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Abstract

We present the LIMSI-MULTISEM system
submitted to the IJCAI-19 SemDeep-5 WiC
challenge. The system measures word usage
similarity in sentence pairs. We experiment
with cosine similarities of word and sentence
embeddings of different types, and with fea-
tures based on in-context substitute annota-
tions automatically assigned to WiC sentence
pairs. The model with the highest performance
on the WiC development set uses a combina-
tion of cosine similarities from different em-
bedding types. It obtains an accuracy of 66.7
on the shared task test set and is ranked third
among the participating systems.

1 Introduction

The SemDeep-5 WiC shared task proposes to
identify the intended meaning of words in con-
text. It is framed as a binary classification task that
addresses whether two instances of a target word
have the same meaning (Pilehvar and Camacho-
Collados, 2019). The WiC dataset contains 7,466
sentence pairs and is proposed as a new evaluation
benchmark for context-sensitive word representa-
tions.

We apply to this task the method from
Garı́ Soler et al. (2019) which addresses the usage
similarity of contextualized instances of words.
The method integrates cosine similarities from dif-
ferent types of context-sensitive embeddings and
in-context automatic substitutes. Our best system
combines cosine similarities from three embed-
ding types. It obtains an accuracy of 66.7 on the
WiC test set, and is ranked third among all systems
that participated in the task.

2 The WiC Dataset

The WiC dataset contains 7,466 sentence pairs of
target words automatically labelled as having the

same (T) or different (F) meaning. It was automat-
ically compiled by extracting usage examples and
sense information from lexical resources (Word-
Net (Fellbaum, 1998) VerbNet (Schuler, 2006)
and Wiktionary1). To exclude instance pairs de-
scribing fine-grained sense distinctions, the re-
source was automatically pruned based on synset
proximity in the WordNet network. Human ac-
curacy upper bound on the dataset was defined as
80%, which corresponds to the average human ac-
curacy on a sample of sentence pairs (Pilehvar and
Camacho-Collados, 2019). Inter-annotator agree-
ment was at the same level. The WiC dataset pro-
vides a benchmark for evaluating context-sensitive
word representations, and their capacity to capture
the dynamic aspects of word meaning and usage.

3 Contextualized Representations

Our proposed model computes a contextualized
representation for each target word instance in a
WiC sentence pair using different types of embed-
dings. The cosine similarity of the obtained vector
representations is used as a feature for our classi-
fier. We use the following types of embeddings:

SIF (Smooth Inverse Frequency): Simple method
for deriving sentence representations from uncon-
textualized embeddings (Arora et al., 2017). Di-
mensionality reduction is applied to a weighted
average of the vectors of words in a sentence.
Weighting is based on word frequency in Com-
mon Crawl. We use SIF in combination with 300-
d GloVe vectors trained on Common Crawl (Pen-
nington et al., 2014).2

Context2vec: Neural model that learns embed-
dings for words and their contexts simultaneously
(Melamud et al., 2016). It is based on word2vec’s

1http://www.wiktionary.org/
2https://nlp.stanford.edu/projects/

glove/
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CBOW (Mikolov et al., 2013), but replaces the av-
eraging of context word embeddings with a biL-
STM that learns a representation of a sentence ex-
cluding the target word. We use a 600-d model
pre-trained on the UkWac corpus (Baroni et al.,
2009).3

ELMo (Embeddings from Language Models):
Contextualized word representations obtained
from the internal states of a deep bidirectional
LSTM trained with a language model objective
(Peters et al., 2018). Instead of learning the best
linear combination of layer representations for a
task – a common way of using ELMo – we use
out-of-the-box 512-d embeddings.4 We experi-
ment with the top layer, and the average of the
three hidden layers. We represent each WiC sen-
tence in two ways: a) with the ELMo embedding
corresponding to the target word, and b) with the
average of ELMo embeddings of all words in the
sentence. We also average the embeddings at a
context window of size two, as this was shown to
work better for word usage similarity with ELMo
(Garı́ Soler et al., 2019).

BERT (Bidirectional Encoder Representations
from Transformers): Representations obtained
from a 12-layer bidirectional Transformer encoder
trained with a language model objective where
words on both sides of the target word in a sen-
tence are masked and need to be predicted (Devlin
et al., 2018). The pre-trained BERT architecture
can be fine-tuned for specific tasks, but its inter-
nal contextualized word representations can also
be used directly, similar to ELMo. We use 768-d
uncased BERT representations of the target word,
and the average of all words in a sentence.

USE (Universal Sentence Encoder): General-
purpose sentence encoder trained with multi-task
learning (Cer et al., 2018). Using transfer learn-
ing, USE improves performance on different NLP
tasks at the sentence and phrase level (e.g. senti-
ment analysis). We use the Deep Averaging Net-
work (DAN) encoder,5 where input word and bi-
gram embeddings are averaged and fed through a
feedforward neural network, to create embeddings
for WiC sentences.

3http://u.cs.biu.ac.il/˜nlp/resources/
downloads/context2vec/

4The medium-sized model at https://allennlp.
org/elmo.

5https://tfhub.dev/google/
universal-sentence-encoder/2

4 Automatic Substitution

Manual substitute annotations have been useful for
in-context usage similarity estimation (Erk et al.,
2009; McCarthy et al., 2016). The idea is that a
high proportion of shared substitutes between two
word instances reflects their semantic similarity.6

Extending previous work where manual substi-
tute annotations were used to estimate usage sim-
ilarity (Erk et al., 2009), we automatically anno-
tate WiC instances with substitutes, and use fea-
tures based on their overlap for our classifier. We
use the context2vec method for automatic lexi-
cal substitution (Melamud et al., 2016). Given
a sentence with a new instance of a target word
t, and a set of candidate substitutes for the word
(S = s1,s2, ...,sn), context2vec ranks all candidates
taking into account the target-to-substitute similar-
ity and the substitute-to-context similarity.

c2v score =
cos(s, t)+1

2
× cos(s,C)+1

2
(1)

In Formula 1, s and t are the context2vec word
embeddings of a candidate substitute and the tar-
get, and C is the context vector of the sentence.
The pool of candidate substitutes for a target word
is formed from its set of paraphrases in the Para-
phrase Database (PPDB) XXL package (Ganitke-
vitch et al., 2013; Pavlick et al., 2015).7

For every instance, context2vec ranks all candi-
dates available for the target. Therefore, the gener-
ated ranking (R) always contains the same substi-
tutes, in the same or different order. To make sub-
stitute overlap measures (McCarthy et al., 2016)
operational in this setting, we use a filtering strat-
egy from Garı́ Soler et al. (2019). The method de-
tects a cut-off point in the ranking R that reflects a
shift from good quality substitutes (high-ranked),
to substitutes that are not a good fit in the context
(low-ranked). It checks whether adjacent substi-
tutes are paraphrases in PPDB; if not, it discards
everything found after that point in R.

After filtering the ranking R for each sentence
pair, we obtain three different features based on
the retained substitutes.

• Common substitutes: The proportion of
shared substitutes between the two instances
of a target word.

6Previous work explores graded usage similarity, whereas
in WiC it is binary.

7http://paraphrase.org/
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Target Sentences Substitutes

way
Do you know the way to the airport?

ways, route, path, road {connection, means, journey,

move, direction, gateway, passage, place, ...}

He said he was looking for the way out.
ways, path, road, route, walk {day, right, passage,
move, means, time, doorway, ...}

drink
Can I buy you a drink?

beer {bottle, beverage, pint, vodka, booze, whisky,

wine, liquor, drunk, cocktail, restaurant, ...}
He took a drink of his beer and
smacked his lips.

swig {bottle, pint, sip, drinking, beverage, drank,
beer, drunk, cup, booze, liquor, ...}

Table 1: Sentence pairs from the WiC training set for the noun way (gold label: T) and the verb drink (gold label: F)
with automatic substitute annotations assigned by context2vec. Substitutes in italics were discarded after filtering.

• GAP score: GAP (Generalized Average Pre-
cision) considers the order of ranked ele-
ments and their weights (Kishida, 2005).
GAP score ranges from 0 to 1 (for perfect dis-
agreement/agreement). We take the average
score between the rankings produced for a
sentence pair in both directions (GAP(R1,R2)
and GAP(R2,R1)). Weights are the scores as-
signed to the substitutes by context2vec. We
use the GAP implementation shared by Mela-
mud et al. (2015).

• Substitute cosine similarity. We form pairs
of substitutes from R1 and R2, and calculate
the average of their GloVe cosine similarities.
This feature accounts for the semantic simi-
larity of substitutes, which can also, to some
extent, reflect usage similarity.

A few WiC sentence pairs (5%) contain tar-
get words that are not present in the PPDB XXL
package.8 We apply automatic substitution to in-
stances of target words that have paraphrases in
PPDB, and back off to a classifier that uses only
embedding-based features for the rest.9 Table 1
shows examples of WiC sentences with automatic
substitutes, before and after filtering.

5 Training Data Augmentation

We extend the WiC training data with 4,018 sen-
tence pairs automatically extracted from the Con-
cepts in Context (CoInCo) corpus (Kremer et al.,
2014). CoInCo is a subset of the MASC corpus

8For full coverage, an option would be to use the whole
vocabulary as a pool, as in the original context2vec imple-
mentation.

9PPDB paraphrases were available for target words in
97% of training, 89% of development and 90% of test sen-
tence pairs in WiC.

(Ide et al., 2008) which contains manual substi-
tute annotations for all content words in a sen-
tence. We use a balanced collection of similar (T )
and dissimilar (F) sentence pairs from CoInCo,
with labels automatically assigned based on sub-
stitute overlap (Garı́ Soler et al., 2019).10 We ap-
ply the automatic substitution method described in
Section 4, and extract substitute- and embedding-
based features to be used by our models.

6 Model Development

We train a logistic regression classifier on the WiC
training set, and experiment with different feature
combinations on the development set. We use
cosine similarities of different embedding repre-
sentations. For ELMo and BERT, we try several
layer combinations,11 the target word vector and
the sentence vector (see Section 3). For ELMo, we
also apply a context window of size 2. The best
configuration for BERT is the average of the last
four layers, and for ELMo, the context window
approach. We then combine the best embedding
features for prediction. We also train models with
the substitute-based features only, backing off to
the best embedding-based model for instances of
words not present in PPDB. We combine the best
embedding- and substitute-based features in the
Combined setting.

We apply the BERT and ELMO configurations
that gave best results on the WiC development
set to the setting with additional CoInCo data
(WiC+CnC), and repeat the experiments. Results
on the WiC development set are given in Table 2.
Substitute-based features do not help the model,

10https://github.com/ainagari/coinco_
usim_data/

11The average of the three layers or the top layer for ELMo.
The top layer, the second-to-last layer, the average and the
concatenation of the last four layers for BERT.

https://github.com/ainagari/coinco_usim_data/
https://github.com/ainagari/coinco_usim_data/


Features WiC WiC+CnC
BERT avg 4 tw 66.46 65.99
USE 63.64 63.48
ELMo top cw=2 62.38 61.76
SIF 60.66 59.56
c2v 60.34 61.13
BERT, USE 67.87 68.03
BERT, USE, ELMo 68.65 68.18
BERT, USE, ELMo, SIF 68.03 -
BERT, USE, ELMo, c2v - 68.34
Substitute-based 60.34 57.84
Combined 66.77 68.34

Table 2: Accuracy of the models with embedding-
based and substitute features on the WiC development
set. We report results of the models trained only on
WiC, and on the extended (WiC+CnC) dataset. The
best configurations (marked in boldface) were applied
to the WiC test set.

probably because of the noise in automatic anno-
tations. The best result is obtained by the model
trained only on WiC that uses cosine similarities
from BERT, USE and ELMo. In the WiC+CnC
setting, the Combined model gets the same per-
formance as the model that uses four embedding
types (BERT, USE, ELMo and c2v). We apply the
simpler embedding-based model to the WiC test
set.

7 Results and Analysis

Results of the two best-performing models (in
boldface in Table 2) on the WiC test set are given
in Table 3. Our best model is the one trained only
on WiC, which uses BERT, USE and ELMo cosine
similarities. It was ranked third at the competition
with an accuracy of 66.71, which is higher than
all results reported in the WiC description paper
(Pilehvar and Camacho-Collados, 2019).

The additional training data extracted from Co-
InCo does not help the models. We believe this
to be due to the different kind of sense distinc-
tions present in the dataset extracted from CoInCo
and in WiC. To explore this hypothesis, we take
a closer look at the model predictions and carry
out a qualitative analysis of the sense distinctions
in the two datasets. The confusion matrices of the
two best models on the development set show that
wrong predictions most often concern dissimilar
(F) sentence pairs. This type of error occurs more
with the model trained on WiC+CnC (67% of to-
tal errors compared to 59% when training only on

Approach Accuracy
WiC BERT, USE, ELMo 66.71
WiC+CnC BERT, USE, ELMo, c2v 65.64
BERTlarge Threshold (Pilehvar and
Camacho-Collados, 2019)

63.8

Table 3: Accuracy of our two best models on the WiC
test set, compared to the best result from previous work.

WiC). A quick observation of WiC data reveals
that dissimilar (F) pairs sometimes describe re-
lated senses, in spite of the pruning that aimed
at excluding these from the dataset (Pilehvar and
Camacho-Collados, 2019).

We extract a random sample of 60 sentence
pairs from the CoInCo training data and the WiC
development set to explore whether they differ in
this respect. We manually annotate all pairs for
graded usage similarity, using a scale of 1 (com-
pletely different) to 5 (the same), as in Erk et al.
(2009). Our assumption is that F pairs that de-
scribe related senses will be assigned higher sim-
ilarity scores. A comparison of the graded us-
age similarity values of gold F instances reveals
that these values differ significantly in CoInCo
and WiC (p = 0.048), as determined by a Mann-
Whitney test, with WiC F pairs having a higher
average similarity score (3.19 ± 1.52) than Co-
InCo F pairs (2.53 ± 0.19). The following F
sentence pair from WiC is an example where the
target word (construction) expresses different but
closely related meanings (as a process and a re-
sult): Construction is underway on the new bridge
– The engineer marvelled at his construction. The
CoInCo sentence pairs extracted by Garı́ Soler
et al. (2019) that we use for training describe more
clear-cut sense distinctions, due to the process
used for their extraction, based on the overlap of
manually annotated substitutes (see Section 5).

8 Conclusion and Future Work

We propose a new model for word usage simi-
larity estimation. The LIMSI-MULTISEM sys-
tem combines different types of context-sensitive
word and sentence representations with features
derived from automatic substitution for usage sim-
ilarity prediction. The best configuration com-
bines cosine similarities from three embedding
types: BERT, USE and ELMo.

In future work, we plan to use our model to in-
vestigate usage similarity on a per lemma basis, in



order to identify lemmas with clear-cut and fuzzy
sense distinctions, as in McCarthy et al. (2016).
This will help identify lemmas for which classifi-
cation is trickier.
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