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Abstract
Extraction of structured information from un-
structured text has always been a problem of
interest for NLP community. Structured data
is concise to store, search and retrieve; and it
facilitates easier human & machine consump-
tion. Traditionally, structured data extraction
from text has been done by using various pars-
ing methodologies, applying domain specific
rules and heuristics. In this work, we lever-
age the developments in the space of sequence
modeling for the problem of structured data
extraction. Initially, we posed the problem
as a machine translation problem and used
the state-of-the-art machine translation model.
Based on these initial results, we changed the
approach to a sequence tagging one. We pro-
pose an extension of one of the attractive mod-
els for sequence tagging tailored and effective
to our problem. This gave 4.4% improvement
over the vanilla sequence tagging model. We
also propose another variant of the sequence
tagging model which can handle multiple la-
bels of words. Experiments have been per-
formed on Wikipedia Infobox Dataset of bi-
ographies and results are presented for both
single and multi-label models. These mod-
els indicate an effective alternate deep learning
technique based methods to extract structured
data from raw text.

1 Introduction

A humongous volume of data in the form of text,
images, audio and video is being generated daily.
It has been reported that 90% of all the data avail-
able today has been generated in the last two
years (DoMo, 2017). The pace of data genera-
tion is growing exponentially. The generation of
data is not only restricted to open domains and
social media; even in closed groups like private
organizations and corporations, textual data is be-
ing produced in abundance. Unstructured data is
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present in a variety of forms like documents, re-
ports and surveys, logs etc. Restricting this data to
be captured directly in structured form prohibits
the natural capturing of the data, leaving out es-
sential pieces. But structured data presents the
data in a concise and well-defined manner which
is easier to understand than a corresponding docu-
ment. Structured data can be transformed into ta-
bles which can be easily stored in databases. It can
be indexed, queried for and searched to retrieve
relevant results of a query. Thus structured rep-
resentation is quintessential to facilitate machine
consumption of data. Moreover in the world of
data abundance, such structured representation is
essential for human consumption as well.

In many business processes, like Finance and
Healthcare, the transformation of the unstructured
data into structured form is done manually or
semi-automatically through domain specific rules
and heuristics. Let’s take the example of Pharma-
covigilance (Maitra et al., 2014), where adverse
effects of prescribed drugs are reported by pa-
tients or medical practitioners. This information
is used to detect signals of adverse effects. Col-
lection, analysis and reporting of these adverse ef-
fects by the drug companies is mandated by law.
In most cases, it is easy for patients or medical
practitioners to describe the side-effects of their
drugs in a common, day to day language, in free
form text. Then it has to be transformed into a
structured format which is analyzed with clinical
knowledge for signals of adverse effects. Cur-
rently this is done by human analysts or through
very rigid text processing heuristics for certain
kinds of text. Another domain is extraction and
management of legal contracts in domains such
as real estate. Specifically Lease Abstraction in-
volves manual inspection and validation of com-
mercial rental lease documents. It is done by
offshore experts who extract relevant information



Figure 1: From Unstructured to Structured Data

from the documents into a structured form. This
structured information is further used for aggre-
gate analytics and decision making by large real
estate firms (Annervaz et al., 2015).

Figure 1 shows a sample unstructured text and
its corresponding structured output. In case the
structured data is to be stored in a database, the
labels like name, birth date etc can be the column
names of the database and the corresponding val-
ues like charles and 12 march 1970 can be the ac-
tual values stored.

As mentioned earlier, previous work in this
space involved parsing the natural language sen-
tences, and writing rules and heuristics on the
parse tree or structure to extract the information re-
quired (Culotta and Sorensen, 2004; Fundel et al.,
2006; Reichartz et al., 2009). In this work, we ap-
proach the problem from sequence modeling per-
spective and weave together state of the art mod-
els in the space to extract structured information
from raw unstructured data. The task of informa-
tion extraction to build structured data can be de-
scribed as generating or matching appropriate tags
or labels to corresponding parts of raw data. For
each token in the raw data, a corresponding tag

is attached marking what kind of data it stands for.
OTHER tag gets attached if the data in the raw text
is not relevant.

We have approached the problem both from
machine translation and sequence tagging per-
spectives. In machine translation, typically there
are two sequences, one in source language (say
English) and the other in target language (say
French). Machine learning models try to convert
the sequence of tokens in source language to se-
quence of tokens in target language. In case of
translation problem, the core idea being expressed
in the input and the output is the same, however
it is in a different language. Similarly, for our
problem both the input and output have same con-
tent although it is represented in an unstructured
or structured format. So to start with, we ap-
proach the problem from translation perspective
and treat the source text as word sequence of un-
structured text and the corresponding tag sequence
as target sequence. State of the art machine trans-
lation models (sequence to sequence model (Cho
et al., 2014; Sutskever et al., 2014)) can then be
attempted for the same. We have experimented
with this approach and treat it as our baseline. We
didn’t find any previous work on this dataset for
structured data extraction task. However we real-
ized that this problem cannot be directly mapped
to a translation problem. There is significantly
more word or phrase level information in the in-
put which cannot be appropriately represented by
translation models. We realized that sequence tag-
ging models (like for POS tagging (Huang et al.,
2015)) are more suitable for this problem. We
have experimented with state of the art sequence
tagging model for the problem and propose some
problem specific variants to improve the perfor-
mance.

Main contributions of this work are as follows:

1. We approach the problem from sequence
modeling perspective, which is perhaps the
first attempt in literature to the best of our
knowledge. Modeled this way, we can elim-
inate usage of traditional ways for parsing or
writing domain specific rules. A parallel cor-
pus of unstructured and structured data is suf-
ficient to train the models.

2. We have designed a modified version of the
state of the art sequence tagging model along
with PoS tags and attention which further im-



Figure 2: Seq2seq Example

proves the results compared to the vanilla se-
quence tagging model.

3. We have also designed a multi-label sequence
tagging model which can generate multiple
labels of words using a customized learning
loss based on Set similarity.

The paper is organized as follows: We present
the details of seq2seq and sequence tagging mod-
els in Section 2 along with some interesting work
which has been done previously using these mod-
els. In Section 3 we give details of our approach
along with details of vanilla model and modified
models for single and multi-label problems. The
details of our experiments are in Section 4. We
present some related work in Section 5. We con-
clude in Section 6 by giving some future work di-
rections.

2 Preliminaries

A variety of NLP problems have been solved using
both seq2seq models and sequence tagging mod-
els. These models and their variants have pro-
duced state-of-the-art results and we discuss these
models and some of their applications in the fol-
lowing subsection.

2.1 Seq2Seq Models

Seq2seq models are end to end models which
transform an input sequence into an output se-
quence. These models basically consist of an en-
coder which takes the input and encodes it into an
intermediate representation and a decoder which
takes the intermediate representation as input and
generates the output sequence, one token at a time.
Encoders and Decoders structurally may be Re-
current Neural Networks like RNN, LSTM, GRU
(Cho et al., 2014; Sutskever et al., 2014)) or even
Convolutional Neural Networks (Gehring et al.,
2017), depending on the problem it is designed to
solve. It might also have different variations and
additional features like attention, multiple layers
etc (Bahdanau et al., 2014). These were the first

citizens of Encode, Attend, Decode paradigm deep
learning models.

Seq2seq models generate output in two steps as
shown in Figure 2. Firstly x, the sequence of em-
beddings which is created by combining the em-
beddings (vectors) of words, is given as input to
the encoder. The encoder transforms x into an
intermediate representation z (which for example
for RNN encoder may be the hidden state at the
end of processing input) as follows

z = enc(x)

Next, this representation is given as input to the
decoder. It generates the output Y token by token
as w0, w1, w2, ..., wl from z as per the following
equations:

ht = dec(ht−1, wt)

st = g(ht)

pt = softmax(st)

where, at t = 1
h0 = z

w0 = wsos

Here, at t = 1, h0 is the output of encoder z
and w0 is the embedding of start of sentence tag.
The decoder takes the previous hidden state and
current word embedding as input to generate the
next hidden state. Next, function g transforms the
hidden representation from hidden dimension h
to the dimension of vocabulary v. Next its out-
put is passed through a softmax function which
transforms the input into probability values for
each word in the vocabulary. Finally, it is passed
through argmax function to fetch the index of the
word of maximum probability and returns the cor-
responding word. This process is repeated till end
of sentence tag is generated by the decoder.

Originally, seq2seq models were conceived
for language translation task(Cho et al., 2014;
Sutskever et al., 2014)), where the input text is in
one language like English and the output which is
its translation, is in another language like French.



Figure 3: Sequence Tagging Example

These simple models generated encouraging re-
sults leading to production grade models which
parallelize training on multiple GPUs and are
used in applications such as Google Translate (Wu
et al., 2016). Seq2seq models have also been used
for Text Summarization. In this case, the input is
a large document and output is its summary which
can be used for generating news headlines or ab-
stracts. For this purpose, an attention based en-
coder and a beam search decoder which generated
words from the vocabulary gave the best results
(Rush et al., 2015; Wu et al., 2016).

Seq2seq models are not just restricted to textual
input/outputs. There have been applications with
image inputs to automatically generate captions
of images using CNN encoder and RNN decoder
with attention (Vinyals et al., 2015). These mod-
els have also been used on speech data to trans-
form speech to text (Chorowski et al., 2015). They
have also been used with videos for video trans-
lation, subtext generation and video generation
etc (Venugopalan et al., 2014; Srivastava et al.,
2015; Yao et al., 2015). Some multi-modal mod-
els which take more that one forms of inputs have
also been successful (Kiros et al., 2014).

2.2 Sequence Tagging Models

Sequence tagging or labeling models tag all the
tokens in the input sequence. Fundamentally,
this model consists of recurrent neural network
like RNN, LSTM, GRU and Convolutional Neu-
ral Network which reads input at token level and
a conditional random field (CRF) (Lafferty et al.,
2001) which takes as input the encoded represen-
tation and generates corresponding tags for each
token. These models may also include other ad-
ditional features like word and sentence features,
regularization, attention etc. Originally this model
was conceived for tasks like Part of Speech (PoS)

tagging, chunking and Named Entity Recognition
(NER) (Huang et al., 2015). A joint model for
multiple tasks also seems to work well (Hashimoto
et al., 2016).

A high level representation of sequence tagging
model as shown is Figure 3. Here the input is
passed into an bi-LSTM and the hidden vector
h(t) and output vector y(t) are generated as fol-
lows:

hf (t) = f(Ufx(t) +Wfhf (t− 1))

hb(t) = f(Ubx(t) +Wbhb(t− 1))

h(t) = [hf (t) : hb(t)]

y(t) = g(V h(t))

where hf (t) and hb(t) are the hidden repre-
sentations of the forward and backward LSTMs
respectively. These two are concatenated to
generate the final hidden representation h(t).
Uf ,Wf , Ub,Wb, V are weights computed during
training. These bi-LSTM representations are com-
bined with CRF using Viterbi Decoder (Sutton
et al., 2012). It takes the hidden state and the pre-
viously generated tags in the form of sequence to
generate the next tag. If the string of output tags
is taken as a sequence, then we can say that the
CRF generates the most likely sequence out of all
possible output sequences (Huang et al., 2015; Ma
and Hovy, 2016; Lample et al., 2016)

3 Approach and Models

For our problem, we started with seq2seq models.
We then moved to vanilla sequence tagging mod-
els which we realized are more suitable for the task
as compared to seq2seq models. We also built a
variant of sequence tagging model suitable for our
problem which further improves the performance.



Figure 4: Sequence Tagging with Attention

Figure 5: Computing Attention

Finally, a sequence tagging model which can gen-
erate multiple labels for each token has also been
designed. Further details of the models are pre-
sented in the following subsections.

3.1 Baseline Approach : Seq2seq model
For seq2seq model, the input is the sentence or
set of sentences and the structured output is trans-
formed to a string which is a series of key-value
pairs corresponding to the word-label pairs of the
sentence. Here we assume that the tags are at a
word level. This model can learn multiple labels
of the same word for example chris is name as
well as article title in Figure 2. This model by
its design also learns the sequence of label-word
pairs. Experiments as detailed in Section 4 have
been performed on different combinations of RNN
and CNN encoders and decoders.

3.2 Vanilla Sequence Tagging model
Sequence tagging model reads the input word
by word and simultaneously generates the corre-
sponding label for the word as shown in Figure
3. Here, blue cells represent the forward LSTM
and the violet cells represent the backward LSTM.
The line between the output labels represents the
CRF. For this model, the data is transformed such
that the sentence is split in words by spaces and

then each word is tagged to a corresponding label.
Only the first label of a word is considered. If a
word does not have any label then it is manually la-
beled as ’OTHER’. Structurally this biLSTM-CRF
model can comparatively work better even in case
of longer inputs. However, this model cannot learn
multiple labels of a word. The model generates la-
bels at a word level and thus it does not have an
ordering as in case of seq2seq models.

3.3 Modified Sequence Tagging model
We have modified the vanilla sequence tagging
model to incorporate following variations which
models our problem better and was found to gen-
erate improved results. Part of Speech (PoS) tags
of words carry rich information and are connected
to the corresponding labels of each word. To uti-
lize this, we used the word itself and the PoS
tag of each word as input. We randomly ini-
tialized the PoS tag embeddings. Word embed-
dings and PoS tag embeddings were concatenated
and passed as input to the bi-LSTM. We believe
that while generating label for the current word,
not all the words of the input are equally impor-
tant. Words nearby to the current word are con-
textually more important compared to words far-
ther away. Thus, every word has different impor-
tance or weight while generating the label of cur-



Table 1: Sample Results

Table 2: Single Label Results

Sentence 1 Label 1 Sentence 2 Label 2

w. name renan name
lamont name luce name
was OTHER born OTHER
a OTHER 5 birth date
scottish OTHER march birth date
footballer OTHER 1980 birth date
who OTHER , birth place
played OTHER paris birth place
as OTHER is OTHER
a OTHER a OTHER
right position french OTHER
winger position singer occupation
. OTHER and OTHER

songwriter occupation
. OTHER

Table 3: Multi-Label Results

Word Labels

begziin article title name
yavuukhulan article title image name
, OTHER
1929-1982 OTHER
was OTHER
a OTHER
mongolian nationality language
poet occupation
of OTHER
the OTHER
communist OTHER
era OTHER
that OTHER
wrote OTHER
in caption
mongolian nationality language
and OTHER
russian language
. OTHER

rent word. To incorporate this in the model, we
used self-attention (Vaswani et al., 2017; Tan et al.,
2018) as depicted in Figure 4 and 5.

3.4 Multi-label Sequence Tagging model

As shown in Figure 1 a word can have multiple
associated tags / labels. Vanilla sequence tagging
models are designed to predict only a single tag
for each word. Thus a lot of information might be
lost by using these models. The following mod-
ified model can give multiple possible labels of
words. At the output layer, instead of using soft-
max which was used in single label prediction
case, we use sigmoid which normalizes each of
the label prediction scores between 0 and 1 inde-
pendently. We used hamming loss, which is the
most common metric used in case of multi-label
classification problems (Tsoumakas and Vlahavas,
2007; Elisseeff and Weston, 2002). Hamming loss
is defined as the fraction of wrong labels to total
number of labels. It takes into account both correct
and incorrect labels. Let yt be the vector of true
labels and yp be the vector of independent proba-
bilities of predicted labels. Then Hamming Loss
(HL) is computed as follows:

HL = yt XOR yp

Here, XOR is non-differentiable and cannot
be used to train the multi-label sequence tagging
model. To overcome this problem, the HL equa-
tion is transformed as below:

HLdiff = average(yt ∗ (1− yp) + (1− yt) ∗ yp)

For example, let a word have true labels
as [1, 0, 0, 1] and the model predicts the la-
bels [0.9, 0.1, 0.2, 0.9], then hamming loss in
this case is computed as avg([1, 0, 0, 1] ∗
[0.1, 0.9, 0.8, 0.1]+[0, 1, 1, 0]∗ [0.9, 0.1, 0.2, 0.9])
or avg(0.1 + 0.1 + 0.1 + 0.2) or 0.125.

4 Experiments & Results

We have used the Wikipedia Infobox dataset cre-
ated by (Lebret et al., 2016) which is available in
the public domain1. It consists of total 728, 321
biographies, each having the first Wikipedia para-
graph and the corresponding infobox, both of
which have been tokenized. Originally this dataset

1https://github.com/DavidGrangier/
wikipedia-biography-dataset

https://github.com/DavidGrangier/wikipedia-biography-dataset
https://github.com/DavidGrangier/wikipedia-biography-dataset


Table 4: Baseline Results - Seq2Seq Model

Model Accuracy % Perplexity

CNN Encoder Decoder 63.34 5.78
LSTM Encoder Decoder 68.42 3.95
LSTM Encoder Decoder with PoS 69.60 3.45

Table 5: Sequence Tagging Results

Model Accuracy % F1 Score %

biLSTM-CRF 79.34 65.00
biLSTM-CRF with PoS & Attention 82.82 62.32

was created to build models to generate text based
on the the infobox. In our case, the problem is
reversed. Given a paragraph of unstructured data,
we try to generate the corresponding infobox or
structured data. In the dataset, some information
might be present in the paragraph but not in in-
fobox and vice versa. We have pruned the in-
foboxes so that it contains only that information
which is present in the paragraph. The informa-
tion which is not present in the paragraph cannot
be generated by any model by itself without exter-
nal knowledge.

We have split the dataset into three parts in the
ratio 8:1:1 for train, validation and test. We have
done basic pre-processing on both paragraphs and
infoboxes. Extra information and labels tagged
as none have been removed from infoboxes. The
words have been initialized to GloVe (Penning-
ton et al., 2014) embeddings and character em-
beddings (Santos and Zadrozny, 2014) have been
randomly initialized. Words are 300 dimensional
and characters are 100 dimensional. The models
have been trained for 15 epochs or until it showed
no improvement. Single label model has been
trained using Adam Optimizer (Kingma and Ba,
2014) and multi-label model using Adagrad Op-
timizer (Zou and Shen, 2018). Adaptive learning
rate has been used. Dropouts (Guo et al., 2016)
have been used as regularizer. Table 1 shows some
sample results of single and multi-label sequence
tagging models.

Table 4 shows the Accuracy and Perplexity
scores of the baseline approach using seq2seq
model. Here, accuracy is calculated as total num-
ber of correctly predicted words by total number of
words. Perplexity metric is from NLP models and
it represents probability distribution of a language

model over the text2. Lower perplexity represents
better generalization and thus better performance.
We observed that LSTM Encoder-Decoder per-
forms better than CNN Encoder-Decoder as it is
able to take the temporal order or words into ac-
count and also because it handles short / medium
length text well. We also gave sequence of words
and corresponding PoS tags as input and the re-
sults of this were the best among all the seq2seq
models. Despite these enhancements, this model
does not perform well and has a low accuracy.

Table 5 shows the Sequence Tagging results on
the same data using vanilla model and other model
variants described earlier. In this case, accuracy
metric is computed as number of labels correctly
predicted by total number of words and F1 score is
calculated as usual as the harmonic mean of pre-
cision and recall. We present the results of vanilla
model and sequence tagging model with improve-
ments like PoS tags and attention. We notice that
the results of sequence tagging models are signif-
icantly better than the seq2seq models. In multi-
label sequence tagging model, the hamming loss
on the test dataset was 0.1927.

5 Related Work

Traditionally relationships have been extracted
from raw text using dependency parse tree based
methods (Culotta and Sorensen, 2004; Reichartz
et al., 2009). Dependency parse tree shows
the grammatical dependency among the words or
phrases of the input sentence. To extract relation
among words from a dependency parse tree, clas-
sifiers are trained to classify the relation. Some-
times rules are applied on on dependency parse

2http://www.cs.virginia.edu/˜kc2wc/
teaching/NLP16/slides/04-LMeval.pdf

http://www.cs.virginia.edu/~kc2wc/teaching/NLP16/slides/04-LMeval.pdf
http://www.cs.virginia.edu/~kc2wc/teaching/NLP16/slides/04-LMeval.pdf


trees to further improve the results (Fundel et al.,
2006; Atzmueller et al., 2008). These rule based
models have shown improved results and have
been used in medical domain. It might also fare
well in closed domain areas where there is less
variation in text. Even at a Web scale, there have
been efforts to extract information specifically in
the form of named entities and relationships us-
ing DBpedia spotlight (Mendes et al., 2011) and
OpenIE (Pasca et al., 2006). A joint entity and re-
lation extraction model (Miwa and Bansal, 2016)
is primarily built using LSTMs. It comprises two
LSTM models - word sequence LSTM predicts the
entities and dependency tree LSTM predicts the
relationships among the entities. They also use ad-
ditional features like PoS tags, dependency types
etc as input. However in our models, we label
the words of raw text, these labels are not catego-
rized into entities and relationships. The datasets
on which they have performed the experiments
contain very few (< 10) entities and relations as
compared to our labels ( 1000). Attention based
encoder-decoder model (Dong and Lapata, 2016)
has been used to convert raw text to logical format.
The output is not entity or relationship but a log-
ical string corresponding to the input. They show
that this model gives consistent results across dif-
ferent domains and logical formats. The seq2seq
model which we used as a baseline is similar to
this model.

6 Conclusion & Future Work

We proposed a deep learning based approach for
the age old NLP problem of information extrac-
tion. We have used multiple variants of deep
learning based sequence tagging models to extract
structured data from unstructured data. Large pub-
licly available dataset of Wikipedia Biographies
has been used in experiments to prove the effi-
cacy. Sequence tagging models further improved
with additional features like PoS tags and atten-
tion mechanism. Multi-label sequence tagging
model gave more complete results from practical
perspective. Unlike the traditional methods, our
models are generic and not dependent on the struc-
ture of Wikipedia Infobox dataset. Similarly, it is
also not dependent on English language specifi-
cally. Ideally, it should work well for other sim-
ilar languages or datasets. A parallel corpus of
unstructured data and its corresponding structured
data is all that is required to train these models.

The actual performance might be affected by lan-
guage specific issues like word order, double nega-
tion or other grammatical issues. And there might
be minor modifications needed specific for differ-
ent datasets or languages.

To the best of our knowledge, this is the first
attempt in using sequence models for structured
data extraction. Being an initial work, there are
plethora of possible future work extensions. In the
practical setting, the information to be extracted
tends to be hierarchical. So the tags have a hier-
archical structure to it. Current model proposed,
handles only flat tag structure. Alterations to in-
corporate and handle hierarchical tag structure is
one direction of work we are considering. In the
Wikipedia Infobox dataset the text from where the
structured information is extracted is already iden-
tified or don’t have large span. In practice, this is
not the case. The text usually have larger span,
this makes the problem tougher. We have to de-
vise models first to prioritize the text snippets from
where the information has to be extracted, such an
end-to-end trainable model is another direction of
work. Similarly there are lot of options for future
work, we hope our initial work and results will in-
spire the community to work in these directions.
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