
Enhancing Transformer for End-to-end Speech-to-Text Translation

Mattia A. Di Gangi1,2 Matteo Negri1
1Fondazione Bruno Kessler

via Sommarive, 18, Povo, TN, Italy
surname@fbk.eu

Roldano Cattoni1 Roberto Dessı̀2∗
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Abstract

Neural end-to-end architectures have been
recently proposed for spoken language
translation (SLT), following the state-of-
the-art results obtained in machine transla-
tion (MT) and speech recognition (ASR).
Motivated by this contiguity, we propose
an SLT adaptation of Transformer (the
state-of-the-art architecture in MT), which
exploits the integration of ASR solutions
to cope with long input sequences featur-
ing low information density. Long audio
representations hinder the training of large
models due to Transformer’s quadratic
memory complexity. Moreover, for the
sake of translation quality, handling such
sequences requires capturing both short-
and long-range dependencies between bi-
dimensional features. Focusing on Trans-
former’s encoder, our adaptation is based
on: i) downsampling the input with con-
volutional neural networks, which enables
model training on non cutting-edge GPUs,
ii) modeling the bidimensional nature of
the audio spectrogram with 2D compo-
nents, and iii) adding a distance penalty
to the attention, which is able to bias it
towards short-range dependencies. Our
experiments show that our SLT-adapted
Transformer outperforms the RNN-based
baseline both in translation quality and
training time, setting the state-of-the-art
performance on six language directions.

∗∗Work done during a summer internship at the Machine
Translation Research Unit at Fondazione Bruno Kessler.
∗c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

1 Introduction

Neural encoder-decoder models (Sutskever et al.,
2014) with attention (Bahdanau et al., 2015) is
a general architecture that, by enabling to tackle
sequence-to-sequence problems with a single end-
to-end model, achieved state-of-the-art results on
machine translation (MT) (Bentivogli et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017; Chen
et al., 2018) and obtained increasingly good per-
formance in automatic speech recognition (Chan
et al., 2016; Chiu et al., 2018; Zhang et al., 2017;
Zeyer et al., 2018; Dong et al., 2018). The advan-
tages of end-to-end techniques, besides their con-
ceptual simplicity, reside on the prevention of er-
ror propagation, and a reduced inference latency.
Error propagation is particularly problematic for
the SLT task (Ruiz et al., 2017), in which MT
would be significantly penalized by errors result-
ing from the previous ASR processing step. For
this reason, end-to-end solutions have been re-
cently proposed (Bérard et al., 2016; Weiss et al.,
2017; Anastasopoulos and Chiang, 2018; Liu et
al., 2018; Di Gangi et al., 2018) but, in terms of
performance, they are still far behind the pipeline
approach. The reason of the worse performance
for this task can be found in its intrinsic diffi-
culty, as it inherits and combines the challenges
of the two pipelined tasks. Indeed, SLT mod-
els map audio features into words, like in ASR,
but the input is mapped into text in a different
target language, like in MT. Thus, the problems
of word reordering and ambiguous meaning typ-
ical of translation are combined with the ambi-
guity of speech signal and speaker variety. One
possible approach to deal with this task is to start
from an MT solution and adapt it to speech input.
Transformer (Vaswani et al., 2017) is an encoder-
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decoder architecture based on self-attention net-
works (SAN, (Cheng et al., 2016)) that, because
of its strong results, is the most popular architec-
ture in MT, and is now used as a base for many
NLP tasks (Devlin et al., 2018). While LSTMs
are known to require long trainig time (Lei et al.,
2017; Di Gangi and Federico, 2018; Kalchbren-
ner et al., 2016), Transformer reduces the train-
ing time by performing parallel computation along
all the time steps, similarly to convolutional neural
networks (CNNs). Despite the appealing advan-
tages, the research on end-to-end SLT has focused
so far on recurrent architectures, and only big in-
dustrial players have been able to train networks
with many layers, many parameters, and additional
synthetic data (Jia et al., 2018). In fact, for compu-
tational and modeling reasons, the application of
SANs to speech input has to face additional chal-
lenges compared to handling textual data. In par-
ticular, these include:

1. SANs have a memory complexity that is
quadratic in the sequence length. From a
computational perspective, this becomes a
problem when the input is an audio signal,
which is typically represented as a very long
sequence of log-filter-banks. For the same
utterance, this type of input is considerably
longer than the corresponding textual repre-
sentation fed to MT encoders.

2. The bidimensional dependencies along the
time and frequency dimensions in the spec-
trogram (Li et al., 2016). This 2-dimensional
representation is more difficult to handle
compared to the 1-dimensional input repre-
sentation (i.e. along the time dimension only)
processed by MT encoders.

3. The absence of an explicit bias towards the
local context. Differently from MT, model-
ing long-range dependencies between words
is logically preceded, as the input is unseg-
mented, by modeling short-range dependen-
cies between time-frames belonging to the
same linguistic constituents (Sperber et al.,
2018).

Focusing on these problems, in this paper we ex-
plore different adaptations of Transformer to the
end-to-end SLT task. Initially, we show that as-
is and with a comparable number of parameters,
Transformer is not competitive with LSTM mod-
els. In order to investigate the reasons of its lower

performance, we posit that the problem lies in
the inability of the Transformer encoder to prop-
erly model long audio input. This hypothesis is
checked by switching the encoders and decoders of
the Transformer and LSTM architecture, which re-
sults in better performance when the Transformer
decoder is preceded by the LSTM encoder. These
results inform and motivate our enhancements to
the Transformer architecture. To this aim, we pro-
ceed incrementally showing, through comparative
experiments, that:

1. Sequence compression with CNNs and down-
sampling enables effective audio encoding
while allowing to train the system even on
single GPUs;

2. Modeling 2D dependencies produces more
stable and better results;

3. Biasing the encoder self-attention with a dis-
tance penalty improves translation quality.

Our experiments are run on different datasets
covering different languages. First, we evalu-
ate our architecture on two relatively small cor-
pora: Augmented Librispeech (Kocabiyikoglu et
al., 2018) for English→French and IWSLT 2018
for English→German. Then, we broaden the lan-
guage coverage through experiments with MuST-
C (Di Gangi et al., 2019),1 a large multilingual
SLT dataset recently released. This allows to val-
idate our findings on six language directions (En-
De/Es/Fr/Pt/Ro/Ru).

Overall, our evaluation indicates that the pro-
posed SLT-oriented adaptation of Transformer re-
sults in a model that significantly outperforms
a strong end-to-end system both in translation
quality and training speed. For the sake of re-
sults’ replicability the code developed for the ex-
periments described in this paper can be down-
loaded at http://github.com/mattiadg/
FBK-Fairseq-ST.

2 Related works

Our work has been influenced by the recent works
on end-to-end SLT, as well as the applications of
SANs to the task of ASR.

End-to-end SLT. The first encoder-decoder ar-
chitecture based on LSTM was introduced for SLT
by Bérard et al. (2016) showing the feasibility of
1http://mustc.fbk.eu

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 22



directly translating from the audio signal. Weiss et
al. (2017) enhanced this approach by exploring set-
tings with different numbers of layers in encoder
and decoder and testing various multitask learn-
ing strategies. Bérard et al. (2018) trained a single
model to translate English audiobooks into French
and shown that pre-training the encoder on ASR
data improves the final result. All these works
showed that the input sequence length has to be re-
duced to work with recurrent models. To cope with
the lack of end-to-end data, different directions
have been evaluated. For instance, (Anastasopou-
los and Chiang, 2018) and (Weiss et al., 2017) per-
formed analyses of different multitask settings to
leverage more data. Bansal et al. (2018) shown
that the pre-training of the encoder is also helpful
when performed on a different language, in partic-
ular when the source language is low–resourced.
(Jia et al., 2018) increased the training data by us-
ing a large quantity of synthetic data that results
in an end-to-end system able to outperform the
cascade model. Their architecture still relies on
LSTMs. Transformer has been applied to this task
(Vila et al., 2018) using only a small training set
and taking advantage of the computational power
of TPUs. Differently from these works, we en-
hance the Transformer architecture to be trained on
GPUs, in shorter time compared to LSTM models,
and without using multi-task learning.

Self-attention for ASR. Given the results of
Transformer in MT, recent works on ASR pro-
posed SANs for both acoustic modeling (Sperber
et al., 2018; Povey et al., 2018) and end-to-end
ASR (Dong et al., 2018; Zhou et al., 2018a; Zhou
et al., 2018b). Some works trained Transformer
for (multilingual) ASR with little modification to
its architecture (Zhou et al., 2018a; Zhou et al.,
2018b), showing the feasibility of this approach
in terms of results. Dong et al. (2018) proposed
the Speech-Transformer for end-to-end ASR with
the goal of encoding efficiently an effectively au-
dio input. They rely on CNNs to reduce the se-
quence length, and propose 2D self-attention to
capture the dependencies in the two dimensions
of a spectrogram (Li et al., 2016) that are out of
the range of CNNs. In this paper we show that
only Speech-Transformer is not enough to outper-
form an LSTM-based model on end-to-end SLT,
because the lack of an explicit bias towards local
context seems to be harmful for SANs when ap-
plied to audio input. In ASR to address a simi-

lar problem, Povey et al. (2018) use hard mask-
ing to force the self-attention into a local context,
while Sperber et al. (2018) use a Gaussian distance
penalty to reduce the attention weights according
to the distance between input elements. Though
effective, the results of this distance penalty are
highly dependent on the initial value of the Gaus-
sian variance. Our work tests, for the first time, the
distance penalty in the task of SLT and proposes a
penalty function that, without additional hyperpa-
rameters, allows the Transformer model to outper-
form the LSTM architecture.

3 Background

Sequence-to-sequence models map a variable-
length source sequence into a variable-length tar-
get sequence. They are usually composed of three
conceptual blocks. An encoder maps an input se-
quence X = (x1,x2, . . . ,xn) of n time steps into
a hidden representation H = (h1,h2, . . . ,hn′) of
contextualized vectors, where n′ can be different
from n. A decoder generates a target sequence of
tokens Y = (y1,y2, . . . ,ym) in an autoregressive
manner. The connection between encoder and de-
coder is given by one or multiple attentions that
weight the elements of H according to their rel-
evance for the current decoder time step. Such a
network is trained by minimizing the cross-entropy
between the probability distribution of the target
tokens estimated by the network, and the gold la-
bels:

L(θ) =
m∑

i=0

P (ỹi = yi|X,y<i; θ) (1)

In this paper, X is a sequence of audio spectrogram
frames, while Y is a sequence of characters in the
target language.

Two encoder-decoder architecture that are rel-
evant for this work are: the recurrent model for
end-to-end SLT proposed in (Bérard et al., 2018),
which is based on LSTM and CNNs, and the
Transformer, as proposed for MT.

3.1 End-to-end SLT
Bérard et al. (2018) proposed a recurrent sequence-
to-sequence architecture for SLT based on LSTMs.
The encoder receives an input in the form of se-
quences of Mel-filterbanks. The input is first pro-
jected to a larger space with two affine transforma-
tions, each followed by ReLU activation. The ex-
panded input is then reduced by a factor of 4 with
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two following strided 2D convolutions. Finally,
the resulting tensor is linearized and processed as
a sequence by three stacked bi-directional LSTMs.

The average of the encoder outputs along the
time dimension is used to initialize the first of two
LSTMs in the decoder. The output of the first
LSTM is used by an attention network to com-
pute a context vector of the source, which is fed
as input to the second LSTM. The output of the
second LSTM is used to compute the target prob-
abilities and also as a hidden state for the first
LSTM (deep transition LSTMS (Pascanu et al.,
2014)). Hencefort, we will refer to this approach
as CNN+LSTM.

3.2 Transformer

Transformer (Vaswani et al., 2017) is an encoder-
decoder architecture entirely based on attention
networks. Given three sequences Q,K,V the at-
tention computes a context vector di for each query
time step i (Qi) that is a weighted average of the
values V, where the weights are computed as a
normalized score of the similarity between Qi and
all the key values K:

di = softmax(QKT /
√
dmodel) ·V (2)

where
√
dmodel is a constant scaling factor based

on the layer size dmodel. The core component of
Transformer is the multi-head attention (MHA), a
network that, given two input sequences a,b com-
putes attention between a and b in multiple, par-
allel branches. MHA is used to model dependen-
cies both between encoder and decoder (K,V = a
and Q = b), and within the two networks (self-
attention, K,V,Q = a). As it is shown in Equa-
tion 2, MHA is fully content-based and, as such,
it is position invariant. The positional informa-
tion within the sequence is conveyed by summing
the vector content with a fixed positional encoding
based on trigonometric functions. Another rele-
vant property of the MHA is the possibility to com-
pute it in parallel for all the time steps in both Q
and K, as well as for all the multiple heads, but
this comes at the cost of a quadratic memory com-
plexity.

4 SLT Transformer

The application of Transformer to speech input is
not trivial because of i) computational issues that
hinder its use; and ii) modeling limitations that

Figure 1: Three Transformer encoders for SLT. Components
in grey are non-learnable.

harms its performance. The first issue to over-
come is the quadratic GPU memory occupation
of Transformer, which is particularly relevant on
speech because the sequences are order of magni-
tudes larger than in text. On the modeling side,
Transformer’s performance is limited by the ab-
sence of a bias to capture short-range dependen-
cies along time (Sperber et al., 2018; Povey et al.,
2018), as well as the 2D joint dependencies over
the time and frequency dimensions that character-
ize a spectrogram (Li et al., 2016). Strided 2D
CNNs can compress the input sequence while also
modeling 2D dependencies. However, the result-
ing sequences are still much longer than an equiv-
alent text sequence, and thus we propose a distance
penalty to enforce the modeling of short-range de-
pendencies.

4.1 Encoding with 2D CNNs

In this section, we propose three variants of Trans-
former. B- and R-Transformer replace the LSTM
layers in CNN+LSTM with Transformer encoder
layers and differ in their use of the positional en-
coding. S-Transformer is a further improvement
of R-Transformer that adds to the encoder the ca-
pability of modeling 2D dependencies in the in-
put data. In all the three variants, the adaptations
regard only the layers preceding the Transformer
encoder. The following Transformer encoder and
decoder stacks are left unchanged.
B-Transformer (Figure 1a). Our baseline model
uses the same encoder as CNN+LSTM (Bérard
et al., 2018) but replaces the LSTM layers with
Transformer encoder layers. The replacement of
LSTMs makes the encoder position invariant, and
thus the sequential order is conveyed by summing
the positional encoding directly to the input fea-
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Figure 2: Schematic representation of 2D self-attention.

tures.2

R-Transformer (Figure 1b). As the positional en-
coding and the input are both fixed vectors, we pro-
pose to sum the positional encoding right before
the Transformer encoder (the part of the network
that requires a positional information). The sum is
preceded by a linear transformation of the CNN
output followed by ReLU non-linearity, whose
goal is to transform its input into a space where the
fixed positional encoding can be more effective.
S-Transformer (Figure 1c). Our second improve-
ment follows the idea of modeling 2D joint depen-
dencies in the input signal by applying a stack of
2D components to the input (Dong et al., 2018).
The first two CNNs capture local 2D-invariant fea-
tures (Amodei et al., 2016) in the input, while
the following two 2D self-attention layers (Figure
2) model long-range context (Dong et al., 2018).
The 2D self-attention computes the three tensors
K,Q,V with three parallel 2D CNNs of its in-
put with c output channels. Each of the c chan-
nels is used as an attention head in an MHA net-
work. K,Q and V are used to compute the atten-
tion over the temporal dimension as in Equation
2. Then, the three matrices are transposed and an-
other MHA is computed over the frequency dimen-
sion. Finally, the 2c channels from the two MHAs
are concatenated and processed by an additional
2D CNN with n output channels. The 2D atten-
tions enrich the encoder representation by model-
ing 2D dependencies that cannot be captured by
CNNs.

4.2 Distance Penalty

To further improve the encoder capability of mod-
eling short-range dependencies, we introduce, be-
sides CNNs, a distance penalty mechanism in the

2Due to its high GPU memory occupation, we could not train
a baseline Transformer (comparable in size to the other mod-
els used for experiments) without input compression.

encoder self-attention. This mechanism biases the
network towards the local context without impos-
ing hard constraints that would prevent it from
finding long-range dependencies. The attention
computation (Equation 2) is modified as follows:

c = softmax(QKT/
√
dmodel − π(D))V (3)

where D is a matrix containing, in each cell di,j ,
the position distance |i − j|, and π is a distance
penalty function.

In this paper, we experiment with distance
penalty computed with two different functions.
The Gaussian penalty introduced in (Sperber et al.,
2018) computes a Gaussian-shaped penalty distri-
bution with a distinct learnable variance σ for each
head in the MHA as follows:

πG(d) =
(d)2

2σ2
(4)

This function gives to a network the flexibility to
shrink or extend the attention span in each atten-
tion head. In this way, the network can extract
different features from different heads in a layer,
but also in different layers. Indeed, in (Sperber et
al., 2018) only the first layer restricts its attention
span in the best setting. The downside of this ap-
proach is that the initial value of the variance is an
additional hyperparameter that highly affects the
performance. In order to eliminate this additional
hyperparameter, we propose to use a logarithmic
function as a distance penalty:

πlog(d) =

{
0, if d = 0
loge(d), else

(5)

The logarithm biases the network towards the
local context but the penalty grows slowly with
distance, and thus it does not impede the model-
ing of global dependencies.

5 Experiments

We run our experiments on three SLT datasets, of
which two comprise a single language direction
and one comprises 6 language directions. In all
cases, English is the source language.
Monolingual datasets. The first one monolin-
gual corpus is built from material released for the
IWSLT evaluation campaigns, namely the En→De
training data from IWSLT 2018 (Niehues et al.,
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Corpus Hours Train Valid Test
IWSLT (En-De) 273 171K 1000 1000
Librispeech (En-Fr) 236 95K 1071 2048
Multilingual

En-De 408 234K 1423 2641
En-Es 504 270K 1316 2502
En-Fr 492 280K 1412 2632
En-Pt 385 210K 1367 2502
En-Ro 432 240K 1370 2556
En-Ru 489 270K 1317 2513

Table 1: Data statistics for IWSLT, Librispeech and our mul-
tilingual corpus. Train, Valid and Test are numbers of sen-
tence pairs.

2018) and the test data from IWSLT 2014 (Cet-
tolo et al., 2014).3 The second dataset is the Aug-
mented Librispeech corpus (Kocabiyikoglu et al.,
2018) that is produced using English audiobooks
of novels, and their translations into French.
Multilingual dataset. We have recently devel-
oped a large corpus from English TED talks, called
MuST-C (Di Gangi et al., 2019). Unlike IWSLT
and Librispeech, MuST-C covers multiple lan-
guage directions (En→De/Es/Fr/Pt/Ro/Ru). We
built it following the alignment-based approach
proposed in (Kocabiyikoglu et al., 2018) and us-
ing English speech recordings and their transla-
tions available on the TED talks website.4 For each
target language, we aligned text in English and
in the target language using the Gargantua toolkit
(Braune and Fraser, 2010), then we aligned the
resulting English sentences with the correspond-
ing audio using Gentle,5 a forced-aligner based on
the Kaldi toolkit (Povey et al., 2011). In order to
improve the alignment quality we performed two
successive steps of filtering. In the first step, we
removed all the talks where at least 15% of the
words have not been recognized by Gentle. In the
second step, we removed from the remaining talks
all the sentences with no recognized words. For
replicability of results, the corpus is released with
a predefined train, validation and test split. The
corpora statistics are listed in Table 1 and show
that each language direction of MuST-C is consid-
erably larger than the other 2 corpora.
Experimental setup. For a fair comparison of the
different architectures, we first set the parameters
of the recurrent baseline (CNN+LSTM, §3.1) sim-
ilar to what reported in (Bérard et al., 2018). Then,

3We could not use the IWSLT 2018 test data, because the gold
standard has not been released.
4http://www.ted.com – dump of April 2018
5github.com/lowerquality/gentle

we adjust the Transformer to have a number of pa-
rameters similar to the recurrent one (∼9.5M). The
CNNs have a 3×3 kernel and 16 output filters. The
LSTMs in the baseline have a hidden size of 512,
with 3 layers in the encoder and 2 in the decoder.
The initial encoder states are learnable parameters,
while the initial decoder state is computed as the
mean of the encoder states. We found the learn-
able encoder states to be critical to reach conver-
gence. The Transformer models have 6 layers in
both encoder and decoder, with layer size of 256,
hidden size of 768 and 4 heads in multi-head atten-
tion. To further asses the performance of our mod-
els, we also experiment with a BIG version with
more parameters, featuring layer size 512, hidden
size 1024, and 8 heads. set dropout to 0.2 for
CNN+LSTM and 0.1 for Transformer. No dropout
is applied in the recurrent connections. Training is
performed using the Adam optimizer (Kingma and
Ba, 2015) with learning rate 0.001 for LSTM and
0.0002 for Transformer. The learning rate is kept
fixed for Transformer for the sake of a fair compar-
ison with the baseline. B-Transformer serves as
a baseline to evaluate the impact of the proposed
adaptations. We train our R- and S-Transformer
models with and without distance penalty, either
Gaussian or logarithmic. We test all these config-
urations on the IWSLT and Librispeech corpora.
Then, due to the higher number of directions in
the multilingual corpus, we only run experiments
on it with the best-performing system. Following
(Bansal et al., 2018; Bérard et al., 2018), we first
train a model with the ASR part of each corpus and
then we use it to initialize the weights of the SLT
encoder. All the experiments are run on a single
GPU Nvidia 1080 Ti with 12G of RAM, and the
code used for all the experiments is based on Py-
torch (Paszke et al., ).

Data processing and evaluation. 40-dimensional
MFCC filter-banks were extracted from the audio
signals of each dataset using window size of 25 ms
and step size 10 ms. The frame energy feature was
additionally extracted from the LibriSpeech audio,
similarly to (Bérard et al., 2018). All texts were
tokenized and split into characters. Performance
is evaluated with BLEU (Papineni et al., 2002) at
token level after aggregating the output characters
into words.
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Librispeech Enc Dec BLEU ↑
CNN+LSTM - - 10.7

X - 13.2
X X 13.0

B-Transformer - - 6.3
X - 9.0
X X 9.5

IWSLT
LSTM - - 8.5

X - 9.2
X X 7.5

B-Transformer - - 7.9
X - 7.3
X X 5.9

Table 2: Speech translation results for the Librispeech and
IWSLT corpora wuth our two baseline models. A checkmark
on Enc (Dec) means that the encoder (decoder) has been pre-
trainined.

Enc / Dec LSTM Transformer
LSTM 13.2 11.9
Transformer 8.2 9.0

Table 3: Mixed-architecture experiments on Librispeech.

6 Results and Discussion

6.1 Baseline.

As a first step, we want to evaluate our base-
line B-Transformer against CNN+LSTM to un-
derstand the effectiveness 2D convolutional com-
pression with Transformer. We ran the ex-
periments with no pre-training, by pre-training
only the encoder or both encoder and decoder.
As can be seen in Table 2, the best results with
CNN+LSTM are obtained by pre-training only the
encoder, while for B-Transformer the training is
more unstable and this is reflected also in the re-
sults. Considering the results of CNN+LSTM
and the relatively good results of B-Transformer
when pre-training only the encoders, we decided
to follow this practice in all the following experi-
ments. When considering only the results with the
pre-trained encoder, CNN+LSTM outperforms B-
Transformer by 4 BLEU points on Librispeech and
2.1 BLEU points on IWSLT. To better understand
the source of degradation for the B-Transformer,
we performed an experiment switching encoder
and decoder between the two architectures with
pre-trained encoder (table 3) and evaluated them
on Librispeech. When using CNN+LSTM en-
coder, the Transformer decoder causes a degra-
dation of 1.3 BLEU points, while having Trans-
former encoder and LSTM decoder causes a degra-
dation of 5 points over CNN+LSTM. Given these

Librispeech BLEU ↑ Time (s) Time/Ep.
CNN+LSTM 13.2 248K ∼ 2.8K
B-Transformer 9.0 101K ∼ 0.69K
R-Transformer 11.5 72K ∼ 0.73K
- Gauss penalty 12.5 82K ∼ 0.75K
- log penalty 12.3 64K ∼ 0.75K
S-Transformer 12.5 76K ∼ 0.79K
- Gauss penalty 13.8 88K ∼ 0.86K
- log penalty 13.5 76K ∼ 0.86K
IWSLT BLEU ↑ Time (s) Time/Ep.
CNN+LSTM 9.2 112K ∼ 2.9K
B-Transformer 7.1 67K ∼ 1.0K
R-Transformer 9.8 92K ∼ 1.0K
- Gauss penalty 10.8 101 K ∼ 1.1K
- log penalty 10.5 93K ∼ 1.1K
S-Transformer 9.8 89K ∼ 1.1K
- Gauss penalty 10.8 90K ∼ 1.2K
- log penalty 10.6 81K ∼ 1.2K

Table 4: Results on the Librispeech and IWSLT 2014 test set.
Differences wrt the baseline (CNN+LSTM) are statistically
significant (randomization test, p=0.05).

results, the following experiments all focus on en-
hancing the B-Transformer encoder. Despite the
poor translation quality, exploring the Transformer
is still interesting because of its reduced training
time (listed on Table 4), which is reduced by a fac-
tor of 2 on IWSLT (67K vs 112K seconds) and
even more on Librispeech (101K vs 248K sec-
onds). These results show that input compres-
sion makes the training of Transformer feasible for
SLT, but it does not result in immediate improve-
ments over LSTMs.

6.2 Encoder Enhancements

In the following, we discuss the results obtained
with our enhancements to the Transformer en-
coder, i.e. modify the use of position encoding,
model 2D dependencies with CNNs and 2D self-
attention, and insert a distance penalty to the en-
coder self-attention.

R-Transformer differs from B-Transformer in
the layer where the position encoding is summed
to the input. As can be seen in Table 4, this detail
is very relevant as R-Transformer improves over
B-Transformer by more than 2.5 BLEU points in
both datasets with less training time. However, it
is significantly worse than CNN+LSTM on Lib-
rispeech (−1.7 BLEU points) and slightly better
on IWSLT (+0.6).

The next step is to evaluate the enhancements
in modeling 2D input proposed in S-Transformer.
Its results are 1.0 BLEU point better than R-
Transformer in Librispeech, and equal on IWSLT,
while having a similar parameter count and con-
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Initial variance Librispeech IWSLT
5.0 13.8 10.8
100.0 13.1 10.9

Table 5: Results with different values of initial variance for
Gaussian penalty and S-Transformer.

vergence time. Despite the improvement, S-
Transformer is 0.7 points less than CNN+LSTM
on Librispeech.

In Table 4 we show the results obtained using
the distance penalties introduced in §4.2 to model
short-range dependencies in the Transformer en-
coder. Distance penalties produce performance
improvements for R- and S-Transformer that range
from 0.7 to 1.3 BLEU points, with the Gaussian
penalty (initial variance = 5.0) being 0.2 ∼ 0.3
BLEU points better than the logarithmic one. S-
Transformer with Gaussian penalty obtains the
best results in both corpora, with improvements
of +0.6 and +1.6 BLEU points over CNN+LSTM
on, respectively, Librispeech and IWSLT. The re-
sults with Gaussian penalty are computed using
initial variance (for the ASR training) of 5.0. Us-
ing an initial variance of 100.0 (the value recom-
mended in the work by Sperber et al. (2018)) we
obtained a significant degradation on Librispeech
with a BLEU of 13.1 and a comparable result
on IWSLT with 10.9 (Table 5). These results
show that biasing the self-attention with a distance
penalty is critical to obtain competitive translation
quality with Transformer and also outperform the
strong CNN+LSTM baseline.

6.3 Gaussian variances

Sperber et al. (2018) have shown that the vari-
ances of the Gaussian penalty are smaller in the
first layer and larger in the second layer of their 2-
layered self-attentional acoustic model. Based on
this observation, they suggest that it is better for
the first layer to have a restricted range, while a
global range is desirable for the upper layer. We
performed a similar analysis for our models, but
obtained quite different results. First of all, Table
5 shows that, in our experiments, the initial value
of variance plays a role but it appears to be less
critical. An inspection of the final variance values
is shown in Figure 3, in which we do not observe
any relation between the layers and the variance.
On the contrary, we observe that different heads in
the same layer can differ significantly. Addition-
ally, the initial weight makes a big difference for

LSTM log Gauss BIG+log BIG+Gauss
De 12.9 14.5 14.4 17.3 16.2
Es 17.9 18.4 18.6 20.8 20.1
Fr 22.3 23.1 24.0 26.9 24.7
Pt 17.1 18.6 19.7 20.1 19.3
Ro 13.4 14.7 15.0 16.5 16.1
Ru 7.2 8.8 9.1 10.5 8.5

Table 6: Results on six language pairs covered by the mul-
tilingual corpus. LSTM is the CNN+LSTM model. Results
in columns 3-6 are computed with S-Transformer with loga-
rithmic (log) or Gaussian (Gauss) distance penalty. Improve-
ments over CNN+LSTM are statistically significant.

the final values but, as shown in table 5, this does
not affect the performance significantly. To under-
stand whether results’ differences from the work
of Sperber et al. (2018) are related to the task (SLT
instead of ASR), we checked the weights of our
ASR models and find that they do not differ sig-
nificantly from the ones showed in Figure 3. The
absence of a pattern in the distribution of the vari-
ance is a further justification to use a logarithmic
distance penalty in all the layers.

6.4 Additional experiments

The previous experiments have shown that S-
Transformer performs better than the other vari-
ants, and as such we report experiments on the
larger MuST-C corpus only with S-Transformer
and the two distance penalties. S-Transformer
outperforms CNN+LSTM on all the 6 language
directions with gains from +0.5 to +1.6 BLEU
points with log penalty and from +0.7 to +2.6
with Gaussian penalty. Gaussian penalty gener-
ally achieves results only slightly better than the
logarithmic one, except for the top improvements
of +0.9 and +1.1 respectively on En→Fr and
En→Pt. To explain this difference, it is useful
to recall that the parameters of the encoders of
SLT models (including their Gaussian variances)
are initialized from a model pre-trained on English
ASR. In particular, for the multilingual corpus we
use the same model trained on the larger dataset.
The inherited variance from this model may affect
differently the different target languages.

Experiments with a larger model (S-
Transformer BIG) show further improvements
from a minimum of 1.5 points for En→Pt to
a maximum of 3.8 points for En→Fr with log
penalty, while the poor results with Gaussian
penalty confirm that it is less stable than the
logarithmic one. The number of training iterations
is also reduced to less than half of the previous
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(a) (b)

(c) (d)

Figure 3: Final values of the variances for the SLT task in Librispeech (top) and IWSLT (bottom) with initial variance of 5.0
(left) and 100.0 (right).

experiments. The improvements obtained in this
experiment, up to 4.6 BLEU point in En→Fr
over the baseline, represent a step forward to-
wards a translation quality that allows real-world
applications for end-to-end SLT.

To conclude, our experiments show that: i) our
task-specific adaptations make the Transformer
trainable for the SLT task, also on a single GPU;
ii) when both short-range and 2D dependencies
are explicitly addressed in the model, they allow it
to outperform a strong baseline based on LSTMs;
iii) the logarithmic distance penalty can be prefer-
able over the Gaussian one because it does not re-
quire additional hyperparameter tuning and results
in competitive performance.

7 Conclusion

We have shown that the application of Transformer
to end-to-end SLT is problematic in the encoder
side. Consequently, we have proposed to enhance
the Transformer encoder by taking into account the
characteristics of a speech spectrogram. Our solu-
tion consists of: i) 2D processing of the input to

compress it effectively before the self-attentional
stack; and ii) a distance penalty in the encoder
self-attention layers that forces the network to give
more attention to neighboring time steps.We have
shown that, although using a distance penalty is al-
ways beneficial, a simple logarithmic function can
result in equal or better improvements than a learn-
able Gaussian penalty. Experimental results per-
formed on three different corpora, for a total of 6
language directions, show that our approach out-
performs a strong recurrent baseline in both trans-
lation quality and training time.
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