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Abstract

Although automatic classification of ma-
chine translation errors still cannot provide
the same detailed granularity as manual er-
ror classification, it is an important task
which enables estimation of translation er-
rors and better understanding of the ana-
lyzed MT system, in a short time and on
a large scale. State-of-the-art methods use
hard decisions to assign single error labels
to each word. This work presents first re-
sults of a new error classification method,
which assigns multiple error labels to each
word. We assign fractional counts for each
label, which can be interpreted as a con-
fidence for the label. Our method gener-
ates sensible multi-error suggestions, and
improves the correlation between manual
and automatic error distributions.

1 Introduction

Translations produced by machine transla-
tion (MT) systems have been evaluated mostly
in terms of overall performance scores, either
by manual evaluations (ALPAC, 1966; White
et al., 1994; Graham et al., 2017; Federmann,
2018) or by automatic metrics (Papineni et al.,
2002; Lavie and Denkowski, 2009; Snover et
al., 2006; Popović, 2015; Wang et al., 2016).
All these overall scores give an indication of
the general performance of a given system, but
they do not provide any additional information.
Translation error analysis, both manual (Vilar
et al., 2006; Farrús et al., 2010; Lommel et al.,
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2014b) as well as automatic (Popović and Ney,
2011; Zeman et al., 2011), as a way to identify
weaknesses of the systems and define priorities
for their improvement, has received a fair amount
of attention in the MT community. Although
automatic error classification still cannot deal
with fine-grained error taxonomies, it represents
a valuable tool for fast and large scale translation
error analysis. With the emergence of neural
MT systems, first insights about the differences
between the neural approach and the then state-
of-the-art statistical phrase-based approach were
obtained by using automatic error classification.
Bentivogli et al. (2016) analyzed four MT systems
for English into German by comparing different
TER (Snover et al., 2006) scores and sub-scores,
and Toral and Sánchez-Cartagena (2017) applied
the WER-based approach proposed by Popović
and Ney (2011) for a multilingual and multi-
faceted evaluation of eighteen MT systems for
nine translation directions including six languages
from four different families.

So far, automatic error classification is based on
hard decisions about the error class for a given
word. Addicter (Zeman et al., 2011) uses a
first-order Markov model for aligning reference
words with hypothesis words, and Popović and
Ney (2011) use WER alignments; both meth-
ods assign only one single error label for each
word. However, the assumption that each word
can be tagged with only one error category can
be somewhat restrictive. Human annotators’ feed-
back (Popović and Burchardt, 2011; Lommel et
al., 2014a; Klubička et al., 2018) have pointed out
that sometimes it is not completely clear what er-
ror category should be assigned to a word (e.g. it
is difficult to differentiate a lexical error from a
missing or extra word, or to decide which word
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reference: in some places rents will even rise
hypothesis: in some places even grow rents

Possible ambiguties:

• which words should be tagged as reordering
errors, “rents” or “even”?

• “rise”/“grow” can be reordering errors too,
and lexical errors at the same time

• are “will”, “rise” and “grow” lexical errors,
or “will” and “rise” are missing words and
“grow” is an extra word?

Figure 1: Examples of potentially ambiguous error labels
both for human annotators as well as for automatic tools: the
decision about lexical errors vs missing and extra words, and
determining an exact span for reordering errors.

span should be tagged as a reordering issue), or it
may be the case that a generated word should be
assigned more than one error (e.g. a lexical and a
reordering error). Examples of such cases can be
seen in Figure 1.

In this work we propose to expand the auto-
matic error classification approach by suggesting
multiple error categories for each word. Addition-
ally, with each error category we are able to as-
sign a (fractional) count which intuitively can be
interpreted as a confidence for each error category.
Since, to the best of our knowledge, this represents
the first attempt of multi-label automatic classifi-
cation, we first explore what kind of multi-error
suggestions are generated by our method. We then
compare our results with manual error annotations
and with the method based on a single WER align-
ment. As translation corpora with manual error
analysis allowing multiple labels are not yet avail-
able, we evaluate our method by computing the
correlation of the global distribution of errors with
human assigned labels. We also try to gain insights
about the behaviour of the system and find out that
the system makes sensible multi-error suggestions.

2 Error classification method

As starting point for our method we take the
approach proposed by Popović and Ney (2011)
which is based on a combination of WER and
PER statistics on different forms of the words (sur-
face, base forms). WER is defined as (a nor-
malized version of) the edit distance (Levenshtein,

1966), whereas PER is Position-independent word
Error Rate which does not take the word order into
account. The described method identifies actual
words which contribute to WER as well as to two
types of PER called “Reference PER” (RPER) and
“Hypothesis PER” (HPER) corresponding to recall
and precision. The dynamic programming (DP) al-
gorithm for WER enables a simple and straight-
forward identification of each word which con-
tributes to the edit distance. The WER operations
are called “substitutions”, “deletions” and “inser-
tions”. The PER metric is based on reference
and hypothesis word counts without distinguish-
ing which words are deletions, which insertions,
and which are substitutions. Therefore two alter-
native PER-based measures which correspond to
the recall and precision are introduced, RPER and
HPER. The RPER errors are defined as the words
in the reference which do not appear in the hy-
pothesis, and the HPER errors are the words in
the hypothesis which do not appear in the refer-
ence. Once the WER, RPER and HPER erors have
been identified, the base forms for each word are
used in order to distinguish the following five error
classes:

• inflectional error (”infl”): a word which con-
tributes to WER and PER, but its base form
does not

• reordering error (”ord”): a word which con-
tributes to WER but not to PER

• missing word (”miss”): a WER deletion
which also contributes to RPER

• extra word (”ext”): a WER insertion which
also contributes to HPER

• lexical error (”lex”): a WER substitution
which also contributes to RPER/HPER

The edit distance is well defined as a value,
and the alignment between the two strings being
compared can be obtained as a by-product. How-
ever, there are several optimal alignments (or paths
in the dynamic programming trellis) that produce
the same distance, e.g. often a series of “inser-
tion” and “deletion” operations can be reordered
without affecting the resulting distance, or differ-
ent words can be chosen as “substitution” opera-
tions. An example can be seen in Figure 2. How to
choose among all the possible alternatives is nor-
mally implementation dependent (e.g. the first op-
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let us see an example
us see see an example

let us see an example
— us see +see+ an example

let us see an example
— us +see+ see an example

Figure 2: Three possible alignments with edit distance 2 be-
tween the reference “let us see an example” and the hypothe-
sis “us see see an example”. Insertions are marked as +inser-
tion+, deletions as — and substitutions are underlined.

Figure 3: Distribution of error categories using different cri-
teria for selecting the best WER alignments. The height of
the bars corresponds to the percentage of each error (words
classified as correct are not included), the different colors cor-
respond to different implementations.

eration checked in the code) and does not have any
linguistic motivation.

While this discussion may appear academic at
first sight, it does have an important effect when
these alignments are used for defining error cat-
egories. Figure 3 illustrates this effect, where we
show 6 different strategies for defining WER align-
ments (based on different precedence of checking
“insertion”, “deletion” and “substitution” opera-
tions).

On the other hand, the fact that a word can be
involved in different WER operations can give ad-
ditional information to be used for error classifica-
tion. In this work we take into account all optimal
WER alignments and collect statistics of all possi-
ble edit operations for each word. We collect the
alignment statistics (the counts of each operation
for each word) using dynamic programming with
memoization (using a Depth-First Search strat-
egy). Further combination with PER counts is ap-

plied in the same way as in (Popović and Ney,
2011), but instead of combining it with one single
WER operation, it is combined with each possible
WER operation on the given word thus providing
all possible error classes for this word.

All possible paths for minimal edit distance be-
tween the reference and the hypothesis from the
example from Figure 2 are presented in Table 1.
Minimal edit distance is 2, and it can be reached by
three paths. The standard version of the error clas-
sification method described in (Popović and Ney,
2011) takes only one path into account, therefore
each word in the reference and in the hypothesis
is labelled with only one edit operation and thus
with one error class. The method proposed in this
work collects the edit operations from all paths in
the following way:

• deletions are counted only for reference
words

• insertions are counted only for hypothesis
words

• for each reference word, label counts are col-
lected from each cell in its column in the DP
trellis

• for each hypothesis word, label counts are
collected for each cell in its row in the DP
trellis

In this way, in the example in Table 1 the hy-
pothesis word “see” at the second position has one
“substitution” label (from the cell aligned with the
reference word “us”) as well as one “x”1 and one
“insertion” (from the cell aligned with the refer-
ence word “see”). The reference word “see” has
two labels “x” (one from the first hypothesis word
“see” and one from the second one), however no
“insertion” operations.

For each word, each edit operation together with
associated PER counts defines an error category
as described above. Fractional counts for each er-
ror class are obtained by dividing the count of the
given error class with the total count of all encoun-
tered classes for this word. In our example, the first
hypothesis word “see” has three error labels “x”
(no edit operations, correct word), “sub” (substitu-
tion) and “ins” (insertion) and each of them is seen
once. Thus, the total count for this word is 3, and
probability for each class is 1

3 = 0.33.
1We denote with “x” the “match” operation, i.e. when the hy-
pothesis and reference words are the same.
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ref→
hyp↓ let us see an example

us 1 sub↘
2,3 del→ 2, 3 x↘

see 1 sub↘ 2 x↘
3 ins ↓

see 1,3 x↘ 2 ins ↓
an 1,2,3 x↘

example 1, 2,3 x↘

Table 1: Three possible paths in the dynamic programming trellis for minimal edit distance for the Example from Figure 2:
path1 = ”sub sub x x x”, path2 = ”del x x ins x x” and path3 = ”del x ins x x x”. Standard WER takes only one path (e.g. path1
in bold) into account.

When collecting statistics over a segment or a
full corpus, in order to compute the error distri-
butions these fractional counts are summed over
all words. Thus, the total amount of errors can
be a fractional number as well. Note that we can
still normalise it by the total number of words in
the segment/document to obtain a normalized er-
ror rate, as the fractional counts for each word sum
up to 1.

Table 2 presents single and multiple error labels
for the potentially ambiguous error categories from
Figure 1. It can be seen that the multi-label method
assigns multiple error cases to the words which can
be ambiguous even for a human annotator.

3 Evaluation setup

We applied the new method as well as the single
WER path method described in (Popović and Ney,
2011) to the publicly available test sets from the
TERRA corpus (Fishel et al., 2012) and PE2RR

corpus (Popović and Arčan, 2016) designed for
evaluating automatic error classification. In ad-
dition to translation hypotheses and post-edits
(PE2RR) or references (TERRA), manual error an-
notations are also available. The statistics of the
test corpora are shown in Table 3.

The main differences between the two data sets
are (i) post-edited MT hypotheses are available
in PE2RR (and standard reference translations in
TERRA), (ii) manual error annotation in PE2RR is
based on correcting automatically assigned labels
whereas in TERRA it is performed from scratch.
All results are reported separately for each of the
data sets.

4 Distribution of error labels

Our first experiment aims to explore the nature and
frequency of the error label suggestions generated
by the new method. The distributions of error la-
bels in the form of relative frequencies are shown
in Table 4 for both test sets.

Apart from some small variations, the main ten-
dencies are the same for the two test sets. The
majority of multiple labels are double labels, the
most frequent ones being “lex+miss”, “lex+ext”
and “x+reord”. They involve the single labels
which are, as mentioned in the introduction, re-
ported to be difficult to disambiguate, even for hu-
man annotators. Other types of double labels can
make sense in certain circumstances but are sig-
nificantly less frequent. Two types of triple labels
are found, too, “x+lex+ext” and “x+lex+miss”, but
their frequency is also low.

Further analysis of the three most frequent dou-
ble labels is shown in Table 5. The majority of
“lex+miss” labels has the same fractional counts,
namely 0.5. For the “lex+ext” label the equal
counts are the most frequent in the PE2RR cor-
pus, whereas in the TERRA corpus the majority of
instances has higher fractional count for the “lex”
category. For both multiple labels and in both cor-
pora, there are much more higher fractional counts
for the “lex” category than for “miss” or “ext”. As
for the “x+reord” label, almost two thirds have a
higher count for reordering, one third has equal
counts, whereas instances with higher counts for
correct word are very rare.
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reference rents will even rise
single labels reord lex reord lex
multiple labels reord lex+miss x+reord lex+miss
frac. counts 1.00 0.50+0.50 0.25+0.75 0.67+0.33
hypothesis even grow rents
single labels reord lex reord
multiple labels x+reord lex+ext reord
frac. counts 0.33+0.67 0.75+0.25 1.00

Table 2: Example from Figure 1 with single error labels and with multiple error labels together with their fractional counts.

corpus hyps sents words langs
PE2RR 11 2896 40138 8
TERRA 7 436 6293 2

Table 3: Statistics of the used error annotated corpora: num-
ber of different translation hypotheses, number of sentences
in all hypotheses, number of running words in all hypotheses,
and number of different language pairs.

5 Comparison with manual error
annotations

5.1 Pearson correlations
An automatic error classification method can be
used to detect weak and strong points of individual
translation systems, as well as to compare differ-
ent translation systems. In order to estimate and
compare the reliability of the error classification
methods we compute the Pearson correlation with
human annotations in two different ways:

• interClass
For each translated segment, correlation with
the manual annotation is calculated over all
error classes.

• interHyp
For each error class, correlation with man-
ual annotation is calculated over all transla-
tion segments.

We compare two methods: single error la-
bels (single) and our proposed multi-label
method (frac). For each of the methods, the ex-
tracted error counts are compared with the error
counts obtained by manual annotation. For com-
puting error counts on the segment level, we just
sum the (fractional) counts.

The correlation coefficients are presented in Ta-
ble 6. The interClass correlation coefficients are
very high for both methods on both corpora, with
our proposed frac method having better correla-
tion on the TERRA corpus. For the interHyp corre-

lations, there is no difference for inflectional errors
between both test sets. Reordering (reord) and lex-
ical (lex) errors as well as correct words (x) have
similar correlations on PE2RR and improved cor-
relations on TERRA, whereas the correlation for
missing words is improved on both corpora. Cor-
relation for extra words, however, increased on
PE2RR data but decreased on TERRA data. Pre-
vious work (Popović and Burchardt, 2011) defined
this error class as not reliable enough, so further
and deeper analysis focused on this class would be
a possible direction for future work.

It can be noted that the majority of improve-
ments are achieved on TERRA data, where only
standard reference translations are available, and
no post-edited MT hypotheses. This scenario rep-
resents a more difficult task for automatic classifi-
cation (as mentioned in Section 3), and it also rep-
resents a more realistic scenario – one reference
translation can be used for large-scale evaluations
involving many different MT systems, whereas
producing a post-edited version for each MT sys-
tem would be very time- and resource-consuming.

5.2 Analysis of differences

The most intuitive method for further analysis
of differences between the single and frac ap-
proaches would be to calculate precision and recall
for each error label. However standard precision
and recall are not convenient metrics for evaluat-
ing our method since the manual annotations con-
sist of only one label, so that adding multiple labels
would be penalised by this metric (specifically by
the precision term).

Thus, in order to better understand the differ-
ences between the single and frac methods, we
conducted an ad-hoc analysis. For each word that
was assigned more than one error category, we dis-
tinguish two cases:

Adding correct information The single label
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PE2RR TERRA

label(s) rel.freq. label(s) rel.freq.
single labels x 71.2 x 43.5

lex 7.7 lex 17.5
infl 7.3 reord 7.4
reord 3.1 infl 5.7
miss 1.2 miss 1.5
ext 0.6 ext 0.6

double labels lex + miss 3.6 lex + miss 11.8
lex + ext 2.9 lex + ext 6.5
x + reord 2.1 x + reord 3.9
x + lex 0.1 x + lex 0.8
x + infl 0.03 x + miss 0.08
x + miss 0.02 x + ext 0.08
x + ext 0.01

triple labels x + lex + ext 0.06 x + lex + miss 0.4
x + lex + miss 0.04 x + lex + ext 0.3

Table 4: Relative frequencies of multiple error labels for PE2RR and TERRA.

PE2RR TERRA

frac counts % %
lex + miss 0.50 + 0.50 62.4 52.3

lex > miss 28.8 40.4
lex < miss 8.8 7.3

lex + ext 0.50 +0.50 59.9 42.7
lex > ext 34.5 53.1
lex < ext 5.6 4.2

x + reord 0.50 + 0.50 38.1 31.6
x > reord 0.3 0.8
x < reord 61.6 67.6

Table 5: Most frequent multiple error labels and the relation between their fractional counts.

was incorrect and the expanded method is
able to add the correct label.

Adding noise The single label was already cor-
rect, therefore the additional labels generated
by our method do not improve the system.

Statistics about these two categories are shown in
Table 7. Improvements are dependent of the cor-
rect error category so no global conclusion can
be drawn. The single label method tends to in-
correctly label missing and extra words as lexi-
cal errors. In this case the additional error labels
are helpful, whereas for the true “lex” category
they are adding noise. In addition to that, the new
method helps identifying correct words which the
single method tags as reordering errors.

For both “lex+miss” and “lex+ext”, about 15-
40% instances are adding information, however

even more instances are adding noise (25-60%).
The most frequent case is when both manual and
single label are “lex” (in which case no additional
suggestions are needed), followed by the manual
“ext” or “miss” tagged as “lex” (where additional
“miss” or “ext” label can be helpful). The third
frequent case is when the correct label is “miss” or
“ext”, and the least frequent case is helping to iden-
tify “lex” when it is labelled as “ext” or “miss”.

The “x+reord” label mainly helps for correct
words labelled as reordering error, especially for
TERRA, where a number of superfluous errors are
assigned by the automatic system. For PE2RR, this
effect is much smaller, whereas introducing multi-
ple label for already correctly labelled reordering
errors is dominant.
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interClass interHyp correlations
corpus method correlations infl reord ext lex miss x
PE2RR single .869 .772 .856 .664 .782 .809 .982

frac .869 .772 .852 .676 .781 .813 .982
TERRA single .891 .820 .586 .533 .502 .537 .537

frac .936 .820 .602 .520 .521 .610 .544

Table 6: Pearson correlations comparison between error classes (interClass) and between translation hypotheses (interHyp)

multiple frac is PE2RR TERRA

labels single man adding % %
lex+miss miss lex inform. 11.4 7.5

lex miss inform. 26.0 12.3
lex lex noise 28.6 21.1

miss miss noise 25.3 9.8
lex+ext ext lex inform. 12.6 4.7

lex ext inform. 19.6 8.1
lex lex noise 39.2 21.1
ext ext noise 18.2 4.7

x+order reord x inform. 24.2 59.4
x reord inform. 1.5 2.3
x x noise 7.9 16.8

reord reord noise 66.1 19.9

Table 7: Percentage of multiple labels which adds information (if single label is incorrect but one in the double label is) and
those which do not.

6 Summary

In this paper we proposed an automatic error clas-
sification method for machine translation based on
edit distance which assigns multiple error labels to
each word and enables calculating error label prob-
abilities. The main findings of our experiments
are:

• The most frequent multiple error labels
are “lex+miss” and “lex+ext”, followed by
“x+reord”. These error categories have been
reported by human annotators to be difficult
to differentiate, thus our method seems to
generate sensible multi-error suggestions and
to model this effect correctly.

• The use of fractional counts increases the
correlation of error distribution with human
judgements, especially for the more difficult
and more realistic TERRA test set. We ex-
plain this as a useful confidence-like measure
for the labels, which correlates with the un-
certainty on human labels.

The described work offers several possibilities
for future work taking better advantage of the frac-

tional counts. One issue we encountered when
evaluating our method is that the available data sets
for the evaluation of error classification methods
have single labels. We tried to evaluate our ap-
proach assigning to each word the label with the
highest fractional count, but this did not lead to
an increase in accuracy (despite the better corre-
lation with error distribution judgements). Given
the fact that human annotators’ feedback indicates
a potential for assigning multiple labels, one in-
teresting direction would be to generate new data
sets supporting this labelling scheme and compute
standard measures like precision and recall on this
data.

Despite of not having ideal evaluation condi-
tions, preliminary manual inspection of the as-
signed labels gives us confidence that the method
will be useful and interesting for further research.
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