
Experiments on Non-native Speech Assessment and its Consistency

Ziwei Zhou
Iowa State University, USA
ziweizh@iastate.edu

Sowmya Vajjala
National Research Council, Canada

sowmya.vajjala@nrc-cnrc.gc.ca

Seyed Vahid Mirnezami
Iowa State University, USA
vahid@iastate.edu

Abstract

In this paper, we report some preliminary
experiments on automated scoring of non-
native English speech and the prompt spe-
cific nature of the constructed models. We
use ICNALE, a publicly available corpus
of non-native speech, as well as a vari-
ety of non-proprietary speech and natural
language processing (NLP) tools. Our re-
sults show that while the best performing
model achieves an accuracy of 73% for a
4-way classification task, this performance
does not transfer to a cross-prompt evalu-
ation scenario. Our feature selection ex-
periments show that most predictive fea-
tures are related to the vocabulary aspects
of speaking proficiency.

1 Introduction

Advancements in NLP and speech processing
have given rise to the research and development
of automated speech scoring systems in the past
10-15 years. The goal of such systems is to
provide efficient and consistent evaluation in oral
proficiency tests. Whereas early systems scor-
ing English proficiency predominantly made use
of extracting low-level features, such as pronun-
ciation (e.g. segmental errors, phone spectral
match) and fluency (e.g. speech rate, number of
pauses, lengths of silences), a sustained push to
fully represent and evaluate test takers commu-
nicative competence has provided major momen-
tum to the investigations in automated scoring for
spontaneous or unconstrained speech rather than
scripted or constrained speech. As a result, au-
tomated scoring systems expanded their invento-
ries to include multiple dimensions of speaking
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proficiency such as prosody, vocabulary, grammar,
content, and discourse, as well as exploiting com-
plex models to makes sense of rich data in com-
plex tasks from large-scale assessment contexts
(Williamson et al., 2006).

However, the research and development of such
systems has largely centralized around a few pro-
prietary systems (e.g., SpeechRater (Xi et al.,
2008; Chen et al., 2018)). Language assessment
researchers expressed concerns about the validity
of inferences made from such automated systems
in high-stakes testing scenarios such as college ad-
missions in the past (Chapelle and Chung, 2010).
In this paper, we take first steps towards address-
ing these issues of proprietary work and validity
by: a) reporting our experiments on a freely avail-
able corpus, b) looking the transferability of our
approach by performing cross-prompt evaluations,
c) studying the consistency of our results and d)
understanding what features perform well for pre-
diction.

Specifically, we explore the following research
questions:

1. RQ1: Which classifier performs the best in
terms of agreement with human scorers when
compared using multiple performance mea-
sures?

2. RQ2: How consistent are the machine scores
rendered by the best performing model?

3. RQ3: What features are influential in predict-
ing human scores?

While the first and third questions were also stud-
ied in the past research (with proprietary datasets
and software), the second question is some what
under explored, to our knowledge.

The rest of this paper is organized as follows.
Section 2 briefly surveys related work on the topic.
Sections 3 and 4 describe our methods, experi-
ments and results. Section 5 concludes the paper.



2 Related Work

SpeechRaterTM , developed by Educational Test-
ing Service (ETS) can be considered as a lead-
ing strand of research into automated scoring of
non-native speech (Xi et al., 2008; Chen et al.,
2018). Since its initial deployment in 2006, a
large amount of research has been conducted into
the role of various features for this task (e.g.,
Evanini et al., 2013; Loukina et al., 2015; Tao
et al., 2016). Other recent research (Johnson et al.,
2016; Kang and Johnson, 2018b,a) explored the
role of prosody features in automated proficiency
scoring for unconstrained speech. However, much
of the previous work in this direction has been
on corpora that are not freely accessible, making
replications or adaptions to new corpora difficult.
In this paper, we follow existing approaches, but
with a hitherto unexplored, publicly available cor-
pus.

Since such test scores typically serve high-stake
purposes, the need for ensuring the validity of
machine scores arises. As reviewed by Yang
et al. (2002), such validity enquiry can be ap-
proached by: (1) demonstrating the correspon-
dence between human and machine scorers; (2)
understanding the construct represented within the
automated processes; and (3) examining the re-
lationship between machine scores and criterion
measures. In this paper, we take the first steps in
this direction by addressing the first aspect.

3 Methods

3.1 Corpus

The data used in this study comes from the In-
ternational Corpus of Network of Asian Learn-
ers (ICNALE-Spoken), which has a collection of
speech data from learners in ten countries and ar-
eas in Asia China, Hong Kong, Indonesia, Japan,
Korean, Pakistan, the Philippines, Sigapore, Tai-
wan, and Thailand, as well as from English native
speakers (Ishikawa, 2013). The range of partic-
ipants covers the three concentric circles Inner,
Outer, and Expanding circles of English language
use (Kachru, 1992).

This corpus consists of oral responses provided
by college students to two opinion-based prompts
(PTJ denoting part-time jobs and SMK denot-
ing smoking behavior) over telephone recordings,
lasting about 1 minute each. Each prompt was
done in two trials and we used the first trial

(N=950 for each prompt). In order to protect the
participants’ identity, speech samples were mor-
phed using a speech morphing system developed
by ICNALE team (available for download). The
program adjusted the pitch and formant of sound
files without altering the sound file itself, thereby
enabling corpus users to still conduct acoustic
analyses on this data.

The participants English proficiency levels are
indicated on the Common European Framework
of Reference (CEFR) scale with four categories:
A2 0 (N=100), B1 1 (N=211), B1 2 (N=469),
and B2 0 (N=160). These scores are either di-
rectly converted from the participants existing pro-
ficiency scores from standard proficiency tests,
such as TOEFL, IELTS, or TOEIC, or estimated
from a vocabulary size test (Nation and Beglar,
2007) through multiple regression. We used the
manual transcriptions provided with the corpus for
extracting textual features related to language use.

3.2 Features
We extracted fluency features and audio sig-
nal features from the speech samples and lexi-
cal/syntactic features from text transcriptions.

Fluency Features: Fluency features are com-
monly used in oral proficiency modeling. A
Praat script (De Jong and Wempe, 2009) was
used (Boersma and Weenink, 2001) to analyze
the speech samples for 7 automated measures
of fluency: number of syllable nuclei, number
of pauses, total response time, phonation time,
speech rate, articulation rate, and average sylla-
ble duration2. A visual display from the scripts
output texgtrid file is presented in Figure 1. As

Figure 1: TextGrid Output From Praat Script That
Calculates fluency Measures

shown in the figure, the continuous speech is au-
2The script was originally developed to automatically de-

tect syllable nuclei in continuous stream of speech based on
intensity (dB) and voicedness information.



tomatically segmented and the fluency measures
can be calculated based on these segments. Other
measures such as oral fluency can be simply calcu-
lated based on the output. Also, since the repairs
were indicated in the original transcription by ”-
”, the number of repairs in each spoken response
were extracted. It should be pointed out that, since
the transcriptions did not have any indication for
fillers, fillers are not taken into account in the this
study.

Audio Signal Features: To extract low-level
signal features, which may be helpful in model-
ing the automated scoring models, PyAudio Anal-
ysis, which is an open-source Python library for
audio feature extraction, classification, segmenta-
tion, and application, was used (Giannakopoulos,
2015). We extracted 34 signal level audio fea-
tures in both time and frequency domains. These
include: zero-crossing rate, energy, entropy of
energy, spectral centroid, spectral spread, spec-
tral entropy, spectral flux, spectral rolloff, Mel
Frequency Cepstrum Coefficients (MFCCs-11),
chroma vector (12), and chroma deviation. These
kind of features (if not the specific ones we used)
were used to build filter model to flag non-scorable
responses (Higgins et al., 2011), but not in the
scoring model in past research.

Lexical Features: Lexical Complexity Ana-
lyzer (Lu, 2012) was used to automatically extract
25 measures of lexical density, variation, and so-
phistication from the transcriptions.

Syntactic Features: The L2 Syntactic Com-
plexity Analyzer was used to automatically extract
14 measures of syntactic complexity as proposed
in the second language development literature (Lu,
2014). They were also used in past research on the
topic (Chen and Zechner, 2011).

3.3 Model Building and Validation

We used Scikit-learn, (Pedregosa et al., 2011)
to build and compare classification models using
different classifiers with this feature set. Since
the corpus was unbalanced across proficiency lev-
els, Synthetic Minority Oversample Technique
(SMOTE) (Chawla et al., 2002) was explored with
the aim to help the prediction of minority class and
avoid bias towards predicting the majority class.
We explored two cases, both with and without
oversampling:

• classification models trained and tested sepa-
rately for each prompt, which we call intrin-
sic evaluation (with 10-fold cross validation)

• classification models trained on one prompt,
but tested on the other, which we call extrin-
sic evaluation.

A variety of performance measures, including ac-
curacy, precision, recall, F1-score, Cohens Kappa
(CK), Quadratically Weighted Kappa (QWK), and
Spearman Rho Correlation (SRC) statistics were
reported. In addition, to further validate the con-
sistency of the models, 95% confidence intervals
were calculated both based on statistical theory
and empirical bootstrap technique.

4 Results

Intrinsic Evaluation: We evaluated classifica-
tion models using various classifiers: Naive
Bayes, Logistic Regression, Random Forests
(RF), SVMs, Gradient Boosting and Neural Net-
works. Hyperparameters were tuned for each of
the candidate classifiers. For example, different
hyperparameters including optimizers, loss func-
tion, number of layers, number of hidden units,
and number of epochs were used to build different
ANN models. Results for the model performance
in terms of accuracies obtained through intrinsic
evaluation from comparing multiple classifiers are
shown in Table 1.

Table 1: Model Performances of All Classifiers in
Training Set

Mod. Orig. SMOTE Orig. SMOTE
PTJ PTJ SMK SMK

LR 0.48 0.62 0.48 0.6
RF 0.48 0.74 0.48 0.73

SVM 0.34 0.46 0.37 0.42
GB 0.49 0.71 0.48 0.72

ANN 0.43 0.61 0.47 0.54
DT 0.35 0.50 0.38 0.48
NB 0.42 0.45 0.41 0.46

RF model gave the best results in both intrin-
sic and extrinsic evaluation, and the model trained
on over-sampled data showed the best result for
both prompts during intrinsic evaluation, with an
accuracy of 74% for both PTJ and 73% for SMK.
The non-oversampled counterparts had an accu-
racy of 48% for both prompts. In general, over-
sampling increased the accuracy for all classifiers.



An analysis of the best model showed that RF per-
formed better in predicting A2 0 level as well as
B2 0 level, but did poorly for distinguishing be-
tween B1 1 and B2 2.

Accuracy is equivalent to the exact agreement
between human and machine scores. Given that
(Xi et al., 2006) reported exact agreement of only
51.8%, this result is promising, especially since
both studies have four levels of speaking profi-
ciency. However, considering the differences in
the nature of data, construct definition, scores, fea-
tures, and general approach, results are not di-
rectly comparable.

As accuracy only captures a specific aspect
of the model performance, various other perfor-
mance measures have been studied. Table 2 sum-
marizes results with the conventionally used psy-
chometric measures - CK, QWK and SRC. The
highest Cohens Kappa reported in previous stud-
ies was 0.52 (Zechner et al., 2007), quadratically-
weighted Kappa was 0.60 (Higgins et al., 2011)
and SRC was 0.718 (Kang and Johnson, 2018b).
This shows that our results are comparable to other
research on this topic, albeit with different cor-
pora and experimental setup. However, it has to
be remembered that we are relying on manual
transcriptions of speech and not using automatic
speech recognition systems yet in these experi-
ments. Considering that there is no publicly ac-
cessible code or data from other relevant research
on this topic, exact replication may be challenging.

Table 2: Psychometric Measures for Model Per-
formance

PTJ SMOTE SMK SMOTE
PTJ SMK

CK 0.11 0.60 0.08 0.66
QWK 0.17 0.73 0.11 0.76
SRC 0.21 0.73 0.16 0.77

To estimate the stability of the model predic-
tions, 95% confidence intervals are constructed
for the 10-fold CV results using both statisti-
cal theory and bootstrapping using sampling-with-
replacement technique. Specifically, the theoreti-
cal 95% CI was constructed by the following for-
mula:

p =
f+Z2

2N
±Z

√
f
2N

− f2

N
+ Z2

4N2

1+Z2

N

where p is the theoretical 95% CI, f is the mean
accuracy of the 10-fold CV, Z is the is z-statistic

from the specified confidence level, and N is the
sample size (Witten et al. (2016), p. 151). This
assumes that the accuracies from 10-fold CV fol-
low normal distribution with unknown parameters.
This showed an interval of [71.65% –75.67%] for
PTJ prompt and [70.99% – 75.03%] for SMK.

The empirical/ boostrapping 95% CI was con-
structed by repetitively fitting the same random
forest classifier in 1000 iterations. This is shown
in Figure 2 and Figure 3 for both the prompts re-
spectively.

Figure 2: Confidence Interval for PTJ prompt
model

Figure 3: Confidence Interval for SMK Prompt
model

This showed an interval of [72.8% -75.6%] for
PTJ and [73.2% - 76%] for SMK. This adds extra
evidence as to our degree of certainty about the
consistency of the 10-fold CV accuracy through
replications.

Extrinsic (Cross-Prompt) Evaluation: To fur-
ther estimate the consistency of the models, we
evaluated the best performing PTJ model on SMK
data and vice versa. The accuracy dropped in



cross-prompt evaluation when the training data
was oversampled. For example, when the PTJ
model was tested on SMK, the accuracy dropped
from 74% 55.58%. When the SMK model was
tested on PTJ, the accuracy dropped to 52.95%.
Thus, the positive effect of oversampling in intrin-
sic evaluation is not seen in extrinsic evaluation.
Interestingly, the non-oversampled models did not
result in such stark degradation, with accuracies in
both cases being closer to 55% and 53% respec-
tively, which is actually better than their intrinsic
evaluation performance. This leads to a conclu-
sion that the non-oversampled model is somehow
better agnostic to prompts.

The reason for this performance could be that
the oversampling process with low frequency cat-
egories makes the dataset too specific. Whether
this is an experimental artifact or is there some-
thing more to it needs to be evaluated in a future
experiment.

Feature Diagnostics: In order to gain deeper
understanding of the influential features that may
figure prominently in the best-performing model
(i.e., over sampled model), feature importance is
computed for each prompt using the normalized
total reduction of Gini impurity criterion brought
by the feature. Results indicated that the random
forest classifiers rather than relying on a subset of
dominant features, relied on multiple features, al-
though the influence of top few features is rela-
tively larger for both models.

This result, in some sense, justifies the use of
tree-based models for building automated scoring
system in operational tests. From a fairness point
of view, models that make use of all features rather
than a subset of dominant features should be fa-
vored in that the latter may unduly advantage those
test takers who learns to manipulate certain fea-
tures such as complexity of vocabulary3.

Zooming into the top ranking features that have
the highest Gini decrease, we notice that influ-
ential features used in PTJ are: number of so-
phisticated tokens, number of unique words, num-
ber of repairs in speech fluency, standard devia-
tion of the 2nd and 13th MFCCs, number of de-
pendent clauses, corrected type-token ratio, and

3When features based on feature importance are ranked
in descending order, the plot showed a smooth curva-
ture, rather than abrupt gaps. Detailed figures and ta-
bles with feature scores are provided in the supple-
mentary material available at: https://github.com/
nishkalavallabhi/ZhouEtAl2019-SupMat

number of syllables. Influential features for SMK
are number of different words, correct type-token-
ratio, square root of type-token-ratio, different
word types, number of word tokens, spectral flux,
and number of repairs in speech fluency. Thus,
the majority of the important features seem to be
related to the diversity or variability of vocabu-
lary use and repairs in speech fluency. Such Gini-
based feature selection result was consistent with
other feature evaluation measures such as correla-
tion and information gain.

When we compare the best models with the
non-oversampled models, however, the top most
important features differ significantly. For PTJ,
the top 10 features include 5 audio signal fea-
tures and 5 vocabulary based features. The top
10 features for SMK include 5 vocabulary based
features, 2 syntactic features (Complex nominals
per T-unit and mean length of T-unit) and 3 audio
signal features. Considering that the oversampled
model did not transfer its performance in a cross
prompt evaluation, it needs to be studied in future
whether these features play a role in having better
results across prompts.

5 Conclusion and Discussion

We reported some of our initial experiments with
automated scoring of non-native speech using a
new corpus and a set of audio, speech, and text fea-
tures. In terms of our research questions, for RQ1,
our results indicate that the best-performing model
with accuracy of about 73% for both prompts
is achieved by using oversampling and random
forests. For RQ2, our results showed that the accu-
racies drop substantially for the oversampled data
sets, but the accuracies for the non-oversampled
versions remain consistent. For RQ3, various fea-
ture selection schemes consistently pointed to the
dominance of vocabulary related features for this
classification task.

Limitations and Outlook: Firstly, we relied on
the manual transcriptions of speech instead of an
ASR output. While this is in itself is not a lim-
itation, it becomes one when we attempt to test
this model on new speech samples. Additionally,
we calculated repair feature based on the specific
notation used in the manual transcriptions of this
corpus. These issues make applying these mod-
els directly on unseen texts or making a direct
comparison with other existing speech scoring ap-
proaches on a common test set difficult. Further,



ICNALE speech samples were morphed to de-
identify speaker voice. We did not verify the ac-
curacy of the praat script used to estimate fluency
features with such morphed speech. Considering
that these are the first results on a publicly avail-
able dataset for this task (to our knowledge), future
work includes incorporating these aspects into our
approach.

Finally, as was pointed out earlier in Section 3,
the class labels used in this study may be prob-
lematic in that are either directly converted from
the participants existing proficiency scores from
other tests, which need not have reflected in the
current responses. While we don’t have a solution
for this yet, we believe these experiments would
still result in further research in the direction of ex-
ploring more generalizable approaches, using non-
proprietary resources.
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