ensured that desired words would
be included in the output (Hokamp and Liu, 2017;
Chatterjee et al., 2017; Anderson et al., 2017). One
problem with these solutions is that decoding time
generally grows very quickly with the number of
constraints added. Hasler et al. (2018) showed that
even two constraints cause decoding speed to in-
crease by as much as five times. Post and Vilar
(2018) introduced a fixed-beam-size variant which
is constant in the number of constraints, but the
constant overhead is still quite high.

In terms of specific token types, Li et al. (2018),
Ugawa et al. (2018) and Grundkiewicz and Heafield
(2018) studied NMT models with better handling
of named entities, either by adding named entity
tags or employing transliteration models. Gotti et
al. (2014) analyzed how hashtags are translated in
the Canadian government tweet corpus and used
insights from the analysis to improve their tweet-
oriented machine translation system. Radford et al.
(2016) conducted corpus analysis on the alignment
between natural language text with Emojis.

match type examples

template
(regex)

numbers, emoji, URLs, email
addresses

direct (dict) names, cities, states, locations

Table 1: Pass-through candidates can be identified at the class
level (via regular expressions) or type level (via direct match
against a provided dictionary).

3 Masking

Masking is the context-free replacement of a class
of input tokens with a single mask token. The idea
is to collapse collections of distributionally similar
tokens into a single token that the decoder can then
be trained to reliably translate.

Because there has been little formal study of
these items, there is no consensus on what should
be masked (i.e., what the set of pass-through items
is). For this work, the set of items to be masked
comes from two different sources (Table 1):

• Template matches. This refers to sets of items
that can be identified by regular expression.
We work with numbers, URLs, email ad-
dresses, and emoji (a term we use in a gen-
eral sense to denote extended non-alphabetic
character sets).

• Dictionary matches. Tokens or sequences of
tokens that are always translated the same way.
A canonical example is named entities. These
are often identified via dictionary lookup.

Dictionary matches typically contain items that
are in fact translated, but we focus on the subset of
word tokens that are instead passed through.

3.1 Demasking

At inference time, the masked tokens in the decoder
output must be replaced with the corresponding
source tokens. This demasking requires aligning
the masks in the decoder output to the masks in the
decoder input. Once this is done, recovering the
original token identities for replacement is trivial.
However, computing the mask alignment is not nec-
essarily easy. We therefore explore two solutions to
it: indexing and bipartite matching. Each of these
solutions has its own benefits and problems.

Indexing The indexing approach (Crego et al.,
2016) incorporates an index in each mask token:
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EMAIL becomes EMAIL1, EMAIL2, and so on. Ide-
ally, the decoder learns to output indexed mask
tokens as a bijective permutation of the input mask
tokens. The source tokens for each output mask
are easily recovered in this scenario, but the down-
side is that there are now an unbounded number of
masks which are all different to the decoder.

Bipartite matching Without indexes, we must
produce our own alignment. We propose a gen-
eral solution based on weighted bipartite matching.
This approach takes as input a matrix of weights
that assigns a score to each (source token, target
token) pair. These weights can be obtained in differ-
ent ways; for example, from the decoder attention
weights, or from an external alignment model.

The task is to convert these weights into a set
of hard alignments between the input and decoder
output masks. We do this by formulating the prob-
lem as a bipartite graph problem (Algorithm 1. For
each subset of masks with the same label, we use
alignment scores as the edge weights, and execute
the bipartite graph matching algorithm to find the
best hard alignment scheme. These alignments can
then be used to demask the output tokens.

Our approach guarantees an alignment for each
target mask. If there are fewer target than source
masks, an input token will be erroneously used
multiple times.

Obtaining weights Obtaining weights to use
with bipartite matching is not straightforward. We
experiment with two approaches:

• Averaged attention scores. We average source
attention scores across all decoder heads and
layers in our model.

• External aligner. We run a version of fast-
align (Dyer et al., 2013).

Both have problems. We use Transformers
(Vaswani et al., 2017) in our experiments, but multi-
head Transformer attention is not the same thing
as alignment (Jain and Wallace, 2019). Fast-align
is fast and easy to use at inference time, but it is
a variant of IBM Model 2 (Brown et al., 1993)
and the HMM model (Vogel et al., 1996). There-
fore, its translation model cannot distinguish among
mask permutations, and its impoverished distortion
model is not well-suited to the task of recovering
permutations of identical masks. However, we con-
sider both approaches worth testing on this coarser
alignment task, where we are only concerned with

Algorithm 1: Bipartite Matching Demasking
Input: source sentence S = {s0, . . . , sI−1},

target sentence T = {t0, . . . , tJ−1},
soft alignment matrix A of size I × J

Output: demasked target sentence T ′
T ′ = T ;
for each unique mask label m in T do
C = ∅; // competing masks
for (si, tj) in S × T do

if si, tj are both masks and both
belong to category m then
C = C ∪ {(si, tj)};

end
end
extract bipartite graph G corresponding to
C using the weights from A;

conduct bipartite matchingM on G;
for match (si, tj) inM do

substitute tj in T ′ with the unmasked
source token corresponding to si;

end
end
return T ′;

alignment of a handful of well-attested types, and
not all the words in the sentence pair.

4 Experiment Setup

4.1 Data

Our evaluation follows the WMT 2019 Robustness
Task,1 except that we use MTNT data (Michel and
Neubig, 2018) for evaluation only. This includes
MTNT/train, which we excluded from training in
part because many of the masked items we would
like to evaluate occur most frequently in this dataset.
Table 2 contains information about all data sets.

For French–English training data, we use Eu-
roparl (Koehn, 2005, v7) and News Commentary
(v10), and a portion of the UN Corpus. Due to its
large size, we do not add all of the UN data, but add
only lines that have a mask other than NUMBER,
which includes about 1.1 million lines. This is cru-
cial for the experiments since there is not enough
masked data without this addition. We also include
the WMT 2015 newstest test set for evaluation.

We also conduct limited experiments on
Japanese–English. We follow Michel & Neubig in
combining KFTT (Neubig, 2011), JESC (Pryzant

1www.statmt.org/wmt19/robustness.html
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Dataset French–English Japanese–English
sents words sents words

Europarl v.7 2.0m 50.2m - -
News commentary v.10 200k 4.4m - -
UN (complete) 12.8m 316.2m - -
→ UN (dict masks) 1.1m 33.8m - -
KFTT - - 440k 9.7m
JESC - - 3.2m 21m
TED Talks - - 241k 4.0m

newstest2014 3,003 69k - -
MTNT1.1/valid 886 34k 965 19k

newstest2015 1,500 25k - -
MTNT1.1/train 19k 660k 6,506 128k
MTNT1.1/test 1,022 16k 1,001 11k

Table 2: Pre-tokenization data sizes in sentence and English words for FR–EN and JA–EN training (top), validation (middle),
and testing (bottom).

et al., 2017), and TED Talks (Cettolo et al., 2012)
data.

4.2 Masks

We obtain our set of mask types from two sources:
a set of regular expressions, and a dictionary ex-
tracted from the training data.

Regular expressions We built a set of regular
expressions to identify the following mask types:
NUMBER, EMOJI, EMAIL, and URL.

A difficulty with developing these regular ex-
pressions is their interaction with other steps in the
pipeline. One first has to choose whether to apply
masking before or after tokenization. A natural
place is afterwards, but this requires that the tok-
enizer not split up the items we wish to mask, which
in turn requires one to apply a set of regular expres-
sions to exempt portions of the input segment.2 As
a result, we apply all masks to the raw data and
modify tokenization and subword splitting code to
not split up masks.

Dictionary We also want to test how well the
system translates named entities. We identify these
items by running the Stanford NER tagger on the
English side of all the training data (including the
complete UN corpus). We then construct a dictio-
nary from all entries satisfying the following con-
straints, which simplify the masking and demasking

2The Moses tokenizer, which is applied with default settings
in many scenarios, segments URLs into many pieces, due to a
weak and buggy “protected patterns” file.

process. Each entity:

• should be labeled as one of the following cate-
gory: PERSON, LOCATION, ORGANIZATION,
CITY, COUNTRY;

• must be found verbatim in the non-English
side of the parallel sentence;3 and

• must contain at least one word not among the
most frequent 10k words in the training data.

Table 3 shows the statistics of pass-through items in
MTNT dataset captured by our regular expression
and named entity dictionary.

4.3 Synthetic Data
A problem apparent from Table 3 is that there sim-
ply aren’t many instances for many of the mask
types, which impedes investigation. MTNT/train
has the most examples for many types, but for
EMAIL, URL, COUNTRY, and even CITY, there
are fewer than 1k, and often barely any at all.

To address this problem, we synthesize larger
tests that allow us to see how often various types
are translated correctly in the baseline system. For
each mask, m, we identify all sentence pairs (s, t)
in the training data for which one of the words
was masked as m, ensuring the mask is in both the
source and reference. Call this set Dm. Next, we
build a set Vm of all tokens that get masked as m:

Vm = {p | mask(p) = m}
3This requirement limits our ability to identify Japanese enti-
ties, but it prevents errors from transliteration and/or alignment
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Mask French–English Japanese–English
train WMT15 MTNTtest MTNTtrain train MTNTtest MTNTtrain

NUMBER 1,926,726 210 238 16,562 64,635 121 1,014
EMOJI 5,434 1 5 131 2,057 11 352
EMAIL 20,751 0 0 0 1 0 0
URL 38,655 0 0 26 175 0 5

CITY 186,902 39 16 824 13 0 0
COUNTRY 34,205 1 0 7 12 0 0
LOCATION 409,109 41 24 1,598 155 0 2
ORG. 369,297 73 46 1,896 507 0 40
PERSON 845,116 131 60 3,395 179 0 3

Table 3: Entity counts across all data. For training data, the counts are “true” counts, that is, they are only counted for tokens
that appeared on both the source and target sides of the data. For test sets, the counts are produced by matching only against the
source. For most entity types, data is quite sparse.

We then produce a new test set by repeating the
following procedure 5,000 times:

1. Sample a sentence pair d ∈ Dm;

2. Twenty separate times, do

(a) Sample one of the positions with mask
m in d (there may be only one);

(b) Sample a term s ∈ Vm;
(c) Create a new sentence pair by inserting s

into d.

This yields synthetic datasets of 100k sentences.
Table 7 contains examples.

4.4 Models

Our baseline NMT system is a 4-layer transformer
trained with Sockeye (Hieber et al., 2017). We
use the following settings for training both French–
English and Japanese–English models: eight atten-
tion heads, model size of 512, feed-forward layer
size 2048, three-way tied embeddings, layer nor-
malization applied before attention, dropout and a
residual connection added afterwards, a batch size
of 4096 words, and the learning rate initialized to
0.0002. We compute checkpoints every 5000 up-
dates, and train until validation likelihood does not
increase for ten consecutive checkpoints.

For preprocessing, we first apply the Moses
scripts that normalize punctuation, remove non-
printing characters, and tokenize.4 We learn a sub-
word model using byte-pair encoding (Sennrich et

4With the options -no-escape and using a version of the
Moses basic-protected-patterns file modified to
protect masks.

al., 2016) with 32k merge operations. No recasing
is applied to either source- or target-language text.

For alignment-based demasking, we trained two
fast-align models, one in each language direction,
using default parameters. We then combine them
with the grow-diag-final-and heuristic.

Source Factors We also experiment with source
factors (Sennrich and Haddow, 2016) applied to the
baseline (unmasked) system. Source factors are sep-
arate embeddings that are learned from annotations
applied to the input tokens. For each of the types
NUMBER, EMAIL, and URL, instead of masking,
we added a distinct binary source factor. We also
experimented with two ways of combining factors:
concatenation and summing. Concatenation was
described in Sennrich et al.; we learn an embedding
of size 4 for each factor, and concatenate with the
subword embeddings. For summing, we instead
embed each factor to size 512, and sum together all
factors for each input token.

5 Results

We compute BLEU on detokenized, cased outputs
using the standardized BLEU scoring script, sacre-
BLEU (Post, 2018).5 The results on all test sets
can be found in Table 4. We provide the same-data
baseline score from Michel and Neubig (2018) as
an anchor point for evaluating the models.

In no masking situation is there any improvement
in BLEU score over the baseline system. In fact,
adding masks seems to uniformly cost the models in

5Shared portion of signature: BLEU +case.mixed
+numrefs.1 +smooth.exp +tok.13a
+version.1.2.20.
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System French–English JA–EN
WMT15 MTNTtest MTNTtrain MTNTtest MTNTtrain

Michel & Neubig (Base) - 23.2 - 6.6 -

baseline 32.0 28.1 28.7 8.2 6.5
indexed masking 31.8 27.4 27.0 8.0 6.6
masking (fast-align) 31.9 27.9 * 8.1 *
masking (attention) 31.9 28.0 27.5 8.1 5.4

source factors (concat) 32.0 28.1 28.3 8.2 6.0
source factors (summed) 32.4 28.4 29.1 8.2 6.7

Table 4: BLEU scores on test sets. The score take from Michel & Neubig is the system not trained on MTNT/train, since we did
not train on that in this paper, instead reserving it for analysis.

type WMT MTNT synth
/test /train

NUMBER 91.1 95.2 94.8 -
EMOJI 0 0 5.2 -
EMAIL - - - 96.9
URL - - 91.7 91.3

CITY 100 92.3 95.1 98.4
COUNTRY 100 - 50.0 90.2
LOCATION 100 100 87.9 -
ORG. 98.4 100 93.6 -
PERSON 99.2 100 94.9 -

Table 5: FR–EN baseline recall scores (against the reference)
for each data type when decoding with the baseline system.
Hyphens (-) indicate no data being available, and italics in-
dicate counts for which there were fewer than 50 instances
(Table 3). The synthetic dataset is discussed in Section 6.3.

terms of BLEU score, from small drops of a tenth
of a point or so (for WMT15 and Japanese), to
large drops of about half a BLEU point on FR-EN
MTNT. We do, however, see BLEU score increases
of about a third of a point when using summed
source factors.6

BLEU is important, but is too coarse of a metric
to draw conclusions from in this situation that deals
with relatively rare phenomena. We turn now to a
more fine-grained analysis.

6 Baseline Analysis

We begin with an analysis of the performance of
the baseline system on all the mask types in our
study. Table 5 reports, for each type, the percentage

6Recall that these are applied only to numbers, email addresses,
and URLs, and that these terms are not masked, but instead
have the standard tokenization and subword-splitting regime
applied to them.

of time that the baseline system correctly translated
tokens that were in both the source and reference.

6.1 NUMBER

Numbers are by far the most frequent category type,
and additionally for many scenarios numbers are
considered to be one of the data types that are impor-
tant to correctly translate. How well are numbers
translated?

On WMT15, there are 210 instances of numbers
that are matched by our regular expression and exist
in both the French input and the English reference.
On these numbers, the baseline system achieves
an accuracy of 91.2%, leaving only 18 instances
of missed masks. Of these, the vast majority are
fine: 12 are found in written form in the system
output (e.g., twelve instead of 12), and four are
localization effects of time (e.g., 14:30 → 2:30
PM). Accounting for these, the accuracy is 99.0%.

Turning to MTNT/test, we find an accuracy of
92.2% on 219 masked instances, with 17 of them
translated incorrectly. Of these, 11 are fine (written
substitutions), and many are the result of the de-
coder entering a “language modeling mode”, where
it generates output that has little to do with the input
(Koehn and Knowles, 2017). A few are actually
wrongly translated: 15 jours gets translated as fort-
night, and 1h de sommeil (“one hour of sleep”) is
mistranslated.

Finally, we look at MTNT/train, where there
are many more masks, especially numbers.
MTNT/train is an unusual dataset. There are many
input segments with hundreds or over a thousand
words, often containing multiple sentences, due to
the way the data was collected (Michel and Neu-
big, 2018, penultimate paragraph of §3.4) There
is also a lot of repetition: some input sentences
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type # of digits
1 2 3 4 *

correct 203 9 0 1 2
missing 6 8 1 6 0
wrong 1 5 0 0 2
total 210 23 1 87 4

Table 6: Counts of error types made by the baseline system
on FR–EN MTNT/train on 1-, 2-, 3-, and 4-digit integers,
and other numbers (*), looking only at system outputs with
50 or fewer words. missing and wrong denote errors where
the number is either dropped or mistranslated by the baseline
system. correct sentences were fine but not identical (e.g.,
“1,000” and “1000” or “1” and “one”).

are repeated three or four times, leading to skewed
statistics. It is also quite informal, and since we had
no such data in our training data, we often observed
the NMT model again entering “language model
mode”. The accuracy is 95.7% on 10,040 instances
with system outputs with 50 or fewer words.

We analyze the 325 instances where our method
reports an error (Table 6).7 The error counts are
produced by counting all instances where a number
matching our pattern is found in both the French
source and English reference, but not in our system
output. We break down the analysis by number
type: integers with one to four digits, and all others.

It is clear that the analysis from above holds: the
majority of items marked incorrect by automatic
matching are actually fine (65%). The six missing
4-digit numbers seem to be a quirk of the data: six
of the source sentences have X Edition at the start
of the input and reference (for some year X), with
no punctuation, and it gets dropped. The handful of
other errors are similar to those described above. If
we remove the bad lines, and count as correct the
sentences we identify, the new recall for numbers
on MTNT/train is 98.8%.

The baseline JA-EN system does not perform
nearly as well as the FR-EN system. The accu-
racy for numbers is only 49.3% on MTNT/test and
61.2% on MTNT/train. However, we see the same
pattern of mismatches that are not errors (e.g., num-
bers spelled out or formatted slightly differently).
Accounting for these, the recall on MTNT/test
jumps to 67.1%. This is still much lower than we
see for French, but not unexpected given the drastic
difference in BLEU score.

7This is after throwing out 103 instances where the input was
multiline or the NMT output was garbage, perhaps due to
out-of-domain effects.

The bottom line on these test sets is that numbers
appear to be correctly passed-through or translated
the majority of the time in the high resource setting.
They are also often correctly translated in context-
sensitive ways. However, they are not perfect.

6.2 EMOJI

We use the term emoji broadly to indicate special
characters that are outside the phonetic alphabet.
Emoji are a unique type of data, because they are
typically single Unicode codepoints. If these code-
points were not in the training data, they will be
untranslatable. This is precisely what happens in
WMT15, where the single instance

L’introduction mi-septembre par
AppleTM d’écrans plus grand pour...

is mistranslated. Emoji are therefore a unique can-
didate for masking.

6.3 EMAIL, URL, CITY, and COUNTRY

These four categories have almost no data in the
test sets, so we instead analyze the synthetic data
(§4.1). The synthetic data provides us with 5,000
sentence contexts with 20 different instances, to-
talling nearly 100k samples (Table 7). We translate
each of these sentences with the baseline system,
and check whether the entity type is in the system
output. The results can be found above in the last
column of Table 5.

We focus here on EMAIL and URL. Note that
these are types which should almost always be
passed through, and not translated. Yet the baseline
system mistranslates 3.1% of email addresses and
8.7% of URLs. The reason likely has to do with
the MT preprocessing pipeline: both tokenization
and subword processing mangle these types into
long sequences of tokens. On average, URLs are
transformed into 14.1 subword tokens (the longest
is 125 tokens), versus 3.9 subword tokens for the
average vocabulary item.

Looking at the outputs, we see that URLs are usu-
ally translated nearly perfectly, except for a small
mistranslated or dropped piece (Table 8). But for
these types, a single character mis-translation ren-
ders the entire item useless.

6.4 LOCATION, ORG., and PERSON

These three categories are a bit unusual, since we
are restricting our attention to instances that have
the same surface form in both French and English
(instead of using a translation dictionary). All of
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Présidence de l’Union européenne : http://europa-eu-un.org
Présidence de l’Union européenne : http://www.fao.org/figis/servlet/static?
xml=CCRF_prog.xml&dom=org&xp_nav=2,3
Présidence de l’Union européenne : www.all4syria.org
Présidence de l’Union européenne : http://www.njcl.fi/1_2006/commentary1.pdf

Prière de prendre contact avec le Groupe du Journal, à l’adresse journal@un.org.
Prière de prendre contact avec le Groupe du Journal, à l’adresse frank.X@univie.ac.at.
Prière de prendre contact avec le Groupe du Journal, à l’adresse jferex@eclac.cl.
Prière de prendre contact avec le Groupe du Journal, à l’adresse chungrx@un.org.

Table 7: Substitutions for URL (top) and EMAIL (bottom). The original is in bold. Personal email addresses have been slightly
modified.

sys: http://www.cbs.nl/NR/rdonlyres/D1716A60-0D13-4281-BED6-3607514888AD/
ref: http://www.cbs.nl/NR/rdonlyres/D1716A60-0D13-4281-BED6-360751488AD/

sys: www.fao.org/forestry/fo/fra/index.jsp
ref: www.fao.org/forestry/fo/fra/index.jp

sys: qualityws.ht
ref: qualitativeyws.ht

sys: http://www.tebtebba.org/tebtebba_files/ipr/racism.htm
ref: http://www.tebba.org/tebtebba_files/ipr/racism.htm

Table 8: Mistranslated URLs.

them display similar patterns: extremely high ac-
curacies in all three test sets (WMT15, MTNT/test,
and MTNT/train). We took the most prevalent cat-
egory, PERSON, and manually examined the error
cases. Of the 131 tokens tagged as PERSON in
MTNT/test, seven did not appear in the reference,
leaving 123 instances, on which the baseline sys-
tem achieved 99.2% accuracy, missing only one.
The single missed instance translated Jean-Pierre
Bernajuzan as Mr Bernajuzan.

No mistakes were made on MTNT/test.
MTNT/train is more difficult to analyze, but many
of the missing instances were caused by multiline
inputs where the NMT system stopped translating
after the first sentence of the input.

In summary, for these categories, the baseline
system does very well. But again, it’s not perfect.

6.5 Source Factors

We applied source factors to types NUMBER,
EMAIL, and URL in the baseline system. From
Table 4, this seems to have had no effect on BLEU
scores when using the embedding concatenation
described in (Sennrich and Haddow, 2016), except
for a minor drop on MTNT/train. When summing
the factors, however, we see a small improvement
in BLEU score on all three test sets. However, there

type
indexed unindexed

1 2+ 1 2+ 3+

NUMBER 98.5 95.9 98.5 97.7 97.7
EMOJI 91.4 74.0 98.8 92.0 100
EMAIL - - - - -
URL 100 - 100 - -

CITY 98.9 97.6 97.6 97.1 96.4
COUNTRY 100 100 100 100.0 -
LOCATION 98.6 92.0 99.0 93.6 90.7
ORG. 98.9 90.7 98.2 93.8 91.7
PERSON 98.3 82.1 98.5 97.3 96.7

Table 9: FR–EN recall scores (against the reference) for
masking on MTNT/train, broken down between indexing and
(attention-based) not-indexing, and between sentences that
have only a single (1) or multiple (2+) instances of a mask.

was no improvement in entity-based recall scores
over the baseline analysis in Table 5.

7 Masking

Masking has the potential to achieve 100% accuracy
on masked entities. However, its success depends
on a number of pieces: (1) the masks need to be
translated correctly (i.e., one-for-one with the input
masks), and (2) for unindexed masking, they need
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to be correctly aligned.
Table 9 looks into (1). It displays masks recall

scores on the MTNT/train test set, broken down
between indexed and unindexed masking, and be-
tween sentences with exactly one instance of each
mask, or more than one (2+). For unindexed mask-
ing, we also display recall for masks appearing 3+
times in a single sentence. We see that masks are
not perfectly translated, but that unindexed masking
does a slightly better job of it. And the numbers are
somewhat better than those of the baseline system
in Table 5, though for some labels they are not that
different. Performance degrades with more masks
of the same type, in all instances except EMOJI

(where there are only 18 3+ instances).

reference reference
mono not mono not

system
mono 61 18 67 20

not 7 2 1 0

Table 10: Demasked permutations for the attention-based
(left) and alignment-based (right) approaches. Mono/not de-
notes whether the text of the decoder output (rows) and refer-
ence (columns) was monotonic with respect to the input.

Demasking Section 3.1 described two ap-
proaches to aligning masks: decoder attention and
post-alignment via fast-align. This use case proves
similarly difficult to analyze for a number of rea-
sons. On WMT15 (where we expect the neat text
to present the simplest case), there are 88 instances
where a single mask type appears more than once
in a sentence. We break down the analysis into
whether or not the permutations of the text in the
(a) system output and (b) reference were monotonic
(with respect to the input text). (Note that in the
case of non-monotonic permutations, we are not
guaranteed that the system and reference line up.)
The results are in Table 10, and are largely inconclu-
sive. There is not a lot of data to determine whether
permutations are correctly restored, and there does
not appear to be much difference between the two
approaches.

8 Conclusions

We began this paper wondering whether “transla-
tion guarantees” for certain word types were nec-
essary, and whether masking was an appropriate
tool for guaranteeing them. The answer is not as
clear-cut as we would have liked. Masking (or

placeholding) is sometimes viewed as a way of en-
suring or increasing the chances that a particular
entity type is correctly translated. Our experiments
on different test sets with a modern Transformer
architecture on French–English and (to a lesser ex-
tent) Japanese–English show that this is often not
the case. Masked systems do not reliably translate
masks, which is likely why Crego et al. mention
the use of constraints to ensure masks are output.
And in any case, the baseline system does a decent
job of translating many of these types already. The
recall numbers between the baseline and masked
systems (Tables 5 and 9) all range in the mid-90s
across multiple test sets.

Another issue is that the set of items that should
be masked cannot be perfectly predicted. As
we saw with types like NUMBER, many numbers
should not in fact be passed through, but require
translation, in ways that are often mediated by con-
text. Using masks for such types is akin to a vote
of “no confidence” in the decoder, which seems not
to be justified. This also seems to be the case for
other entity-based types, which are handled well by
the baseline system.

However, we have seen that unindexed masking
can do a good job of passing items through, com-
pared to Crego et al. (2016)’s indexed system. In
situations where it is better to drop the identified
term than to mistranslate it, unindexed masking
may be preferable. This includes terms like emojis
and extended character sets, and email addresses
and URLs. The former are important to mask be-
cause otherwise the characters will be outside the
decoder character set; one could alternately aug-
ment the training data with all emoji types, but
this could be difficult and error-prone, especially as
new characters are introduced all the time. Email
addresses and URLs cause complications with to-
kenization, can get broken up into many subword
pieces, and can also be hard to reliably detokenize.
It makes sense to translate these items as a single
entity, making masking the clear option for this.

There are many avenues we have not explored in
this paper. For example, adding a source factor to
masked tokens might help increase the reliability of
mask translation. An even better approach may be
to use special loss functions to further encourage
the decoder to get marked tokens right. One could
also use constrained decoding (Hokamp and Liu,
2017; Post and Vilar, 2018) to ensure that desired
items (or masks) are placed in the output.
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