
Improving American Sign Language Recognition with Synthetic Data

Jungi Kim
SYSTRAN Software, Inc.

jungi.kim@systrangroup.com

Patricia O’Neill-Brown
U.S. Government

po17b@icloud.com

Abstract

There is a need for real-time communica-
tion between the deaf and hearing with-
out the aid of an interpreter. Develop-
ing a machine translation (MT) system be-
tween sign and spoken languages is a mul-
timodal task since sign language is a vi-
sual language, which involves the auto-
matic recognition and translation of video
images. In this paper, we present the re-
search we have been carrying out to build
an automated sign language recognizer
(ASLR), which is the core component of a
machine translation (MT) system between
American Sign Language (ASL) and En-
glish. Developing an ASLR is a challeng-
ing task due to the lack of sufficient quan-
tities of annotated ASL-English parallel
corpora for training, testing and develop-
ing an ASLR. This paper describes the re-
search we have been conducting to explore
a range of different techniques for auto-
matically generating synthetic data from
existing datasets to improve the accuracy
of ASLR. This work involved experimen-
tation with several algorithms with varying
amounts of synthetic data and evaluations
of their effectiveness. It was demonstrated
that automatically creating valid synthetic
training data through simple image manip-
ulation of ASL video recordings improves
the performance of the ASLR task.

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

1 Introduction

In everyday life, there are situations in which there
is the need for deaf and hearing individuals to com-
municate with one another without the aid of an
interpreter. To address this need, we are develop-
ing ASL-English MT that enables signers and non-
signers to communicate with one another using
mobile devices such as smartphones and tablets.
The concept is that the signer of ASL signs into
the device and the video images are captured, auto-
matically recognized, translated and rendered into
both speech and text for the speaker of English.
Conversely, using this application, the speaker’s
speech is automatically recognized and an avatar
signing the machine translation in ASL is dis-
played, which appears along with the English text.
This paper outlines our work on the first critical
aspect of the problem, which is the development
of an automatic sign language recognizer (ASLR).
Specifically, we address our research in the area
of generating valid synthetic data, a requirement
dictated by the lack of sufficient amounts of large-
scale annotated data for ASL to English for testing,
training and developing ASLR algorithms.

ASL is a visually perceived language based on a
naturally evolved system of articulated hand ges-
tures and their placement relative to the body,
along with non-manual markers such as facial
expressions, head movements, shoulder raises,
mouth morphemes, and movements of the body
(ASL: A brief description - Lifeprint.com). This
language is structured like Japanese: it is a topic-
comment language and does not have articles
(Nakamura, 2008). See Speers (2002) for an ex-
cellent detailed linguistic description of ASL. The
challenges involved with the recognition of sign
language are akin to those of automatic speech

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 151



recognition (ASR) (Dreuw et al., 2007). As with
speech, for sign language, allophonic variation
must be taken into account, since each time a per-
son makes a particular sign, they make tiny vari-
ations in how they position their arms and hands.
In addition, hand and arm sizes and shapes vary
between signers. An effective recognizer must be
able to handle these variances as well as the dif-
ferences in background colors and lighting. To ac-
count for these variations, similar to an acoustic
range for each type of sound such as each spe-
cific vowel, we have developed the concept of a
‘bounding box’ within which each sign needs to
be made for it to be considered that sign as judged
by native signers and interpreters. Our plan is to
automatically discover the bounding box for each
sign through training on images of different sign-
ers signing each sign. However, since the datasets
available for training algorithms to automatically
recognize sign language do not contain a sufficient
quantity of signer variation, this research focuses
on the automatic creation of valid synthetic data to
accurately capture those variations.

In this paper, we discuss our research into the
area of automatically generating synthetic data for
the ASLR component of an ASL-English MT sys-
tem. Synthetic data generation has proven to be
effective in solving problems such as image clas-
sification (Krizhevsky et al., 2012), ASR (Ko et
al., 2017), and MT (Sennrich et al., 2016). The
approach of using synthetic data to train and test
machine learning algorithms is a newly emerging
topic of interest and an area of active research in
the field of Artificial Intelligence (AI). A popu-
lar approach in the attempt to solve this problem
is to utilize the generative model in the Genera-
tive Adversarial Network (GAN) architecture (An-
toniou et al., 2017; Gurumurthy et al., 2017; Bous-
malis et al., 2017). However, we experimented
with GANs and we found that they generated valid
as well as non-valid signs and we were unable
to constrain them to automatically generate only
valid signs. Therefore, we looked for alternative
approaches. This paper discusses our work on de-
veloping and testing different techniques for auto-
matically generating valid synthetic data and deter-
mining whether synthetic data increases classifica-
tion accuracy. In particular, we address two key re-
search questions: a) given a very small amount of
annotated data for training, how much synthesized
data can we utilize for augmenting the training data

without hurting classification performance, and b)
would different synthetic data generation methods
produce different outcomes for the model perfor-
mance and if so, what techniques are most suitable
and why.

2 Previous Work

A review of the literature reveals different ap-
proaches to the development of ASLR. Starner
et al. (1998) implemented two Hidden Markov
Model based real-time systems for ASLR where
one system utilized a desk-mounted camera and
the other utilized a hat-mounted camera. Lang et
al. (2012) made use of Microsoft’s Kinect for rec-
ognizing German signs. Chuan et al. (2014) used
the palm sized Leap motion sensor for American
finger spelling recognition. Dong et al. (2015) de-
signed a color glove-based technique on the Kinect
depth sensor for hand segmentation. Tharwat et
al. (2015) developed the Arabic Sign Language
recognition system where the scale invariant fea-
ture transform is used to perform the sign recogni-
tion using Neural Network, K-Nearest Neighbors,
and Support Vector Machine. Wu et al. (2016)
utilized an inertial measurement unit and surface
electromyography devices for the recognition of
80 ASL signs. Dai et al. (2017) used gyroscope
and accelerometer sensors running on a smart-
watch for the recognition of 103 ASL signs. Ma et
al. (2018) utilized WiFi packets to estimate hand
and finger movements for ASL sign recognition.

There was the approach of developing a sign
language recognition system through the training
of very large data sets of video clips recorded by
multiple signers using a large vocabulary (Koller
et al., 2015). Koller’s DeepHands model took an
unsupervised approach to training a Convolutional
Neural Network (CNN) model with 1 million un-
labeled hand-shape images and successfully used
it to classify Danish, New Zealand, and German
signs (Koller et al., 2016). Since it modeled the
hands, it could recognize all signs made using the
hands and not just those that are finger-spelled, so
we leveraged this work to develop a baseline pro-
totype ASLR.

Anantha Rao et al. (2018) implemented Indian
Sign Language recognition running in real-time on
a mobile phone using hand image segmentation
and a feedforward neural net-work. Huang et al.
(2018) developed a CNN-based Hierarchical At-
tention Network with Latent Space in a sequence-

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 152



to-sequence fashion. In particular, the following
studies are similar to our work on the aspect of
augmenting training data to improve the perfor-
mance of CNN models. Molchanov et al. (2015)
experimented with the deformation of input data
by augmenting reversed ordering and mirroring
in the off-line and by augmenting rotating, scal-
ing, shifting, and random dropout in the online
for the hand gesture recognition using 3D CNN.
Bheda and Radpour (2017) developed CNN-based
ASL recognition with data augmentation (rotat-
ing and horizontal flipping). These projects ap-
plied data augmentation techniques developed for
CNN model training; however, they did not eval-
uate the effectiveness of the techniques nor pro-
vide in-depth analyses of their methods. Tao et
al. (2018) implemented an ASL alphabet recog-
nition system with a CNN, equipped with a multi-
view augmentation and inference scheme. This ap-
proach differs from our work in that they exploited
a 3D motion capture device and the 3D modeling
capability to virtually generate views from differ-
ent angles, while we opted to utilize a generic in-
put device and 2D techniques. Our approach is to
develop the solution so that it is not reliant on spe-
cial equipment and can run on any tablet, laptop or
smartphone.

3 Approach

3.1 Overview of the Baseline System

For this work, we began with a baseline proto-
type1 ASLR that we used for developing and test-
ing the hypothesis of data augmentation based on
DeepHands using the Kinect Sensor and a graph-
ical user interface to capture the video recordings
of people signing in ASL. The Kinect uses multi-
ple cameras in order to capture motions in three di-
mensions, and utilizes the Kinect 2.0 SDK library,
to outputs 25 body joints and their 3D coordinates
(Microsoft, 2014). The demo system managed the
recording of ASL sign videos of registered users
with true labels which were annotated by signers.
The demo system was developed by training the
system to recognize 50 different signs using these
datasets. The recognizer was trained to recognize
a single-sign video clip as one of the 50 signs it
was trained on. The baseline ASL recognizer con-
sists of the following components: Kinect 2.0 as a

1The baseline prototype and demo systems were developed
by the Massachusetts Institute of Technology Lincoln Labo-
ratories (MITLL) under a government contract.

video input device, Kinect SDK for feature extrac-
tion, and Kmeans clustering for classification.

For this work, we modified the original base-
line system so as to remove the dependency on the
Kinect input device to enable the system to train
and classify on any 2D video feed or recordings.
This enabled us to carry out experiments on a set of
ASL video recordings of native ASL signers along
with annotations that are made publicly available
(Neidle et al., 2012). Being able to do away with
specialized recording hardware also opened up the
possibility of easily adding or creating more anno-
tated data for training and evaluating the system.
As shown in Figure 1, in place of the Kinect de-
vice, we utilized OpenPose (Cao et al., 2018) as
the input video analysis module of the baseline
system. OpenPose2 is open source software that
implements the state-of-the-art multi-person key-
point detection approaches for body, face, hands,
and feet. In our preliminary experiments, it was
verified that system performance was not degraded
when using the features prepared from OpenPose
output instead of Kinect output.3

3.2 Feature Extraction

OpenPose provides pretrained pose, face, and hand
detection models trained on publicly available
datasets. We used the pretrained 25-point body
pose and 20-point hands detection models. Open-
Pose models produce the body and hands key-
points for each successfully analyzed frame of an
input video clip. Two types of features are ex-
tracted for all frames: a) hands 2D coordinate
feature and b) DeepHand hand-shape feature. A
simple python script was written to automate the
feature extraction process from a video clip and
its OpenPose output with a tensor flow version
of the DeepHand model. This code is available
at https://github.com/ Dragonfly-ASL to make our
work easily reproducible.

Hands 2Dtracking feature: In the OpenPose
analysis output for each video frame, two coor-
dinates (index 4 and 7) out of 25 body keypoints
correspond to the right and the left wrists. The two
coordinates were normalized with regard to the co-
ordinate of the neck as the origin and the distance
between neck and nose as the unit vector. The

2https://github.com/CMU-Perceptual-Computing-
Lab/openpose
3Top 1 accuracies of the recognizer with Kinect and Open-
Pose were 61.8% and 61.5%, respectively.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 153



Figure 1: Feature extraction using OpenPose and DeepHand
(Example shown from (dataset: ASLLRP-ASLLVD, signer:
Brady, sign: CHEM-ISTRY+)4)

normalized left and right hand coordinates of all
frames combined consist of the half of the hands
2D tracking feature. The other half of the hands
2D tracking feature is calculated as the derivative
of the normalized 2D coordinates across the time
dimension with window size 5. The total dimen-
sion of the hands 2D tracking feature is then Num-
Frames 8, where each hand in a frame is described
with a normalized 2D point and its derivative.

DeepHand hand-shape feature: To create
handshape features, our baseline system uti-
lizes DeepHand models (Koller et al., 2016), a
CNN-based sign language recognizer trained on
1 million hand images. The model was trained
to classify input images into 60 fine-grained
hand-shape classes. The model performed with
62.8% accuracy on a manually labelled dataset
with 3361 images that cover 45 hand-shape
classes. The DeepHand takes its architecture after
GoogLeNet (Szegedy et al., 2015). The model
contains 22 layers, mixed with convolutional,
pooling, fully-connected layers. The baseline
system utilizes the activation output of one of the
internal fully-connected layers, as the compact
and abstract representation of the input image.

The activation is of 1,024 dimensions for each
hand, resulting in NumFrames × 2048 in total.

3.3 Classification with K-means Clustering
The baseline ASL classifier was developed us-
ing K-means clustering. There were two types of
feature representations used for the training data:
hands 2D tracking and DeepHand handshape. The
K-means clustering algorithm was applied to each
of the feature types for all of the video frames
in the training data. K-means requires a distance
measure between the clustered elements. A simple
Euclidean distance was employed: dist(p, q) =√∑n

i=1(qi − pi)2 where p and q are feature rep-
resentations and n is the feature dimension. Once
the clustering was finished, all clusters were calcu-
lated for the label probabilities using the distance
between all elements in the training data with their
annotated labels.

To classify an input video clip, two label prob-
abilities were calculated for each feature type us-
ing the K-means clusters. For each feature type, a)
the cluster memberships of the input video frames
were determined using the same Euclidean dis-
tance, b) these distances were multiplied by the
cluster’s label probabilities, and c) the label proba-
bilities were accumulated and averaged. The final
label probabilities for the input video clip were av-
eraged from the label probabilities for each frame.
The two label probabilities were then combined as:

Pcombined = e(ln(PHandTracking)+ln(PHandShape))

Pcombined is in effect a product of PHandTracking

and PHandShape but the calculation avoids the risk
of underflow. Intuitively speaking, the probabili-
ties for both the 2D hand tracking feature as well as
the hand shape feature should be high for the com-
bined probability to be high. Otherwise, if either
one of the probabilities is low, then the combined
probability stays low.

3.4 Data Augmentation
There is only a very small number of video clips
each with a single ASL sign and its sign manu-
ally assigned. Therefore, our goal was to augment
this data with a large amount of new videos synthe-
sized from the original dataset, so we developed a
tool that applies a set of image manipulation oper-
ations to all of the frames in a provided video clip.
We categorized these 2D image manipulation oper-
ations according to their influence in the synthesis
process as follows:

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 154



• Recording environment anticipation

• Sign and Signer variance anticipation

Depending on the actual usage of the proposed
system, we took into account that the recording
hardware and environment may vary. For exam-
ple, ASL signers may use our software on different
hardware devices such as their PCs, smartphones,
or tablets with different cameras with varying field
of view and resolutions, and different recording
conditions such as varying levels of lighting and
camera zoom and angle settings. These kinds of
variances in recording environments may be ad-
dressed by training the recognition model with ad-
ditional data generated with such effects applied to
the existing training data. We anticipate that the
following image manipulation operations account
for such occasions: noise addition or removal, im-
age enhancement, brightness changes, vertical and
horizontal skews, etc.

The role of other image manipulation categories
is to account for the different ways ASL signs are
made by each ASLsigner and the different appear-
ances between the signers in the training data and
at the test or use time. There are many image ma-
nipulation operations that can potentially address
such discrepancy in the training and test condi-
tions. We limited the scope of this work to testing
the usefulness of data synthesis within ASL sign
recognition and focused on the following two im-
age manipulation operations: Rotate and Zoom.

Each manipulation comes with its own set of pa-
rameter ranges and the generation space becomes
quite big. For the scope of this experiment, we fo-
cused on these two broad sets of synthetic types:
a) Random manipulations and parameters selec-
tion, and b) Controlled parameter selection (Ro-
tate, Zoom).

Our training and test data were recorded in the
identical environment and with identical camera
settings. Therefore, we will not be able to verify
the effectiveness of the corresponding manipula-
tion operations within the scope of current work.
However, we can still demonstrate that training an
ASL recognizer with additional synthetically gen-
erated data, many times larger in quantity than that
of the original data, can still yield a valid model.
For this purpose, we have a type of synthetic data
whose image manipulation operations and its pa-
rameters are chosen and configured with random-
ness (Figure 2).

Figure 2: Manipulation operations and their parameters were
randomly selected for each input video.

For the controlled parameter selections of Ro-
tate and Zoom, three sets of varying ranges and
increment steps are selected as below:

• Rotate (degrees angle)

– Rotate1: −15◦ ∼ 15◦ (step size 3)
– Rotate2: −30◦ ∼ 30◦ (step size 6)
– Rotate3: −45◦ ∼ 45◦ (step size 9)

• Zoom (%)

– Zoom1: 95% ∼ 105% (step size 1)
– Zoom2: 90% ∼ 110% (step size 2)
– Zoom3: 85% ∼ 115% (step size 3)

With these varying ranges but with the same
amount of generated synthetic data, we did work
to gather preliminary evidence to support hypothe-
sis that certain types of image manipulations have
greater impact and benefit by helping the synthetic
data generation process better address the lack of
variability in the limited amount of training data.
Through experimentation, we learned that there
are certain parameters that are more important than
others to ensure that the signs generated are valid.

The complete python script that can produce a
synthesized video given an input video clip with a
set of various image manipulation options is avail-
able at https://github.com/Dragonfly-ASL to make
our work easily reproducible

4 Experiments

4.1 Experimental Settings
We trained our ASL recognition models using
a publicly available annotated dataset American

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 155



Sign Language Lexicon Video Dataset (ASLLVD)
(Neidle et al., 2012). ASLLVD consists of almost
10,000 ASL signs signed by 6 native ASL signers.
The dataset also comes with human-annotated lin-
guistic information such as gloss labels and hand-
shape labels. Using the entire dataset, we selected
videos with glosses that belong to our hand-picked
50 ASL signs, each signed by 6 different signers,
making the total dataset size 300. ASLLVD pro-
vides videos shot from different angles (front view,
side view, close-up), but we only used videos with
the front view (Figure 3).

To carry out experiments with varying amount
of synthetic data, we trained our ASL recognition
model with varying amount (0 or 0%, 1 or 100%,
3 or 300%, 5 or 500%, and 10, 1000%) of syn-
thetic data generated with Random operations and
parameter selection method. Another set of experi-
ments was performed to demonstrate the effective-
ness of two image manipulation operations (Ro-
tate and Zoom), each with three sets of parameter
ranges as described in Section 3.4. For each of
the parameter selection strategies (Random, Ro-
tate1 . . . 3, and Zoom1...3), each video clip in
the ASLLVD dataset was augmented with up to ten
additional synthesized data variants (SYN1...10).

In the preliminary experimentations with the
baseline system, it was noted that the hyperparam-
eter K, the number of clusters in the Kmeans algo-
rithm, has a significant impact on the classification
performance. For the baseline experiments with
300 ˜ 500 annotated data, K was tested with 1,000
˜ 3,000 with increments of 1,000. To account for
the increased size in data (300 ˜ 3,300), we exper-
imented with K with values 1,000, 2,000, 3,000,
and 5,000.

To compare the performance of models, we em-
ploy accuracy as our main evaluation measure.
Each accuracy is averaged over the scores of 6
signers, each tested with 50 signs evaluated in a
cross-validation fashion. For example, we pick one
signer at a time whose videos are set as a test input,
and evaluate against a model trained with videos of
the rest of the signers. Synthetically generated data
of the test signer are not included in either the test
or the training dataset. To eliminate the impact of
random initialization in K-means clustering, each
signer’s score is averaged over three runs with dif-
ferent K-means initial cluster randomization. This
is repeated six times for all signers and the perfor-
mance is then averaged. Therefore, one accuracy

score is an average of 18 independent runs.

4.2 Experimental Results and Analysis

We present the performance evaluation results of
all the experiments carried out in this work in Fig-
ure 4.

Scores with statistically significant improve-
ments over the Baseline system, measured with the
Wilcoxon signed-rank test (N = 50), are marked
with † (p < 0.15) and ‡ (p < 0.05). Model con-
figuration with 1,000% synthetic data with the K-
means cluster size 3,000 performed the best among
all configurations we tried for the current work,
and it is shown to have improved most statistically
significantly (p = 0.006). To confirm that the per-
formance improvement did not occur by chance
from having a good randomly initialized K-means
cluster, we carried out additional experiments with
the same configuration (K=3,000, SYN10, Ro-
tate1) but with different random seeds two more
times. The outcomes of the additional experiments
show similar improvements (71.2% and 69.0%).

Figure 5 shows that, with regard to the vary-
ing amount of synthetic data in the train (Random-
SYN1, 3, 5, 10, equivalent to 0, 100, 300, 500,
and 1,000% synthetic data), the performance im-
provement is not in a linear relationship to the in-
creasing amount of synthetic data in the train set.
Rather, the performance first sharply decreases un-
til 300%, then bounces back at 500% and finally
outperforms the baseline at 1,000%. Though con-
firmed for all sizes of K-means cluster, this behav-
ior is rather counter-intuitive. Due to the limited
computing resource capacity (256G of RAM) and
the way the baseline system was implemented, we
could not utilize more than 1,000% synthetic data.

For runs with 1,000% of synthetic data
(SYN10), many configurations of Random, Rotate
and Zoom present statistically significant improve-
ments over the Baseline. We also observe that cer-
tain configurations of Rotate and Zoom also per-
form better than Random, though none of the Ro-
tate and Zoom configurations outperform Random
with statistical significance. Some Rotate runs are
worse than Random or even Baseline, indicating
that parameter range for the data manipulation op-
erations should be carefully chosen to ensure that
the synthesized data still present valid signs. An-
other observation is that Random configurations
performed reasonably well, and it would make a
good go-to strategy in general.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 156



Figure 3: Sample images with minimum and maximum values of Rotate1... 3 and Zoom1... 3 annotated with body and hand
keypoints (ASLLVD, Signer: Lana, Sign: FOUR, Frame 67)

Figure 4: Top 1 Classification accuracies (%) of the baseline ASL Sign recognizer and recognizers trained with additional
synthetic data. Statistically significant improvements over the baseline system with the same cluster size (within the same row)
are marked with † (p < 0.15) and ‡ (p < 0.05). We used the Wilcoxon signed-rank test with N = 50. For experiments using the
1,000% of synthetic dataset (SY N10), none of the Rotate and Zoom runs out-performed Random with statistical significance.

Figure 5: Change in recognition performance with different
percentages of synthetic data generated with Random options.
† = statistically significant improvement over Baseline (0%).

Though more sensitive to parameter range
choices, between Rotate and Zoom, Rotate seems
to be more effective in synthetic data generation.
We conjecture that this is due to the fact that the
2D coordinates normalization of the hands track-
ing feature accounts in part for the effect of Zoom.
We also speculate that Zoom together with image
resizing to make thinner or wider signers should
help account for the variances among differently
sized and shaped bodies of signers.

We are currently working to further investigate

the effectiveness of utilizing greater amounts of
synthetic data and combinations of synthetic data
generation techniques to identify the most optimal
approaches.

In Figure 6, we see the per-sign rank compari-
son of Baseline and Rotate1 at their best configu-
rations.

Signs with the most positive rank improvement
are FOUR, EARTH, and ANY. Signs DEPRESS,
CHAT++, and ANSWER were most negatively af-
fected. Figure 7 shows the per-user top 5-ranked
signs with their probabilities for input sign FOUR
from Baseline (K=5000) and Rotate1 (K=3000).
The most-frequently misclassified signs in top 5
rank for input sign 5(a) FOUR from Baseline were
5(b) BEAUTIFUL, 5(c) BLUE, and 5(d) FRI-
DAY+. Though not shown due to space con-
straints, the most-frequently misclassified signs in
top 5 rank for input sign 6(a) DEPRESS from
Baseline (K=5000) and Rotate1 (K=3000) were
6(b) CONFLICT-INTERSECTION, 6(c) DRESS-
CLOTHES, and 6(d)EXCITED+. As these figures
show, these signs look very similar to each other.

In Figure 8, we observe that the types of mo-
tion used by the signers are distinctively different

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 157



Figure 6: Average ranks of 50 signs for Baseline and Rotate1 (marked with × and marked +, respectively). Lower is better,
24 signs improved in rank (average 0.81), 19 signs degraded (average 0.54), and the ranks for 7 signs did not change.

Figure 7: Per-user top 5-ranked signs with their probabilities for test input sign FOUR from Baseline (K=5000) and Rotate1
(K=3000) (Trial 1 result only). For each of the 6 signers, correct rank changed 38→8, 6→1, 1→1, 5→7, 2→4, 1→1.

Figure 8: Most-frequently misclassified signs in top 5 rank for input sign (a) FOUR from Baseline (K=5000) were (b) BEAU-
TIFUL, (c) BLUE, and (d) FRIDAY+. (ASLLVD, Signer: Liz)

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 158



Figure 9: Most-frequently misclassified signs in top 5 rank for input sign (a) DEPRESS from Baseline (K=5000) and Rotate1
(K=3000) were (b) CONFLICT-INTERSECTION, (c) DRESS-CLOTHES, and (d) EXCITED+. (ASLLVD, Signers: Brady,
Naomi, Tyler, Liz)

from those of FOUR. However, three out of four
signs in Figure 9 move two hands in straight lines
parallel to the body. We conjecture that this differ-
ence in the variations of hand motion affected the
usefulness of adding synthetic data created by ro-
tating videos in the plane parallel to the signer. In
other words, for the case of FOUR, added synthetic
data helped distinguish similarly looking signs be-
cause of the different hand motions for these signs,
but in the case of DEPRESS, synthetic data created
from signs such as CONFLICT-INTERSECTION
and DRESS-CLOTHES did not help because the
corresponding hand motions, with rotation, did not
help and in some cases hurt differentiating those
signs from DEPRESS.

5 Conclusions and Ongoing Work

In this work, we explored different strategies for
generating synthetic data with the goal of improv-
ing ASLR performance, and we experimented with
several techniques for the automatic generation of
synthetic data in varying amounts. We demon-
strated that creating synthetic training data through
the simple image manipulation of each frame in
ASL video clips helped improve ASLR perfor-
mance. We anticipate more benefits from utiliz-
ing synthetic data for improving the performance
of ASL recognizers.

In addition, we are working to extend our au-
tomatic generation of synthetic data strategies to
the challenge of moving from the lexical level to
machine translating videos of ASL sentences and
paragraphs into English. In the course of our ex-
perimentation and analyses, we discovered a num-
ber of issues requiring further investigation. Next,
we will experiment with synthetic data of more
than 1,000% to the original data to see at what per-
centage the performance gains begin to diminish.
We will also create a better method for generating

valid synthetic data. We plan to do this by defin-
ing boundaries of spatial regions that include hand
and body motions that constitute a valid sign and
developing a synthetic data generation technique
from this. Lastly, we will explore adding noise and
background variations to the synthetic data gener-
ated and verify that these techniques help make
ASL systems robust against noisy and poorly lit
recording environments.

References
Anantha Rao, G., P. V. V. Kishore, A. S. C. S. Sastry,

D. Anil Kumar, and E. Kiran Kumar 2018. Selfie
Continuous Sign Language Recognition using Neu-
ral Network Classifier. In Proceedings of 2nd Inter-
national Conference on Micro-Electronics, Electro-
magnetics and Telecommunications, pages 31–40,
Singapore.

Antoniou, Antreas, Amos Storkey, and Harrison Ed-
wards. 2017. Data Augmentation Generative Ad-
versarial Networks. arXiv e-prints, page arXiv:
1711.04340, Nov.

ASL: A brief description - ASL American Sign
Language. www.lifeprint.com/asl101/pages-
layout/asl1.htm

Bheda, V. and D. Radpour. 2017. Using Deep Convo-
lutional Networks for Gesture Recognition in Amer-
ican Sign Language. arXiv e-prints, October.

Bousmalis, Konstantinos, Nathan Silberman, David
Dohan, Dumitru Erhan, and Dilip Krishnan. 2017.
Unsupervised Pixel-level Domain Adaptation with
Generative Adversarial Networks. In Proceedings of
the 2017 Conference on Computer Vision and Pat-
tern Recognition.

Cao, Zhe, Gines Hidalgo, Tomas Simon, Shih-En Wei,
and Yaser Sheikh. 2018. OpenPose: Realtime
Multi-Person 2D Pose Estimation using Part Affin-
ity Fields. In arXiv preprint arXiv: 1812.08008.

Chuan, C., E. Regina, and C. Guardino. 2014. Amer-
ican Sign Language Recognition Using Leap Mo-

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 159



tion Sensor. In 2014 13th International Confer-
ence on Ma- chine Learning and Applications, pages
541–544, Dec.

Dai, Qian, Jiahui Hou, Panlong Yang, Xiangyang Li,
Fei Wang, and Xumiao Zhang. 2017. Demo:
The Sound of Silence: End-to-end Sign Language
Recognition using Smartwatch. In Proceedings of
the 23rd Annual International Conference on Mobile
Computing and Network-ing, MobiCom ’17, pages
462– 464, New York, NY, USA. ACM.

Dong, C., M. C. Leu, and Z. Yin 2015. American
Sign Language alphabet recognition using Microsoft
Kinect. In 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW),
pages 44–52, June.

Dreuw, Philippe, David Rybach, Thomas Deselaers,
Morteza Zahedi, and Hermann Ney. 2007. Speech
Recognition Techniques for a Sign Lan-guage
Recognition System. In INTERSPEECH.

Gurumurthy, Swaminathan, Ravi Kiran Sar-
vadevabhatla, and R. Venkatesh Babu. 2017.
DeLiGan: Generative Adversarial Networks for
Diverse and Limited Data. In Proceedings of the
2017 Conference on Com-puter Vision and Pattern
Recognition.

Huang, Jie, Wengang Zhou, Qilin Zhang, Houqiang
Li, and Weiping Li. 2018. Video-based Sign Lan-
guage Recognition without Temporal Segmentation.
In AAAI.

Ko, T., V. Peddinti, D. Povey, M. L. Seltzer, and S.
Khudanpur. 2018. A STUDY ON DATA AUG-
MENTATION OF REVERBERANT SPEECH FOR
ROBUST SPEECH RECOGNITION. In 2017 IEEE
International Conference on Acouctics, Speech and
Signal Processing (ICASSP), pages 5220–5224,
March.

Koller, Oscar, Jens Forster, and Hermann Ney. 2015.
Continuous Sign Language Recognition: Towards
Large Vocabulary Statistical Recognition Systems
Handling Multiple Signers. Computer Vision and
Image Understanding, 141:108 – 125

Koller, O., H. Ney, and R. Bowden. 2016. Deep Hand:
How to Train a CNN on 1 Million Hand Images
When Your Data Is Continuous and Weakly labelled.
In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3793–3802,
June.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet Classification with Deep Con-
volutional Neural Networks. In Proceedings of the
25th International Confer-ence on Neural Informa-
tion Processing Systems - Volume 1, NIPS’12, pages
1097–1105, USA. Cur-ran Associates Inc.

Lang, Simon, Marco Block-Berlitz, and Raul Rojas.
2012. Sign Language Recognition Using Kinect.
pages 394–402, 04.

Ma, Yongsen, Gang Zhou, Shuangquan Wang,
Hongyang Zhao, and Woosub Jung. 2018. SignFi:
Sign Language Recognition Using WiFi. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol.,
2(1):23:1–23:21, March.

ASL: A brief description - ASL American Sign
Lan-guage www.lifeprint.com/asl101/pages-
layout/asl1.htm

Molchanov, P., S. Gupta, K. Kim, and J. Kautz. 2015.
Hand Gesture Recognition with 3D Convolutional
Neural Networks. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 1–7, June.

Nakamura, Karen. 2008. About American
Sign Language. In: Deaf Resource Library.
http://www.deaflibrary.org/asl.html

Neidle, Carol, Ashwin Thangali, and Stan Sclaroff.
2012. Challenges in Development of the American
Sign Language Lexicon Video Dataset (ASLLVD)
Cor-pus. In 5th Workshop on the Representation
and Pro-cessing of Sign Languages: Interactions be-
tween Corpus and Lexicon, LREC 2012.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Mod-
els with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Ger-many, August. Association for
Computational Linguistics.

Speers, D’Armond Lee. 2002. Representation of
American Sign Language for Machine Translation.
Ph.D. thesis, Georgetown University, Washington,
DC, USA. AAI3053310.

Starner, T., J. Weaver, and A. Pentland. 1998. Real-
Time American Sign Language Recognition Using
Desk and Wearable Computer Based Video. Transac-
tions on Pattern Analysis and Ma-chine Intelligence,
20(12):1371–1375, Dec.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Du-mitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
2015. Going deeper with convolutions. In Computer
Vision and Pattern Recognition (CVPR).

Tao, Wenjin, Ming C. Leu, and Zhaozheng Yin. 2018.
American Sign Language alphabet recognition us-
ing Convolutional Neural Networks with mul-tiview
augmentation and inference fusion. Engineering Ap-
plications of Artificial Intelligence, 76:202 – 213.

Tharwat, Alaa, Tarek Gaber, Aboul Ella Hassanien, M.
K. Shahin, and Basma Refaat. 2015. Sift-Based
Arabic Sign Language Recognition System. In Abra-
ham, Ajith, Pavel Kromer, and Vaclav Snasel, edi-
tors, Afro-European Conference for In-dustrial Ad-
vancement, pages 359–370, Cham. Springer Interna-
tional Publishing.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 160



Wu, J., L. Sun, and R. Jafari. 2016. A Wearable Sys-
tem for Recognizing American Sign Language in
Real-Time Using IMU and Surface EMG Sensors.
IEEE Journal of Biomedical and Health Informat-
ics, 20(5):1281– 1290, Sep

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 161


