
Comparing the Performance of Feature Representations
for the Categorization of the Easy-to-Read Variety vs Standard Language

Marina Santini
RISE Research Institutes of Sweden

(Division ICT - RISE SICS East)
Stockholm, Sweden

marina.santini@ri.se

Benjamin Danielsson
Linköping University

(IDA)
Linköping, Sweden

benda425@student.liu.se

Arne Jönsson
RISE Research Institutes of Sweden

& Linköping University (IDA)
Linköping, Sweden
arne.jonsson@liu.se

Abstract
We explore the effectiveness of four fea-
ture representations – bag-of-words, word
embeddings, principal components and
autoencoders – for the binary categoriza-
tion of the easy-to-read variety vs standard
language. “Standard language” refers to
the ordinary language variety used by a
population as a whole or by a community,
while the “easy-to-read” variety is a sim-
pler (or a simplified) version of the stan-
dard language. We test the efficiency of
these feature representations on three cor-
pora, which differ in size, class balance,
unit of analysis, language and topic. We
rely on supervised and unsupervised ma-
chine learning algorithms. Results show
that bag-of-words is a robust and straight-
forward feature representation for this task
and performs well in many experimen-
tal settings. Its performance is equiva-
lent or equal to the performance achieved
with principal components and autoen-
corders, whose preprocessing is however
more time-consuming. Word embeddings
are less accurate than the other feature rep-
resentations for this classification task.

1 Introduction

Broadly speaking, a language variety is any spe-
cific form of language variation, such as standard
language, dialects, registers or jargons. In this pa-
per, we focus on two language varieties, namely
the standard language variety and the easy-to-read
variety. In this context, “standard language” refers
to the official and ordinary language variety used
by a population as a whole, or to a variety that is
normally employed within a community. For ex-
ample, “Standard English” is the form of the En-
glish language widely accepted as the usual cor-
rect form, while within the medical community it

is the specialized medical jargon that is considered
to be standard language. In contrast, the easy-to-
read variety is a simpler version of a standard lan-
guage. The need of an easy-to-read variety stems
from the difficulties that certain groups of people
experience with standard language, such as people
with dyslexia and other learning disabilities, the
elderly, children, non-native speakers and so on.
In order to meet the needs of a simpler language
that makes information easy to read and under-
stand for all, European Standards have been estab-
lished1, and an important initiative like Wikipedia
has created a special edition called Simple En-
glish Wikipedia2. These are not isolated phenom-
ena. For instance, in Sweden public authorities
(sv: myndigheter) provide an easy-to-read version
(a.k.a. simple Swedish or sv: lättläst) of their writ-
ten documentation.

Both in the case of the Simple English
Wikipedia and in the case of Swedish public au-
thorities, the simplified documents are manually
written. Since the manual production of simplified
texts is time-consuming, the task called Text Sim-
plification (TS) is very active in Natural Language
Processing (NLP) in the attempt to streamline this
type of text production. TS is a fast-growing re-
search area that can bring about practical benefits,
e.g. the automatic generation of simplified texts.
There is, however, a TS subtask that is still un-
derexplored: the categorization of the easy-to-read
variety vs standard language. The findings pre-
sented in this paper contribute to start filling this
gap. The automatic separation of standard texts
from easy-to-read texts could be particularly use-
ful for other TS subtasks, such as the bootstrap-
ping of monolingual corpora from the web or the

1https://easy-to-read.eu/wp-content/
uploads/2014/12/EN_Information_for_all.
pdf

2https://simple.wikipedia.org/wiki/
Main_Page



extraction of simplified terminology. Other ar-
eas that could benefit from it include informa-
tion retrieval (e.g. for the retrieval of easy-to-read
or patient-friendly medical information) and deep
learning-based dialogue systems (e.g. customized
chatbots for expert users or naive users).

The research question we would like to an-
swer is: which is the most suitable feature rep-
resentation for this categorization task? In or-
der to answer this question, we compare four dif-
ferent feature representations that can potentially
make sense of the lexical makeup that differenti-
ates easy-to-read from standard language, namely
bag-of-words (BoWs), word embeddings, princi-
pal components and autoencoders. It goes without
saying that these four feature representations are
just a few of the many possible feature representa-
tions for this kind of task. We start our long-term
exploration with these four feature representations
because they are straightforward and easy to ex-
tract automatically from any corpora. We test the
efficiency of the four feature representations with
three types of machine learning algorithms: tra-
ditional supervised machine learning, deep learn-
ing and clustering3. The experiments are based
on three corpora belonging to different domains.
From these corpora, we extracted three datasets
of different sizes, different class balance, different
units of analysis (sentence vs document), different
languages (Swedish and English).

The ultimate goal of the experiments presented
in this paper is to propose a first empirical baseline
for the categorization of the easy-to-read variety vs
standard language.

2 Previous Work

As mentioned above, the automatic separation of
standard language from the easy-to-read variety is
underinvestigated, but it could be useful for sev-
eral TS subtasks, such as the bootstrapping (Ba-
roni and Bernardini, 2004) of monolingual paral-
lel corpora (Caseli et al., 2009), of monolingual
comparable corpora (Barzilay and Elhadad, 2003)
or the exploitation of regular corpora (Glavaš and
Štajner, 2015). Extensive work exists in TS (Sag-
gion, 2017). The most advanced work focuses
on the implementation of neural text simplifica-
tion systems that are able to simultaneously per-
form lexical simplification and content reduction

3The umbrella term ‘categorization’ is used to cover these
three machine learning approaches.

(Nisioi et al., 2017).
In this paper, however, we do not focus on the

creation of TS systems, but rather on the sheer
downstream categorization task of separating stan-
dard language from the easy-to-read variety. To
our knowledge, limited research exists in this area,
which mostly focuses on the discrimination be-
tween the specialized language used by domain
experts and the language used by non-experts
(a.k.a. laypeople or the lay). This type of distinc-
tion is required in some domains (e.g. medical and
legal domains), where the specialized jargon hin-
ders the understanding of “ordinary” people, i.e.
people without specialized education, who strug-
gle to get a grip on professional sublanguages. In
the experiments reported in Santini et al. (2019),
it is shown that it is possible to successfully dis-
criminate between medical web texts written for
experts and for laypeople in Swedish. Results are
encouraging and we use one of their datasets in the
experiments presented here.

Other corpora are available that can be used
for the automatic categorization of the easy-to-
read variety vs standard language. For instance,
the Simple English Wikipedia corpus4 (Kauchak,
2013), and the DigInclude corpus5 in Swedish
(Rennes and Jönsson, 2016). However, neither
Simple English Wikipedia nor DigInclude have
ever been used for this text categorization task. We
use them in this context for the first time.

3 Corpora and Datasets

In our experiments, we use three corpora, two
in Swedish and one in English. More precisely,
we rely on 1) a subset of the eCare corpus (San-
tini et al., 2019) in Swedish; 2) a subset of the
DigInclude corpus (Rennes and Jönsson, 2016) in
Swedish and 3) a subset of the Simple English
Wikipedia corpus (Kauchak, 2013) in English.

The eCare corpus is a domain-specific web cor-
pus. The domain of interest is the medical field of
chronic diseases. From the current version of the
corpus we re-use a labelled subset. The eCare sub-
set contains 462 webpages without boilerplates.
The webpages have been labelled as ‘lay’ or ‘spe-
cialized’ by a lay native speaker. Lay sublanguage
is an easy-to-read version of the standard lan-
guage (the medical jargon) used by healthcare pro-

4http://www.cs.pomona.edu/˜dkauchak/
simplification/

5https://www.ida.liu.se/˜arnjo82/
diginclude/corpus.shtml



fessionals. The 462 webpages of the eCare dataset
(amounting to 424,278 words) have been labelled
in the following way: 388 specialized webpages
(66%) and 154 lay webpages (33%). The dataset
is unbalanced. The unit of analysis that we use in
these experiments is the document.

The DigInclude corpus is a collection of easy-
to-read sentences aligned to standard language
sentences. The corpus has been crawled from
a number of Swedish authorities’ websites. The
DigInclude datasets contains 17,502 sentences,
3,827 simple sentences (22%) and 13,675 standard
sentences (78%), amounting to 233,094 words.
The dataset is heavily unbalanced. The unit of
analysis is the sentence.

The Simple English Wikipedia (SEW) cor-
pus was generated by aligning Simple English
Wikipedia and standard English Wikipedia. Two
different versions of the corpus exist (V1 and V2).
V2 has been packaged in sentences and in docu-
ments. We used the subset of V2 divided into sen-
tences. The SEW dataset contains 325,245 sen-
tences, 159,713 easy-to-read sentences (49.1%)
and 165,532 standard sentences (50.9%), amount-
ing to 7,191,133 words. The dataset is fairly bal-
anced. The unit of analysis is the sentence.

4 Features Representations and Filters

At the landing page of Simple English Wikipedia,
it is stated: “We use Simple English words and
grammar here.” Essentially, this statement implies
that the use of basic vocabulary and simple gram-
mar makes a text easier to read. In these experi-
ments we focus on the effectiveness of feature rep-
resentations based on lexical items and leave the
exploration of grammar-based tags for the future.

In this section, we describe the four feature
representations, as well as the filters that have
been applied to create them. These filters and the
methods described in Section 5 are included in
the Weka Data Mining workbench (Witten et al.,
2016)6. All the experiments performed with the
Weka workbench can be replicated in any other
workbench, or programmatically in any program-
ming language. We use Weka here for the sake of
fast reproducibility, since Weka is easy to use also
for those who are not familiar with the practicali-
ties of machine learning. Additionally, it is open
source, flexible and well-documented.

6Open source software freely available at https://
www.cs.waikato.ac.nz/ml/weka/

In the experiments below several filters have
been stacked together via the Multifilter metafil-
ter, which gives the opportunity to apply several
filtering schemes sequentially to the same dataset.

BoWs. BoWs is a representation of text that de-
scribes the occurrence of single words within a
document. It involves two things: a vocabulary
of known words and a weighing scheme to mea-
sure the presence of known words. It is called a
“bag” of words, because any information about the
order or structure of words in the document is dis-
carded. The model is only concerned with whether
known words occur in the document, not where
in the document, or with which other words they
co-occur. The advantage of BoWs is simplicity.
BoWs models are simple to understand and im-
plement and offer a lot of flexibility for customiza-
tion. Preprocessing can include different levels of
refinement, from stopword removal to stemming
or lemmatization, and a wide range of weighing
schemes. Usually, lexical items in the form of
BoWs represent the topic(s) of a text and are nor-
mally used for topical text classification. Several
related topics make up a domain, i.e. a subject
field like Fashion or Medicine. Here we use BoWs
for a different purpose, which is to detect the dif-
ferent level of lexical sophistication that exists
between the easy-to-read variety and standard lan-
guage. Intuitively, easy-to-read texts have a much
plainer and poorer vocabulary than texts written in
standard language. The rationale of using BoWs
in this context is then to capture the lexical diver-
sification that characterizes easy-to-read and stan-
dard language texts.

Starting from datasets in string format, we ap-
plied StringToWordVector, which is an unsuper-
vised filter that converts string attributes into a set
of attributes representing frequencies of word oc-
currence. For all the corpora, we selected the TF
and IDF weighing schemes, normalization to low-
ercase and normalization to the length of the doc-
uments. Lemmatization, stemming and stopword
removal were not applied. The number of words
that were kept varies according to the size of cor-
pus. The complete settings of this and all the other
filters described below are fully documented in the
companion website.

Word embeddings. Word embeddings are one
of the most popular representations of document
vocabulary to date, since they have proved to be



effective in many tasks (e.g. sentiment analysis,
text classification, etc.). The advantage of word
embeddings lies in their capability to capture the
context of a word in a document, as well as se-
mantic and syntactic similarity. The basic idea be-
hind word embeddings is to “embed” a word vec-
tor space into another. The big intuition is that this
mapping could bring to light something new about
the data that was unknown before. More specifi-
cally, word embeddings learn both the meanings
of the words and the relationships between words
because they capture the implicit relations be-
tween words by determining how often a word ap-
pears with other words in the training text. The
rationale of using word embeddings in this con-
text is to account for both semantic and syntactic
representations, traits that can be beneficial for the
categorization of language varieties.

Word embeddings can be native or pretrained.
Here we use the pretrained Polyglot Embed-
dings (Al-Rfou et al., 2013) for Swedish (polyglot-
sv) and for English (polyglot-en).

Principal Components. Principal Component
Analysis (PCA) involves the orthogonal transfor-
mation of possibly correlated variables into a set
of values of linearly uncorrelated variables called
principal components. This transformation is de-
fined in such a way that the first principal com-
ponent explains the largest possible variance, and
each succeeding component in turn explains the
highest variance possible under the constraint that
it is orthogonal to the preceding components. The
advantage of PCA is to reduce the number of re-
dundant features, which might be common but dis-
turbing when using a BoWs approach, thus possi-
bly improving text classification results. The ra-
tionale of using PCA components in this context
is to ascertain whether feature reduction is benefi-
cial for the categorization of language varieties.

To perform PCA and the transformation of the
data, we wrapped PrincipalComponents filter on
the top of the StringToWordVector filter, via the
Multifilter metafilter. The PrincipalComponents
filter is an unsupervised filter that chooses enough
principal components (a.k.a eigenvectors) to ac-
count for 95% of the variance in the original data.

Autoencoders. Similar to PCA, the basic idea
behind autoencoders is dimensionality reduction.
However, autoencoders are much more flexible
than PCA since they can represent both linear and

non-linear transformation, while PCA can only
perform linear transformation. Additionally, au-
toencoders can be layered to form deep learning
networks. They can also be more efficient in terms
of model parameters since a single autoencoder
can learn several layers rather than learning one
huge transformation as with PCA. The advantage
of using autoencoders in this context is to trans-
form inputs into outputs with the minimum possi-
ble error (Hinton and Salakhutdinov, 2006). The
rationale of their use here is to determine whether
they provide a representation with enriched prop-
erties that is neater than other reduced representa-
tions.

In these experiments, autoencoders are gener-
ated using the MLPAutoencoder filter stacked on
the top of the StringToWordVector filter, via the
Multifilter metafilter. This MLPAutoencoder fil-
ter gives the possibility of creating contractive au-
toencoders, which are much more efficient than
standard autoencoders (Rifai et al., 2011).

5 Methods, Baselines and Evaluation

In this section, we describe the categorization
schemes, the baselines and the evaluation metrics
used for comparison.

Methods. We use three different learning meth-
ods, namely an implementation of SVM, an imple-
mentation of multilayer perceptron (MLP) and an
implementation of K-Means for clustering. The
rationale behind these choices is to compare the
behaviour of the four feature representations de-
scribed above with learning schemes that have a
different inductive biases, and to assess the differ-
ence (if any) between the performance achieved
with labelled data (supervised algorithms) and un-
labelled data (clustering). We calculate a random
baseline with the ZeroR classifier. All the catego-
rization schemes are described below.

ZeroR: baseline classifier. The ZeroR is based
on the Zero Rule algorithm and predicts the class
value that has the most observations in the train-
ing dataset. It is more reliable than a completely
random baseline.

SVM: traditional supervised machine learning.
SVM is a classic and powerful supervised machine
learning algorithm that performs extremely well
in text classification tasks with numerous features.
Weka’s SVM implementation is called SMO and
includes John Platt’s sequential minimal optimiza-
tion algorithm (Platt, 1998) for training a support



vector classifier (Joachims, 1998).
Since two corpora are highly unbalanced, we

also combined SMO with filters that can cor-
rect class unbalance. More specifically, we re-
lied on ClassBalancer, which reweights the in-
stances in the data so that each class has the
same total weight; Resample, which produces a
random subsample of a dataset using either sam-
pling with replacement or without replacement;
SMOTE, which resamples a dataset by applying
the Synthetic Minority Oversampling TEchnique
(SMOTE); and SpreadSubsample, which produces
a random subsample of a dataset. All the models
built with SMO are based on Weka’s standard pa-
rameters.

Multilayer Perceptron: Deep Learning. Weka
provides several implementations of MLP. We re-
lied on the WekaDeeplearning4j package that is
described in Lang et al. (2019). The main clas-
sifier in this package is named DI4jMlpClassifier
and is a wrapper for the DeepLearning4j library7

to train a multilayer perceptron. While fea-
tures like BoWs, principal components and au-
toencoders can be fed to any classifiers within
the Weka workbench (if they are wrapped in fil-
ters), word embeddings can be handled only by
the DI4jMlpClassifier (this explains N/A in Ta-
ble 2). We used the standard configuration of
the DI4jMlpClassifier (which includes only one
output layer) for BoWs, principal components
and autoencoders. Conversely, the configura-
tion used with word embeddings was cutomized
in the following way: word embeddings were
passed through four layers (two convulational lay-
ers, a GlobalPoolingLayer and a OutputLayer);
the number of epochs was set to 100; the in-
stance iterator was set on CnnTextEmbeddingIn-
stanceIterator; we used the polyglot embeddings
for Swedish and English, as mentioned above.

K-Means: Clustering. We compare the perfor-
mance of the supervised classification with clus-
tering (fully unsupervised categorization). We
use the traditional K-Means algorithm (Arthur and
Vassilvitskii, 2007) that in Weka is called Sim-
pleKMeans. Since we know the number of classes
in advance (i.e. two classes), we evaluate the qual-
ity of the clusters against existing classes using the
option Classes to cluster evaluation, which first
ignores the class attribute and generates the clus-

7https://deeplearning.cms.waikato.ac.
nz/

ters, then during the test phase assigns classes to
the clusters, based on the majority value of the
class attribute within each cluster.

Evaluation metrics. We compare the perfor-
mances on the Weighted Averaged F-Measure
(AvgF), which is the sum of all the classes’ F-
measures, each weighted according to the number
of instances with that particular class label.

In order to reliably assess the performance
based on AvgF, we also use k-statistic and the ROC
area value. K-statistic indicates the agreement of
prediction with true class; when the value is 0 the
agreement is random. The quality of a classifier
can also be assessed with the help of the ROC
area value which indicates the area under the ROC
curve (AUC). It is used to measure how well a
classifier performs. The ROC area value lies be-
tween about 0.500 to 1, where 0.500 (and below)
denotes a bad classifier and 1 denotes an excellent
classifier.

ZeroR Baselines. Table 1 shows a breakdown of
the baselines returned by the ZeroR classifier on
the three corpora. These baselines imply that the
k-statistic is 0 and the ROC area value is below or
equal to 0.500.

6 Results and Discussion

The main results are summarized in Table 2 and
Table 3. As shown in in Table 2, by and large both
SMO and the DI4jMlpClassifier have equivalent
or identical performance on all datasets in combi-
nation with BoWs and principal components (we
observe however that the DI4jMlpClassifier is def-
initely slower than SMO). Word embeddings have
a slightly lower performance than BoWs and prin-
cipal components on the eCare and SEW subsets.
Autoencoders perform well (0.82) in combination
with SMO on the eCare subset, less so (0.77) when
running with the DI4jMlpClassifier. The perfor-
mance of clustering with BoWs on eCare gives an
encouraging 0.59 (6 points above the ZeroR base-
line of 0.53), while the performance with principal
components and autoencoders is below the ZeroR
baselines. In short, BoWs, which is the simplest
and the most straightforward feature representa-
tion in this set of experiments, has a performance
that is equivalent or identical to other more com-
plex feature representations.

But what do the classifiers learn when they
are fed with BoWs? The classifiers learn the



Table 1: ZeroR baselines, breakdown

Class k Acc(%) Err(%) P R F ROC

eCare Subset (462 webpages)
lay (154 webpages) 0.00 66.66 33.33 0.00 0.00 0.00 0.490
specialized (308 webpages) 0.66 1.00 0.80 0.490
AvgF 0.53

DigInclude Subset (17,502
sentences)

simplified (3,827 sentences) 0.00 78.13 21.86 0.00 0.00 0.00 0.500
specialized (13,675 sentences) 0.78 1.00 0.87 0.500
AvgF 0.68

SEW Subset (325,235 sentences)
simplified (159,708 sentences) 0.00 50.89 49.10 0.00 0.00 0.00 0.500
specialized (165,527 sentences) 0.50 1.00 0.67 0.500
AvgF 0.34

Table 2: Summary table (AvgF): easy-to-read variety vs standard language

Dataset Features SMO DI4jMlp K-Means

eCare Subset

BoW Features 0.80 0.80 0.59
Word Embeddings N/A 0.75 N/A
Principal Components 0.80 0.81 0.44
Autoencoders 0.82 0.77 0.50

DigInclude Subset

BoW 0.72 0.72 0.29
Word Embeddings N/A 0.72 N/A
Principal Components 0.73 0.72 0.19
Autoencoders 0.68 0.68 0.33

SEW Subset

BoW 0.58 0.56 0.43
Word Embeddings N/A 0.55 N/A
Principal Components 0.55 0.56 0.49
Autoencoders 0.52 0.51 0.49

Table 3: Summary table (AvgF): unbalanced datasets (BoWs + class balancing filters applied to SMO)

Dataset NoFilter ClassBalancer Resample SpreadSample SMOTE
eCare Subset 0.80 0.81 0.81 0.80 0.81

DigInclude Subset 0.72 0.68 0.66 0.73 0.74

words that have been automatically selected by the
StringToWordVector filter. Interestingly, since we
did not apply stopword removal, the lexical items
selected by the filter are mostly function words and
common lexical items. An example is shown in
Table 4.

Table 4: 5 top frequent words and 5 bottom fre-
quent words in one of the SEW models

Word Freq
the 237021
of 159924
in 149698

and 135958
a 135867
... ...
... ...

usually 1517
international 1503
municipatlity 1449

show 1415
island 1277

At first glance, it might appear counter-intuitive
that BoWs, which are very simple features that do
not take syntax and word order into account, can
perform well in this kind of task. However, we

surmize that this is the effect of the presence of
stopwords. As stopwords have not been removed
(see settings reported earlier), the classifiers do not
learn ‘topics’ – since content words are pushed
down in the rank of the frequency list – but rather
the distribution of function words, that are instead
top-ranked and represent “structural” lexical items
that capture the syntax rather than the meaning
of texts. Essentially, function words can be seen
as a kind of subliminal syntactic features. What
is more, in the corpora some words are domain-
specific and difficult, while others are easy and
common. Apparently, this difficult vs easy varia-
tion in the vocabulary helps the classification task.
The full list of the words extracted by the String-
ToWordVectorFilter (utilized alone or as the basis
of other filters) is available on the companion web-
site.

The snap verdict of this set of experiments is
that BoWs are a valuable feature representation
for this kind of task. Their added value is that they
need little preprocessing and no additional conver-
sion schemes, as it is required by principal compo-
nents and autoencoders. BoWs seem to be a robust



feature representation that accounts for both syn-
tactic information and lexical sophistication.

As for word embeddings, it seems that their full
potential remains unleashed in this context. The-
oretically, word embeddings would be an ideal
feature representation for this task because they
combine syntax and semantics and they could
capture simplification devices both at lexical and
morpho-syntactic level. However, this does not
fully happen here. As a matter of fact, it has al-
ready been noticed elsewhere that word embed-
dings might have an unstable behaviour (Wend-
landt et al., 2018) that needs to be further inves-
tigated.

Table 5: SMO, breakdown

SMO: eCare Subset
BOW k Acc(%) Err(%) P R F ROC
lay 0.56 80.92 19.04 0.72 0.68 0.70 0.779
specialized 0.84 0.87 0.85 0.779
AvgF 0.80
PCA k Acc(%) Err(%) P R F ROC
lay 0.58 80.30 19.69 0.71 0.68 0.70 0.774
specialized 0.84 0.86 0.85 0.774
AvgF 0.80
Autoenc k Acc(%) Err(%) P R F ROC
lay 0.60 82.16 17.83 0.72 0.75 0.73 0.804
specialized 0.87 0.85 0.86 0.804
AvgF 0.82

(a) eCare

SMO: DigInclude Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.13 79.04 20.95 0.61 0.11 0.18 0.546
standard 0.79 0.98 0.88 0.546
AvgF 0.72
PCA k Acc(%) Err(%) P R F ROC
simplified 0.14 78.80 21.19 0.56 0.14 0.22 0.555
standard 0.80 0.97 0.77 0.555
AvgF 0.73
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.00 78.49 21.50 0.00 0.00 0.00 0.500
standard 0.78 1.00 0.87 0.500
AvgF 0.68

(b) DigInclude

SMO: SEW Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.23 61.81 38.18 0.61 0.61 0.61 0.618
standard 0.62 0.62 0.62 0.618
AvgF 0.61
PCA k Acc(%) Err(%) P R F ROC
simplified 0.13 57.08 42.91 0.57 0.45 0.51 0.569
standard 0.56 0.67 0.61 0.569
AvgF 0.56
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.04 52.67 47.32 0.52 0.42 0.46 0.525
standard 0.53 0.62 0.57 0.525
AvgF 0.52

(c) SEW

We observe that the classification results are
promising on the eCare subset (see breakdown in
Tables 5a, 6a and 7a). Arguably, a factor has
contributed to achieve this performance: the unit
of analysis. Certainly, classification at document
level is easier because the classifier has more text
to learn from. Surprisingly, the unbalance of the
eCare dataset seems to be somehow mitigated by

the unit of analysis, since the classifiers are not bi-
ased towards the majority class and k-statistic and
ROC area values are quite robust (mostly above
0.500 and above 0.800 respectively). Additonally,
the dataset is small, and this might also facilitate
the learning. Clustering with BoWs is well above
the ZeroR baseline, while with the other feature
representations the performance is below the base-
line thresholds.

Table 6: DI4jMlpClassifier, breakdown

DI4jMlpClassifier: eCare Subset
BOW k Acc(%) Err(%) P R F ROC
lay 0.57 80.08 19.91 0.67 0.78 0.72 0.890
specialized 0.88 0.80 0.84 0.890
AvgF 0.80
Embed k Acc(%) Err(%) P R F ROC
lay 0.45 75.79 24.20 0.63 0.65 0.64 0.807
specialized 0.82 0.81 0.81 0.807
AvgF 0.75
PCA k Acc(%) Err(%) P R F ROC
lay 0.58 80.73 19.26 0.68 0.79 0.73 0.900
specialized 0.88 0.81 0.84 0.900
AvgF 0.81
Autoenc k Acc(%) Err(%) P R F ROC
lay 0.52 77.07 22.92 0.61 0.84 0.71 0.872
specialized 0.90 0.73 0.81 0.872
AvgF 0.77

(a) eCare

DI4jMlpClassifier: DigInclude Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.18 72.86 27.13 0.37 0.35 0.36 0.667
standard 0.82 0.83 0.82 0.667
AvgF 0.72
Embed k Acc(%) Err(%) P R F ROC
simplified 0.10 77.24 22.75 0.41 0.13 0.20 0.587
standard 0.80 0.94 0.86 0.587
AvgF 0.72
PCA k Acc(%) Err(%) P R F ROC
simplified 0.16 72.94 27.05 0.36 0.31 0.33 0.650
standard 0.81 0.84 0.83 0.650
AvgF 0.72
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.00 78.49 21.50 0.00 0.00 0.00 0.500
standard 0.78 1.00 0.87 0.500
AvgF 0.68

(b) DigInclude

DI4jMlpClassifier: SEW Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.13 56.50 43.49 0.55 0.57 0.56 0.594
standard 0.57 0.55 0.56 0.594
AvgF 0.56
Embed k Acc(%) Err(%) P R F ROC
simplified 0.10 55.26 44.73 0.54 0.53 0.53 0.586
standard 0.55 0.57 0.56 0.586
AvgF 0.55
PCA k Acc(%) Err(%) P R F ROC
simplified 0.10 55.21 44.78 0.54 0.55 0.55 0.577
standard 0.56 0.54 0.55 0.577
AvgF 0.55
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.04 52.14 47.85 0.51 0.60 0.55 0.535
standard 0.53 0.44 0.48 0.535
AvgF 0.51

(c) SEW

The DigInclude subset (see breakdown in Ta-
bles 5b, 6b, and 7b) is quite problematic from a
classification standpoint. It is highly unbalanced
and the unit of analysis is the sentence. The
classification models built with BoWs, word em-
beddings and principal components in combina-



tion with SMO and the DI4jMlpClassifier are very
close to random (see the value of k-statistic and
the ROC area value). Although the AvgF values in
the summary table (Table 2) seem to be decent for
a binary classification problem, they are actually
misleading, because the classifiers perform poorly
on the minority class, as revealed by the low value
of k-statistic and the ROC area value shown in the
breakdown tables (Tables 5b and 6b). Classifi-
cation with autoencoders is perfectly random (k-
statistic 0.00 and ROC area value 0.500). Cluster-
ing results are very poor with all feature represen-
tations. Arguably, with this dataset the learning is
hindered by two factors: the high class unbalance
and the very short text that makes up a sentence.
While in the case of the eCare subset, unbalance is
compensated by the longer text of webpages, with
DigInclude the sentence does not allow any gen-
eralizable learning. Given these results, a differ-
ent approach must be taken for datasets like Dig-
Include. Solutions to address these problems in-
clude changing the unit of analysis from sentences
to documents (if possible) and/or applying a dif-
ferent classification approach e.g. a cost-sensitive
classifier of the kind used to predict rare events,
e.g. Ali et al. (2015) or Krawczyk (2016). Algo-
rithms used for fraud detection (Sundarkumar and
Ravi, 2015) could also be useful.

The SEW corpus (see Tables 5c, 6c and 7c) is
balanced and the unit of analysis is the sentence.
The performance is promising because it is well
above the ZeroR baseline (0.32). The best perfor-
mance is with the combination of SMO and BoWs
that reaches an AvgF of 0.58 with only a limited
number of features. Word embeddings perform
slightly worse than BoWs (but the running time
is much longer). Clustering is definitely encour-
aging and much above the baseline level with all
features representations.

Since the eCare and DigInclude datasets are
both unbalanced, we applied class balance correc-
tors. Table 8 shows the breakdown of SMO on the
eCare subset in combination with four balancing
filters. The performance with filters is similar to
the performance without filters. This is true also
if we look at the performance (P, R, AvgF) of the
minority class (the lay class). K-statistic is sta-
ble (greater than 0.50) as are the ROC area values
(greater than 0.700). Essentially, this means that
this dataset, although unbalanced, does not need a
class balancing filter. As pointed out earlier, we

Table 7: K-means, breakdown

K-means: eCare
BOW Acc(%) Err(%) P R F
lay 60.82 39.18 0.48 0.75 0.56
specialized 0.81 0.53 0.64
AvgF 0.59
PCA Acc(%) Err(%) P R F
lay 51.95 48.05 0.32 0.50 0.39
specialized 0.65 0.47 0.54
AvgF 0.44
Autoenc Acc(%) Err(%) P R F
lay 54.55 45.45 0.37 0.57 0.45
specialized 0.71 0.53 0.61
AvgF 0.50

(a) eCare

Simple K-means: DigInclude
BOW Acc(%) Err(%) P R F
simplified 75.78 24.22 0.21 0.93 0.35
standard 0.73 0.04 0.08
AvgF 0.29
PCA Acc(%) Err(%) P R F
simplified 78.09 21.91 0.21 0 0
standard 0.78 0.99 0.87
AvgF 0.19
Autoenc Acc(%) Err(%) P R F
simplified 54.54 45.46 0.22 0.62 0.33
standard 0.79 0.40 0.53
AvgF 0.37

(b) DigInclude

K-means: SEW
BOW Acc(%) Err(%) P R F
simplified 50.27 49.73 0.46 0.17 0.25
standard 0.50 0.80 0.62
AvgF 0.43
PCA Acc(%) Err(%) P R F
simplified 50.37 49.63 0.48 0.49 0.48
standard 0.50 0.50 0.50
AvgF 0.49
Autoenc Acc(%) Err(%) P R F
simplified 50.46 49.55 0.48 0.54 0.51
standard 0.50 0.45 0.47
AvgF 0.49

(c) SEW

suppose that it is the unit of analysis used for the
classification (the webpage) that has a positive ef-
fect on the results since the classifier learns more
from an extended text (i.e. several sentences about
a coherent topic) than from a single sentence.

Conversely, on the DigInclude subset (see full
breakdown in Table 9), two filters (ClassBalancer
and Resample) out of four filters produce lower
AvgF values than the performance with no filters.
A bit paradoxically, this might be good news if we
are interested in the performance on the minority
class (i.e. the simplified class). When we look at
the performance breakdown, we notice a big gap
between P and R on the minority class. Without
filters, the P of the simplified class is decent (0.61),
while the R is very low (0.11). When applying a
ClassBalancer and Resample, the P of the minor-
ity class jumps down to about 0.30, but R soars
up to above 0.60. Thus, although the AvgF values
with these two filters are lower than the SMO with-
out any filter, the performance on the individual
classes is more balanced. The best performance



is, in our view, with SMOTE, which achieves an
AvgF of 0.74 with a k-statistic of 0.24 and a ROC
area value of 0.624. The P and R of the minor-
ity class are balanced (0.41 in both cases). This
is indeed an encouraging result for this dataset. It
is to be acknowledged however that all the clas-
sifiers based on the DigInclude subset shown in
Table 9 are rather weak, since both k-statistic and
ROC area values are rather modest.

Table 8: eCare - Class balancing filters, break-
down

eCare: SMO NoFilter
BOW k Acc(%) Err(%) P R F ROC
lay 0.56 80.90 19.04 0.72 0.68 0.70 0.797
specialized 0.84 0.87 0.85 0.779
AvgF 0.80

eCare: SMO ClassBalancer
BOW k Acc(%) Err(%) P R F ROC
lay 0.57 81.16 18.83 0.72 0.69 0.71 0.782
specialized 0.85 0.87 0.86 0.782
AvgF 0.81

eCare: SMO Resample
BOW k Acc(%) Err(%) P R F ROC
lay 0.58 81.81 18.18 0.74 0.70 0.72 0.789
specialized 0.85 0.87 0.86 0.789
AvgF 0.81

eCare: SMO Spreadsubsample
BOW k Acc(%) Err(%) P R F ROC
lay 0.56 80.95 19.04 0.72 0.68 0.70 0.779
specialized 0.84 0.87 0.85 0.779
AvgF 0.808

eCare: SMO SMOTE
BOW k Acc(%) Err(%) P R F ROC
lay 0.57 81.16 18.83 0.73 0.68 0.70 0.781
specialized 0.84 0.87 0.86 0.781
AvgF 0.81

7 Conclusion and Future Work

In this paper, we explored the effectiveness of
four feature representations – BoWs, word em-
beddings, principal components and autoencoders
– for the binary categorization of the easy-to-read
variety vs standard language. The automatic sep-
aration of these two varieties would be helpful
in tasks where it is important to identify a sim-
pler version of the standard language. We tested
the effectiveness of these four representations on
three datasets, which differ in size, class balance,
unit of analysis, language and topic. Results show
that BoWs is a robust and straightforward fea-
ture representation that performs well in this con-
text. Its performance is equivalent or equal to the
performance of principal components and autoen-
corders, but these two representations need addi-
tional data conversion steps that do not pay off
in terms of performance. Word embeddings are
less accurate than the other feature representations
for this classification task, although theoretically
they should be able to achieve better results. As
mentioned in the Introduction, several other fea-

ture representations could be profitably tried out
for this task. We started off with the simplest ones,
all based on individual lexical items. We propose
the findings presented in this paper as empirical
baselines for future work.

We will continue to explore categorization
schemes in a number of additional experimental
settings. First, we will try to pin down why word
embeddings are less robust than other feature rep-
resentations in this context. Then, we will explore
the performance of other feature representations
suitable for the task, e.g. lexical and morphologi-
cal n-grams as well as features based on syntactic
complexity. We will also explore other classifica-
tion paradigms, e.g. BERT (Devlin et al., 2018),
and extend our investigation on the impact of the
unit of analysis (e.g. by using the DigInclude and
SEW versions that contain documents rather than
sentences). Last but not least, we will try out ap-
proaches specifically designed to address the prob-
lem of unbalanced datasets.

Table 9: DigInclude - Class balancing filters,
breakdown

DigInclude: SMO NoFilter
BOW k Acc(%) Err(%) P R F ROC
simplified 0.13 79.04 20.95 0.61 0.11 0.18 0.546
standard 0.79 0.98 0.88 0.546
AvgF 0.72

DigInclude: SMO ClassBalancer
BOW k Acc(%) Err(%) P R F ROC
simplified 0.22 65.24 34.57 0.34 0.62 0.44 0.645
standard 0.86 0.66 0.74 0.645
AvgF 0.68

eCare: SMO Resample
BOW k Acc(%) Err(%) P R F ROC
simplified 0.19 63.92 36.07 0.32 0.61 0.42 0.629
standard 0.85 0.64 0.73 0.629
AvgF 0.66

eCare: SMO Spreadsubsample
BOW k Acc(%) Err(%) P R F ROC
simplified 0.18 75.39 24.60 0.40 0.28 0.33 0.584
standard 0.81 0.88 0.84 0.584
AvgF 0.73

eCare: SMO SMOTE
BOW k Acc(%) Err(%) P R F ROC
simplified 0.24 74.30 25.69 0.41 0.41 0.41 0.624
standard 0.83 0.83 0.83 0.624
AvgF 0.74

Companion Website & Acknowledgements

Companion website: http://www.santini.
se/nodalida2019

This research was supported by E-care@home,
a “SIDUS – Strong Distributed Research Environ-
ment” project, funded by the Swedish Knowledge
Foundation [kk-stiftelsen, Diarienr: 20140217].
Project website: http://ecareathome.se/



References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual nlp. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 183–192, Sofia, Bulgaria.
Association for Computational Linguistics.

Aida Ali, Siti Mariyam Shamsuddin, and Anca L
Ralescu. 2015. Classification with class imbalance
problem: a review. Int. J. Advance Soft Compu.
Appl, 7(3):176–204.

David Arthur and Sergei Vassilvitskii. 2007. k-
means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 1027–
1035.

Marco Baroni and Silvia Bernardini. 2004. Bootcat:
Bootstrapping corpora and terms from the web. In
LREC.

Regina Barzilay and Noemie Elhadad. 2003. Sentence
alignment for monolingual comparable corpora. In
Proceedings of the 2003 conference on Empirical
methods in natural language processing, pages 25–
32. Association for Computational Linguistics.

Helena M Caseli, Tiago F Pereira, Lucia Specia, Thi-
ago AS Pardo, Caroline Gasperin, and Sandra Maria
Aluı́sio. 2009. Building a brazilian portuguese par-
allel corpus of original and simplified texts. Ad-
vances in Computational Linguistics, Research in
Computer Science, 41:59–70.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Goran Glavaš and Sanja Štajner. 2015. Simplifying
lexical simplification: Do we need simplified cor-
pora? In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
volume 2, pages 63–68.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning, pages 137–142. Springer.

David Kauchak. 2013. Improving text simplification
language modeling using unsimplified text data. In
Proceedings of the 51st annual meeting of the as-
sociation for computational linguistics (volume 1:
Long papers), volume 1, pages 1537–1546.

Bartosz Krawczyk. 2016. Learning from imbal-
anced data: open challenges and future directions.
Progress in Artificial Intelligence, 5(4):221–232.

Steven Lang, Felipe Bravo-Marquez, Christopher
Beckham, Mark Hall, and Eibe Frank. 2019.
Wekadeeplearning4j: A deep learning package for
weka based on deeplearning4j. Knowledge-Based
Systems.

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 85–91.

John C Platt. 1998. Sequential minimal optimization: a
fast algorithm for training support vector machines.
MSRTR: Microsoft Research, 3(1):88–95.

Evelina Rennes and Arne Jönsson. 2016. Towards a
corpus of easy to read authority web texts. In Pro-
ceedings of the Sixth Swedish Language Technology
Conference (SLTC2016), Umeå, Sweden.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glo-
rot, and Yoshua Bengio. 2011. Contractive auto-
encoders: Explicit invariance during feature extrac-
tion. In Proceedings of the 28th International Con-
ference on International Conference on Machine
Learning, pages 833–840. Omnipress.

Horacio Saggion. 2017. Automatic text simplification.
Synthesis Lectures on Human Language Technolo-
gies, 10(1):1–137.

Marina Santini, Arne Jönsson, Wiktor Strandqvist,
Gustav Cederblad, Mikael Nyström, Marjan
Alirezaie, Leili Lind, Eva Blomqvist, Maria Lindén,
and Annica Kristoffersson. 2019. Designing an
extensible domain-specific web corpus for “lay-
fication”: A case study in ecare at home. In
Cyber-Physical Systems for Social Applications,
pages 98–155. IGI Global.

G Ganesh Sundarkumar and Vadlamani Ravi. 2015.
A novel hybrid undersampling method for min-
ing unbalanced datasets in banking and insurance.
Engineering Applications of Artificial Intelligence,
37:368–377.

Laura Wendlandt, Jonathan K Kummerfeld, and Rada
Mihalcea. 2018. Factors influencing the surpris-
ing instability of word embeddings. arXiv preprint
arXiv:1804.09692.

Ian H Witten, Eibe Frank, Mark A Hall, and Christo-
pher J Pal. 2016. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann.


