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Abstract

The distribution of sentence length in ordi-
nary language is not well captured by the ex-
isting models. Here we survey previous mod-
els of sentence length and present our random
walk model that offers both a better fit with
the data and a better understanding of the dis-
tribution. We develop a generalization of KL
divergence, discuss measuring the noise inher-
ent in a corpus, and present a hyperparameter-
free Bayesian model comparison method that
has strong conceptual ties to Minimal Descrip-
tion Length modeling. The models we obtain
require only a few dozen bits, orders of mag-
nitude less than the naive nonparametric MDL
models would.

1 Introduction

Traditionally, statistical properties of sentence
length distribution were investigated with the goal
of settling disputed authorship (Mendenhall, 1887;
Yule, 1939). Simple models, such as a “monkeys
and typewriters” Bernoulli process (Miller, 1957)
do not fit the data well, and this problem is in-
herited from n-gram Markov to n-gram Hidden
Markov models, such as found in standard lan-
guage modeling tools like SRILM (Stolcke et al.,
2011). Today, length modeling is used more often
as a downstream task to probe the properties of
sentence vectors (Adi et al., 2017; Conneau et al.,
2018), but the problem is highly relevant in other
settings as well, in particular for the current gener-
ation of LSTM/GRU-based language models that
generally use an ad hoc cutoff mechanism to reg-
ulate sentence length. The first modern study, in-
terested in the entire shape of the sentence-length
distribution, is Sichel (1974), who briefly summa-
rizes the earlier proposals, in particular negative
binomial (Yule, 1944), and lognormal (Williams,
1944), being rather critical of the latter:

The lognormal model suggested by
Williams and used by Wake must be re-
jected on several grounds: In the first
place the number of words in a sentence
constitutes a discrete variable whereas
the lognormal distribution is continu-
ous. Wake (1957) has pointed out that
most observed log-sentence-length dis-
tributions display upper tails which tend
towards zero much faster than the cor-
responding normal distribution. This
is also evident in most of the cu-
mulative percentage frequency distribu-
tions of sentence-lengths plotted on log-
probability paper by Williams (1970).
The sweep of the curves drawn through
the plotted observations is concave up-
wards which means that we deal with
sub-lognormal populations. In other
words, most of the observed sentence-
length distributions, after logarithmic
transformation, are negatively skew. Fi-
nally, a mathematical distribution model
which cannot fit real data –as shown
up by the conventional χ2 test– cannot
claim serious attention. (Sichel, 1974,
p. 26)

Sichel’s own model is a mixture of Poisson dis-
tributions given as

φ(r) =

√
1− θγ

Kγ(α
√

1− θ)
(αθ/2)r

r!
Kr+γ(α) (1)

where Kγ is the modified Bessel function of the
second kind of order γ. As Sichel notes, “a
number of known discrete distribution functions
such as the Poisson, negative binomial, geomet-
ric, Fisher’s logarithmic series in its original and
modified forms, Yule, Good, Waring and Riemann
distributions are special or limiting forms of (1)”.



While Sichel’s own proposal certainly cannot be
faulted on the grounds enumerated above, it still
leaves something to be desired, in that the parame-
ters α, γ, θ are not at all transparent, and the model
lacks a clear genesis. In Section 2 of this article we
present our own model aimed at remedying these
defects and in Section 3 we analyze its properties.
Our results are presented is Section 4. The relation
between the sentence length model and grammati-
cal theory is discussed in the concluding Section 5.

2 The random walk model

In the following Section we introduce our model
of random walk(s). The predicted sentence length
is basically the return time of these stochastic pro-
cesses, i.e. the probability of a given length is the
probability of the appropriate return time.

Let Xk be a random walk on Z and Xk(t) the
position of the walk at time t. Let Xk(0) = k
be the initial condition. The walk is given by the
following parameters:

Xk(t+ 1)−Xk(t) =


−1 with probability p−1
0 with probability p0
1 with probability p1
2 with probability p2

(2)

The random walk is the sum of these independent
steps. (2) is a simple model of valency (depen-
dency) tracking: at any given point we may in-
troduce, with probability p2, some word with two
open valences (e.g. a transitive verb), with proba-
bility p1 one that brings one new valence (e.g. an
intransitive verb or an adjective), with probability
p0 one that doesn’t alter the count of open valen-
cies (e.g. an adverbial), and with probability p−1
one that fills an open valency, e.g. a proper noun.
For ease of presentation here we cut off at 2, mak-
ing no provisions for ditransitives and higher ar-
ity verbs, but in actual numerical work (Section 3)
we will relax this assumption. We also cut off at
−1, making no provision for those cases where a
single word can fill more than one valency, as in
Latin accusativus cum infinitivo or (arguably) En-
glish equi. We discuss these cutoffs further in Sec-
tions 3.1 and 5. The return time is defined as

τk = min
t≥0
{t : Xk(t) = 0} (3)

In particular, τ1 is the time needed to go from 1→
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Figure 1: Sentence length is modeled as the return time
of a random walk.

0. We will calculate the probability-generating
function to find the probabilities.

f(x) := E (xτ1) (4)

The generating function of τk easily follows from
τ1, since τk is the sum of k independent copies
of τ1, so the generating function of τk is simply
f(x)k.

In order to calculate f(x), we condition on the
first step:

f(x) = p−1 · x+ finishing in one step

p0 · x · f(x)+ wait τ1 again

p1 · x · f(x)2+ wait τ1 two times

p2 · x · f(x)3 wait τ1 three times
(5)

Therefore, f(x) is the solution of the following
equation (solved for f , x is a parameter):

p−1·x+(p0·x−1)·f+p1·x·f2+p2·x·f3 = 0 (6)

This can be solved with Cardano’s formula. The
probabilities are given by

P(τk = i) = [xi]f(x)k ,
1

i!

∂i

∂xi
f(x)k

∣∣∣∣
x=0

(7)

(Here and in what follows, [xi] refers to the coeffi-
cient of xn in the expansion of the function to the
right of it.) For given parameters p−1, p0, p1, p2
and k, and a given i, one can evaluate these prob-
abilities numerically, but we need a bit more ana-
lytical form. Let us define the following.

F (u) = p−1 + p0 · u+ p1 · u2 + p2u
3 (8)

g(f) =
f

F (f)
(9)



With these functions Equation 6 becomes x =
g(f(x)), meaning that we are looking for the in-
verse function of g. One can see that g(0) = 0
and g′(0) = 1/p−1 6= 0, therefore we can apply
the Lagrange inversion theorem. Calculations de-
tailed in the Appendix yield the following formula.

P(τk = i) =
k

i
[ui−k]F i(u) (10)

SinceF is a polynomial, one can calculate its pow-
ers by polynomial multiplication and get P(τk =
i) by looking up the appropriate coefficient. Here
k is an integer (discrete) model parameter and
p−1, p0, p1, p2 are real (continuous) numbers. This
makes the above mentioned probabilities differen-
tiable in the continuous parameters.

We call the parameter k, the starting point of the
random walk, the total valency. Note that τk ≥ k
with probability 1, therefore one cannot model the
sentences shorter then k. To overcome this obsta-
cle, we introduce the mixture model that consists
of several models with various k values and coef-
ficients for convex linear combination.

Pk1,α1,k2,α2,...km,αm(τ = i) =
m∑
j=1

αj · P(τkj = i)

(11)
where the parameters αj are mixture coefficients;
positive and sum up to 1, see Figure 2. Also every
term in the mixture have different p−1, p0, p1 and
p2 values (all positive and sum up to one). In this
way, we can model the sentences with length at
least minj kj .

k1 α1 p1−1 p10 p11 p12
k2 α2 p2−1 p20 p21 p22
...

...
...

km αm pm−1 pm0 pm1 pm2

Figure 2: Model parameters. The framed parameters
are real, positive numbers and should sum up to 1.

It is easy to generalize our model to allow
higher upward steps, i.e. p3 for ditransitives or
even higher steps for higher arity relations. The
only technical constraint is that p−1 and p0 should
be positive, and no lower steps are allowed (no
p−2). This is also a reasonable assumption if a
word can only fulfill one role in a sentence, a mat-
ter we return to in Section 5. Altogether, the num-

ber of upward steps is called order and it is an
other hyper-parameter in our model.

Theoretically, there is no obstacle to have differ-
ent number of p values to different k values. The
model can be a heterogeneous mixture of random
walks, where the individual processes can have
different upward steps. But we did not investigate
that possibility.

3 Model analysis

Here we introduce and analyze the experimen-
tal setup that we will use in Section 4 to fit our
model to various datasets. The raw data is a
set of positive integers, the sentence lengths, and
their corresponding weights (absolute frequen-
cies) {nx}x∈X . We call n :=

∑
x∈X nx the

size and X the support of the data. Since the
model is differentiable in the continuous param-
eters (including the mixing coefficients), the di-
rect approach would be to perform gradient de-
scent on the dissimilarity as an objective function
to find the parameters. With fixed valency pa-
rameters kj this is a constrained optimization task
dist(Psample,Pmodeled)→ min.

In some cases, especially for smaller datasets,
we might find it expedient to bin the data, for ex-
ample (Adi et al., 2017) use bins (5-8), (9-12),
(13-16), (17-20), (21-25), (26-29), (30-33), and
(34-70). On empirical data (for English we will
use the BNC1 and the UMBC Webbase2 and for
other languages the SZTAKI corpus3) this partic-
ular binning leaves a lot to be desired. We dis-
cuss this matter in subsection 3.1, together with
the choice of dissimilarity (figure of merit). An
important consideration is that a high number of
mixture components fit the data better but have
more model parameters – this is discussed in sub-
section 3.2.

3.1 Length extremes
Short utterances are common both in spoken cor-
pora and in written materials, especially in dia-
log intended to sound natural (see 2nd and 5th
columns of Table 1). As is well known, people
don’t speak in complete sentences, and a great
deal of the short material is the result of sluicing,
zero anaphora, and similar cross-sentence ellipsis

1http://www.natcorp.ox.ac.uk
2https://ebiquity.umbc.edu/resource/

html/id/351
3http://hlt.sztaki.hu/resources/

webcorpora.html

http://www.natcorp.ox.ac.uk
https://ebiquity.umbc.edu/resource/html/id/351
https://ebiquity.umbc.edu/resource/html/id/351
http://hlt.sztaki.hu/resources/webcorpora.html
http://hlt.sztaki.hu/resources/webcorpora.html


phenomena (Merchant, 2001), with complete sen-
tences such as imperatives like Help! comprising
only a small portion of the data. In nonfiction,
short strings are encountered overwhelmingly in
titles, subtitles, and itemized lists, material that is
hard to separate from actual sentences. Here we
go around the problem by permitting in the mix-
ture components with low total valency (small k
at the start of the random walk).

dataset < 5 >100 dataset < 5 >100

BNC-A 7.2% 0.1% Dutch 17.4% 1.1%
BNC-B 9.6% 0.1% Finnish 14.1% 0.7%
BNC-C 8.8% 0.1% Indonesian 11.3% 2.0%
BNC-D 25.9% 1.4% Lithuanian 25.2% 1.1%
BNC-E 8.7% 0.1% Bokmål 14.4% 1.1%
BNC-F 12.1% 0.2% Nynorsk 8.7% 0.4%
BNC-G 11.2% 0.1% Polish 23.3% 1.9%
BNC-H 14.5% 0.2% Portuguese 22.7% 2.5%
BNC-J 15.2% 0.5% Romanian 8.2% 3.1%
BNC-K 29.9% 0.2% Serbian.sh 15.3% 1.9%
UMBC 3.7% 0.2% Serbian.sr 33.7% 9.0%
Catalan 15.7% 2.8% Slovak 12.4% 1.9%
Croatian 16.7% 2.1% Spanish 14.7% 3.2%
Czech 13.7% 1.3% Swedish 24.6% 0.8%
Danish 20.8% 1.1%

Table 1: Distribution of short and long sentences

Especially on the long end (see columns 3 and
6 of Table 1) data becomes so sparse that some
kind of binning is called for. Since the eight bins
used by (Adi et al., 2017) actually ignore the very
low (1-4) and very high (71+) ranges of the data,
we will use ordinary deciles, setting the ten bins
as the data dictates. In this regard, it is worth not-
ing that in the 18 non-English corpora used in this
study the low bin neglected by (Adi et al., 2017)
contains on the average 17.4% of the data (vari-
ance 6.3%, low 8.1% on Romanian, high 33.7% on
Serbian_sr) whereas on the high end the problem
is much less severe: for example in UMBC 1.0%,
and in the BNC only 0.8% would be ignored.

To cover 99.9% we need to consider only sen-
tences up to a few hundred words (see column
5 of Table 2), and in the current study we ap-
plied a cutoff of 1,000 to be above 99.9% coverage
in all cases while keeping compute time manage-
able. The last column of Table 2 shows the length
of the longest sentence in each of the subcorpora
considered. The original binning (cutoff at 71)
would have resulted in coverage 95.7% on the av-
erage (variance 3.1%, low 84.9% Serbian_sr, high
98.8% for Nynorsk).

The prevailing tokenization convention, where
punctuation is counted as equivalent to a full word,

dataset number of
sentences

tolerance
(in nats)

mean 99.9% max
sentence length

B
N

C
-2

.0
(E

ng
lis

h)

BNC-A 753442 9.847e-4 20.967 97 555
BNC-B 362003 7.741e-3 20.650 96 365
BNC-C 955486 9.494e-3 20.524 102 491
BNC-D 6138 8.510e-2 16.366 228 466
BNC-E 337370 5.000e-3 22.219 106 763
BNC-F 527758 2.630e-2 19.351 130 2208
BNC-G 478860 9.199e-3 18.753 106 435
BNC-H 1185549 3.385e-2 18.841 118 950
BNC-J 359352 7.940e-2 18.666 156 1100
BNC-K 1086242 2.134e-1 12.784 116 918

UMBC 136630947 2.442e-3 24.434 116 3052

SZ
TA

K
Ic

or
pu

s

Catalan 23927377 1.751e-3 27.496 384 5279
Croatian 62196524 5.616e-3 23.975 369 8598
Czech 30382696 5.147e-3 20.139 285 6081
Danish 26687240 7.557e-3 18.593 296 16425
Dutch 103958658 2.408e-3 19.135 296 16128
Finnish 58104101 1.946e-3 15.538 237 5552
Indonesian 13095607 1.231e-2 23.675 343 22762
Lithuanian 81826291 1.184e-3 17.170 294 21857
Bokmål 84375397 3.564e-3 19.199 281 14032
Nynorsk 1393312 3.946e-3 18.836 175 1591
Polish 72983880 8.508e-3 19.549 396 24353
Portuguese 37953728 4.973e-2 25.365 448 9614
Romanian 36211510 2.338e-2 29.466 473 54434
Serbian.sh 35606837 4.531e-3 23.744 332 6800
Serbian.sr 2023815 7.189e-3 37.736 862 6800
Slovak 39633566 2.572e-3 21.759 402 24571
Spanish 47673229 8.365e-4 29.305 471 29183
Swedish 54218846 2.526e-3 16.468 315 8127

Table 2: Sentence length datasets. For tolerance see
subsection 3.2

has an effect on the distribution, more perceptible
at the low end. Besides this (and more subtle is-
sues of tokenization, such as the treatment of hy-
phenation or of multiple punctuation) perhaps the
most important factor influencing sentence length
is morphological complexity, since in highly ag-
glutinating languages a single word is sufficient
for what would require a multiword sentence in
English, as in Hungarian elvihetlek ‘I can give you
a ride’.

Since the number of datapoints is high, rang-
ing from 1.3M (Nynorsk) to 136.6M (UMBC), the
conventional χ2 test does not provide a good fig-
ure of merit on the original data (no fit is ever sig-
nificant, especially as there is a lot of variation at
the high end where only few lengths are extant),
nor on the binned data, where every fit is highly
significant.

A better choice is the Kullback–Leibler diver-
gence, but this still suffers from problems when
the supports of the distributions do not coincide.
In our case we have this problem both at the low
end, where the model predicts P(τ = i) = 0 for
i < k, and at the high end, where we predict pos-



itive (albeit astronomically small) probabilities of
arbitrarily long sentences. To remedy this defect,
we define generalized KL divergence, gKL, as
follows.

Definition 3.1 (Motivated by Theorem A.2.). Let
P and Q be probability measures over the same
measurable space (X,Σ) that are both absolutely
continuous with respect to a third measure dx,
and let λ be P(supp(P) ∩ supp(Q)). Then

gKL(P,Q) := −λ · lnλ+∫
supp(P)∩supp(Q)

P(x) · ln P(x)

Q(x)
dx

(12)

Clearly, gKL reduces to the usual KL diver-
gence if the support of the distributions coincide.
The high end of the distribution could be ignored,
at least for English, at the price of losing less than
0.1% of the data, but ignoring the short sentences,
14.4% of the BNC, is hard to countenance. As a
practical matter this means we needed to bring in
mixture components with total valency k < 4, and
these each bring 4 parameters (the mixture weight
and 3 pi values) in tow. Obviously, the more com-
ponents we use, the better the fit will be, so we
need to control the trade-off between these. In sub-
section 3.2 we introduce a method derived from
Bayesian model comparison (MacKay, 2003) that
will remedy the zero modeled probabilities and an-
swer the model complexity trade-off.

3.2 Bayesian model comparison

If a dataset D has support X , with nx > 0 being
the number that length x occurred, the data size
is |D| =

∑
x∈X nx and the observed probabilities

are px := nx
|D| . Let Hi ⊆ Rd be ith model in some

list of models. Each model is represented by a pa-
rameter vector wi ∈ Hi in the parameter space,
and suppHi = {x | P(x | Hi) > 0} is not neces-
sarily equal to X . Clearly, different Hi may have
different support, but a given model has the same
support for every wi. Model predictions are given
by Qwi(x) := P(x | wi,Hi), and the evidence
the ith model has is

P(Hi | D) =
P(D | Hi) · P(Hi)

P(D)
(13)

If one supposes that no model is preferred over any
other models (P(Hi) is constant) then the decision

simplifies to finding the model that maximizes

P(D | Hi) =

∫
Hi

P(D | wi,Hi) ·P(wi | Hi) dwi

(14)
We make sure that no model parameter is preferred
by setting a uniform prior:

P(wi | Hi) = 1/

(∫
Hi

1 dwi

)
= 1/Vol(Hi)

(15)
We estimated this integral with Laplace’s method
by introducing f(wi) := − 1

|D| lnQwi(D), i.e. the
cross entropy (measured in nats).

P(D | wi,Hi) =
∏
x∈X

Qwi(x)nx

f(wi) = −
∑
x∈X

px · lnQwi(x) (16)

Taking − 1
|D| ln(•) of the evidence amounts to

minimizing in i the following quantity:

f(w∗i ) +
1

|D|
· ln Vol(Hi)+ (17)

1

2|D|
ln det f ′′(w∗i ) +

d

2|D|
· ln |D|

2π

where d is the dimension of Hi (number of
parameters), f ′′ is the Hessian and w∗i =
arg minwi∈Hi

f(wi) for a given i. Since the the-
oretical optimum of f(wi) is the entropy of the
data (ln 2 · H(D)), we subtract this quantity from
Equation 17 so that the term f(wi) becomes the
relative entropy (measured in nats) with a theoret-
ical minimum of 0.

We introduce an augmented model to deal with
the datapoints where Qwi(x) = 0.

Qwi,q(x) :=

{
λQwi(x) if Qwi(x) > 0

(1− λ)qx if nx > 0,Qwi(x) = 0
(18)

where

λ =
∑

x∈X∩supp(Hi)

px covered probability

1− λ =
∑

x∈X\supp(Hi)

px uncovered probability

The newly introduced model parameters q =
(qx)x∈X\supp(Hi) are also constrained: they have
to be positive and sum up to one, i.e. inside the
probability simplex. After finding the optimum of



q and modifying Equation 17 with the auxiliary
terms and subtracting the entropy of the data (ln 2 ·
H(D)) as discussed above, one gets:

− λ · lnλ+
∑

x∈X∩supp(Hi)

px · ln
px

Qw∗
i
(x)

+

1

|D|
· (ln Vol(Hi) + ln Vol(aux. model)) +

1

2|D|
· ln det (model Hessian) +

1

2|D|
· ln det (aux. model Hessian) +

d′

2|D|
· ln |D|

2π
(19)

where d′ is the original model dimension plus
the auxiliary model dimension. One possible use
(or abuse) of auxilary parameters would be to di-
rectly (nonparametrically) model the low end of
the length distribution. But, as we shall see in Sec-
tion 4, the parametric models actually do better. To
see what is going in, let us consider the asymptotic
behavior of models.

For sufficiently large corpora (|D| → ∞) all
but the first term will be negligible, meaning that
the most precise model (in terms of gKL diver-
gence) wins regardless of model size. One way
out would be to choose an ‘optimum corpus size’
(Zipf, 1949), a move that has already drawn strong
criticism in Powers (1998) and one that would
amount to little more than the addition of an ex-
tra hyperparameter to be set heuristically.

Another, more data-driven approach is based on
the observation that corpora have inherent noise,
measurable as the KL divergence between a ran-
dom subcorpus and its complement (Kornai et al.,
2013) both about the same size (half the origi-
nal). Here we need to take into account the fact
that large sentence lengths appear with frequency
1 or 0, so subcorpora D1 and D2 = D \ D1 will
not have the exact same support as the original,
and we need to use symmetrized gKL: the inher-
ent noise δD of a corpus D is 1

2(gKL(D1, D2) +
gKL(D2, D1)), where D1 and D2 are equal size
subsets of the original corpus D, and the gKL di-
vergence is measured on their empirical distribu-
tions.
δD is largely independent of the choice of sub-

sets D1, D2 of the original corpus, and can be eas-
ily estimated by randomly sampled Dis. To the
extent crawl data and classical corpora are sequen-

tially structured (Curran and Osborne, 2002), we
sometimes obtain different noise estimates based
on random Di than from comparing the first to the
second half of a corpus, the procedure we followed
here. In the Minimum Description Length (MDL)
setting where this notion was originally developed
it is obvious that we need not approximate corpora
to a precision better than δ, but in the Bayesian
setup that we use here matters are a bit more com-
plicated.

Definition 3.2. For δ > 0 let

gKLδ(P,Q) := max(0, gKL(P,Q)− δ) (20)

For a sample P with inherent noise δ, a model Q
is called tolerable if gKLδ(P,Q) = 0

If gKLδ is used instead of gKL in Equation 19
then model size d becomes important. If a model
fits within δ then the first term becomes zero and
for large |D| values the number of model param-
eters (including auxiliary parameters) will domi-
nate the evidence. The limiting behavior of our ev-
idence formula, with tolerance for inherent noise,
is determined by the following observations:

1. Any tolerable model beats any non-tolerable
one.

2. If two models are both tolerable and have dif-
ferent number of model parameters (includ-
ing auxiliary model), then the one with the
fewer parameters wins.

3. If two models are both tolerable and have the
same number of parameters, then the model
volume and Hessian decides.

An interesting case is when no model can reach
the inherent noise – in this case we recover the
original situation where the best fit wins, no matter
the model size.

4 Results

A single model Hi fit to some dataset is identi-
fied by its order, defined as the number of up-
ward steps the random walk can take at once:
1, 2 or 3, marked by the number before the first
decimal; and its mixture, a non-empty subset of
{1, 2, 3, 4, 5} that can appear as k: valency of a
single component. For example 1.k1.2.4 marks
order 1 and k mixture: {1, 2, 4} ⊆ {1, 2, 3, 4, 5}.
Altogether, we trained 3 × 31 = 93 locally opti-
mal models for each dataset and compared them



with Equation 19, except that gKLδ is used with
the appropriate tolerance.

We computed w∗i with a (non-batched) gradient
descent algorithm.4 We used Adagrad with ini-
tial learning rate η = 0.9, starting from uniform
p and α values, and iterated until every coordi-
nate of the gradient fell within ±10−3. The gra-
dient descent typically took 102−103 iterations to
reach a plateau, but about .1% of the models were
more sensitive and required a smaller learning rate
η = 0.1 with more (10k) iterations.

4.1 Validation

The model comparison methodology was first
tested on artificially generated data. We generated
1M+1M samples of pseudo-random walks with
parameters: p−1 = 0.5, p0 = p1 = 0.25 (at most
one step upward) and k = 3 (no mixture) and ob-
tained the inherent noise and length distribution.
The inherent noise was about 3.442e-4 nats. We
trained all 93 models and compared them as de-
scribed above.

The validation data size is 2 · 106 but we also
replaced |D| with a hyper-parameter n in Equa-
tion 19. This means that we faked the sample to be
bigger (or smaller) with the same empirical distri-
bution. We did this with the goal of imitating the
‘optimum corpus size’ as an adverse effect.

As seen on Table 3 the true model wins. We also
tested the case when the true model was simply
excluded from the competing models. In this case,
the tolerance is needed to ensure a stable result as
n→∞.

1.k3 artificial data best parameters for various n values
1k 10k 100k 1M 10M 1G

with tolerance 3.k1-5 1.k3 1.k3 1.k3 1.k3 1.k3
w/o tolerance 3.k1-5 1.k3 1.k3 1.k3 1.k3 1.k3

w tolerance, -true 3.k1-5 2.k4 2.k4 2.k4 2.k4 2.k4
w/o tolerance, -true 3.k1-5 2.k4 1.k2.3 1.k2.3 1.k2.3 1.k3-5

Table 3: Optimal models for artificially generated data
(1.k3) for various n values.

As there are strong conceptual similarities be-
tween MDL methods and the Bayesian approach
(MacKay, 2003), we also compared the models
with MDL, using the same locally optimal param-
eters as before, but encoding them in bits. To this
end we used a technique from (Kornai et al., 2013)

4You can find all of our code used for training and
evaluating at https://github.com/hlt-bme-hu/
SentenceLength

where all of the continuous model parameters are
discretized on a log scale unless the discretization
error exceeds the tolerance. The model with the
least number of bits required wins if it fits within
tolerance. (The constraints are hard-coded in this
model, meaning that we re-normalized the param-
eters after the discretization.) In the artificial test
example, the model 1.k3 wins, which is also the
winner of the Bayesian comparison. If the true
model is excluded, the winner is 1.k2.3. Further
MDL results will be discussed in Section 4.4.

4.2 Empirical data

Let us now turn to the natural language corpora
summarized in Table 2. Not only are the webcrawl
datasets larger than the BNC sections, but they are
somewhat noisier and have suspiciously long sen-
tences. To ease the computation, we excluded sen-
tences longer than 1, 000 tokens. This cutoff is al-
ways well above the 99.9th percentile given in the
next to last column of Table 2. The results, sum-
marized in Table 4, show several major tendencies.

First, most of the models (151 out of 174) fit
sentence length of the entire subcorpus better than
the empirical distribution of the first half would
fit the distribution of the second half. When this
criterion is not met for the best model, i.e. the gKL
distance of the model from the data is above the
internal noise, the ill-fitting model form is shown
in italics.

Second, this phenomenon of not achieving tol-
erable fit is seen primarily (16 out of 29) in the
first column of Table 4, corresponding to a radi-
cally undersampled condition n = 1, 000, and (7
out of 29) to a somewhat undersampled condition
n = 10, 000.

Third, and perhaps most important, for suffi-
ciently large n the Bayesian model comparison
technique we advocate here actually selects rather
simple models, with order 1 (no ditransitives, a
matter we return to in Section 5) and only one or
two mixture components. We emphasize that ‘suf-
ficiently large’ is still in the realistic range, one
does not have to take the limit n → ∞ to obtain
the correct model. The last two columns (gigadata
and infinity) always coincide, and in 21 of the 29
corpora the 1M column already yield the same re-
sult.

Given that tolerance is generally small, less
than 0.66 bits even in our noisiest corpus (BNC-
K), we didn’t expect much change if we perform

https://github.com/hlt-bme-hu/SentenceLength
https://github.com/hlt-bme-hu/SentenceLength


the model comparison without using Equation 20.
Unsurprisingly, if we reward every tiny improve-
ment in divergence, we get more models (159 out
of 174) within the tolerable range – those outside
the tolerance limit are again given in italics in Ta-
ble 6. But we pay a heavy price in model complex-
ity: the best models (in the last two columns) are
now often second order, and we have to counte-
nance a hyperparameter n which matters (e.g. for
Polish).

dataset best parameters for various n values
1k 10k 100k 1M 1G ∞

BNC-A 3.k1-5 3.k2-5 1.k4.5 1.k4.5 1.k4.5 1.k4.5
BNC-B 3.k1-5 3.k1-5 1.k1.5 1.k1.5 1.k1.5 1.k1.5
BNC-C 3.k2-5 3.k2-5 3.k2-5 1.k1.4 1.k1.4 1.k1.4
BNC-D 3.k2.3.5 3.k2.3.5 3.k2.3.5 1.k2 1.k2 1.k2
BNC-E 3.k1.3-5 3.k1.3-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
BNC-F 3.k3.4.5 3.k3.4.5 3.k3.4.5 1.k3 1.k3 1.k3
BNC-G 3.k1-5 3.k1-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
BNC-H 3.k2.4.5 3.k3.4.5 1.k4 1.k4 1.k4 1.k4
BNC-J 3.k2.3.4 3.k2.3.4 3.k2.5 1.k2 1.k2 1.k2
BNC-K 3.k1-5 3.k1-5 1.k2 1.k2 1.k2 1.k2

UMBC 3.k1.3-5 3.k1.3-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5

Catalan 3.k2-5 3.k2-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Croatian 3.k3.4.5 3.k3.4.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Czech 3.k4.5 3.k1.3.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Danish 3.k1-5 3.k1.3.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Dutch 3.k1-5 3.k3.4.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Finnish 3.k1.3.5 1.k2.4 1.k2.4 1.k2.4 1.k2.4 1.k2.4
Indonesian 3.k1-5 3.k1-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Lithuanian 3.k2.3.4 3.k2.3.4 1.k2.3 1.k2.3 1.k2.3 1.k2.3
Bokmål 3.k2.4.5 3.k2.4.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Nynorsk 3.k1-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Polish 3.k2-5 3.k2-5 3.k2-5 3.k2-5 1.k2.5 1.k2.5
Portuguese 3.k2.3.5 3.k2.3.5 1.k2 1.k2 1.k2 1.k2
Romanian 3.k1.3-5 3.k1.3-5 1.k5 1.k5 1.k5 1.k5
Serbian.sh 3.k1.2.4.5 3.k2.3.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Serbian.sr 3.k2-5 3.k2.3.4 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Slovak 3.k2.4.5 3.k2-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Spanish 3.k2.4.5 1.k2.3 1.k2.3 1.k2.3 1.k2.3 1.k2.3
Swedish 1.k2.4 1.k2.4 1.k2.4 1.k2.4 1.k2.4 1.k2.4

Table 4: Optimal models with tolerance for inner noise.
Ill-fitting models are marked with italics.

4.3 Previous models
We also compared previous or baseline sen-
tence length models with our new model. The
hyper-parameters of the bins model are the bins
themselves. The distribution over the bins are
the continuous model-parameters. For m bins:
[1, b1), [b1, b2), . . . [bm−1,∞), the probability dis-
tribution P(bi ≤ X < bi+1) = qi is to be op-
timized. This model has m − 1 free parameters
(model dimension) and its model volume is the
volume of a probabilisticm-simplex. No auxiliary
model is required.

We also trained5 and compared Sichel’s model
(Equation 1) with our method. In this case α and θ
are the model-parameters and γ was a non-trained
hyper-parameter. In Sichel (1974) it was fixed γ =
−1

2 , we trained γ ∈ {−0.5,−0.4}, the higher γ
value was usually better. Again no auxiliary model
was needed.

dataset Sichel binned randwalk δ

BNC-A 3.554e-2 1.489e-2 4.409e-4 9.847e-4
BNC-B 6.212e-2 1.274e-2 7.215e-3 7.741e-3
BNC-C 4.861e-2 1.431e-2 6.989e-3 9.494e-3
BNC-D 9.917e-2 8.387e-2 5.945e-2 8.510e-2
BNC-E 6.976e-2 2.251e-2 4.353e-3 5.000e-3
BNC-F 3.153e-2 2.196e-2 2.270e-2 2.630e-2
BNC-G 2.598e-2 1.495e-2 5.762e-3 9.199e-3
BNC-H 4.765e-2 3.265e-2 3.106e-2 3.385e-2
BNC-J 3.048e-2 6.854e-2 2.946e-2 7.940e-2
BNC-K 6.583e-2 1.388e-1 3.899e-2 2.134e-1

UMBC 6.584e-2 2.615e-2 1.390e-3 2.442e-3

Catalan 1.389e-1 6.102e-2 9.382e-4 1.751e-3
Croatian 1.131e-1 4.604e-2 2.063e-3 5.616e-3
Czech 5.857e-2 3.687e-2 2.563e-3 5.147e-3
Danish 1.618e-1 3.072e-2 2.772e-3 7.557e-3
Dutch 4.232e-1 3.447e-2 1.391e-3 2.408e-3
Finnish 9.968e-2 2.830e-2 1.659e-3 1.946e-3
Indonesian 2.159e-1 5.017e-2 1.390e-3 1.231e-2
Lithuanian - 3.113e-2 6.637e-4 1.184e-3
Bokmål - 3.332e-2 3.515e-3 3.564e-3
Nynorsk - 2.830e-2 3.757e-3 3.946e-3
Polish - 4.078e-2 1.518e-3 8.508e-3
Portuguese - 5.133e-2 4.514e-2 4.973e-2
Romanian - 6.539e-2 1.579e-2 2.338e-2
Serbian.sh - 4.676e-2 1.346e-3 4.531e-3
Serbian.sr - 1.389e-1 6.971e-3 7.189e-3
Slovak - 4.344e-2 2.184e-3 2.572e-3
Spanish - 6.501e-2 7.718e-4 8.365e-4
Swedish - 2.652e-2 2.310e-3 2.526e-3

Table 5: Best of the models and their fit. Ill-fitting mod-
els are marked with italics.

As can be seen, the fit is always improved (on
the average by 40%) from the mixture Poisson to
the binned model, and the random walk model fur-
ther improves from the binned (on the average by
70%). More important, the mixture Poisson model
never, the binned model rarely, but the random
walk model always approximates the data better
than its inner noise. Altogether the random walk
models always outperforms the other two, but not
always for the same reason. In the case of bins,
the fit was poor and only the fine-grained bins per-

5Optimizing the mixture Poisson coefficients took orders
of magnitude more time than optimizing the other mod-
els. The difficulties come from computing the derivatives of
Bessel functions. At the time of going to press still about
a third of the values are missing – by the time of the meet-
ing these will be published at https://github.com/
hlt-bme-hu/SentenceLength
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formed within inherent noise. Note that none of
our parametric models use mode than 11 parame-
ters, which makes only systems with 12 or fewer
bins competitive.

In case of Equation 1, Sichel already mentions
that the fit is satisfactory only with binned proba-
bilities, i.e. on a dumbed down distribution with
4-5 data points aggregated into one. This classic
model has only 2 parameters, which would make it
very competitive for large inherent noise or small
data size, but neither is the case here.

4.4 MDL approach

Finally, let us consider the MDL results given in
Table 7. These are often (9 out of 29 subcorpora)
consistent with the results obtained using Equa-
tion 20, but never with those obtained without con-
sidering inherent noise to be a factor. Remarkably,
we never needed more than 6 bits quantization,
consistent with the general principles of Google’s
TPUs (Jouppi et al., 2017) and is in fact sugges-
tive of an even sparser quantization regime than
the eight bits employed there.

For a baseline, we discretized the naive (non-
parametric) model in the same way. Not only does
the quantization require on the average two bits
more, but we also have to countenance a consid-
erably larger number of parameters to specify the
distribution within inherent noise, so that the ran-
dom walk model offers a size savings of at least
95.3% (BNC-A) to 99.7% (Polish).

With the random walk model, the total number
of bits required for characterizing the most com-
plex distributions (66 for BNC-A and 60 for Span-
ish) appears to be more related to the high consis-
tency (low internal noise) of these corpora than to
the complexity of the length distributions.

5 Conclusion

At the outset of the paper we criticized the stan-
dard mixture Poisson length model of Equation 1
for lack of a clear genesis – there is no obvious
candidate for ‘arrivals’ or for the mixture. In con-
trast, our random walk model is based on the sug-
gestive idea of total valency ‘number of things you
want to say’, and we see some rather clear meth-
ods for probing this further.

First, we have extensive lexical data on the va-
lency of individual words, and know in advance
that e.g. color adjectives will be dependent on
nouns, while relational nouns such as sister can

dataset best parameters for various n values
1k 10k 100k 1M 1G

BNC-A 3.k1-5 1.k4.5 1.k4.5 1.k1-5 1.k1-5
BNC-B 3.k1-5 1.k2.3.5 2.k4.5 2.k4.5 2.k4.5
BNC-C 3.k2-5 1.k2.4.5 1.k2.4.5 1.k2.4.5 1.k2.4.5
BNC-D 3.k3.4 1.k2.5 2.k2.5 2.k2.5 2.k2.5
BNC-E 3.k1.3-5 1.k4.5 1.k4.5 1.k4.5 1.k4.5
BNC-F 3.k3-5 1.k2.4.5 1.k2.4.5 1.k2.4.5 1.k2.4.5
BNC-G 3.k1-5 1.k4.5 1.k2.4.5 1.k2.4.5 2.k2.4.5
BNC-H 3.k3-5 1.k4.5 2.k2.4.5 2.k2.4.5 2.k2.4.5
BNC-J 3.k1-5 1.k2.4.5 1.k2.4.5 1.k2.4.5 1.k2.4.5
BNC-K 3.k2-5 3.k2-5 1.k2.4.5 1.k2.4.5 1.k2.4.5

UMBC 3.k1.3-5 1.k2.4 1.k2.4.5 1.k2.4.5 1.k2.4.5

Catalan 3.k2-5 3.k2-5 1.k2.4 1.k1.3-5 1.k1.3-5
Croatian 3.k3-5 1.k2.3 1.k2.3 1.k3-5 1.k3-5
Czech 3.k2-5 3.k3-5 1.k2.3 1.k1.3-5 1.k1.3-5
Danish 3.k1-5 1.k2.3 1.k1.2.4.5 1.k1.2.4.5 3.k2-5
Dutch 3.k1-5 1.k2.4 1.k3.4 1.k1-5 1.k1-5
Finnish 3.k1.3.5 1.k1.3.4 1.k1.3.4 1.k1.3-5 1.k1.3-5
Indonesian 3.k1-5 1.k3.5 1.k3-5 1.k3-5 1.k3-5
Lithuanian 3.k2.3.4 1.k2.3 1.k2-5 1.k2-5 1.k2-5
Bokmål 3.k2.4.5 3.k2.4.5 1.k1.3-5 1.k1.3-5 1.k1.3-5
Nynorsk 3.k1-5 1.k2.4.5 1.k1-5 1.k1-5 1.k1-5
Polish 3.k2-5 3.k2-5 1.k1.4.5 1.k2-5 1.k2-5
Portuguese 3.k2.4.5 1.k2.3 1.k3.4 1.k3.4 1.k3.4
Romanian 3.k2.4.5 1.k2.4 1.k2.3.4 1.k2.3.4 1.k2.3.4
Serbian.sh 3.k1.2.4.5 1.k2.4 1.k3.4 1.k2-5 1.k2-5
Serbian.sr 3.k2-5 1.k4.5 1.k4.5 1.k4.5 1.k4.5
Slovak 3.k2.4.5 1.k2.3 1.k1.3-5 1.k1.3-5 1.k1.3-5
Spanish 3.k2.4.5 1.k2.3 1.k1.3.5 1.k1.3.5 1.k1.3.5
Swedish 1.k2.3 1.k2.3 1.k1-5 1.k1-5 1.k1-5

Table 6: Optimal models without tolerance. Ill-fitting
models are marked with italics.

bring further nouns or NPs. Combining the lexical
knowledge with word frequency statistics is some-
what complicated by the fact that a single word
form may have different senses with different va-
lency frames, but these cause no problems for a
statistical model that convolves the two distribu-
tions.

Second, thanks to Universal Dependencies6 we
now have access to high quality dependency tree-
banks where the number of dependencies running
between words w1, . . . , wk and wk+1 . . . wn, the
y coordinate of our random walk at k, can be ex-
plicitly tracked. Using these treebanks, we could
perform a far more detailed analysis of phrase or
clause formation than we attempted here, e.g. by
systematic comparison of the learned p1 and p2
values with the observable proportion of intransi-
tive and transitive verbs and relational nouns. Di-
transitives are rare (in fact they usually make up
less than 2% of the verbs) and we think these can
be eliminated entirely (Kornai, 2012) without loss

6http://universaldependencies.org
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dataset mq nq tb opt % size

BNC-A 6 7 66 1.k4.5 4.69
BNC-B 4 5 40 2.k2.5 4.65
BNC-C 3 5 36 1.k1.2.4 3.32
BNC-D 2 3 6 1.k2 1.29
BNC-E 4 5 32 1.k2.5 3.56
BNC-F 2 5 16 1.k2.5 1.13
BNC-G 3 5 24 1.k1.2 2.45
BNC-H 2 4 16 1.k2.5 1.36
BNC-J 2 4 6 1.k2 0.51
BNC-K 2 3 6 1.k2 0.63

UMBC 4 7 44 1.k4.5 0.88

Catalan 5 7 40 1.k2.5 0.57
Croatian 4 6 32 1.k2.4 0.53
Czech 3 6 24 1.k2.5 0.41
Danish 3 6 24 1.k2.4 0.41
Dutch 5 7 40 1.k2.5 0.57
Finnish 4 7 48 1.k1.2.3 0.69
Indonesian 4 5 32 1.k2.4 0.66
Lithuanian 4 7 32 1.k2.3 0.46
Bokmål 3 7 30 2.k2.5 0.43
Nynorsk 4 6 32 1.k2.3 1.14
Polish 2 5 16 1.k2.5 0.32
Portuguese 3 5 18 1.k4 0.36
Romanian 3 5 24 1.k1.2 0.48
Serbian.sh 4 6 32 1.k2.4 0.53
Serbian.sr 4 5 32 1.k2.5 0.64
Slovak 5 6 40 1.k2.3 0.67
Spanish 6 7 60 1.k3.4 0.86
Swedish 5 7 40 1.k2.3 0.57

Table 7: Optimal models with MDL comparison
(with tolerance). mq: Model quantization bits. nq:
naive/nonparametric quantization bits. tb: total bits.
opt: optimal model configuration. %size: size of ran-
dom walk model as percentage of size of nonparametric
model.

of generality. The same kind of analysis could be
attempted for other grammatical formalisms like
type-logical grammars, which make tracking the
open arguments an even more attractive proposi-
tion, but unfortunately these lack large parsed cor-
pora. Another significant issue with formalisms
other than UD is that the cross-linguistic breadth
of parsed corpora is minute – do we want to base
general conclusions of the type attempted here,
linking predicate/argument structure to sentence
length, on English alone?

Third, we can extend the analysis in a typo-
logically sound manner to morphologically more
complex languages. Using a morphologically an-
alyzed Hungarian corpus (Oravecz et al., 2014) we
measured the per-word morpheme distribution and
per-sentence word distribution. We found that the
random sum of ‘number of words in a sentence’
independent copies of ‘number of morphemes in
a word’ estimates the per-sentence morpheme dis-

tribution within inherent noise. To the extent these
results can be replicated for other morphologically
complex languages (again UD morphologies7 of-
fer the best testbed, though a lot remains to be
done for ensuring homogeneity) problems like six-
word ‘I can give you a ride’ versus one-word elvi-
hetlek disappear.

Another avenue of research alluded to above
would be the study of subject- and object-control
verbs and infinitival constructions, where single
nouns or NPs can fill more than one open depen-
dency. This would complicate the calculations in
Equation 5 in a non-trivial way. We plan to extend
our mathematical model in a future work, but it
should be clear from the foregoing that sentences
exhibiting these phenomena are so rare as to ren-
der unlikely any prospect of improving the statisti-
cal model by means of accounting for these. This
is not to say that control phenomena are irrelevant
to grammar – but they are likely ‘within the noise’
for statistical length modeling.

One of the authors (Kornai and Tuza, 1992)
already suggested that the number of dependen-
cies open at any given point in the sentence must
be subject to limitations of short-term memory
(Miller, 1956) – this may act as a reflective barrier
that keeps asymptotic sentence length smaller than
the pure random walk model would suggest. In
particular, Bernoulli and other well-known models
predict exponential decay at the high end, whereas
our data shows polynomial decay proportional to
n−C , with C somewhere around 4 (in the 3 − 5
range). This is one area where our corpora are
too small to draw reliable conclusions, but over-
all we should emphasize that corpora already col-
lected (and in the case of UD treebanks, already
analyzed) offer a rich empirical field for studying
sentence length phenomena, and the model pre-
sented here makes it possible to use statistics to
shed light on the underlying grammatico-semantic
structure.
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A Appendix

Theorem A.1. Let us define f as x = f(x)
F (f(x)) with

F (0) > 0, then[
xi
]

(f(x))k =
k

i
[xi−k]F i(x) (21)

Proof. By Lagrange–Bürmann formula with com-
position function H(x) = xk.

Theorem A.2. In the Bayesian evidence if both
the model and parameter a priori is uniform, then

P(Hi | D) =
P(D | Hi) · P(Hi)

P(D)
∝ f(w∗i )+

1

n
· ln Vol(Hi) +

1

2n
ln det f ′′(w∗i ) +

d

2n
· ln n

2π
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where f(wi) is the cross entropy of the measured
and the modeled distributions. See Equation 17.

If the augmented model (18) is used, then Equa-
tion 19 follows.

Proof.

P(D | Hi)
uniform a priori

=∫
P(D | wi,Hi) ·

1

Vol(Hi)
dwi =

1

Vol(Hi)
·
∫ ∏

x∈X
Qwi(x)nx dwi =

∫
exp

{
− n ·

f(wi)︷ ︸︸ ︷(
−
∑
x∈X

nx
n
· lnQwi(x)

)}
dwi

Vol(Hi)

Using Laplace method:

≈ 1

Vol(Hi)
· e−n·f(w∗

i ) ·
(
2π
n

) d
2√

det f ′′(w∗i )

Taking − 1
n ln(•) for scaling (does not effect the

relative order of the models):

1

n
ln Vol(Hi) + f(w∗i ) +

1

2n
ln det f ′′(w∗i )+

d

2n
· ln
( n

2π

)

As for the augmented model, the model param-
eters are the concatenation of the original parame-
ters and the auxiliary parameters. Thus the overall
Hessian is the block-diagonal matrix of the origi-
nal and the auxiliary Hessian. Similarly, the over-
all model volume is the product of the original and
the auxiliary volume. Trivially, the logarithm of
product is the sum of the logarithms.

Since the auxiliary model can fit the uncovered
part perfectly: px = (1− λ) · qx on x /∈ suppHi.
See (18) for that λ is the covered probability of the

sample.

P(D | H′i) = −
∑

x∈X\supp(Hi)

px · ln px

−
∑

x∈X∩supp(Hi)

px · ln
(
λ ·Qw∗

i
(x)
)

+

1

n
· (ln Vol(Hi) + ln Vol(aux. model)) +

1

2n
· ln det (model Hessian) +

1

2n
· ln det (aux. model Hessian) +

d′

2n
· ln n

2π
(22)

where d′ is the overall parameter number.
Further, if one subtracts the entropy of the sam-

ple then only the first two term is changed com-
pared to Equation 22 and Equation 19 follows.∑

x∈X
px · ln px −

∑
x∈X\supp(Hi)

px · ln px

−
∑

x∈X∩supp(Hi)

px · ln
(
λ ·Qw∗

i
(x)
)

=

∑
x∈X∩supp(Hi)

px · ln
px

λ ·Qw∗
i
(x)

=

∑
x∈X∩supp(Hi)

px ·

(
ln

px
Qw∗

i
(x)

+ ln
1

λ

)
=

λ · (− lnλ) +
∑

x∈X∩supp(Hi)

px · ln
px

Qw∗
i
(x)

q.v. Definition 3.1.


