
UniParse: A universal graph-based parsing toolkit

Daniel Varab
IT University

Copenhagen, Denmark
djam@itu.dk

Natalie Schluter
IT University

Copenhagen, Denmark
natschluter@itu.dk

Abstract

This paper describes the design and use
of the graph-based parsing framework and
toolkit UniParse, released as an open-
source python software package devel-
oped at the IT University, Copenhagen
Denmark. UniParse as a framework
novelly streamlines research prototyping,
development and evaluation of graph-
based dependency parsing architectures.
The system does this by enabling highly
efficient, sufficiently independent, read-
able, and easily extensible implementa-
tions for all dependency parser compo-
nents. We distribute the toolkit with ready-
made pre-configured re-implementations
of recent state-of-the-art first-order graph-
based parsers, including highly efficient
Cython implementations of feature en-
coders and decoding algorithms, as well as
off-the-shelf functions for computing loss
from graph scores.

1 Introduction

Motivation. While graph-based dependency
parsers are theoretically simple models, extensi-
ble and modular implementations for sustainable
parser research and development have to date been
severely lacking in the research community. Con-
tributions to parsing research generally centres
around particular components of parsers in isola-
tion, such as novel decoding algorithms, novel arc
encodings, or novel learning architectures. How-
ever, due to perceived gains in performance or
due to the lack of foresight in writing sustainable
code, these components are rarely implemented
modularly or with extensibility in mind. This
applies to prior sparse-feature dependency parsers
(McDonald and Pereira (2006)’s MST parser),
as well as recent state-of-the-art neural parsers

(Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017). Implementations of parser
components are generally tightly coupled to one
another which heavily hinders their usefulness in
future research.

With UniParse, we provide a flexible, highly
expressive, scientific framework for easy, low-
barrier of entry, highly modular, efficient devel-
opment and fair benchmarking of graph-based
dependency parsing architectures. With the
framework we distribute pre-configured state-of-
the-art first-order sparse and neural graph-based
parser implementations to provide strong base-
lines for future research on graph based depen-
dency parsers.

Novel contributions

• We align sparse feature and neural research
in graph-based dependency parsing to a com-
mon terminology. With this shared termi-
nology we develop a unified framework for
the UniParse toolkit to rapidly prototype new
parsers and easily compare performance to
previous work.

• Prototyping is now rapid due to modular-
ity: parser components may now be devel-
oped in isolation, with no resulting loss in
efficiency. Measuring the empirical perfor-
mance of a new decoder no longer require
implementing an encoder, and investigating
the synergy between a learning strategy and
a decoder no longer requires more than a flag
or calling a library function.

• Preprocessing is now made explicit within
its own component and is thereby adequately
isolated and portable.

• The evaluation module is now easy to read
and fully specified. We specify the subtle
differences in computing unlabeled and la-
beled arc scores (UAS, LAS) from previous



literature and have implemented these in Uni-
Parse in an explicit manner.

• To the best of our knowledge, UniParse is
the first attempt at unifying existing de-
pendency parsers to the same code base.
Moreover, UniParse is to our knowledge
the first attempt to enable first-order sparse-
feature dependency parsing in a shared
python codebase.

We make the parser freely available under a GNU
General Public License1.

2 Terminology of a unified dependency
parser

Traditionally, a graph-based dependency parser
consists of three components. An encoder Γ, a set
of parameters λ, and a decoder h. The possible
dependency relations between all words of a
sentence S are modeled as a complete directed
graph GS where words are nodes and arcs are the
relations. An arc in GS is called a factor which Γ
associates with a d-dimensional feature vector, its
encoding. The set of parameters λ are then used
to produce scores from the constructed feature
vectors according to some learning procedure.
These parameters are optimized over treebanks.
Lastly a decoder h is some maximum spanning
tree algorithm with input GS and scores for
factors of GS given by λ; it outputs a well-formed
dependency tree, which is the raw output of a
dependency model.

Recent work on neural dependency parsers
learns factor embeddings discriminatively along-
side the parameters used for scoring. The result is
that Γ and λ of dependency parsers fuse together
into a union of parameters. Thus, in this work
we fold the notion of encoding into the parameter
space. Now, for the neural models, all parameters
are trainable, whereas for sparse-feature models,
the encodings of sub-sets of arcs are non-trainable.
So the unified terminology addresses only param-
eters λ and a decoder h.

3 API and the joint model architecture

We provide two levels of abstraction for imple-
menting graph-based dependency parsers. First,
our descriptive high-level approach focuses on ex-
pressiveness, enabling models to be described in

1github.com/danielvarab/uniparse

just a few lines of code by providing an interface
where the required code is minimal, only a means
to configure design choices. Second, as an alter-
native to the high-level abstraction we emphasise
that parser definition is nothing more than a com-
position of pre-configured low-level modular im-
plementations. With this we invite cherry picking
of the included implementations of optimised de-
coders, data preprocessors, evaluation module and
more. We now briefly overview the basic use of
the joint API and list the central low-level mod-
ule implementations included with the UniParse
toolkit.

Elementary usage (high level). For ease of use
we provide a high-level class to encapsulate neu-
ral training. Its use results in a significant reduc-
tion in the amount of code required to implement
a parser and counters unwanted boilerplate code.
It provides default configurations for all included
components, while enabling custom implementa-
tion whenever needed. Custom implementations
are only required to be callable and adheres to
the framework’s function definition. The mini-
mum requirement with the use of this interface is a
parameter configuration, loss function, optimizer,
and batch strategy. In Listing 1 we show an exam-
ple implementation of Kiperwasser and Goldberg
(2016)’s neural parser in only a few lines. The full
list of possible arguments along with their inter-
faces can be found in the toolkit documentation.

Vocabulary. This class facilitates preprocessing
of CoNLL-U formatted files with support for out-
of-vocabulary management and alignment with
pre-trained word embeddings. Text preprocessing
strategies have significant impact on NLP model
performance. Despite this, little effort has put
into describing such techniques in recent litera-
ture. Without these details preprocessing becomes
yet another hyper-parameter of a model, and ob-
fuscates research contribution. In the UniParse
toolkit, we include a simple implementation for
recently employed techniques in parsing for token
cleaning and mapping.

Batching. UniParse provides functionality to or-
ganise tokens into batches for efficient compu-
tation and learning. We provide several con-
figurable implementations for different batching
strategies. This includes 1. batching by sentence
length (bucketing), 2. fixed-length batching with
padding, and 3. clustered-length batching as seen



1 from uniparse import *
2 from uniparse.models import *
3
4 vocab = Vocabulary().fit(train)
5 params = KiperwasserGoldberg()
6 model = Model(params,
7 decoder="eisner",
8 loss="hinge",
9 optimizer="adam",

10 vocab=vocab)
11 metrics = model.train(train, dev,
12 epochs=30)
13 test_metrics = model.evaluate(test)

Algorithm en ud en ptb sents/s

Eisner (generic) 96.35 479.1 ∼ 80
Eisner (ours) 1.49 6.31 ∼ 6009
CLE (generic) 19.12 93.8 ∼ 404
CLE (ours) 1.764 6.98 ∼ 5436

Figure 1: (Right code snippet) Implementation of Kiperwasser and Goldberg (2016)’s neural parser in
only a few lines using UniParse.
(Right table and left figure) Number of seconds a decoder takes to decode an entire dataset. Score
matrices are generated uniformly in the range [0, 1]. The random generated data has an impact on CLE
due to its greedy nature; The figure demonstrates this by the increasingly broad standard deviation band.
Experiments are run on an Ubuntu machine with an Intel Xeon E5-2660, 2.60GHz CPU.

in the codebase for Dozat and Manning (2017)2

(this is not described in the published work). With
unobtrusive design in mind any alternative custom
batching strategy may be employed directly, no in-
teraction with the framework is needed.

Decoders We include optimised Cython imple-
mentations of first-order decoder algorithms with
the toolkit. This includes Eisner’s algorithm (Eis-
ner, 1996) and Chu-Liu-Edmonds (Chu and Liu,
1965; Edmonds, 1967; Zwick, 2013). In Figure
1 we compare the performance of our decoder
implementations against pure python implementa-
tions3 on randomised score input. Our implemen-
tations outperform a pure python implementations
by a order of several magnitudes.

Evaluation. UAS and LAS are central depen-
dency parser performance metrics, measuring un-
labeled and labeled arc accuracy respectively with
UAS = #correct arcs

#arcs and LAS = #correctly labeled arcs
#arcs .

Unfortunately, there are also a number unreported
2https://github.com/tdozat/Parser-v1
3https://github.com/

LxMLS/lxmls-toolkit/blob/
1bdc382e509d24b24f581c1e1d78728c9e739169/
lxmls/parsing/dependency_decoder.py

preprocessing choices preceding the application
of these metrics, which renders direct comparison
of parser performance in the literature futile, re-
gardless of how well-motivated these preprocess-
ing choices are. These are generally discovered
by manually screening the code implementations
when these implementations are made available to
the research community. Two important variations
found in state-of-the-art parser evaluation are the
following.

1. Punctuation removal. Arcs incoming to any
punctuation are somtimes removed for eval-
uation. Moreover, the definition of punctu-
ation is not universally shared. We provide
a clear python implementation for these met-
rics with and without punctuation arc dele-
tion before application, where the definition
of punctuation is clear: punctuation refers to
tokens that consist of characters complying
to the Unicode punctuation standard.4 This
is the strategy employed by the widely used
Perl evaluation script, which to our knowl-
edge, originates from the CoNLL 2006 and

4https://www.compart.com/en/unicode/
category



Parser configurations Dataset UAS wo.p..
original

LAS wo.p.
original

UAS
wo.p.

LAS
wo.p.

UAS
w.p.

LAS
w.p.

Kiperwasser and Goldberg en ud — — 87.71 84.83 86.80 85.12
(2016) en ptb 93.32 91.2 93.14 91.57 92.56 91.17

da — — 83.72 79.49 83.24 79.62
Dozat and Manning en ud — — 91.47 89.38 90.74 89.01

(2017) en ptb 95.74 95.74 95.43 94.06 94.91 93.70
da — — 87.84 84.99 87.42 84.98

MSTparser en ud — — 75.55 66.25 73.47 65.20
(2006) + extensions en ptb — — 76.07 64.67 74.00 63.60

da — — 68.80 55.30 67.17 55.52

Table 1: UAS/LAS for included parser configurations. We provide results with (w.p.) and without (wo.p.)
punctuation. For the English universal dependencies (UD) dataset we exclude the github repository suffix
EWT. Regarding (Dozat and Manning, 2017), despite having access to the published TensorFlow code
of we never observed scores exceed 95.58.

2007 shared tasks.5 We infer this from refer-
ences in (Buchholz and Marsi, 2006).

2. Label prefixing. Some arc labels are “com-
posite”, their components separated by a
colon. An example from the English Uni-
versal Dependencies data set is the label
obl:tmod. The official CoNLL 2017
shared-task evaluation script6 allows partial
matching of labels based on prefix matches
for components, for example matching to
obl of obl:tmod giving full points. We in-
clude this variant in the distributed UniParse
evaluation module.

Loss Functions. Common loss functions apply
to scalar values, or predictions vectors represent-
ing either real values or probabilities. However
loss functions for dependency parsers are unortho-
dox in that they operate on graphs, which has
been dealt with in various creative ways over the
years. We include a set of functions that apply to
first-order parser graphs which are represented as
square matrices. In the future we hope to expand
this set for first-order, as well as explore higher-
order structures.

Callbacks. While we have done our uttermost
to design UniParse in a unobtrusive manner, few
limitations may occur when developing, and es-
pecially during exploration of model configura-
tions when using the high-level model class. This
could be the likes of manual updating of optimis-
ers learning rates during training, or logging gran-

5https://depparse.uvt.nl/SoftwarePage.
html#eval07.pl

6https://universaldependencies.org/
conll17/baseline.html

ulated loss and accuracy. To accommodate this we
include callback functionality which hooks into
the training procedure enabling users to do the last
few things perhaps inhibited by the framework.
We include a number of useful pre-implemented
callback utilities, such as a Tensorboard logger7,
model saver, and a patience mechanism for early
stopping.

Included parsers. We include three state-of-
the-art first-order dependency parser implementa-
tions as example configurations of UniParse: Mc-
Donald and Pereira (2006)’s MST sparse-feature
parser 8, Kiperwasser and Goldberg (2016) and
Dozat and Manning (2017)’s graph-based neu-
ral parsers. Experiments are carried out on En-
glish and Danish: the Penn Treebank (Marcus
et al., 1994) (en ptb, training on sections 2-21, de-
velopment on section 22 and testing on section
23), converted to dependency format following
the default configuration of the Stanford Depen-
dency Converter (version ≥ 3.5.2), and the English
(en ud), and Danish (da) datasets from Version 2.1
of the Universal Dependencies project (Nivre et
al., 2017). Table 1 shows how our parser con-
figurations perform compared with the originally
reported parser performance.

7github.com/tensorflow/tensorboard
8Note that this MST parser implementation consists of a

restricted feature set and is only a first-order parser, as proof
of concept.



4 Concluding remarks

In this paper, we have described the design and
usage of UniParse, a high-level un-opinionated
framework and toolkit that supports both feature-
based models with on-line learning techniques,
as well as recent neural architectures trained
through backpropagation. We have presented the
framework as answer to a long-standing need for
highly efficient, easily extensible, and, most of
all, directly comparable graph-based dependency
parsing research.

The goal of UniParse is to ease development
and evaluation of graph-based syntatic parsers.
Future work includes extending UniParse to a gen-
eral parsing pipeline from raw text.

References
Sabine Buchholz and Erwin Marsi. 2006. Conll-x

shared task on multilingual dependency parsing. In
In Proceedings of CoNLL, pages 149–164. Associa-
tion for Computational Linguistics.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Sci. Sinica, 14:13961400.

Timothy Dozat and Christopher M. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of ICLR.

J. Edmonds. 1967. Optimum branchings. J. Res. Nat.
Bur. Standards, 71B:233240.

Jason M. Eisner. 1996.
https://doi.org/10.3115/992628.992688 Three
new probabilistic models for dependency parsing:
An exploration. In Proceedings of the 16th Con-
ference on Computational Linguistics - Volume 1,
COLING ’96, pages 340–345, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions of
the ACL, 4:313–327.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The penn treebank: Annotating
predicate argument structure. In Proceedings of
the Workshop on Human Language Technology,
HLT ’94, pages 114–119, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of EACL. Association for
Computational Linguistics.

Joakim Nivre et al. 2017.
http://hdl.handle.net/11234/1-2515 Universal
dependencies 2.1. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguistics
(ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Uri Zwick. 2013. http://www.cs.tau.ac.il/ zwick/grad-
algo-13/directed-mst.pdf Lecture notes on “analysis
of algorithms”: Directed minimum spanning trees.


