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Abstract

We present a system for Natural Language
Inference which uses a dynamic semantics
converter from abstract syntax trees to Coq
types. It combines the fine-grainedness of
a dynamic semantics system with the pow-
erfulness of a state-of-the-art proof assis-
tant. We evaluate the system on all sec-
tions of the FraCaS test suite, excluding
section 6. This is the first system that does
a complete run on the anaphora and ellip-
sis sections of the FraCaS. It has a better
overall accuracy than any previous system.

1 Introduction

Natural Language Inference (NLI) is the task of
determining of whether an NL hypothesis H fol-
lows from an NL premise(s) P. NLI has received a
lot of attention in the Computational Semantics lit-
erature and has been approached using a variety of
techniques, ranging from logical approaches (Bos,
2008; Mineshima et al., 2015; Abzianidze, 2015;
Bernardy and Chatzikyriakidis, 2017), all the way
to the recent Deep Learning (DL) models for NLI.
The latter approaches, following a general trend
in NLP, have been dominating NLI and a num-
ber of impressive results have been produced (Kim
et al., 2018; Radford et al., 2018; Liu et al., 2019).1

State-of-the-art DL systems achieve an accuracy
of around 0.9 when tested on suitable datasets.
However, the datasets that are used are assuming
a definition of inference that can be thought to be
‘looser’ or less precise compared to the definition
assumed in platforms based in logical approaches
(Bernardy and Chatzikyriakidis, 2019). For ex-
ample, consider the following example from the
SNLI dataset, predominatly used to test DL ap-
proaches:

1These are the three systems with the best results on SNLI
in increasing order at the time of writing.

(1) P A man selling donuts to a customer during
a world exhibition event held in the city of
Angeles.
H A woman drinks her coffee in a small cafe.
Label: Contradiction [SNLI]

In (1), a number of non-trivial assumptions have
to be made in order to arrive at a contradiction:
a) the two situations described have to be taken to
refer to the same situation in order to judge that
the latter contradicts the former, b) the indefinite
article in the premise has to be identified with the
indefinite article in the hypothesis. (Additionally
considering that a person cannot be a man sell-
ing donuts and a woman drinking coffee at the
same time.) While this can be part of the reason-
ing humans perform, it is not the only possibility.
More precise, logical reasoning is also a possibil-
ity, and will render the above label as unknown.
Furthermore, reasoning can get very fine-grained
as the Contained Deletion ellipsis example (2) be-
low shows:

(2) P1 Bill spoke to everyone that John did [el-
liptic V2].
P2 John spoke to Mary.
Q Did Bill speak to Mary?
H Bill spoke to Mary.
Label: Yes [FraCas 173]

For this reason, and despite the dominance of
DL approaches in pretty much all NLP tasks, logi-
cal approaches continue to be developed and eval-
uated on datasets like the FraCaS test suite and
the SICK dataset (Marelli et al., 2014). Bernardy
and Chatzikyriakidis (2017) define a correspon-
dence between abstract syntax parse trees of the
FraCas examples, parsed using the Grammatical
Framework (GF, Ranta (2011)), and modern type-
theoretic semantics that are output in the Coq
proof assistant (the FraCoq system). The accu-
racy is 0.85 for 5 sections of the FraCaS test suite.



The LANGPRO system presented by Abzianidze
(2015) is based on a Natural Logic tableau theo-
rem prover. It achieves an accuracy of .82 on the
SICK dataset.

In this paper, we concentrate on this sort of
fine-grained, logical reasoning. In particular, we
present a logic-based system that deals with many
linguistic phenomena at the same time. It is the
first system covering the sections on ellipsis and
anaphora in the FraCaS test suite and has the best
coverage and accuracy on the overall test suite.

2 Background

GF In GF, abstract syntax is comprised of: a) a
number of syntactic categories, and b) a number
of syntactic construction functions. The latter pro-
vide the means to compose basic syntactic cate-
gories into more complex ones. For example, con-
sider the constructor: AdjCN : AP → CN →
CN . This expresses that one can append an ad-
jectival phrase to a common noun and obtain a
new common noun. Furthermore, GF is equipped
with a library of mappings from abstract syntax to
the concrete syntax of various natural languages.
These mappings can be inverted by GF, thus offer-
ing parsing from natural text into abstract syntax.
However, in this project we skip the parsing phase
and use the parse trees constructed by Ljunglöf
and Siverbo (2011), thereby avoiding any syntac-
tic ambiguity.

Coq Coq is an interactive theorem prover (proof
assistant) based on the calculus of inductive con-
structions (CiC), i.e. a lambda calculus with de-
pendent types. Coq is a very powerful reasoning
engine that makes it fit for the task of NLI, when
the latter is formalized as a theorem proving task.
It supports notably dependent typing and subtyp-
ing, which are instrumental in expressing NL se-
mantics.

Dynamic Monadic Semantics Dynamic
Monadic Semantics have been proven to be
an effective way of dealing with anaphora and
ellipsis. There are a number of approaches using
monads or other equivalent constructions (e.g.
continuations as in the work of de Groote (2006))
for anaphora and ellipsis Shan (2002); Unger
(2011); Barker and chieh Shan (2004); Qian et al.
(2016); Charlow (2017). In this paper, we follow
the approach described in Bernardy et al.. More
details are given in the next section.

3 Overview of the system

Our system consists of two main parts.

1. A converter from syntax trees to types. The
syntax trees follow the GF formalism, and the
types follow the Coq formalism. The con-
verter itself is a Haskell Program, which im-
plements a dynamic semantics and comprises
the bulk of our system.

2. A number of type-theoretical combinators,
that encode semantical aspects which have no
influence on the dynamic part. Such aspects
include the treatment of adjectives (intersec-
tive, subsective, etc.) and adverbs (veridical
or not).

The architecture is represented schematically in
Figure 1.

All the underlying systems (GF, Haskell, Coq)
are based on lambda calculi with types. We take
advantage of typing, ensuring that each translation
preserve typing, locally:

1. Every GF syntactic category C is mapped to
a type noted JCK.

2. GF Functional types are mapped composi-
tionally : JA→ BK = JAK→ JBK

3. Every GF syntactic construction function (f :
X) is mapped to a function JfK such that
JfK : JXK.

4. GF function applications are mapped compo-
sitionally: Jt(u)K = JtK(JuK).

Because all systems embed the simply-typed
lambda calculus, ensuring type-preservation lo-
cally means that types are preserved globally.
Therefore, we are certain that every GF syntax tree
can be mapped to Haskell, and eventually Coq,
without error.

The dynamic semantics follows a monadic
structure, as pioneered by Shan (2002). There are
two kinds of effects carried by the monad. The
first one comprises a series of updates and queries
of stateful elements. There is one piece of up-
dateable state for every element which can be re-
ferred to by anaphoric expressions. These can be
the usual ones (like NPs), but also less usual ones
(like 2-place verbs, or a quantity — which we il-
lustrate below). The other kind of effects is non-
determinism. We use non-determinism to model
the property that linguistic expressions can have
several interpretations. The monadic structure al-
lows to locally express that a given expression has
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Figure 1: Phases in our system. (∗) At the level of Coq, we handle the details of the adverbial (veridi-
cality properties) and adjectival semantics (division into subsective, extentional, non-committal, etc.
categories.)

several meanings; the monadic bind ensures that
all combinations of meanings are considered at the
top-level, combinatorially. This dynamic seman-
tics allows us to model many phenomena in a pre-
cise way.

Anaphora Thanks to the above system, we can
handle many anaphoric cases, including E-Type
and Donkey anaphora. Indeed, even objects which
have no syntactic representation can be added to
the environment. We follow here the general
monadic semantics approach as outlined by Unger
(2011). However, we use a more general scope-
extension mechanism, which allows us to support
examples like the following:

(3) P1 Every committee has a chairman.
P2 He is appointed its members.
H Every committee has a chairman appointed
by members of the committee.
Label: YES [FraCaS 122]

In the above example, the pronoun “he” is allowed
to refer to the object quantified over by “every”,
whose scope is extended accordingly. We describe
the anaphora resolution system in every detail in a
manuscript (Bernardy et al.).

Ellipsis Ellipsis is handled in essentially the
same way as anaphora. This method is made es-
pecially straightforward thanks to using GF syntax
trees, which require an explicit argument for each
predicate. Thus, ellipsis are made explicit by the
parsing phase. Such ellptic expressions are han-
dled in the same way as anaphora. For example,
in (2) repeated below as (4), the argument of “did”
is explicitly marked as an elliptic V2, which we
resolve to “speak” in that context:

(4) P1 Bill spoke to everyone that John did [el-
liptic V2].
P2 John spoke to Mary.
Q Did Bill speak to Mary?
H Bill spoke to Mary.
Label: Yes [FraCas 173]

Definites A naive way to handle definites is us-
ing an existential type. However, if the semantics
does not feature a dynamic element, then the ex-
istential quantification is introduced locally. This
means that the quantifier can be introduced in the
wrong Context. Consider the phrase “everyone
pets the dog”. The structure of the interpretation
would be ∀x.person(x)→ ∃y.dog(y)∧pet(x, y).
Instead, our take is that definites should be treated
as an anaphoric expression with an implicit refer-
rent. That is, if the referent is not found in the
discourse, then it will be forcibly introduced, us-
ing an existential type, at the top-level of the ex-
pression. To be able to do this, we record all def-
inites without referent, using another portion of
the environment (using a monadic effect). For the
above example, we obtain the desired interpreta-
tion: ∃y.dog(y) ∧ (∀x.person(x)→ pet(x, y)).

Phrasal comparatives Previous attempts to
tackle the section of the FraCaS test suite devoted
to comparatives showed that handling them is not
easy. Our strategy here is to leverage our dynamic
semantics, revealing an anaphoric element of com-
paratives. Indeed, consider the hypothesis of (Fra-
CaS 239): “ITEL won more orders than APCOM
lost.” We postulate that this sentence is equivalent
to the following two separate parts: “APCOM lost
zero or more orders. ITEL won more orders [than
some elliptic quantity].” A quantity is introduced
every time we talk about some quantity (indexed
by a CN, in this case “orders”), and it can be re-
ferred to by a comparative, later in the discourse.
Using this idea, we can go one level deeper in the
interpretation of our example: “APCOM lost θ or-
ders. θ ≥ 0. ITEL won at least θ+1 orders.”. We
see here how the quantities are introduced. They
are added to the environment so that, they can be
referred to as elliptic quantity expressions.2 Fi-

2The degree parameter assumption is not new in the
formal semantics literature (Cresswell, 1976; Heim, 2000;
Kennedy, 2007; Chatzikyriakidis and Luo, 2017) among
many others. The specific details and computational imple-



nally, “more” is systematically intepreted as “at
least ¡elliptic quantity¿+1”. This treatment, which
we illustrated here on an example, is systematic in
our implementation.

Adjectives We interpret gradable adjectives us-
ing a pair of a measure m : objects → Z and
a threshold τ : Z, where Z is treated as an ab-
stract ordered ring by Coq. (This structure has
no dynamic aspect in our model, and thus is en-
tirely handled within Coq.) For subsective adjec-
tives, τ will additionally depend on the class of the
object in question. This structure has the benefit
that opposite adjectives can be easily represented
(measures are opposites ∀x.m1x = ¬m2x and
thresholds do not overlap τ1 + τ2 > 0). Formal-
ization aside, this idea is reminiscent of degree-
based approaches to gradable adjectives of Cress-
well (1976); Kennedy (2007). Additionally adjec-
tival predicates, as present in the FraCaS suite, are
interpreted as linear inequations inZ. Solving sys-
tems of such inequations is decidable. Indeed, the
tactic that Coq offers for this purpose can solve all
such problems in the FraCaS suite, automatically.

Adverbs Another point, of minor theoretical im-
portance but major practical one, is our handling
of adverbial phrases. We interpret adverbs (and
in general all adverbial and prepositional phrases)
as VP-modifiers: Adv = V P → V P , where
V P = object → Prop. However, applying ad-
verbs to verb-phrases heavily complicates the Coq
proofs, because such phrases can contain quanti-
fiers. Therefore, we instead move the adverbs, so
that they apply to (atomic) verbs only. Proofs can
then be simplify accordingly.

4 Results and evaluation

We evaluated FraCoq against 8 sections of the Fra-
CaS test suite, for a total of 259 cases. We ex-
cluded only section 7, “temporal reference”. The
reason for doing so is that, in our view, it contains
too many examples which require ad-hoc treat-
ment, and thus makes little sense to include with-
out complementing it with a more thorough suite
which captures a more complete landscape of the
phenomena that section 7 touches.

FraCaS classifies each problem as either entail-
ment (YES), entailment of the opposite (NO) or no
entailment (UNK). In this work, we have amended
the FraCaS suite to correct a few problems. First,

mentation, however, are.

test case new class comment
005 UNK missing hypothesis: there are

italian tenors
056 Yes Already identified as such by

MacCartney
069 Unk Mary could have used some-

one else’s workstation
119 Unk ibid.
181 Yes for the same reason as 180
226 Yes

Table 1: Overruled FraCaS cases

certain test case are not formed correctly. Those
were already identified by MacCartney and Man-
ning (2007) as such (using an “undef” labelling),
and we removed those. Second, a few test cases
occur twice in the suite, but with two different
labellings (one YES and one UNK), with an an-
notation that those labellings correspond to differ-
ent readings. However, elsewhere in the suite, if
a problem has several readings but only one has
entailment, it occurs only once and is marked as
YES. To make the test suite consistent, if one read-
ing yields entailment we have always considered
it as YES. We have also removed case 199 (which
appears to be vacuous). Finally we changed the
labelling of 6 cases which appeared to have been
misclassified. We note that the majority of the
mistaken classifications occur in sections 3 and
4, which have not been previously attempted and
thus, we propose, have not been properly scruti-
nized. In terms of comparison, this only has a mi-
nor effect, since our system is the first system to
run sections 3 and 4.

Our system classifies a case as YES if a proof
can be constructed from the premises to the hy-
pothesis, NO if a proof of the negated hypothesis
can be constructed and UNK otherwise. Because
we work with a non-decidable logic, one cannot in
general conclude decisively that no proof exists.
Thus, we consider here that no proof exists if it
cannot be constructed with reasonable effort. In
particular, we test at the minimum that the auto-
matic proof search built in Coq does not succeed
before classifying a problem as UNK.3

Table 2 shows a considerable improvement over
earlier approaches in terms of coverage, with three
more sections covered over previous approaches.
We thus cover 259 out of 337 cases (77%), com-
pared to at most 174 cases (52%) in previous work.
Additionally, our system performs generally the

3The other way this can be done is by introducing a time-
out as Mineshima et al. (2015) have done.



Section #cases Ours FC MINE Nut Langpro
Quantifiers 75 .96 .96 .77 .53 .93

74 44

Plurals 33 .82 .76 .67 .52 .73
24

Anaphora 28 .86 - - - -
Ellipsis 52 .87 - - - -
Adjectives 22 .95 .95 .68 .32 .73

20 12

Comparatives 31 .87 .56 .48 .45 -
Temporal 75 - - - - -
Verbs 8 .75 - - - -
Attitudes 13 .92 .85 .77 .46 .92

9

Total 337 .89 .83 .69 .50 .85
259 174 174 174 89

Table 2: Accuracy of our system compared to oth-
ers. “Ours” refers to the approach presented in this
paper. When a system does not handle the nomi-
nal number of test cases (shown in the second col-
umn), the actual number of test cases attempted
is shown below the accuracy figure, in smaller
font. “FraCoq” refers to the work of Bernardy
and Chatzikyriakidis (2017). “MINE” refers to the
approach of Mineshima et al. (2015), “NUT” to
the CCG system that utilizes the first-order auto-
mated theorem prover nutcracker (Bos, 2008), and
“Langpro” to the system presented by Abzianidze
(2015). A dash indicates that no attempt was made
for the section.

best in terms of accuracy. In particular, section 6
largely improves in accuracy, which we attribute to
our dynamic semantics analysis of comparatives.

error analysis Our system fails to correctly
classify 28 cases out of 259. We give here a sum-
mary of the missing features which are responsi-
ble for the failures. The biggest source of error is
incomplete handling of group readings. (FraCaS
013, 014, 046, 084, 111, 124, 126, 127, 137, 171,
172, 191, 193, 195, 243, 250, 333, 346). These are
cases where a syntactic conjunction of individuals
is treated as a semantic group, or where precise
counting of the members of a group is necessary.
Other problematic cases include definite plurals
with no universal readings (091, 094, 095). Ad-
ditionally, neither measure phrases (242) nor at-
tributive comparatives (244, 245) are handled.

5 Conclusions and Future Work

We presented a system converting GF trees to Coq
types using dynamic semantics. The system out-
performs the state of the art in logical approaches
when tested on the FraCaS and is the only sys-

tem to date to perform a run on the FraCaS el-
lipsis/anaphora section. The system is precise
enough to form the start of a precise NL reasoner
for controlled domains. In the future, we plan to
extend the system to cover the remaining section
of the FraCaS (tense/aspect), and also develop a
more applied version to perform reasoning on con-
trolled NL domains.
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