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Abstract

Prior work on temporal relation classifica-
tion has focused extensively on event pairs in
the same or adjacent sentences (local), pay-
ing scant attention to discourse-level (global)
pairs. This restricts the ability of systems
to learn temporal links between global pairs,
since reliance on local syntactic features suf-
fices to achieve reasonable performance on ex-
isting datasets. However, systems should be
capable of incorporating cues from document-
level structure to assign temporal relations.
In this work, we take a first step towards
discourse-level temporal ordering by creat-
ing TDDiscourse, the first dataset focus-
ing specifically on temporal links between
event pairs which are more than one sentence
apart. We create TDDiscourse by augmenting
TimeBank-Dense, a corpus of English news
articles, manually annotating global pairs that
cannot be inferred automatically from exist-
ing annotations. Our annotations double the
number of temporal links in TimeBank-Dense,
while possessing several desirable properties
such as focusing on long-distance pairs and
not being automatically inferable. We adapt
and benchmark the performance of three state-
of-the-art models on TDDiscourse and observe
that existing systems indeed find discourse-
level temporal ordering harder.

1 Introduction

Temporal ordering of events is a crucial problem
in automated text analysis. Systems capable of
performing this task find widespread applicabil-
ity in areas such as time-aware summarization,
temporal information extraction or event timeline
construction. Prior work has focused extensively
on creating annotated corpora for temporal order-
ing, some notable efforts being the development
of the TimeML annotation schema (Pustejovsky
et al., 2003), TimeBank (Pustejovsky et al.) and

TimeBank-Dense (Cassidy et al., 2014). How-
ever, most work has focused mainly on local or-
dering, i.e., events present in the same or adjacent
sentences. This leads to a major drawback, also
pointed out by Reimers et al. (2016). Low preva-
lence of global discourse-level temporal ordering
annotation in existing datasets allows systems to
achieve moderate performance simply using local
syntactic cues. Having more global annotations
would require systems to incorporate global con-
sistency and assimilate features from document-
level structure and flow to achieve high perfor-
mance, thus presenting a more challenging task.
In this work, we present TDDiscourse, a dataset
focused on discourse-level temporal ordering.

We create TDDiscourse by augmenting
TimeBank-Dense (Cassidy et al., 2014), a corpus
of English news articles, with more long-distance
event pair annotations. Our work makes the first
attempt to explicitly annotate relations between
event pairs that are more than one sentence apart,
a more difficult annotation task than previous
datasets. In addition to facing similar challenges
as prior work (eg: hypothetical/negated events
(Cassidy et al., 2014)), we tackle new global
discourse-level issues such as incorporating
event coreference and causality/prerequisite links
arising from world knowledge. To handle these,
we design a careful coding scheme that achieves
high inter-annotator agreement (Cohen’s Kappa
of 0.69 on the test set). However, getting expert
manual annotation for all possible long-distance
event pairs is expensive. Moreover, it is possible
to leverage annotations from existing datasets to
automatically infer temporal relations for certain
event pairs. To make optimal use of expert
annotation, we develop a heuristic algorithm for
automatic inference of temporal relations using
EventTime (Reimers et al., 2016) and apply this
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to all documents.1 We then randomly subsample
the unannotated event pairs and source expert
annotations for those. At 6150 pairs, our manually
annotated subset is of the same size as TimeBank-
Dense. Adding the automatic subset makes
our dataset 7x larger (§6). Finally, we perform
a principled comparison between manual and
automatic pairs by annotating 3 test documents
(107 manual and 110 automatic event pairs) with
phenomena required to reason correctly about
the pair. These annotations suggest that our
manual subset exhibits a high proportion of global
discourse-level phenomena such as reasoning
about chains of events.

In addition to developing TDDiscourse, we
adapt three state-of-the-art models on TimeBank-
Dense for discourse-level temporal ordering and
benchmark their performance on our data, separat-
ing scores on manual and automatic subsets. We
observe that models perform worse on average on
TDDiscourse, with none beating a majority class
baseline on the manual subset. A manual analysis
of model errors reveals key shortcomings of cur-
rent temporal ordering techniques. We offer our
dataset2 as a challenging new resource for the tem-
poral ordering community and hope that insights
from our analysis will spark interest in the devel-
opment of more global discourse-aware models.

2 Related Work

2.1 Prior Work on Temporal Annotation
The development of TimeML (Pustejovsky et al.,
2003) and TimeBank (Pustejovsky et al.) marked
the first attempt towards creating a corpus for tem-
poral ordering of events. TimeML uses temporal
links (TLINKs) (Setzer, 2002), to represent order-
ing. A TLINK expresses the temporal relation be-
tween two events. For example, an event e1 can
occur before another event e2. TimeBank is an-
notated using TLINKs, but the number of possi-
ble TLINKs in a document is large (quadratic in
number of events). So annotation is restricted to
a subset of TLINKs, leading to sparsity. To com-
bat this, several works attempted to create denser
corpora (Bramsen et al., 2006; Kolomiyets et al.,
2012; Do et al., 2012; Cassidy et al., 2014), but
still focused largely on local TLINKs.

1We validate our algorithm by obtaining human annota-
tions for a subset of 100 examples and observing agreement
with the generated label in 99% cases

2https://github.com/aakanksha19/
TDDiscourse

Reimers et al. (2016) addressed high annotation
cost by proposing a new scheme in which events
were associated with explicit time expressions.
Annotation effort now scaled linearly with num-
ber of events, making it feasible to annotate all
of them. Using this scheme, they created Event-
Time, which had some discourse-level temporal
annotation. However this dataset had one ma-
jor drawback: events which could not be associ-
ated with a time expression were ignored. We ob-
served that it may not always be possible to de-
termine specific times for an event, but ordering
it with respect to other events is often possible
based on world knowledge. For example, con-
sider the snippet: “Police discover body of kid-
napped man. Police found the man’s dismembered
body wrapped in garbage bags”. In this text, dis-
membered cannot be associated with a time. But
the temporal relation between dismembered and
kidnapped is clear because the kidnapping should
have happened before dismembering. Based on
this, we address the drawback in EventTime, by
using TLINK-based annotation, which is expen-
sive but allows more expressive power. Following
TimeML, we augment TimeBank-Dense (Cassidy
et al., 2014) with global discourse-level TLINKs.
To optimize manual effort, we automatically gen-
erate all TLINKs that can be inferred from Event-
Time. Then, we manually annotate a large subset
of missing TLINKs involving events not associ-
ated with specific dates.

Most recently, Ning et al. (2018b) proposed a
new scheme, which labels TLINKs based only on
event start time. This improved inter-annotator
agreement allowing for crowdsourcing of long-
distance annotations at lower cost. However, they
focused only on verb events, whereas our work is
broader in scope and poses no such restrictions.

2.2 Prior Temporal Ordering Systems

TimeBank and the TempEval tasks (Verhagen
et al., 2007, 2010; UzZaman et al., 2013) spurred
the development of many temporal ordering sys-
tems (UzZaman and Allen, 2010; Llorens et al.,
2010; Strötgen and Gertz, 2010; Chang and Man-
ning, 2012; Chambers, 2013; Bethard, 2013).
More recently, TimeBank-Dense and EventTime
prompted development of newer models (Cham-
bers et al., 2014; Mirza and Tonelli, 2016; Cheng
and Miyao, 2017; Reimers et al., 2018). Most sys-
tems built for TimeBank/ TimeBank-Dense focus

https://github.com/aakanksha19/TDDiscourse
https://github.com/aakanksha19/TDDiscourse
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on TLINKs between events in the same or adjacent
sentences, relying on local features rather than
document-level structure, with some exceptions.
Chambers and Jurafsky (2008); Denis and Muller
(2011); Ning et al. (2017) introduce document-
level consistency via integer linear programming
constraints. Bramsen et al. (2006); Do et al. (2012)
also incorporate document-level structure, but fo-
cus on different corpora. Reimers et al. (2018) de-
velop a model for EventTime, which uses a de-
cision tree of CNNs to associate each event from
a document with a time. Several works have ex-
plored techniques to incorporate document-level
cues such as event coreference (Do et al., 2012;
Llorens et al., 2015) and causality (Do et al., 2012;
Ning et al., 2018a) in temporal ordering systems.
However, due to a lack of standard datasets focus-
ing on global discourse-level links, most work has
been evaluated on datasets of their own creation
or standard datasets with mainly local TLINKs.
This further stresses the need for a standardized
benchmarking effort, which we address by evalu-
ating adaptations of three state-of-the-art systems
on our dataset (§8).

3 Constructing TDDiscourse

To emphasize the need for a global discourse-level
focus in temporal ordering, we develop TDDis-
course, the first dataset which focuses explicitly on
TLINK annotations between event pairs that are
more than one sentence apart. To create TDDis-
course, we augment a subset of documents from
TimeBank with global TLINKs. We use the same
set of 36 documents as TimeBank-Dense (Cassidy
et al., 2014) and EventTime (Reimers et al., 2016)
to facilitate comparison with previous work. We
also utilize the same set of temporal relations as
TimeBank-Dense.3 Table 1 gives a brief summary
of these relations. To add global links, we use two
approaches:
• Manual annotation: We manually label a

subset of global TLINKs using document
cues, world knowledge and causality (§4). To
optimize human effort, we ensure that these
TLINKs are not automatically inferable.
• Automatic inference: We use a heuris-

tic algorithm to automatically label global
TLINKs using EventTime (§5) annotations,
to generate a large number of links at low

3We discard the “vague” label since we do not require
annotators to label all event pairs

Symbol Relation
a e1 occurs after e2
b e1 occurs before e2
s e1 and e2 are simultaneous
i e1 includes e2
ii e1 is included in e2

Table 1: Temporal relation set used in TDDiscourse.
All relations are mutually exclusive.

cost.

4 Manual Annotation

In this phase, we ask experts4 to label discourse-
level TLINKs that cannot be inferred automati-
cally.5 Getting expert annotation for all miss-
ing TLINKs is expensive. Hence, we randomly
subsample TLINKs not annotated by TimeBank-
Dense or automatic inference. This subsample is
as large as TimeBank-Dense, thus doubling the
data size while making the overall task harder (see
§8). Note that TLINKs annotated in this phase
may involve events for which a specific time of
occurrence cannot be determined, which were ig-
nored in EventTime. We refer to this subset as
TDD-Man.

Since TLINKs are not restricted to the same or
adjacent sentences, our annotation task becomes
harder, requiring cues from the entire document.
Many TLINKs also require the use of causal links
and world knowledge to label the relation. Based
on our observations, we develop a coding scheme.
To ensure high inter-annotator agreement, we re-
fine our scheme over multiple rounds of annota-
tion and discussion of disagreements.

4.1 Coding Scheme
Our scheme reduces the task of labeling a TLINK
to a set of concrete decision steps:

1. Using textual cues
2. Using world knowledge
3. Using narrative ordering

A TLINK may be assigned a label at any step.
If it cannot be assigned a label, it moves on to
the next step. Information from previous steps is
retained, making it possible to combine multiple
sources of evidence. For example, textual cues
may not suffice, but they can be used in conjunc-
tion with world knowledge to label a pair. We

4Expert annotators are the authors of the paper, with a
background in computational linguistics

5The automatic inference algorithm is explained in §5
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Snippet
Atlanta nineteen ninety-six. A bomb blast shocks the
Olympic games. One person is killed.
January nineteen ninety-seven. Atlanta again. This time
a bomb at an abortion clinic. More people are hurt.
Event pair: blast, hurt
Relation: before
Textual cues: Event blast occurred in 1996. Event hurt
occurred because of second bomb blast in 1997.

Table 2: Sample document-level textual cues used dur-
ing temporal annotation

choose to organize our coding scheme as men-
tioned above, to make the process of gathering ev-
idence about an event pair systematic, and ensure
that experts do not miss important cues. The fi-
nal step is guaranteed to assign a label. We choose
not to allow annotators to leave event pairs unla-
beled or label them “vague”, to keep them from
overusing this option. Owing to this decision, we
need to develop mechanisms for handling TLIN-
LKs containing events which have not actually oc-
curred (eg: negated, hypothetical or conditional
events). Drawing from prior work, we interpret
these events using a possible worlds analysis, in
which the event is treated as if it has occurred. We
refer interested readers to (Chambers et al., 2014)
for a more detailed discussion.

4.1.1 Using textual cues
In this step, we use document-level textual cues to
label a TLINK. The cues used are similar to those
used in previous datasets (Cassidy et al., 2014).
Table 2 gives an example of the types of cues used.

A key textual cue we use here is event coref-
erence. Event coreference has not been used for
annotation because the occurrence of coreferent
events in adjacent sentences is rare. However,
this cue is crucial for global discourse-level an-
notation. Since TimeBank does not contain event
coreference annotation, we develop a procedure to
annotate our document subset. Our procedure is
based on the ERE (Entities, Relations, and Events)
scheme (Song et al., 2015), which cannot be di-
rectly used for TimeBank due to differing notions
of what constitutes an event and different meta-
data. In our procedure, events are considered
coreferent iff they share the following:
• Entities involved in the event
• Temporal attributes
• Location attributes
• Realis (whether event is real or hypothetical)

Events which are synonymous in context are also

considered coreferent (for instance, in “...held an
interview Monday. The segment covered...”, in-
terview and segment are synonymous). These
attributes (barring temporal) are not provided in
TimeBank and must be inferred. Often, an event
may only have partial information about these at-
tributes - here we use human judgment. Our def-
inition of coreference is closer to the strict no-
tion of “event identity” in Light ERE than the re-
laxed definition in Rich ERE.6 To test our proce-
dure, we select all “simultaneous” TLINKs from
TimeBank-Dense to ensure that our sample con-
tains a sizeable proportion of possibly coreferent
event pairs. The corpus contains 179 “simultane-
ous” links, of which 93 are event pair TLINKs.
Our first annotation pass achieves high agreement
between two annotators, with a Kappa of 0.70. We
refine our guidelines through an adjudication step,
reaching perfect agreement on this sample. Post-
adjudication guidelines are used to annotate event
coreference for all documents. Resulting annota-
tions are used as textual cues in our scheme. Based
on textual cues, an appropriate label is assigned
to a TLINK. Coreferent TLINKs are labeled “si-
multaneous”. Unlabeled links move on to the next
decision step.

4.1.2 Using world knowledge
This step uses real world knowledge to determine
causal/prerequisite links which are used to label
a TLINK. We consider both events in the TLINK
and determine whether they possess one or both of
the following:
• Causal Link: Two events have a causal link

if the occurrence of one event results in the
other event coming about. For example,
in the sentence “The paper got wet when I
spilled water on it”, the event pair (spilled,
wet) have a causal link.
• Prerequisite Link: Two events have a pre-

requisite link if one event must occur before
the other can happen. For example, in the
sentence “We cooked dinner and ate it”, the
event pair (cooked, ate) have a prerequisite
link. Note that we use the knowledge that a
meal must be cooked before it can be eaten,
though it is not explicitly mentioned.

We examine the event pair in the context of the en-
tire document to detect causal/prerequisite links,
also allowing weak or transitive links. For in-

6Examples in the appendix
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Rule Label
TLINK=(A, B), A=P Before
TLINK=(A, B), A=I Includes
TLINK=(B, A), A=P After
TLINK=(B, A), A=I Is Included

Table 3: Labels assigned to event pairs based on event
and TLINK metadata

stance, in the text “Diplomacy is making head-
way in resolving the UN’s standoff with Iraq. One
major sticking point has been Iraq’s proposal...”,
proposal causes standoff, which is a prerequisite
for resolving. Hence, the pair (proposal, resolv-
ing) is considered causal/prerequisite. Our assign-
ment of causal/prerequisite links is unordered. For
example, reverse event pairs (wet, spilled), (ate,
cooked), and (resolving, proposal) are also consid-
ered causal/prerequisite. Link order is taken into
consideration while assigning a temporal relation.

If two events contain a causal/prerequisite link,
we identify the event in the pair that causes or is
a prerequisite for the other. We call this event “A”
and the other “B”. For example, (spilled, wet) is
expressed as (A, B), while (wet, spilled) is ex-
pressed as (B, A). To label the TLINK, we de-
termine whether A is a point (P) or interval (I)
event using existing date annotations from Event-
Time (Reimers et al., 2016). This helps us catch
cases where A is a long-lasting interval and the
time span for B is completely included in A. For
instance, in “the war forced civilians to evacuate”,
(war, evacuate) has a causal/prerequisite link with
war being event A. Though war caused evacua-
tion, it is reasonable to expect that the war started
before and ended after evacuation. If A is not
present in EventTime (i.e it cannot be assigned a
specific time), we use our judgment to determine
event length. We then assign a label as per table 3.
Unlabeled links are passed to the next step.

4.1.3 Using narrative ordering
This step uses a heuristic based on the intuition
that events in a narrative are often presented in
chronological order. To label a TLINK, we deter-
mine which event appeared first in the document.
This event is called “A”, and the other is “B”. We
then detect whether A is a point (P) or interval (I)
from EventTime, falling back to our own judgment
if it is not present. Finally, a label is assigned fol-
lowing table 3. This step is guaranteed to assign a
label since every pair will have a narrative-based
order.

Dataset Kappa
TimeBank 0.71
TimeBank-Dense 0.56-0.64
TDD-Man 0.69

Table 4: Inter-annotator agreement (Cohen’s Kappa)
on temporal ordering datasets. Kappa scores for TDD-
Man are reported on the test set containing 1500 links.

a b s i ii
a 137 22 0 12 22
b 30 311 1 72 23
s 0 0 42 5 4
i 9 36 3 462 35
ii 12 32 0 21 209

Table 5: Relation agreement between annotators on the
TDD-Man test set containing 1500 links.

4.2 Inter-annotator agreement
Our annotation scheme was developed over multi-
ple rounds of coding and discussion between two
experts. In each round, experts separately anno-
tated a set of 10-15 TLINKs.7 Cohen’s Kappa
was computed and disagreements were discussed.
TLINKs were changed in every round to en-
sure exposure to diverse event pair types. Inter-
annotator agreement in preliminary rounds ranged
from 0.48-0.69. The final coding scheme resulted
in an agreement of 0.69 on the test set. Table 4
shows that our agreement is comparable to prior
work. Table 5 presents a class-wise distribution
of agreements between pairs of annotators. Dis-
agreements mainly include cases where one anno-
tator chose after/before while the second chose in-
cludes/is included (64%). This indicates that de-
termining precise end-points for an interval event
is difficult, as corroborated by Ning et al. (2018b).

5 Automatic Inference

This approach uses automatic inference to de-
rive new TLINKs at low cost from EventTime
(Reimers et al., 2016), which assigns specific
times to events. EventTime divides events into
two types: SingleDay and MultiDay. SingleDay
events are assigned dates, while MultiDay events
are assigned intervals. Possible event pairs can be
divided into three categories: SS (both events are
SingleDay), SM (one event is SingleDay while the
other is MultiDay) and MM (both events are Mul-
tiDay). Not all assigned dates and intervals are ex-
act. EventTime relies heavily on under-specified

7chosen from documents in the development set
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temporal expressions (such as “after1998-06-08”),
making automatic inference non-trivial.

We follow separate algorithms to infer TLINKs
for each pair type (SS, SM and MM). For SS pairs,
both events are associated with dates, which may
be expressed in one of four ways8, resulting in
16 date combinations for SS links. We develop
heuristics9 for each combination, which generate
a temporal relation based on date values. Our
heuristics were developed with a focus on preci-
sion to avoid adding incorrect links. Often, a re-
lation cannot be generated. For example, consider
two events associated with the same date “after02-
01-1999”. We know that both events occur after
02-01-1999, but we cannot infer their order with
respect to each other. In such cases, we do not
label the pair. For SM pairs, one event is asso-
ciated with a time interval having begin and end
dates. Here we use the SS pair inference algo-
rithm to generate relations between the SingleDay
event date and the MultiDay event begin and end
dates. These relations are compared to infer the
label for the pair. For MM pairs, both events have
begin and end dates. We infer relations between
begin and end points using SS link inference and
use these to infer the pair label. After inference,
we perform temporal closure, according to Cham-
bers et al. (2014). To evaluate validity of gener-
ated TLINKs, we randomly sample a subset of 100
TLINKs and ask three annotators 10 to determine
the correctness of the labels. All annotators unani-
mously agree with the assigned label in 99% cases.
We call this subset TDD-Auto.

6 Dataset Statistics

Our data construction pipeline produces the first
dataset focused on temporal links between global
discourse-level event pairs (TDDiscourse), con-
sisting of two subsets TDD-Man and TDD-Auto.
Table 6 presents train, dev and test set sizes for
both subsets, Timebank-Dense as well as an aug-
mented version of TimeBank-Dense with addi-
tional links inferred via temporal closure. Our
complete dataset is 7x larger than both, indicating
that our construction adds valuable new TLINKs.
TDD-Man itself is as large as TimeBank-Dense

8MM-DD-YYYY, afterMM-DD-YYYY, beforeMM-DD-
YYYY, afterMM-DD-YYYYbeforeMM-DD-YYYY (MM-
DD-YYYY stands for a specific date value)

9Sample heuristics provided in the appendix
10Annotators were volunteers with no vested interest in the

corpus

Dataset Train Dev Test
TB-Dense 4032 629 1427

TB-Dense + Closure 4399 722 1575
TDD-Man 4000 650 1500
TDD-Auto 32609 1435 4258

Table 6: Dataset sizes for TimeBank-Dense and our
dataset. Note that we only count event-event TLINKs

and can be used in isolation, however incorporat-
ing TDD-Auto provides a large amount of training
data making the task more amenable to deep neu-
ral net approaches.

Table 7 presents class distributions for TDD-
Man and TDD-Auto test sets. Though there is a
clear majority class, both sets are more balanced
than TimeBank-Dense, in which 40% event pairs
are labeled “vague”. To evaluate the presence of
long-distance TLINKs, we present the distribution
of distance between event pairs from annotated
TLINKs in table 8 which shows that nearly 53%
TLINKs in our dataset comprise of event pairs
which are more than 5 sentences apart. Further,
to gain deeper insight into global discourse-level
phenomena exhibited by our dataset, we augment
3 documents from the test set (107 manual and 110
automated event pairs) with additional annotations
about phenomena required to label them correctly.
We consider the following phenomena:
• SingleSent (SS): Textual cues from sen-

tences containing the events suffice to predict
the relation (irrespective of distance).
• Chain Reasoning (CR): Correct relation

prediction requires reasoning about other
events from the document.
• Tense Indicator (TI): For verb events, tense

information indicates the correct relation.
• Future Events (FE): One or both events

from the pair will occur in the future.
• Hypothetical/ Negated (HN): One or both

events are hypothetical or negated.
• Event Coreference (EC): Event coreference

resolution is needed to predict relation.
• Causal/ Prereq (CP): Causal/ prerequisite

links must be identified to predict relation.
• World Knowledge (WK): Real world

knowledge is needed to identify the relation.
Table 9 shows the distribution of these phenomena
in TDD-Man and TDD-Auto. TDD-Man shows
a higher percentage of difficult phenomena (CR,
CP). On the other hand, TDD-Auto shows high
prevalence of SS, indicating that local information
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Dataset a b s i ii
TB-Dense 0.18 0.22 0.02 0.05 0.06
TDD-Man 0.13 0.27 0.03 0.38 0.19
TDD-Auto 0.28 0.32 0.16 0.11 0.13

Table 7: Class distributions for our test sets and
TimeBank-Dense. Note that the distribution for
TimeBank-Dense does not sum to 1, since it includes
a vague class.

Dataset <5 <10 <15 <20 >20
TDD-Man 0.40 0.40 0.15 0.04 0.01
TDD-Auto 0.50 0.32 0.12 0.05 0.01

Table 8: Distribution of distance between events for all
TLINKs in our test sets (in terms of #sentences)

may be sufficient to label many long-distance links
in this subset correctly. This principled compari-
son of both subsets leads us to hypothesize that
models which perform well on TimeBank-Dense,
should achieve similar scores on TDD-Auto but
perform much worse on TDD-Man.

7 Experiments

To statistically evaluate the difficulty of TDDis-
course, we adapt and benchmark three SOTA
models on our data. Our results reveal interesting
insights about model drawbacks, highlighting the
need to shift focus to handling global discourse-
level phenomena such as chain reasoning.

7.1 Adapting State-of-the-Art Models for
Benchmarking

As most state-of-the-art temporal ordering mod-
els are built on datasets containing mainly local
TLINKs, they are not well-equipped to handle
global TLINKs. Hence, we adapt these models to
ensure fair evaluation. We focus on the following:
CAEVO (Chambers et al., 2014): This system

Phenomenon TDDMan TDDAuto
SS 25.23% 90.91%
CR 58.88% 9.09%
TI 12.10% 46.36%
FE 36.45% 29.09%
HN 14.02% 19.09%
EC 16.82% 4.55%
CP 64.49% 29.09%
WK 16.82% 0.91%

Table 9: Distribution of various phenomena in the an-
notated test subset. These phenomena were labeled
manually.

consists of specialized learners (sieves) which in-
clude heuristic rules and trained models. For each
document, sieves run in decreasing order of pre-
cision. Decisions made by earlier sieves con-
strain following ones. This framework integrates
transitive reasoning, but decisions made by ear-
lier sieves cannot be overturned, causing error cas-
cades. To extend CAEVO, we increase window
sizes and remove the AllVague sieve.11

BiLSTM (Cheng and Miyao, 2017): Inspired by
Xu et al. (2015), this model uses a BiLSTM classi-
fier. For each pair, dependency paths from source
and target events to the sentence root are fed to a
BiLSTM. For events in adjacent sentences, source
and target event sentences are assumed to be con-
nected to a ”common root”. We follow the same
framework to build a BiLSTM.
SP+ILP (Ning et al., 2017): CAEVO and BiL-
STM make separate local decisions for each
TLINK, which may result in global inconsistency.
For example, for events A, B and C, if A oc-
curs before B and B occurs before C, transitivity
implies that A occurs before C. Models classify-
ing each pair independently may assign a differ-
ent relation to A-C. To correct this, Ning et al.
(2017) proposed SP+ILP, which uses a structured
perceptron with ILP constraints, explicitly enforc-
ing global consistency. This model was trained on
TimeBank-Dense which contains fewer TLINKs
per document, making joint learning tractable with
loose transitivity constraints. But loose transitiv-
ity is an issue for our data with 7x more TLINKs,
since the number of constraints increases tremen-
dously. To improve tractability, we define a
stricter transitivity constraint. Let E, R and P be
sets of events, temporal relations and event pairs
respectively(P = {(ei, ej) ∈ E × E|ei, ej ∈
E, i 6= j}). We define an array of binary indica-
tor variables y, where y<r,i,j> indicates whether
the relation r holds between events ei and ej . Our
objective function is defined as:

argmin
y

∑
<ei,ej>∈P

∑
r∈R
−y<r,i,j> log p<r,i,j> (1)

subject to the following constraints:
y<r,i,j> ∈ {0, 1}, ∀(ei, ej) ∈ P,∀r ∈ R (2)∑

r∈R

y<r,i,j> = 1, ∀(ei, ej) ∈ P (3)

11since our data does not include the vague class. We also
remove the WordNet sieve and add MLEventEventDiffSent.
For more details on these sieves, we refer interested readers
to Chambers et al. (2014)
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System TB-Dense TDD-Auto TDD-Man
P R F1 P R F1 P R F1

MAJOR 40.5 40.5 40.5 34.2 32.3 33.2 37.8 36.3 37.1
CAEVO 49.9 46.6 48.2 61.1 32.6 42.5 32.3 10.7 16.1
BiLSTM 63.9 38.9 48.4 55.7 48.3 51.8 24.9 23.8 24.3

SP 37.7 37.8 37.7 43.2 43.2 43.2 22.7 22.7 22.7
SP+ILP 58.4 58.4 58.4 46.4 45.9 46.1 23.9 23.8 23.8

Table 10: Performance of SOTA models on TB-Dense, TDD-Auto and TDD-Man. MAJOR represents a majority-
class baseline. We report performance on non-vague event-event links for TB-Dense to ensure fair comparison.

y<r1,i,j> + y<r2,j,k> − y<r3,i,k> ≤ 1,

∀(ei, ej), (ej , ek), (ei, ek) ∈ P,∀(r1, r2, r3) ∈ TC
(4)

where p<r,i,j> is the probability that event pair
(ei, ej) has label r. (2) ensures that indicator vari-
ables are binary, (3) forces event pairs to be as-
signed a unique label and (4) imposes transitivity.
TC denotes the set of transitive relation triples.12

Relation probabilities (p<r,i,j>) come from the
structured perceptron. In addition to this model,
we also evaluate the structured perceptron (SP) in
isolation, which lets us study the effect of intro-
ducing global consistency via ILP.

8 Results and Analysis

We benchmark 4 adapted SOTA models
(CAEVO, BiLSTM, SP and SP+ILP) on
TDD-Auto and TDD-Man. SP is a local
perceptron-based classifier, while SP+ILP in-
troduces transitivity via ILP into the perceptron.
This . For tractability, we limit all models to
using event pairs which are 15 or fewer sentences
apart. This discards only 5% of our data (table
8). Table 10 presents the benchmarking results.
We also benchmark models on TimeBank-Dense
(TB-Dense) to demonstrate that our modifications
do not affect performance on local TLINKs.

All models perform better than a majority class
baseline on TDD-Auto. The BiLSTM and SP
perform particularly well, achieving a higher F1
than TB-Dense, while CAEVO and SP+ILP show
slight degradation in comparison to TB-Dense.
This corroborates our hypothesis that many long-
distance TLINKs in TDD-Auto can be handled
with local information. However, all models show
a significant drop on TDD-Man, with none outper-
forming a majority class baseline. Further analysis
of model errors offers valuable insights into which
phenomena are not handled by models, posing in-

12(“before”, “before”, “before”) form a transitive relation
triple as A before B and B before C implies A before C

teresting challenges for future work.
Maintaining global consistency: Most SOTA
models make separate local decisions for each pair
and are not globally consistent. Adding global
consistency improves the performance of a local
classifier, as evinced by a 3-point F1 gain observed
on adding ILP to SP. We validate this observa-
tion by performing a transitivity analysis of BiL-
STM and SP+ILP on TDD-Auto. We go through
all event triples (e1, e2, e3). For each model, if
(e1, e2), (e2, e3) and (e1, e3) are all assigned la-
bels, we check whether labels are consistent. For
example, e1 after e2, e2 after e3 and e1 after e3 is a
consistent assignment. We observe that though the
BiLSTM has higher F1, it maintains transitivity in
41.9% cases, while SP+ILP enforces transitivity
in 53.6% cases, a 12% increase. We believe that
incorporating such constraints into neural models
can help, which we delegate to future work.
Incorporating real world knowledge: To exam-
ine the dismal performance of all models on TDD-
Man, we manually look at 100 pairs on which all
models made mistakes. 40% of these cases re-
quire real world knowledge. Some examples in-
clude determining that “military actions” refers to
the same event as “air strikes” (strikes would have
to be carried out by the military which cannot be
inferred from text), or knowing that certain events
(eg: “war”) are long-term. No SOTA model cur-
rently has this ability.
Using event coreference and structure: Our
analysis reveals another source of errors arising
from models’ inability to handle event coreference
and event structure such as sub-events or aspec-
tual predication, a grammatical device which fo-
cuses on different facets of event history (eg: using
”begin” to indicate initiation) (Pustejovsky et al.,
2003). This inability causes models to fail in 22%
cases indicating that exploiting rich event structure
information is a promising direction.
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Dealing with hypothetical or negated events:
We observe that SOTA models do not possess the
ability to handle these, causing 31% of errors.

9 Conclusion and Future Work

In this work, we created TDDiscourse, the first
dataset focused on global discourse-level tempo-
ral ordering. Our annotation scheme for TDDis-
course handled several issues which have not been
explicitly addressed in prior work. We further
adapted and benchmarked 3 SOTA models. All
models, on average, performed worse on TDDis-
course, validating the difficulty of the task. Our
error analysis reveals key phenomena not handled
by current systems, such as hypothetical/negated
events, event coreference, aspectual predication,
real world knowledge and global consistency. Fu-
ture work in temporal ordering must address these
issues, and we suggest several avenues for ex-
ploration, such as a BiLSTM-ILP joint learning
framework which has the advantage of combining
representational power of neural models with key
linguistic insights, and introducing event corefer-
ence information via ILP into a structured learn-
ing approach similar to Ning et al. (2017). Fi-
nally, we hope that our dataset offers a challeng-
ing testbed for the development of more global
discourse-aware models for temporal ordering.
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Appendix

A Coreference Examples
• Coreferent example: In the example ”their

disputes have been bedeviled by a number of
disputes”, the event ”disputes” is itself the
entity enacting the event ”bedeviled”. The
events take place over the same time period
and location, and are both real events. Thus,
we can conclude the events are coreferent.

• Non-coreferent example: In ”lower rates
have helped invigorate housing by making
loans more affordable”, though the events
share an agent (”lower rates”) and realis
states, they act on different patient entities
and thus are not coreferent.

B Sample heuristic rules from SS link
inference procedure:

Assume S1 and S2 indicate the points associated
with events 1 and 2 which are to be linked. Fol-
lowing subsections provide a brief sample of some
of the heuristic rules we develop to infer the tem-
poral link based on the values of S1 and S2.

B.1 S1 is of type MM-DD-YYYY and S2 is of
type afterMM-DD-YYYY

• Get the relation (rel) between the date values
from S1 and S2

• If rel is simultaneous or before, the SS link
value is before

• Else skip this link

B.2 S1 is of type MM-DD-YYYY and S2 is of
type beforeMM-DD-YYYY

• Get the relation (rel) between the date values
from S1 and S2

• If rel is simultaneous or after, the SS link
value is after

• Else skip this link

B.3 S1 is of type MM-DD-YYYY and S2 is of
type afterMM-DD-YYYY
beforeMM-DD-YYYY

• From S2, the date associated with after is
named date1 and the date associated with be-
fore is named date2

• Get the relation (rel1) between date value
from S1 and date1 from S2

• If rel1 is simultaneous or before, the SS link
value is before

• Get the relation (rel2) between date value
from S1 and date2 from S2

• If rel2 is simultaneous or after, the SS link
value is after

• Else skip this link

We develop similar rules for the remaining 13
cases. We also develop rule-based inference pro-
cedures for SM and MM links. Please refer to the
autogeneration code for the complete set of rules.


