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Abstract

The combination of machines and humans
for translation is effective, with many stud-
ies showing productivity gains when hu-
mans post-edit machine-translated output
instead of translating from scratch. To
take full advantage of this combination,
we need a fine-grained understanding of
how human translators work, and which
post-editing styles are more effective than
others. In this paper, we release and an-
alyze a new dataset with document-level
post-editing action sequences, including
edit operations from keystrokes, mouse ac-
tions, and waiting times. Our dataset com-
prises 66,268 full document sessions post-
edited by 332 humans, the largest of the
kind released to date. We show that ac-
tion sequences are informative enough to
identify post-editors accurately, compared
to baselines that only look at the initial and
final text. We build on this to learn and vi-
sualize continuous representations of post-
editors, and we show that these representa-
tions improve the downstream task of pre-
dicting post-editing time.

1 Introduction

Computer-aided translation platforms for interac-
tive translation and post-editing are now com-
monly used in professional translation services
(Alabau et al., 2014; Federico et al., 2014; Green
et al., 2014; Denkowski, 2015; Hokamp, 2018;
Sin-wai, 2014; Kenny, 2011). With the in-
creasing quality of machine translation (Bahdanau
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et al., 2014; Gehring et al., 2017; Vaswani et al.,
2017), the translation industry is going through a
transformation, progressively shifting gears from
“computer-aided” (where MT is used as an in-
strument to help professional translators) towards
human-aided translation, where there is a hu-
man in the loop who only intervenes when needed
to ensure final quality, and whose productivity is
to be optimized. A deep, data-driven understand-
ing of the human post-editing process is key to
achieve the best trade-offs in translation efficiency
and quality. What makes a “good” post-editor?
What kind of behaviour shall an interface pro-
mote?

There is a string of prior work that relates the
difficulty of translating text with the cognitive load
of human translators and post-editors, based on in-
dicators such as editing times, pauses, keystroke
logs, and eye tracking (O’Brien, 2006; Doherty
et al., 2010; Lacruz et al., 2012; Balling and Carl,
2014, see also §6). Most of these studies, however,
have been performed in controlled environments
on a very small scale, with a limited number of
professional translators and only a few sessions. A
direct use of human activity data for understand-
ing and representing human post-editors, towards
improving their productivity, is still missing, ar-
guably due to the lack of large-scale data. Under-
standing how human post-editors work could open
the door to the design of better interfaces, smarter
allocation of human translators to content, and au-
tomatic post-editing.

In this paper, we study the behaviour of hu-
man post-editors “in the wild” by automatically
examining tens of thousands of post-editing ses-
sions at a document level. We show that these
detailed editor activities (which we call action se-
quences, §2) encode useful additional information
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besides just the initial machine-translated text and
the final post-edited text. This is aligned to re-
cent findings in other domains: Yang et al. (2017)
and Faruqui et al. (2018) have recently shown that
Wikipedia page edits can represent interesting lin-
guistic phenomena in language modeling and dis-
course. While prior work analyzed the cognitive
behaviour of post-editors and their productivity by
collecting a few statistics, we take a step forward in
this paper, using state-of-the-art machine learning
techniques to represent editors in a vector space
(§4). These representations are obtained by train-
ing a model to identify the editor based on his ac-
tion sequences (§3). This model achieves high ac-
curacy in predicting the editor’s identity, and the
learned representations exhibit interesting correla-
tions with the editors’ behaviour and their produc-
tivity, being effective when plugged as features for
predicting the post-editing time (§5).

Overall, we use our action sequence dataset to
address the following research questions:

1. Editor identification (§3): are the post-
editors’ activities (their action sequences)
informative enough to allow discriminating
their identities from one another (compared to
just using the initial machine-translated text
and the final post-edited one)?

2. Editor representation (§4): can the post-
editors’ activities be used to learn meaningful
vector representations, such that similar ed-
itors are clustered together? Can we inter-
pret these embeddings to understand which
activity patterns characterize “good” editors
(in terms of translation quality and speed)?

3. Downstream tasks (§5): do the learned ed-
itor vector representations provide useful in-
formation for downstream tasks, such as pre-
dicting the time to translate a document, com-
pared to pure text-based approaches that do
not use them?

We base our study on editor-labeled action se-
quences for two language pairs, English-French
and English-German, which we make available for
future research. In both cases, we obtain positive
answers to the three questions above.

2 Post-Editor Action Sequences

A crucial part of our work is in converting raw
keystroke sequences and timestamps into action

Action Symbol Appended Info

Replace R new word
Insert I new word
Delete D old word
Insert Block BI new block of words
Delete Block BD old block of words

Jump Forward JF # words
Jump Back JB # words
Jump Sentence Forward JSF # sentences
Jump Sentence Back JSB # sentences
Mouse Clicks MC # mouse clicks
Mouse Selections MS # mouse selections
Wait W time (seconds)
Stop S –

Table 1: Text-editing and non-editing actions.

sequences—sequences of symbols in a finite al-
phabet that describe word edit operations (inser-
tions, deletions, and replacements), batch opera-
tions (cutting and pasting text), mouse clicks or
selections, jump movements, and pauses.

Each action sequence corresponds to a single
post-editing session, in which a human post-edits a
document. The starting point is a set of source doc-
uments (customer service email messages), which
are sent for translation to Unbabel’s online trans-
lation service. The documents are split into sen-
tences and translated by a domain-adapted neu-
ral machine translation system based on Marian
(Junczys-Dowmunt et al., 2018). Finally, each
document is assigned to a human post-editor to
correct eventual translation mistakes.1 These post-
editing sessions are logged, and all the keystroke
and mouse operation events are saved, along with
timestamps. A preprocessing script converts these
raw keystrokes into word-level action sequences,
as we next describe, and a unique identifier is ap-
pended that represents the human editor.

The preprocessing for converting the raw
character-level keystroke data into word-level ac-
tions is as follows. We begin with a sequence
of all intermediate states of a document between
the machine-translated and the post-edited text,
containing changes caused by each keystroke.
We track the position of the word currently be-
ing edited and store one action summarizing the
change in that word. A single keystroke may also

1The human post-editors are native or proficient speakers
of both source and target languages, although not necessar-
ily professional translators. They are evaluated on language
skills and subject to periodic evaluations by Unbabel. Editors
have access to whole documents when translating, and they
are given content-specific guidelines, including style, regis-
ter, etc.
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Source

Hey there,
Some agents do speak Spanish, otherwise our system will translate :)
Best,
<Name>

MT

Bonjour,
Certains agents parlent espagnol, sinon notre système se traduira par :)
Cordialement,
<Name>

PE

Bonjour,
Certains agents parlent espagnol, sinon notre système traduit :)
Cordialement,
<Name>

Actions W:23 JSF:1 JF:8 D:se W:2 MC:1 MS:1 JF:1 D:par W:7
MC:1 MS:1 JB:1 R:traduit W:2 MS:1 S:–

Table 2: Example of a document and corresponding action sequence. We mark in red the MT words that have been corrected
and in blue their replacement. The actions used here were W (wait), JSF (jump sentence forward), JF (jump forward), D
(delete), MC (mouse clicks), MS (mouse selections), JB (jump back), R (replace) and S (stop).

cause simultaneous changes to several words (e.g.
when pasting text or deleting a selected block), and
we reserve separate actions for these. Overall, five
text-editing actions are considered: inserting (I),
deleting (D), and replacing (R) a single word, and
inserting (BI) and deleting (BD) a block of words.
Each action is appended with the corresponding
word or block of words, as shown in Table 1.

Other actions, dubbed non-editing actions, do
not change the text directly. Jump-forward (JF)
and jump-backward operations (JB) count the dis-
tance in words between two consecutive edits. An-
other pair of actions informs when a new sen-
tence is edited: a sentence jump (JSF/JSB) indi-
cates that we moved a certain number of sentences
forth/back since the previous edit. Mouse clicks
(MC) and mouse selections (MS) count their occur-
rences between two consecutive edits. Wait (W)
counts the seconds between the beginning of two
consecutive edits. Finally, stop (S) marks the end
of the post-editing session.

Since we do not want to rely on lexical informa-
tion to identify the human post-editors, only the 50
most frequent words were kept (most containing
punctuation symbols and stop-words), with the re-
maining ones converted to a special unknown sym-
bol (UNK). Moreover, the first waiting time is split
in two: the time until the first keystroke occurs and,
in case the first keystroke is not part of the first ac-
tion (e.g. a mouse click), a second waiting time
until the first action begins.

Table 2 shows an example of a small document,
along with the editor’s action sequence. The edi-
tor began on sentence 2 (“Certains agents...”) and
the word on position 9, since there was a jump for-

ward of 1 sentence and 8 words. After deleting
“se”, position 9 became “traduira”. Since the edi-
tor opted to delete “par” (using a mouse selection)
before changing the verb, there is a jump forward
of 1 word to position 10. Then we have a jump
back of 1 before changing the verb to “traduit”.

Datasets. We introduce two datasets for this
task, one for English-French (En-Fr) and an-
other for English-German (En-De). For each
dataset, we provide the action sequences for
full documents, along with an editor identifier.
To ensure reproducibility of our results, we
release both datasets as part of this paper, avail-
able in https://github.com/Unbabel/
translator2vec/releases/download/
v1.0/keystrokes_dataset.zip. For
anonymization purposes, we convert all editor
names and the 50 tokens in the word vocabulary
to numeric identifiers. Statistics of the dataset are
shown in Table 3: it is the largest ever released
dataset with post-editing action sequences, and
the only one we are aware of with document-level
information.2 Each document corresponds to a
customer service email with an average of 116.6
tokens per document. Each sentence has an
average length of 9.4 tokens.

2The closest comparable dataset was released by Specia et al.
(2017) in the scope of the QT21 project, containing 176,476
sentences spanning multiple language pairs (about 4 times
less), with raw keystroke sequences being available by re-
quest. In contrast to ours, their units are sentences and not
full documents, which precludes studying how human post-
editors jump between sentences when translating a document.
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Figure 1: Left: our Action Seq model for editor identification. Right: our model for post-editing time prediction.

# docs # sents # words

train 17,464 154,026 1,895,389
En-Fr dev 5,514 52,366 659,675

test 9,441 86,111 1,072,807

train 17,403 169,478 2,053,407
En-De dev 6,722 66,521 826,791

test 9,724 98,920 1,221,319

Total 66,268 627,422 7,729,388

Table 3: Number of documents, sentences, and words in En-
glish source text per dataset. There are 149 unique editors
across all En-Fr datasets, and 183 in En-De.

3 Editor Identification

We now make use of the dataset just described to
answer the three research questions stated at the
end of §1, starting with editor identification.

3.1 Data Preparation

For this experiment, we took the action sequence
dataset described in §2 and selected a small num-
ber of human translators for both language pairs
who post-edited a number of documents above a
threshold: this yielded 6 editors for En-Fr and 7
editors for En-De. To ensure balanced datasets,
we filtered them to contain the same number of
samples per selected editor. This filtering yielded a
total of 998/58/58 training/dev/test documents per
editor for En-Fr, and 641/128/72 for En-De.

A random baseline for this dataset would obtain
an editor identification accuracy of 1/6 = 16.7%
for En-Fr and 1/7 = 14.3% for En-De.

3.2 A Model for Editor Identification

Let 〈x1, . . . , xL〉 be an action sequence produced
by a post-editor y. To identify the editor of a
task, we build a model P (y | x1, . . . , xL) using
a neural network as we next describe (shown in
Figure 1). Each action xi is first associated to a
one-hot vector. All numeric actions are grouped

into bins—e.g. waiting times of 200 seconds and
higher all correspond to the same one-hot repre-
sentation. Bins were defined manually, providing
higher granularity to small values than to larger
ones.3 Each one-hot is then mapped to a learn-
able embedding, and the sequence of embeddings
is fed to a 2-layer bidirectional LSTM (biLSTM;
Hochreiter and Schmidhuber (1997); Graves and
Schmidhuber (2005)), resulting in two final states−→
h ,
←−
h . Then we concatenate both, apply dropout

(Srivastava et al., 2014) and feed them to a feed-
forward layer with a ReLU activation (Glorot et al.,
2011) to form a vector h. This vector is taken as
the representation of the action sequence. Finally,
we define P (y | x1, . . . , xL) = softmax(Wh +
b).

We call this model Action Seq, since it exploits
information from the action sequences.

3.3 Baselines

To assess how much information action sequences
provide about human editors beyond the initial
(machine translation) and final (post-edited) text,
we implemented various baselines which do not
use fine-grained information from the action se-
quences. All use pre-trained text embeddings from
FastText (Joulin et al., 2017), and they are all tuned
for dropout and learning rate:

• One using the machine-translated text only
(MT). Since this text has not been touched by
the human post-editor, we expect this system to
perform similarly to the random baseline. The
goal of this baseline is to control whether there
is a bias in the content each editor receives that
could discriminate her identity. It uses word
embeddings as input to a biLSTM, followed by
feed-forward and softmax layers.

3We used {0, . . . , 5, 7, 10, 15, 20, 30, 50, 75, 100, 150, 200+}
for wait and jump events (in seconds and word positions,
respectively); and {0, . . . , 5, 7, 10+} for sentence jumps and
mouse events (in sentence positions and clicks).

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 46



• Another one using the posted-edited text only
(PE). This is used to control for the linguistic
style of the post-editor. We expect this to be a
weak baseline, since although there are positive
results on translator stylometry (El-Fiqi et al.,
2019), the task of post-editing provides less op-
portunity to leave a fingerprint than if writing a
translation from scratch. The architecture is the
same as in the MT baseline.

• A baseline combining both MT and PE using a
dual encoder architecture (MT + PE), inspired
by models from dialogue response (Lowe et al.,
2015; Lu et al., 2017). This baseline is stronger
than the previous two, since it is able to look
at the differences between the initial and final
text produced by the post-editor, although it ig-
nores the process by which these differences
have been generated. Two separate biLSTMs
encode the two sequences of word embeddings,
the final encoded states are concatenated and fed
to a feed-forward and a softmax layer to provide
the editors’ probabilities.

• Finally, a stronger baseline (MT + PE + Att)
that is able to “align” the MT and PE, by aug-
menting the dual encoder above with an atten-
tion mechanism, inspired by work in natural lan-
guage inference (Rocktäschel et al., 2016). The
model resembles the one in Figure 1 (right),
with a softmax output layer and without the
editor representation layer. Two separate biL-
STMs are used to encode the machine-translated
and the post-edited text. The final state of
the MT is used to compute attention over the
PE, then this attention-weighted PE is concate-
nated with MT’s final state and passed through
a feed-forward layer. Symmetrically we obtain
a representation from PE’s final state and an
attention-weighted MT. Finally both vectors are
concatenated and turned into editors’ probabili-
ties through another feed-forward layer.

Additionally, we prepare another baseline
(Delta) as a tuple with meta information contain-
ing statistics about the difference between the ini-
tial and final text (still not depending on the ac-
tion sequences). This tuple contains the following
5 elements: a count of sentences in the document,
minimum edit distance between MT and PE, count
of words in the original document, in MT and in
PE. Each of these elements is binned and mapped
to a learnable embedding. The 5 embeddings are

En-De (%) En-Fr (%)

Delta 16.15 26.09
MT 18.21 16.44
PE 27.38 30.00
MT + PE 26.63 31.78
MT + PE + Att 30.12 35.06

Action Seq 84.37 67.07

Table 4: Results of model and baselines for editor identifica-
tion. Reported are average test set accuracies of 5 runs, with
7 editors for En-De and 6 editors for En-Fr.

En-De (%) En-Fr (%)

Action Seq 83.31 73.16

w/out editing actions 80.60 69.37
w/out mouse info 75.49 66.38
w/out waiting time 80.42 70.92
w/out 1st waiting time 78.60 71.15
only editing actions 60.20 59.08
only mouse info 56.43 55.06
only waiting time 53.53 44.02
only 1st waiting time 24.22 23.11

Table 5: Ablations studies for editor identification. Reported
are average development set accuracies of 5 runs, with 7 edi-
tors for En-De and 6 editors for En-Fr.

concatenated into a vector e, followed by a feed-
forward layer and a softmax activation.

3.4 Editor Identification Accuracy
Table 4 compares our system with the baselines
above. Among the baselines, we observe a grad-
ual improvement as models have access to more
information. The fact that the MT baseline per-
forms closely to the random baseline is reassuring,
showing that there is no bias in the type of text
that each editor receives. As expected, the dual en-
coder model with attention, being able to attend to
each word of the MT and post-edited text, is the
one which performs the best, surpassing the ran-
dom baseline by a large margin. However, none of
these baselines have a satisfactory performance on
the editor identification task.

By contrast, the accuracies achieved by our pro-
posed model (Action Seq) are striking: 84.37% in
En-De and 67.07% in En-Fr, way above the closest
baselines. This large gap confirms our hypothesis
that the editing process itself contains informa-
tion which is much richer than the initial and
final text only.
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Ablation studies. To understand the importance
of each action type in predicting the editor’s iden-
tity, we conduct a series of ablation studies and re-
port development set accuracies in Table 5. These
experiments involve removing mouse information,
time information, initial waiting time or editing ac-
tions. Also, we try keeping only each of the previ-
ous four. We find that all action types contribute to
the global accuracy, although to different extents.
Also, some action types achieve high performance
on their own. Somewhat surprisingly, mouse infor-
mation alone achieves remarkably high accuracy.
Although waiting times also perform well on their
own, removing them has little impact on the final
score.

4 Editor Representation

The previous section has shown how the action se-
quences are very effective for identifying editors.
As a by-product, the Action Seq model used for
that task produced an internal vector h that repre-
sents the full post-editing session. This suggests
a strategy for obtaining editor representations:
simply average all such vectors from each editor.
One way of looking at this is regarding editor iden-
tification as an auxiliary task that assists us in find-
ing good editor representations. This draws inspi-
ration from previous work, such as Mikolov et al.
(2013), as well as its applications to recommenda-
tion systems (Grbovic et al., 2015, 2016). In the
last two works, an auxiliary task also helps to pro-
vide a latent representation of an object of interest.

Visualization of translation sessions. To visu-
alize the vectors h produced during our auxiliary
task, we use Parametric t-SNE (Maaten, 2009) for
dimensionality reduction. Unlike the original t-
SNE (Maaten and Hinton, 2008), the parametric
version allows to reapply a learned dimensional-
ity reduction to new data. This way it is possible
to infer a 2D structure using the training data, and
check how well it fits the test data.

In Figure 2 we show a projection of vectors
h for both language pairs, using a t-SNE model
learned on the training set vectors; each color cor-
responds to a different editor. In the training set
(used to train both the editor identification model
and the Parametric t-SNE) there is one clear clus-
ter for each editor, in both languages. Using test
set data, new tasks also form clusters which are
closely related to the editors’ identity. Some clus-
ters are isolated while others get mixed near their

(a) En-De training set (b) En-Fr training set

(c) En-De test set (d) En-Fr test set

Figure 2: Embeddings of each translation session in the edi-
tor identification train and test sets, with editors identified by
different colors. For each language, the dimensionality re-
duction was learned by training parametric t-SNE (Maaten,
2009) on the train data, and then applying it to both train and
test data. En-De contains 7 editors, each with 641 train and
72 test samples per editor. En-Fr contains 6 editors, each with
998 train and 58 test samples per editor.

borders, possibly meaning that some editors be-
have in a more distinctive manner than others.

Visualization of editor representations. To
represent an editor with a single vector, we aver-
age the h’s of all tasks of a given editor to obtain
his representation. Figure 3 contains representa-
tions for En-Fr editors (similar results have been
achieved for En-De editors), using the exact same
model as in Figure 2b to produce session embed-
dings, and the same t-SNE model for visualization.
To reduce noise we discard editors with less than
10 samples, keeping 117 out of 149 editors. In Fig-
ure 3 we show percentiles for 3 editor features, us-
ing one point per editor and setting color to repre-
sent a different feature in each panel. In Figure 3a,
color represents percentiles of average initial wait-
ing time, and in Figure 3b, percentiles of counts of
jump-backs per MT token. We can observe that the
model learned to map high waiting times to the left
and high counts of jump-backs to the right. In Fig-
ure 3c we have mouse activity per user (percentiles
of counts of mouse clicks and selections). Here we
can see a distribution very similar to that of count
of jump-backs.
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Mouse and JB (%) 1st WT and JB (%)

En-Fr 80.75 −39.65
En-De 59.62 −31.11

Table 6: Pearson correlation between two pairs of variables:
mouse actions / jump backs and first waiting time / jump
backs.

We hypothesize that there are two types of hu-
man editors: those who first read the full document
and then post-edit it left to right; and those who
read as they type, and go back and forth. To check
these hypothesis, we measure the Pearson correla-
tion between two pairs of variables in Table 6. In-
deed, there is a slight negative correlation between
the average initial pause and the count of jump
backs per word. This matches intuition, since a
person who waited longer before beginning a task
will probably have a clearer idea of what needs to
be done in the first place. We also present the cor-
relation between the count of mouse events (clicks
and selections) and count of jump backs, which
we observe to be very high. This may be due to
the need to move between distant positions of the
document, which is more commonly done with the
mouse than with the keyboard.

5 Prediction of Post-Editing Time

Finally, we design a downstream task with the
goal of assessing the information contained in each
translator’s vector h and observing its applicability
in a real-world setting. The task consists in predict-
ing the post-editing time of a given job, which has
been used as a quality estimation task in previous
work (Cohn and Specia, 2013; Specia, 2011). As a
baseline, we use the previously described dual en-
coder with attention (Figure 1, right). The inputs
are the word embeddings of the original document
and of the machine translation. In the output layer,
instead of predicting each editor’s logit, we predict
the logarithm of the post-editing time per source
word, following Cohn and Specia (2013). We use
mean squared error as the loss. For our proposed
model, we augment this baseline by providing a
“dynamic” representation of the human post-editor
as described below.

Dynamic editor representations. In order to
obtain an editor’s embedding in a real-time setting
we do the following: For each new translation ses-
sion, we store its corresponding embedding, keep-
ing a maximum of 10 previous translations per ed-

(a) First wait time (b) Jump-Backs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Mouse Events

Figure 3: Embeddings of each En-Fr editor, mapped using
the same parametric t-SNE as in Figure 2. In 3a we have
average pause before beginning for each editor, in percentile.
In 3b we have the count of jump-backs per MT token of each
editor, also in percentile. In 3c we have percentiles of counts
of mouse clicks and selections per editor.

itor. Whenever an editor’s embedding is required,
we compute the average of his stored translations
into a single vector. This allows updating the ed-
itors’ representations incrementally in a dynamic
fashion, coping with the fact that editors change
their behaviour over time as they learn to use the
translation interface.

To introduce a translator vector h into the pre-
viously described baseline, we increase the input
size of the feed-forward layer which receives both
encoders’ outputs, and we introduce h in this step
by concatenating it to the encoders’ outputs.

Results. Both models are evaluated using Pear-
son correlation between the predicted and real log-
times. Results in Table 7 confirm our hypothesis
that editor representations can be very effective
for predicting human post-editing time, with
consistent gains in Pearson correlation (+30.11%
in En-Fr and +15.05% in En-De) over the base-
line that does not use any editor information. Our
approach also allows for initializing and updating
editor embeddings dynamically, i.e. without hav-
ing to retrain the time-prediction model.4

4This experiment also reveals that previous work on transla-
tion quality estimation (Specia et al., 2018) using time predic-
tions can have biased results if different types of translators
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Using source text
and MT (%)

Adding dynamic
editor embedding (%)

En-Fr dev 19.53 42.98
test 17.58 47.69

En-De dev 27.62 47.40
test 23.67 38.72

Table 7: Pearson correlation between real and predicted log-
arithm of time per word in source text.

6 Related Work

There is a long string of work studying the cog-
nitive effort in post-editing machine translation.
One of the earliest instances is O’Brien (2006),
who investigates the relationship between pauses
and cognitive effort in post-editing. This corre-
lation has also been studied by examination of
keystroke logs (Lacruz et al., 2012; Lacruz and
Shreve, 2014). Our results further confirm this,
and also identify other characteristics as a finger-
print of the editors: mouse information and jumps.

More recently, Moorkens and O’Brien (2015)
compare novice and professional post-editors in
terms of their suitability as research participants
when testing new features of post-editing envi-
ronments. They conclude that professionals are
more efficient but less flexible to interface changes,
which confirms the existence of several editor pro-
files, not necessarily ones better than the others.

Other small-scale studies identify editor be-
haviour during translation. Asadi and Séguinot
(2005) distinguish between translators who plan
ahead and those who type as they think. Daems
and Macken (2019) identify personal prefer-
ences between usage of mouse vs. keyboard.
De Almeida (2013) studies differences and simi-
larities in editor behaviour for two language pairs,
regarding types of edits, keyboard vs. mouse usage
and Web searches.

Carl et al. (2011) have shown that human trans-
lators are more productive and accurate when post-
editing MT output than when translating from
scratch. This has recently been confirmed by Toral
et al. (2018), who have shown further gains with
neural MT compared to phrase-based MT. Kopo-
nen et al. (2012) show HTER (Snover et al., 2006)
is limited to measure cognitive effort, and suggest
post-editing time instead. On the other hand, Her-
big et al. (2019) measure cognitive effort subjec-
tively by directly inquiring translators, and then

edit different documents. Our editor representations can be
potentially useful for removing this bias.

use a combination of features to predict this cog-
nitive effort – such task could potentially be im-
proved by including translator representations as
an additional feature. Blain et al. (2011) take a
more qualitative approach to understanding post-
editing by introducing a measure based on post-
editing actions. Specia (2011) attempts to predict
the post-editing time using quality estimation, and
Koehn and Germann (2014); Sanchez-Torron and
Koehn (2016) study the impact of machine trans-
lation quality in post-editor productivity. Tatsumi
et al. (2012) study the effect of crowd-sourced
post-editing of machine translation output, find-
ing that larger pools of non-experts can frequently
produce accurate translations as quickly as experts.
Aziz et al. (2012) developed a tool for post-editing
and assessing machine translation which records
data such as editing time, keystrokes, and transla-
tor assessments. A similar tool has been developed
by Denkowski and Lavie (2012); Denkowski et al.
(2014b), which is able to learn from post-editing
with model adaptation (Denkowski et al., 2014a).
Our encouraging results on time prediction using
editor representations suggests that these represen-
tations may also be useful for learning personal-
ized translation models.

Yin et al. (2019) learn representations of sin-
gle edits, and include a downstream task: apply-
ing these edits to unseen sentences. Wikipedia ed-
its have been studied by Yang et al. (2017) and
Faruqui et al. (2018). The latter study what can
be learned about language by observing the editing
process that cannot be readily learned by observ-
ing only raw text. Likewise, we study what can be
learned about the translation process by observing
how humans type, which cannot be readily learned
by observing only the initial and final text.

Our work makes a bridge between the earli-
est studies on the cognitive effort of human post-
editors and modern representation learning tech-
niques, towards embedding human translators on
a vector space. We draw inspiration on tech-
niques for learning distributed word representa-
tions (Mikolov et al., 2013; Pennington et al.,
2014), which have also been extended for learn-
ing user representations for recommendation sys-
tems (Grbovic et al., 2015, 2016). These tech-
niques usually obtain high-quality embeddings by
tuning the system for an auxiliary task, such as
predicting a word given its context. In our case,
we take editor identification as the auxiliary task,
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given a sequence of keytrokes as input. A related
problem (but with a completely different goal) is
the use of keystroke dynamics for user authenti-
cation (Monrose and Rubin, 2000; Banerjee and
Woodard, 2012; Kim and Kang, 2018). Unlike
this literature, our paper is focused on post-editing
of machine-translated text. This is more similar
to El-Fiqi et al. (2019), who focus on identifying
the translator of a book from his translation style.
However, we are not interested in the problem of
editor identification per se, but only as a means to
obtain good representations.

7 Conclusions

We introduced and analyzed the largest public
dataset so far containing post-editing information
retrieved from raw keystrokes. We provided strong
evidence that these intermediate steps contain pre-
cious information unavailable in the initial plus fi-
nal translated document, by formulating and pro-
viding answers to three research questions: (i) that
action sequences can be used to perform accu-
rate editor identification; (ii) that they can be used
to learn human post-editor vector representations
that cluster together similar editors; and (iii) that
these representations help downstream tasks, such
as predicting post-editing time. In sum, we showed
that fine-grained post-editing information is a rich
and untapped source of information, and we hope
that the dataset we release can foster further re-
search in this area.
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Krüger, and Josef van Genabith. 2019. Multi-
modal indicators for estimating perceived cogni-
tive load in post-editing of machine translation.
Machine Translation, pages 1–25.

Hochreiter, Sepp and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Hokamp, Christopher M. 2018. Deep interactive
text prediction and quality estimation in trans-
lation interfaces. Ph.D. thesis, Dublin City Uni-
versity.

Joulin, Armand, Edouard Grave, Piotr Bo-
janowski, and Tomas Mikolov. 2017. Bag of
tricks for efficient text classification. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–
431. Association for Computational Linguistics.

Junczys-Dowmunt, Marcin, Roman Grund-
kiewicz, Tomasz Dwojak, Hieu Hoang,

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 52



Kenneth Heafield, Tom Neckermann, Frank
Seide, Ulrich Germann, Alham Fikri Aji,
Nikolay Bogoychev, André F. T. Martins, and
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