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Abstract

Morphological analysis is a critical enabling
technology for polysynthetic languages. We
present a neural morphological analyzer for
case-inflected nouns in St. Lawrence Island
Yupik, an endangered polysythetic language
in the Inuit-Yupik language family, treating
morphological analysis as a recurrent neural
sequence-to-sequence task. By utilizing an
existing finite-state morphological analyzer to
create training data, we improve analysis cov-
erage on attested Yupik word types from ap-
proximately 75% for the existing finite-state
analyzer to 100% for the neural analyzer. At
the same time, we achieve a substantially
higher level of accuracy on a held-out testing
set, from 78.9% accuracy for the finite-state
analyzer to 92.2% accuracy for our neural an-
alyzer.

1 Introduction

St. Lawrence Island Yupik, henceforth Yupik, is
an endangered polysynthetic language spoken on
St. Lawrence Island, Alaska and the Chukotka
Peninsula of Russia. Members of the Yupik com-
munity on St. Lawrence Island have expressed in-
terest in language revitalization and conservation.

Recent work by Chen and Schwartz (2018) re-
sulted in a finite-state morphological analyzer for
Yupik implemented in foma (Hulden, 2009). That
analyzer implements the grammatical and mor-
phophonological rules documented in A Practical
Grammar of the St. Lawrence Island / Siberian
Yupik Eskimo Language (Jacobson, 2001).

In this work, we test the coverage of the finite-
state analyzer against a corpus of digitized Yupik
texts and find that the analyzer fails to return any
analysis for approximately 25% of word types (see
§2 and Table 1). We present a higher-coverage
neural morphological analyzer for case-inflected
Yupik nouns that involve no derivational mor-

phology, using the previously-developed finite-
state analyzer to generate large amounts of labeled
training data (§3). We evaluate the performance of
the finite-state and neural analyzers, and find that
the neural analyzer results in higher coverage and
higher accuracy (§5), even when the finite-state
analyzer is augmented with a guessing module to
hypothesize analyzes for out-of-vocabulary words
(§4). We thus find that a robust high-accuracy
morphological analyzer can be successfully boot-
strapped from an existing lower-coverage finite-
state morphological analyzer (§6), a result which
has implications for the development of language
technologies for Yupik and other morphologically-
rich languages.

2 Evaluation of the FST Analyzer

The finite-state morphological analyzer of Chen
and Schwartz (2018) implements the grammat-
ical and morphophonological rules documented
in A Practical Grammar of the St. Lawrence Is-
land / Siberian Yupik Eskimo Language (Jacobson,
2001) using the foma finite-state toolkit (Hulden,
2009).

In order to evaluate the percentage of attested
Yupik word forms for which the finite-state an-
alyzer produces any analysis, we began by digi-
tizing several hundred Yupik sentences presented
in Jacobson (2001) as examples to be translated
by the reader. We next assembled, digitized, and
manually validated seven texts that each consist
of a collection of Yupik stories along with cor-
responding English translations. The texts in-
clude four anthologies of Yupik stories, legends,
and folk tales, along with three leveled elementary
primers prepared by the Bering Strait School Dis-
trict in the 1990s (Apassingok et al., 1993, 1994,
1995). Of the four anthologies, three comprise a
trilogy known as The Lore of St. Lawrence Is-



Text % Coverage Corpus size
Tokens; Types (in words)

Ref 98.24 97.87 795
SLI1 79.10 70.62 6859
SLI2 77.14 68.87 11,926
SLI3 76.98 68.32 12,982
Ungi 84.08 73.45 15,766
Lvl1 76.64 70.86 4357
Lvl2 75.42 72.62 5358
Lvl3 77.71 75.19 5731

Table 1: For each Yupik text, the percentage of types
and tokens for which the Yupik finite-state analyzer of
Chen and Schwartz (2018) returns an analysis, along
with the total number of tokens per text. Ref refers
to Yupik examples taken from the Jacobson (2001)
reference grammar, SLI1 - SLI3 refer to the Lore of
St. Lawrence Island, volumes 1-3 (Apassingok et al.,
1985, 1987, 1989), Ungi is an abbreviation for Ungi-
paghaghlanga (Koonooka, 2003), and Lvl1 - Lvl3 re-
fer to the elementary Yupik primers (Apassingok et al.,
1993, 1994, 1995).

land (Apassingok et al., 1985, 1987, 1989), while
the last is a stand-alone text, Ungipaghaghlanga
(Koonooka, 2003; Menovshchikov, 1988). To-
gether, these texts represent the largest known col-
lection of written Yupik.

After digitizing each text, we analyzed each
Yupik word in that text using the finite-state mor-
phological analyzer. We then calculated the per-
centage of tokens from each text for which the
finite-state analyzer produced at least one analy-
sis. We call this number coverage, and report this
result for each text in Table 1. The mean coverage
over the entire set of texts was 77.56%. The neu-
ral morphological analyzer described in the sub-
sequent section was developed in large part to
provide morphological analyses for the remaining
22.44% of heretofore unanalyzed Yupik tokens.

.

3 Yupik Morphological Analysis as
Machine Translation

The task of morphological analysis can be re-
garded as a machine translation (sequence-to-
sequence) problem, where an input sequence that
consists of characters or graphemes in the source
language (surface form) is mapped to an output
sequence that consists of characters or graphemes
and inflectional tags (underlying form). For exam-
ple, in English, the sequence of characters repre-

senting the surface word form foxes can be trans-
formed into a sequence of characters representing
the root word fox and the inflectional tag indicat-
ing plurality:

f o x e s
↓

f o x [PL]

In contrast to English, Yupik is highly productive
with respect to derivational and inflectional mor-
phology.1 See §3.1.1 for noun inflection tags.

(1) kaviighet
kaviigh- -∼sf-w:(e)t
fox- -ABS.UNPD.PL

‘foxes’

But in much the same way, (1) can be rewrit-
ten as a translation process from an input sequence
of graphemes that represent the surface form to
an output sequence of graphemes and inflectional
tags that represent the underlying form:

k a v i i gh e t
↓

k a v i i gh [ABS] [UNPD] [PL]

3.1 Generating Data from an FST
Very little Yupik data has previously been manu-
ally annotated in the form of interlinear glosses.
On the other hand, the finite-state morphological
analyzer of Chen and Schwartz (2018) is capable
of generating Yupik surface forms from provided
underlying forms, and vice versa. In the following
sections, bracketed items [..] introduce the inflec-
tional tags that are used in the underlying forms of
the finite-state analyzer.

3.1.1 Basic Yupik Nouns
Yupik nouns inflect for one of seven grammatical
cases:

1. ablative-modalis [ABL MOD]
2. absolutive [ABS]
3. equalis [EQU]
4. localis [LOC]
5. terminalis [TER]
6. vialis [VIA]
7. relative [REL]

1Each derivational and inflectional suffix is associated
with a series of morphophonological rules. Each rule is rep-
resented by a unique symbol such as – or ∼sf as introduced in
Jacobson (2001). This convention is used in the Yupik gram-
mar, in the Yupik-English dictionary (Badten et al., 2008),
and by Chen and Schwartz (2018). We therefore follow this
convention, employing these symbols in our glosses here. See
Table 2 on the following page for more details.



Symbol Description
∼ Drops e in penultimate (semi-final)

position or e in root-final position
and hops it

e-Hopping is the process by which
vowels i, a, or u in the first syllable
of the root are lengthened as a re-
sult of dropping semi-final or final-
e, so termed because it is as if the
e has “hopped” into the first syllable
and assimilated. e-Hopping will not
occur if doing so results in a three-
consonant cluster within the word or
a two-consonant cluster at the begin-
ning (Jacobson, 2001).

∼f Drops final e and hops it
∼sf Drops semi-final e and hops it
-w Drops weak final consonants, that

is, gh that is not marked with an *.
Strong gh is denoted gh*

: Drops uvulars that appear between
single vowels

– Drops final consonants
–– Drops final consonants and preced-

ing vowel
@ Indicates some degree of modifica-

tion to root-final te, the degree of
which is dependent on the suffix

+ Indicates no morphophonology oc-
curs during affixation. This sym-
bol is implicitly assumed if no other
symbols are present.

Table 2: List of documented morphophonological rules
in Yupik and their lexicalized symbols. For more de-
tails see Jacobson (2001) and Badten et al. (2008).

Nouns then remain unpossessed [UNPD] and in-
flect for number (singular [SG], plural [PL], or
dual [DU]), or inflect as possessed nouns. Pos-
sessed nouns are marked for number, and for the
person and number of the possessor. For example,
[1SGPOSS][SGPOSD] marks a possessed singular
noun with a first person singular possessor.

The Badten et al. (2008) Yupik-English dic-
tionary lists 3873 noun roots, and the Jacobson
(2001) reference grammar lists 273 nominal in-
flectional suffixes. We deterministically generated
data by exhaustively pairing every Yupik noun
root with every inflectional suffix (ignoring any se-
mantic infelicity that may result). As shown in Ta-

Root Case Poss Posd Total
3873 × 7 × 1 × 3 = 81,333
3873 × 7 × 12 × 3 = 975,996

1,057,329

Table 3: Extracted training data. The first row counts
the total number of unpossessed nouns which are
marked for number: [SG], [PL], [DU]. The second row
counts the total number of possessed nouns which are
marked for number and also for 12 differing types of
possessors, which themselves are marked for person,
[1-4], and number, [SG], [PL], [DU].

ble 3 above, the underlying forms that result from
these pairings map to just over 1 million inflected
Yupik word forms or surface forms. Note that
these word forms represent morphologically licit
forms, but not all are attested. Even so, we did not
exclude unattested forms nor weight them accord-
ing to plausibility, since we lack sufficient docu-
mentation to distinguish the valid forms from the
semantically illicit ones. This parallel dataset of
inflected Yupik nouns and their underlying forms
represents our corpus.

3.1.2 Identified Flaw in Existing Yupik FST
While generating data using the finite-state ana-
lyzer, we observed a minor bug. Specifically, the
finite-state analyzer fails to account for the allo-
morphy that is triggered on some noun roots when
they are inflected for a subset of the 3rd person pos-
sessor forms (root-final -e surfaces as -a).

(2) neqangit
neqe- -∼:(ng)it
food- -ABS.PL.3PLPOSS

‘their foods’

As shown in (2), the correct surface form for
neqe[ABS][PL][3PLPOSS] is neqangit, but the
analyzer incorrectly generates neqngit instead.
Due to time constraints and the relatively small es-
timated impact, we did not modify the analyzer to
correct this bug. Though this impacts the training
data, having previously evaluated the analyzer, we
do not believe this error to be egregious enough to
compromise the generated dataset.

3.1.3 Yupik Verbs and Derivational Suffixes
While our training set for this work is the set of
inflected Yupik nouns described in §3.1.1, it is
important to note that this process could in prin-
ciple be used to generate a much larger training
set. The Badten et al. (2008) Yupik-English dic-



Sequence Type Tokenize by Character Tokenize by Grapheme
surface form q i k m i q q i k mm i q

underlying form q i k m i gh [N] [ABS] [UNPD] [SG] q i k mm i gh [N] [ABS] [UNPD] [SG]

Table 4: Contrasts the two tokenization methods introduced in § 3.2.1 (tokenization by character and tokeniza-
tion by orthographically transparent Yupik grapheme) on the surface form qikmiq (dog) and its underlying form
qikmigh[N][ABS][UNPD][SG].

Possible Possible
# Nouns Verbs Both
0 1.06× 1006 8.80× 1006 9.86× 1006

1 1.37× 1008 2.04× 1009 2.18× 1009

2 2.22× 1010 4.19× 1011 4.41× 1011

3 4.03× 1012 8.31× 1013 8.72× 1013

4 7.66× 1014 1.63× 1016 1.71× 1016

5 1.48× 1017 3.18× 1018 3.33× 1018

6 2.88× 1019 6.21× 1020 6.50× 1020

7 5.61× 1021 1.21× 1023 1.27× 1023

Table 5: Number of morphotactically possible Yupik
word forms formed using 0-7 derivational suffixes.

tionary and Jacobson (2001) Yupik grammar also
list 3762 verb roots along with 180 intransitive and
2160 transitive verbal inflectional morphemes. If
one were to naively assume that every Yupik verb
can be either transitive or intransitive,2 another
8.8 million training examples consisting of Yupik
verbs could be generated.

Yupik also exhibits extensive derivational mor-
phology. The dictionary lists 89 derivational suf-
fixes that can each attach to a noun root and yield
another noun, 58 derivational suffixes that can
each attach to a noun root and yield a verb, 172
derivational suffixes that can each attach to a verb
root and yield another verb, and 42 derivational
suffixes that can each attach to a verb root and
yield a noun. Yupik words containing up to seven
derivational morphemes have been attested in the
literature (de Reuse, 1994). By considering all
possible Yupik nouns and verbs with up to seven
derivational morphemes, well over 1.2 × 1023 in-
flected Yupik word forms could be generated as
shown in Table 5 above. As before, many of these
forms, while morphologically valid, would be syn-
tactically or semantically illicit.

3.2 Neural Machine Translation
In this work, we made use of Marian (Junczys-
Dowmunt et al., 2018), an open-source neural ma-

2The Yupik-English dictionary does not annotate verb
roots with valence information.

chine translation framework that supports bidi-
rectional recurrent encoder-decoder models with
attention (Schuster and Paliwal, 1997; Bahdanau
et al., 2014). In our experiments using Marian,
we trained neural networks capable of translating
from input sequences of characters or graphemes
(representing Yupik words) to output sequences
of characters or graphemes plus inflectional tags
(representing an underlying Yupik form).

3.2.1 Data
We began by preprocessing the data described in
§3.1.1 by tokenizing each Yupik surface form, ei-
ther by characters or by orthographically trans-
parent, redoubled graphemes. An example can
be seen in the transformation of the word kavi-
ighet at the beginning of §3, where each char-
acter and inflectional tag were separated by a
space. When tokenizing by redoubled graphemes,
orthographically non-transparent graphemes were
first replaced following the approach described in
Schwartz and Chen (2017) which ensures there is
only one way to tokenize a Yupik word form. This
approach undoes an orthographic convention that
shortens the spelling of words by exploiting the
following facts:

• Graphemic doubling conveys voicelessness
(g represents the voiced velar fricative while
gg represents the voiceless velar fricative)

• Consecutive consonants in Yupik typically
agree in voicing, with the exception of voice-
less consonants that follow nasals

Yupik orthography undoubles a voiceless
grapheme if it co-occurs with a second voiceless
grapheme, according to the following three
Undoubling Rules (Jacobson, 2001):

1. A fricative is undoubled next to a stop or one
of the voiceless fricatives where doubling is
not used to show voicelessness (f, s, wh, h).

2. A nasal is undoubled after a stop or one of
the voiceless fricatives where doubling is not
used to show voicelessness.



3. A fricative or nasal is undoubled when it
comes after a fricative where doubling is used
to show voicelessness, except that if the sec-
ond fricative is ll then the first fricative is un-
doubled instead.

These two tokenization methods subsequently
produced two parallel corpora, whose training
pairs differed as seen in Table 4 on the previous
page. Nevertheless, the input data always corre-
sponded to Yupik surface forms, and the output
data corresponded to underlying forms. The par-
allel corpora were then randomly partitioned into
a training set, a validation set, and a test set in a
0.8/0.1/0.1 ratio.

3.2.2 Initial Experiment
Using Marian, we used the data tokenized by char-
acters and trained a shallow neural network model
that implemented an attentional encoder-decoder
model (Bahdanau et al., 2014) with early stopping
and holdout cross validation. We used the parame-
ters described in Sennrich et al. (2016), where the
encoder and decoder consisted of one hidden layer
each, of size 1024. Of the 109,395 items in the
final test set, this shallow neural model achieved
100% coverage and 59.67% accuracy on the test
set.

Error analysis revealed a substantial amount of
underspecification and surface form ambiguity as
a result of syncretism in the nominal paradigm. As
exemplified in (3a) and (3b), inflectional suffixes
in Yupik may share the same underlying phono-
logical form as well as the same morphophono-
logical rules associated with that suffix.

(3a) ayveghet
ayvegh- -∼sf-w:(e)t
walrus- -ABS.UNPD.PL

‘walruses’

(3b) ayveghet
ayvegh- -∼sf-w:(e)t
walrus- -REL.UNPD.PL

‘of walruses’

For example, any noun that is inflected
for the unpossessed absolutive plural,
[N][ABS][UNPD][PL], produces a word-form
that is identical to the form yielded when the noun
is inflected for the unpossessed relative plural,
[N][REL][UNPD][PL]. The generated parallel
data therefore includes the following two parallel

forms, both of which have the exact same surface
form. The first is the word in absolutive case:

a y v e g h e t
↓

a y v e g h [N] [ABS] [UNPD] [PL]

The second is the word in relative case:

a y v e g h e t
↓

a y v e g h [N] [REL] [UNPD] [PL]

Since these surface forms are only distinguish-
able through grammatical context, and our neu-
ral analyzer was not trained to consider context,
it was made to guess which underlying form to re-
turn, and as suggested by the low accuracy score
of 59.67%, the analyzer’s guesses were often in-
correct. We did not think it was proper to penal-
ize the analyzer for wrong answers in instances of
syncretism, and consequently implemented a post-
processing step to account for this phenomenon.

This step was performed after the initial calcu-
lation of the neural analyzer’s accuracy score, and
provided an estimated or adjusted accuracy score
that considered the syncretic forms equivalent. It
iterated through all outputs of the neural analyzer
that were initially flagged as incorrect for differing
from their test set counterparts. Using the finite-
state analyzer, the surface forms for each output
and its corresponding test set item were then gen-
erated to verify whether or not their surface forms
matched. If they matched, the neural analyzer’s
output was instead counted as correct (see Table 6
on the following page for examples). Assessed in
this way, the shallow model achieved an adjusted
accuracy score of 99.90%.

3.2.3 Data Revisited
Although the postprocessing step is sufficient to
demonstrate the true performance of the neural
analyzer, we attempted to resolve this ambiguity
issue with a more systematic approach. In their
development of a neural morphological analyzer
for Arapaho verbs, Moeller et al. (2018) conflated
tags that resulted in ambiguous surface forms into
a single, albeit less informative, tag, such as [3-
SUBJ], joined from [3SG-SUBJ] and [3PL-SUBJ].
We attempted to do the same for Yupik by col-
lapsing the tag set, but Yupik presents a some-
what more intricate ambiguity patterning. Syn-
cretic tags can differ in their case markings alone,
as in (3a) and (3b), but they can also differ across



Neural Analyzer Output Surface Gold Standard Surface
anipa[N][ABS][UNPD][PL] anipat anipa[N][REL][UNPD][PL] anipat 3

wayani[N][LOC][UNPD][PL] wayani wayagh[N][LOC][UNPD][PL] wayani 3

suflu[N][LOC][UNPD][PL] sufluni suflugh[N][ABS][4SGPOSS][SGPOSD] sufluni 3

puume[N][LOC][UNPD][DU] pumegni puu[N][LOC][4DUPOSS][SGPOSD] puumegneng 7

Table 6: An illustration of the process of the post-processing step that was implemented to resolve surface form
ambiguity. If the output and its gold standard match in their surface forms, the output is then considered correct,
despite the mismatch in the underlying forms.

case, possessor type, and number, as seen in (4a)
and (4b).

(4a) neghsameng
neghsagh- -∼f-wmeng
seal- -ABL MOD.UNPD.SG
‘seal (as indefinite object); from seal’

(4b) neghsameng
neghsagh- -∼f-wmeng
seal- -REL.PL.4DUPOSS
‘their2 (reflexive) seals’

As a result, we could not conflate our tags in the
same way Moeller et al. (2018) did. Instead, for
each set of syncretic tags, one string of tags was
selected to represent all of the tags in the set,
such that [N][ABS][UNPD][PL] denoted both un-
possessed absolutive plural and unpossessed rela-
tive plural. The original 273 unique strings of tags
(7 cases × 13 possessor types × 3 number mark-
ers) were consequently reduced to 170 instead.

Having identified and reduced tag set ambigu-
ity, we retrained the shallow model but only man-
aged to achieved an unadjusted accuracy score
of 95.48%. Additional error analysis revealed
that some surface form ambiguity remained, but
among non-syncretic tags that could not be col-
lapsed. In other words, these tags generated iden-
tical surface forms for some nouns but not others.
This is shown in (5a) – (5d):

(5a) sufluni
suflu- -–ni
cave- -ABS.SG.4SGPOSS
‘his/her (reflexive) own cave’

(5b) sufluni
suflu- -∼f-wni
cave- -LOC.UNPD.PL
‘in the cave’

(5c) sufluni
suflug- -–ni
chimney- -ABS.SG.4SGPOSS
‘his/her (reflexive) own chimney’

(5d) suflugni
suflug- -∼f-wni
chimney- -LOC.UNPD.PL
‘in the chimney’

Thus, despite the identical surface forms shown
in (5a) and (5b), these same inflection tags do
not result in identical surface forms for the noun
root suflug in (5c) and (5d), since the underly-
ing inflectional suffixes they represent are dis-
tinct: –ni versus ∼f-wni. As such, these two
strings of tags, [N][ABS][4SGPOSS][SGPOSD]
and [N][LOC][UNPD][PL], cannot be collapsed.

Since the tag set cannot be reduced further than
170 tags, we must invoke the post-processing step
introduced in §3.2.2 regardless. Moreover, since
our proposed method results in some loss of in-
formation with respect to all possible underly-
ing forms, we will have to seek an alternative
method for handling syncretism. Nevertheless, af-
ter applying the post-processing step, the retrained
model also achieved an adjusted accuracy score of
99.90%.

3.2.4 Additional Experiments
We trained four models on the inflected nouns
dataset, experimenting with the shallow versus
deep neural network architectures and the two to-
kenization methods: by characters and by redou-
bled graphemes. The shallow neural models were
identical to those described in §3.2.2 and §3.2.3.
The deep neural models used four hidden layers
and LSTM cells, following Barone et al. (2017).
As before, all models were trained to convergence
and evaluated with holdout cross validation on the
same test set. Results are presented in Table 7 on
the next page, along with the accuracy scores be-
fore and after resolving all surface ambiguities.
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Figure 1: Finite-state diagram depicting legal word structure for nouns in Yupik. Here, V may refer to either a short
vowel, -i, -a, -u, -e, or a long vowel, -ii, -aa, -uu, and C refers to any consonantal Yupik grapheme. Additionally,
any noun-final C is restricted to be -g, -gh, -ghw, or -w.

Model Tokenization Accuracy Adjusted
shallow char 95.37 99.87
deep char 95.07 99.95
shallow redoubled 95.48 99.90
deep redoubled 95.17 99.96

Table 7: Accuracy and adjusted accuracy scores on the
generated test data from §3.2.1 (before and after resolv-
ing all surface ambiguity) for each model. The bolded
percentage indicates the highest-performing model on
the heldout test data.

While all models reached over 99% adjusted
accuracy, the deep models outperformed their
shallow counterparts, and the models trained on
data tokenized by redoubled graphemes fared
marginally better than those trained on data tok-
enized by individual characters. The latter may
result from the fact that some inflections operate
on full graphemes, for instance, gh#→ q# during
inflection for the unpossesed absolutive singular.
The percentage improvement is so slight, however,
that this may not be of much consequence. The
deep model trained on redoubled graphemes was
most accurate, peaking at 99.96%.

Despite comparable accuracy scores, there did
not appear to be a discernible pattern with respect
to errors among the four models.

4 Finite-State Guesser

We modified the finite-state analyzer of Chen and
Schwartz (2018) by implementing a guesser mod-
ule; this guesser permits the analyzer to hypoth-
esize possible roots not present in its lexicon that
nevertheless adhere to Yupik phonotactics and syl-
lable structure. Noun roots, for example, may only
end in a vowel, -g, -gh, -ghw, or -w, and follow the
structural pattern given by the regular expression
below:

(C) V (C) (C V (C))*

Thus, any guess made for a noun would adhere
to this patterning, which the finite-state diagram
in Figure 1 above captures visually. Moreover,
the guesser was implemented as a backoff mecha-
nism, such that it was only called if no other anal-
ysis could be determined. Guesses were also la-
beled with an additional tag, [GUESS], to distin-
guish them from the output returned by the finite-
state analyzer itself.

5 Comparing Neural vs. Finite-State
Analyzers

The final experimental condition involved compar-
ing and quantifying the performance of the neural
analyzer against its equivalent finite-state counter-
part. Because the test set used in §3 was generated
by the finite-state Yupik analyzer, it would be un-
fair to contrast the performance of the neural ana-
lyzer and the finite-state analyzer on this dataset,
as the finite-state analyzer would be guaranteed to
achieve 100% accuracy.

5.1 Blind Test Set

Instead, we made use of the nouns from a pub-
lished corpus of Yupik interlinear glosses as an un-
seen test set: Mrs. Della Waghiyi’s St. Lawrence
Island Yupik Texts With Grammatical Analysis by
Kayo Nagai (2001), a collection of 14 orally-
narrated short stories that were later transcribed,
annotated and glossed by hand. From these sto-
ries, we extracted all inflected nouns with no inter-
vening derivational suffixes to form a modest eval-
uation corpus of 360 words. This was then pared
down further to 349 words by removing 11 En-
glish borrowings that had been inflected for Yupik
nominal cases. Manual examination of the evalua-
tion corpus revealed several problematic items that
we believe represent typos or other errors. These
were removed from the final evaluation set.



for types Coverage Accuracy
FST (No Guesser) 85.78 78.90
FST (w/Guesser) 100 84.86
Neural 100 92.20

for tokens Coverage Accuracy
FST (No Guesser) 85.96 79.82
FST (w/Guesser) 100 84.50
Neural 100 91.81

Table 8: Comparison of coverage and accuracy scores
on the blind test set (§5.1), contrasting the finite-state
and neural analyzers. Accuracy is calculated over all
types and tokens.

5.2 Blind Test Results

We analyzed the data from §5.1 using the origi-
nal finite-state analyzer, the finite-state analyzer
with guesser (§4), and the best-performing neu-
ral model from §3.2.4 (the deep model trained on
graphemes).

Accuracy scores for the neural and finite-state
analyzers, when evaluated on this refined corpus,
are reported for types and tokens in Table 8 above,
where accuracy was calculated over the total num-
ber of types and tokens, respectively. On the blind
test set, the neural analyzer achieved coverage of
100% and accuracy of over 90%, outperforming
both finite-state analyzers.

6 Discussion

Of the two analyzers which manage to achieve
maximum coverage by outputting a parse for each
item encountered, the neural analyzer consistently
outperforms the finite-state analyzer, even when
the finite-state analyzer is supplemented with a
guesser. Furthermore, as illustrated in Tables 9
and 10, the neural analyzer is also more adept at
generalizing.

6.1 Capacity to Posit OOV Roots

Out-of-vocabulary (OOV) roots are those roots
that appear in the evaluation corpus extracted from
Nagai and Waghiyi (2001) that do not appear in
the lexicon of the finite-state analyzer nor in the
Badten et al. (2008) Yupik-English dictionary. Of
the seven unattested roots identified in the corpus,
the neural analyzer returned a correct morpholog-
ical parse for three of them while the finite-state
analyzer only returned two (see Table 9).

Unattested Root FST NN
aghnasinghagh – –
aghveghniigh – 3

akughvigagh 3 3

qikmiraagh – –
sakara 3 –
sanaghte – –
tangiqagh – 3

Table 9: Comparison of finite-state and neural ana-
lyzer’s performances on unattested roots, which are un-
accounted for in both the lexicon of the finite-state an-
alyzer and the Badten et al. (2008) Yupik-English dic-
tionary. A checkmark indicates that the correct mor-
phological analysis was returned by that analyzer.

6.2 Capacity to Handle Spelling Variation

The neural analyzer performed even better with
spelling variation in Yupik roots (see Table 10).
Of the three spelling variants identified in the cor-
pus, all of them differed from their attested forms
with respect to a single vowel, -i- versus -ii-. The
neural analyzer returned the correct morphologi-
cal parse for all spelling variants, while the finite-
state analyzer supplemented with the guesser only
succeeded with one, melqighagh. Moreover, the
neural analyzer even managed to guess at the cor-
rect underlying root in spite of a typo in one of the
surface forms (ukusumun rather than uksumun).

Root Variant FST NN
melqighagh 3 3

piitesiighagh – 3

uqfiilleghagh – 3

*ukusumun – 3

Table 10: Comparison of finite-state and neural an-
alyzer’s performances on root variants, which are
spelled differently from their attested counterparts in
the lexicon of the finite-state analyzer and Badten et al.
(2008). A checkmark implies that the analyzer returned
the correct morphological analysis while the asterisk *
denotes an item with a typo.

6.3 Implications for Linguistic Fieldwork

The higher-quality performance of the neural ana-
lyzer has immediate implications for future com-
putational endeavors and field linguists working in
Yupik language documentation and longer-range
implications for field linguists in general. With
respect to fieldwork, a better-performing analyzer
with greater and more precise coverage equates



to better real-time processing of data for field lin-
guists performing morphological analysis and in-
terlinear glossing.

The neural analyzer is also immune to overgen-
eration, since it relies on a machine translation
framework that returns the “best” translation for
every input sequence; in our case, this equates
to one morphological analysis for each surface
form. This contrasts with the finite-state analyzer
variants that may return hundreds or thousands of
analyses for a single surface form if the finite-state
network permits. For instance, it was found that
within the text corpus of the Jacobson (2001) ref-
erence grammar alone (see Table 1), the Yupik
finite-state analyzer (without guesser) generated
over 100 analyses for each of 16 word types. The
word with the greatest number of analyses, laa-
lighfiknaqaqa, received 6823 analyses followed
by laalighfikiikut with 1074 (Chen and Schwartz,
2018). In this way, to have developed a neural an-
alyzer that returns one morphological analysis per
surface form is valuable to field linguists as it does
not require them to sift through an indiscriminate
number of possibilities.

6.4 Application to Other Languages
Aside from our procedure to tokenize Yupik words
into sequences of fully transparent graphemes,
exceedingly little language-specific preprocessing
was performed. Our general procedure consists of
creating a parallel corpus of surface and underly-
ing forms by iterating through possible underlying
forms and using a morphological finite-state trans-
ducer to generate the corresponding surface forms.
We believe that this procedure of bootstrapping a
learned morphological analyzer through the lens
of machine translation should be generally appli-
cable to other languages (especially, but certainly
not exclusively, those of similar typology).

6.5 Added Value of FST Analyzers
Finally, the methodology employed here, in which
a neural analyzer is trained with data generated
from an existing finite-state implementation, is in-
herently valuable. Though the development of
finite-state morphological analyzers demands con-
siderable effort, the fact that their output may be
leveraged in the development of better-performing
systems is especially practical for under-resourced
languages such as Yupik, where any form of train-
ing data is scarce. Thus, finite-state analyzers may
serve a twofold purpose: that of morphological

analysis, as they were intended to be used, but also
for the generation of training data to train neural
systems.

7 Conclusion

Morphological analysis is a critical enabling
technology for polysynthetic languages such as
St. Lawrence Island Yupik. In this work we have
shown that the task of learning a robust high-
accuracy morphological analyzer can be boot-
strapped from an existing finite-state analyzer.
Specifically, we have shown how this can be done
by framing the problem as a machine translation
task. We have successfully trained a neural mor-
phological analyzer for derivationally unaffixed
nouns in St. Lawrence Island Yupik, and compared
its performance with that of its existing finite-state
equivalent with respect to accuracy.

This work represents a case where the student
truly learns to outperform its teacher. The neu-
ral analyzer produces analyses for all Yupik word
types it is presented with, a feat that the original
finite-state system fails to achieve. At the same
time, the neural analyzer achieves higher accuracy
than either the original finite-state analyzer or a
variant FST augmented with a guesser. The neural
analyzer is capable of correctly positing roots for
out-of-vocabulary words. Finally, the neural ana-
lyzer is capable of correctly handling variation in
spelling.

In future work, we plan to explore more thor-
ough methods for handling ambiguous surface
forms. We also plan to correct the minor FST error
identified in §3.1.2. Most importantly, the training
dataset will be extended to include items beyond
inflected nouns with no intervening derivational
suffixes. Specifically, we intend to increase the
training set to include verbs, particles, and demon-
stratives in addition to nouns, as well as words that
include derivational suffixes.
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