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Abstract

This paper proves that for every class C
of stochastic languages defined with the co-
emission product of finitely many proba-
bilistic, deterministic finite-state acceptors
(PDFA) and for every data sequence D of
finitely many strings drawn i.i.d. from some
stochastic language, the Maximum Likelihood
Estimate of D with respect to C can be found
efficiently by locally optimizing the parame-
ter values. We show that a consequence of
the co-emission product is that each PDFA be-
haves like an independent factor in a joint dis-
tribution. Thus, the likelihood function de-
composes in a natural way. We also show
that the negative log likelihood function is con-
vex. These results are motivated by the study
of Strictly k-Piecewise (SPk) Stochastic Lan-
guages, which form a class of stochastic lan-
guages which is both linguistically motivated
and naturally understood in terms of the co-
emission product of certain PDFAs.

1 Introduction

Stochastic languages are probability distributions
over all possible strings of finite length. A class
C of stochastic languages is often defined para-
metrically: an assignment of values to the parame-
ters uniquely determines some stochastic language
L in C and thus the probabilities that L assigns
to strings. An important learning criterion for a
class of stochastic languages C is whether there is
an algorithm which reliably returns a Maximum-
Likelihood Estimate (MLE) of an observed data
sample D. The MLE is the parameter values
which maximize the probability of D with respect
to C.

This paper focuses on regular deterministic
stochastic languages. These are stochastic lan-
guages that can be defined with a probabilistic, de-
terministic, finite-state acceptors (PDFA).

The problem of finding the MLE, however, is
not only about some single stochastic language L,
but also about the class of stochastic languages
that L belong to. It is well-understood that each
PDFA M naturally defines a class of stochastic
languages CM because the transitional probabil-
ities in the PDFA provide a range of possible pa-
rameter values, as we explain in detail in section 2.
In this case, it is well-understood how to find the
MLE of a sequence of strings drawn i.i.d. from L
with respect to CM (Vidal et al., 2005a,b). This
paper is concerned with finding the MLE for dif-
ferent classes of stochastic languages.

In particular, we consider the case where C is
defined by the range of parametric values over
finitely many PDFA A = {M1 . . .MK}, whose
co-emission product determines the probabilities
each L ∈ C assigns to strings. Essentially, the co-
emission product of these PDFAs factor the prob-
abilities each L ∈ C assigns to strings. Each L is
a complex joint distribution, and each PDFAMj

represents a ‘more basic’ regular stochastic lan-
guage whose parameter values independently con-
tribute to L. At a high level, the problem we are
considering is like those addressed with Bayesian
networks and Markov random fields, where com-
plex probability distributions decompose into sim-
pler factors (Bishop, 2006; Koller and Friedman,
2009). We refer to the classes C we study in this
paper as factored, regular, probabilistic, and deter-
ministic (FRPD).

The main result is to show how the parameters
of a FRPD class C can be efficiently updated to
find those parameter values which maximize the
likelihood of the observed sequences (Theorem 2).
We also show directly that each negative log likeli-
hood associated with each FRPD classC is convex
(Theorem 3). Together these results imply that the
efficient method we present for updating the pa-
rameter values will yield the MLE.



There are several reasons for being interested
in such factored classes C. Perhaps the most
important from our perspective is expressed by
Koller and Friedman (p. 1134) “The ability to
exploit structure in the distribution is the basis
for providing a compact representation of high-
dimensional . . . probability spaces.” In our case,
the size of the representation of the class given
by A = {M1 . . .MK} is simply the sum of the
size of each Mj . In contrast, the representation
of the class given by the co-emission product is
in the worst case the product of the sizes of each
Mj . One direct benefit of this is that the number
of parameters is reduced, which makes it possible
to more accurately estimate them with less data.
Other advantages discussed by Koller and Fried-
man, such as modularity, we return to in the dis-
cussion in the conclusion.

There are also linguistic reasons to be interested
in FRPD classes. The Strictly Piecewise (SP) class
of languages encode certain types of long-distance
dependencies found in natural languages. For ex-
ample, SP languages can express generalizations
like “at most one b per string” and “no b may fol-
low an a” (Rogers et al., 2010). Generalizations
with this formal character are known to occur in
the phonologies of the world’s languages (Heinz,
2010a; Rogers et al., 2013; Heinz, 2014, 2018).
As Rogers et al. (2010) explain, Strictly Piecewise
languages are characterized by the intersection
product of finitely many deterministic finite-state
acceptors (DFA). Heinz and Rogers (2010) used
this characterization and the co-emission product
to define the class of Strictly Piecewise stochas-
tic languages because they were interested in the
learnability of long-distance dependencies in nat-
ural languages probabilistically. They presented
a learning algorithm for a class of SP stochastic
languages and claimed (p. 894) that it returns the
MLE.

This results in this paper can be seen as pro-
viding a more generalized, more meaningful, and
more rigorous proof of their basic claim. Theo-
rem 2 establishes how to update the parametric
values which locally optimize the model of any
FRPD class. Theorem 3 shows the negative log
likelihood function of any FRPD class is convex,
so there is in fact only one set of optimal para-
metric values for any sequence of data. Further-
more, we prove these results in terms of the stan-
dard definition of co-emission product, and not the

variant used in Heinz and Rogers (2010). (While
the results here work for both, we only prove
the standard case.) These general results make it
possible to explore not only the learning of SPk
stochastic languages, but also any finite combina-
tion of PDFAs that characterize different kinds of
local and non-local dependencies which can be ex-
pressed with regular grammars. We return to this
issue in the discussion.

To our knowledge, such results for FRPD
classes have not been previously discussed in the
literature. One reason for this is that much work
on natural language processing uses probabilis-
tic non-deterministic automata. These describe
the same class of stochastic languages as Hidden
Markov Models (HMMs) (Vidal et al., 2005a,b).
Non-determinism can make a big difference when
it comes to parsing and learning. In a determin-
istic model M, each string w can be associated
with at most one path through M, whereas in
non-deterministicM, there can be infinitely many
paths for w. This is one reason why methods used
for learning HMM are not guaranteed to return a
MLE. Since the states are ‘hidden’ one uses meth-
ods like Expectation Maximization, which may
converge to a local optimum that is not a global
optimum (Jurafsky and Martin, 2008; Heinz et al.,
2015).

On the other hand, we are showing that, by care-
fully choosing the class of stochastic languages
C—which the MLE which is to be found will be
‘with respect to’—we can exploit the structure we
assume to be present to guarantee we find a MLE.
This paper takes one step in establishing the theo-
retical soundness of this approach.

Finally, one reviewer commented that these
results may follow from fundamental theorems
in the literature on probabilistic graphical mod-
els (Koller and Friedman, 2009). Regardless of
whether this is true, the correctness of the proofs
here stand. Also, the general results of Bayesian
networks and Markov random fields say nothing
about the concrete forms of the algorithm for ob-
taining the MLE with respect to a FRPD class C
given data D, and similarly for its time complex-
ity. Malouf (2002) makes a similar point, writ-
ing “While all parameter estimation algorithms
we will consider take the same general form, the
method for computing the updates . . . differs sub-
stantially.” Nonetheless, how probabilistic graph-
ical models relate to this line of research ought to



be made clear.
The remainder of the paper is organized as fol-

lows. In section 2 we review languages, stochas-
tic languages, deterministic finite-state acceptors
and probabilistic versions thereof, the intersection
and co-emission products, and the statement of the
learning problem. Before presenting our main re-
sults, section 3 defines Strictly Piecewise (stochas-
tic) languages, which provide a running example
to illustrate the main results, which are presented
in section 4. The computational complexity of the
updates are analyzed in section 5 and section 6
concludes.

2 Preliminaries

2.1 Sets of Strings
Σ denotes a finite set of symbols and Σk, Σ≤k,
and Σ∗ denote all strings over this alphabet of
length k, of length less than or equal to k, and
of any finite length, respectively. λ denotes the
empty string. The length of a string w is written
|w|. The prefixes of a string w are Pref(w) =
{v | ∃u ∈ Σ∗, vu = w}. A string w = σ1 . . . σn
is a subsequence of a string v if and only if
v ∈ Σ∗σ1Σ∗ . . .Σ∗σnΣ∗, in which case we write
w v v.

A language L is a subset of Σ∗. The comple-
ment of a language L, denoted L is Σ∗/L. The
shuffle ideal ofw is the language of all strings con-
taining w as a subsequence:

SI(w) = {v | w v v}.

A stochastic language L is a probability dis-
tribution over Σ∗. The probability P of word w
with respect to L is written PL(w) = p. Thus, all
stochastic languages L satisfy∑

w∈Σ∗

PL(w) = 1.

2.2 Probabilistic Deterministic Finite-state
Acceptors

A Deterministic Finite-state Acceptor (DFA) is
a tuple M = 〈Q,Σ, q0, δ, F 〉 where Q is the
state set, Σ is the alphabet, q0 is the start state,
δ is a deterministic transition function with do-
main Q × Σ and codomain Q, and F is the set
of accepting states. Let δ∗ : Q × Σ∗ → Q
be the (partial) path function of M. When dis-
cussing partial functions, the notation ↑ and ↓ in-
dicates that the function is not defined, respec-
tively, is defined, for particular arguments. Thus

δ∗(q, w) is the (unique) state reachable from state
q via the sequence w, if any, or δ∗(q, w)↑ other-
wise. The language recognized by a DFA M is
L(M)

def
= {w ∈ Σ∗ | δ∗(q0, w)↓ ∈ F}.

A Probabilistic Deterministic Finite-state Ac-
ceptor (PDFA) is a tupleM = 〈Q,Σ, q0, δ, F, T 〉
where Q,Σ, q0, and δ are the same as with DFA,
and F and T are partial functions representing the
final-state and transition probabilities. In particu-
lar, T : Q× Σ→ R+ and F : Q→ R+ such that

for all q ∈ Q, F (q) +
∑
σ∈Σ

T (q, σ) = 1. (1)

A PDFA M generates a stochastic language
L(M). If it exists, the unique path for a wordw =
σ0 . . . σN belonging to Σ∗ through a PDFA is a se-
quence 〈(q0, σ0), (q1, σ1), . . . , (qN , σN )〉, where
qi+1 = δ(qi, σi). The probability a PDFA assigns
tow is obtained by multiplying the transition prob-
abilities along w’s path if it exists with the final
probability, and zero otherwise. So PL(M)(w) =(

N∏
i=0

T (qi, σi)

)
·F
(
δ(qN , σN )

)
if δ∗(q0, w)↓ and 0 otherwise (2)

A probability distribution is regular deterministic
iff there is a PDFA which generates it. We some-
times writeM(w) instead of PL(M)(w).

The structural components of a PDFA M are
its statesQ, its alphabet Σ, its transitions δ, and its
initial state q0. By structure of a PDFA, we mean
its structural components. The structure of each
PDFA M defines a class of stochastic languages
given by the possible instantiations of T and F
satisfying Equation 1. These distributions have at
most |Q|· (|Σ|+ 1) independent parameters (since
for each state there are |Σ| possible transitions plus
the possibility of finality.)

2.3 The co-emission product
The intersection product of K DFAsM1 . . .MK

is given by the standard construction over the
state space Q1 × . . . × QK (Hopcroft et al.,
2001). We write

⊗
1≤j≤KMj = M =

〈Q,Σ, q0, δ, F 〉 where Q = Q1 × . . . × QK ,
q0 = 〈q01, . . . q0K〉. For all 〈q1, . . . qK〉 ∈ Q and
σ ∈ Σ, δ(〈q1, . . . qK〉, σ) = 〈q′1, . . . q′K〉 if and
only if δ1(q1, σ) = q′1, . . . δK(qK , σ) = q′K . Fi-
nally, let F = F1× . . .×FK It is well-known that
L(
⊗

1≤j≤KMj) =
⋂

1≤j≤K L(Mj).



The co-emission product of K PDFAs
M1 . . .MK is also given by a construction over
the state space Q1 × . . . × QK . The probabil-
ity that σ is co-emitted from 〈q1, . . . , qK〉 in
Q1 × . . .] × QK is the product of the proba-
bilities of its emission at each qj ∈ Qj . Let
CoT(〈σ, q1 . . . qK〉) =

∏K
j=1 Tj(qj , σ). Simi-

larly, the probability that a word simultaneously
ends at q1 ∈ Q1, . . . qK ∈ QK is

CoF(〈q1 . . . qK〉) =
K∏
j=1

Fj(qj).

Finally, for q = 〈q1 . . . qK〉, let

Z(q) = CoF(q) +
∑
σ∈Σ

CoT(〈σ, q〉)

be the normalization term. Next we define the co-
emission product.
Definition 1 (Co-emission Product) For A =
{M1, . . .MK}, let

⊗
A = 〈Q,Σ, q0, δ, F, T 〉

where

1. Q, q0, and δ are defined as with DFA product;
and

2. For all q ∈ Q and σ ∈ Σ:

F (q) =
CoF(q)

Z(q)

and

T (q, σ) =
CoT(σ, q)

Z(q)
.

In other words, the numerators of T and F are de-
fined to be the co-emission probabilities and divi-
sion by Z ensures that co-emission product

⊗
A

defines a well-formed probability distribution over
Σ∗.

Observe that A also defines a class of stochas-
tic languages by the possible instantiations of Tj
and Fj for each Mj ∈ A. The structural compo-
nents of A are the structural components of each
Mj ∈ A. By structure of A, we mean its struc-
tural components. The structure of A defines a
class of stochastic languages given by the possible
instantiations of Tj and Fj satisfying Equation 1
for each Mj ∈ A.

If
⊗
A = M then the class of stochastic lan-

guages induced by the structure ofA is a subset of
the class of stochastic languages obtained with the
structure of the PDFAM. This is another way of
saying that a factorized model may have fewer pa-
rameters and so the class of stochastic languages
it represents can become smaller.

2.4 Statement of the Learning Problem
Let D be a finite sequence of |D| i.i.d. drawn ex-
amples from a stochastic language L. It follows
that the PL(D) =

∏
w∈D PL(w).

Let A = {M1 . . .MK} be a set of PDFAs and
let CA denote the FRPD class of stochastic lan-
guages induced by the structure of A. The likeli-
hood of D w.r.t. CA is determined by the param-
eters (the Tj and Fj functions for eachMj ∈ A).
Let us group these parameters under the symbol
Θ. Each Θ identifies some stochastic language
LΘ ∈ CA. The likelihood of D w.r.t. CA is de-
fined as follows:

lhd(D | Θ) =
∏
w∈D

PLΘ
(w).

The problem of finding a Maximum Likelihood
Estimate (MLE) is to find those parameter values
Θ̂ of A that maximize the likelihood of D w.r.t.
CA. Formally,

Θ̂ = arg max
Θ

(
lhd(D | Θ)

)
(3)

where Θ under the arg max ranges over all possi-
ble parameter values of A.

When |A| = 1 the problem has a known so-
lution. As mentioned, a single PDFA M defines
a class of stochastic languages given by possible
parameter values of M. In this case, it is well-
known how to find Θ̂. Essentially, each transition
probability T (q, σ) equals the relative frequency
that symbol σ is emitted at a state q (Vidal et al.,
2005a,b). In this paper, we solve this problem
when |A| > 1.

3 Strictly k-Piecewise stochastic
languages

In this section, we introduce the Strictly k-
Piecewise stochastic languages, which serve as a
running example of a FRPD class in the remain-
der of the paper.

Rogers et al. (2010) define and provide multiple
characterizations of Strictly Piecewise (SP) lan-
guages. We review the most relevant ones for this
paper here. SP languages are exactly those formal
languages that are closed under subsequence.

SP = {L ⊆ Σ∗ | ∀w, v ∈ Σ∗

(v ∈ L,w v v ⇒ w ∈ L)}

Rogers et al. (2010, p. 260) prove that every SP
language L can be associated with a finite set of



strings S such thatL is the intersection of the com-
plements of the shuffle ideals of S.

Theorem 1 ∀L ∈ SP,∃S ⊆ Σ∗, n ∈ N such that
|S| < n and L =

⋂
w∈S SI(w).

The SP languages are parameterized by a value
k ∈ N. This number corresponds to the length
of the longest string in S. For each SP language
L, if there is a set S whose longest string is equal
to k, then L belongs to the SPk class of languages.

If k is known a priori then the SPk languages
are both PAC-learnable and identifiable in the limit
in polynomial time and data (Heinz, 2010b; Heinz
et al., 2012).1

Theorem 1 allows one to construct concrete
computational models for SP languages with DFA.
For any nonempty string w = σ1 . . . σn, SI(w) =
L(Mw) where Mw is defined as follows. The
states are the prefixes of w, the start state is λ, and
the final state is w. For all prefixes p of w and
σ ∈ Σ, let δ(p, σ) = pσ whenever pσ is a prefix
of w and p otherwise. Figure 1 gives an examples
of DFA forMabba.

The complement SI(w) is essentially obtained
fromMw by removing its maximal state and mak-
ing every state final. In other words, if w = va
then the SI(w) can be recognized by an automa-
ton where the states are the prefixes of v, the start
state is λ, and each state is a final state. For all
prefixes p of v and σ ∈ Σ, δ(p, σ) = pσ whenever
pσ is a prefix of v. When pσ is not a prefix of v
and σ 6= a then δ(p, σ) = p. Finally, δ(v, a) is
not defined. We denote such a DFA asMw. Fig-
ure 2 shows the DFAMabba which recognizes the
complement of SI(abba). BothMw and the DFA
recognizing its complement are minimal.

It follows that for anyL ∈ SP, one can construct
a DFA recognizing L by taking the product of the
complements of the shuffle ideals of the strings in
S.

Note the size of M1 . . .MK is
∑

1≤i≤KMj

whereas the size of M =
⊗

1≤j≤KMj is in
the worst case

∏
1≤j≤KMj . Therefore, to decide

whether a string w belongs to some SP language
L, it may be preferable to run w on eachMj in-
stead of on M to avoid the potentially large in-

1Also, SP languages suggest a different representation for
strings (Rogers et al., 2013), which inform machine learning
in other ways. The winning paper of the SPiCE competition
(Balle et al., 2016), in which machine learning models com-
peted to best predict the next symbol in a natural and artificial
sequences was won by Shibata and Heinz (2016), who inte-
grated SP-style representations into a neural network.

crease in the state space. See Heinz and Rogers
(2013) for additional discussion of this point.

Heinz and Rogers (2010) use the fact that
SP languages are the intersection of the comple-
ments of shuffle ideals to define their stochastic
counterpart. They define stochastic versions of
Mw (Figure 2), which they call w-subsequence-
distinguishing PDFA.

Definition 2 (Subsequence-distinguishing PDFA)
Let w ∈ Σk−1 and w = σ1 · · ·σk−1.
Mw = 〈Q,Σ, q0, δ, F, T 〉 is a w-subsequence-
distinguishing PDFA (w-SD-PDFA) iff F and T
satisfy Equation 1 and δ(u, σ) = uσ whenever
uσ ∈ Pref(w) and u otherwise.

Apart from the stochastic components T and F ,
the w-subsequence-distinguishing PDFA differs
from Mw in one key way. Suppose. w =
va. Then δ(v, a) = v in the w-subsequence-
distinguishing PDFA is not undefined as was the
case with Mw. This transition exists and may
have a nonzero probability.

A set A of PDFAs is a k-set of SD-PDFAs iff,
for each w ∈ Σ≤k−1, it contains exactly one w-
SD-PDFA. For example, let Σ = {a, b} and con-
sider the 2-set of SD-PDFAs shown in Figure 3.
There are three SD-PDFAs in this set correspond-
ing toMλ,Ma, andMb.

Heinz and Rogers (2010) define SPk stochastic
languages as a product of a k-set of SD-PDFAs.
Specifically, the adapt the notion of co-emission
probability (Vidal et al., 2005a). Heinz and Rogers
(2010) actually use what they call the positive co-
emission product which restricts the standard co-
emission probability to particular circumstances.

In this work, we define SP stochastic languages
with the standard definition of co-emission proba-
bility used to define products of PDFA as in Defi-
nition 1 (Vidal et al., 2005a).

Definition 3 (SP Stochastic Languages) A prob-
ability distribution P over Σ∗ is a SP stochastic
language iff there exists a k-set of SD-PDFAs A,
whose co-emission product is M =

⊗
A, such

that for all w ∈ Σ∗, it is the case that P (w) =
M(w).

It follows immediately from this definition that
the class of SP stochastic languages is a FRPD
class. In this case, the parameters of such a
distribution are the T and F values on each w-
subsequence-distinguishing PDFA in the k-set. In
the example in Figure 3, there are thus 15 parame-
ters of the model, 10 of which are free. This is be-



λstart a ab abb abba
a

b,c

b

a,c

b

a,c

a

b,c a,b,c

Figure 1: The DFAMabba for SI(abba) (left) with Σ = {a, b, c}.

λstart a ab abb
a

b,c

b

a,c

b

a,c b,c

Figure 2: The DFAMabba for SI(abba) with Σ = {a, b, c}.

cause there are three actions associated with each
state (a, b, and finality); there are five states; but
since the probabilities must add to one only two
parameters per state are free. More generally, a
k-set of SD-PDFAs A has |Σ| ·

∑
j∈A |Qj | free

parameters.

4 Main Theorem for MLE of FRPD
classes

We provide our main results here, using the 2-set
of SD-PDFAs shown in Figure 3 as an illustrative
example.

4.1 The Co-emission Probability Given a
Prefix

It is useful to consider the co-emission probabil-
ity of the symbol σ given the prefix σ1 · · ·σi−1,
which we denote Coemit(σ, i). It follows from
Definitions 1 and 3 that this value is the normal-
ized product of the path through

⊗
A given by

the prefix σ1 · · ·σi−1.
Formally, let M1 = 〈Q1,Σ, q01, δ1, F1, T1〉,
· · · , MK = 〈QK ,Σ, q0K , δK , FK , TK〉 be exactly
those PDFAs in A. Suppose that w = σ1 · · ·σN ,
where σi ∈ Σ for all 1 ≤ i ≤ N . Let q(j, i)
denote a state in Qj that is reached after Mj

reads the prefix σ1 · · ·σi−1. If i = 1 then q(j, i)
represents the initial state of Mj . Then it fol-
lows from Definition 1 that the probability that
a symbol σ is emitted after the product machine⊗

1≤j≤KMj reads the prefix σ1 · · ·σi−1 is the
following: Coemit(σ, i) =∏K

j=1 Tj(q(j, i), σ)∑
σ′∈Σ

(∏K
j=1 Tj(q(j, i), σ

′
)

+
∏K
j=1 Fj(q(j, i))

(4)

To simplify the notation and analysis, we as-
sume that there is a end marker n ∈ Σ which
uniquely occurs at the end of words. This lets us
replace Fj(q) with Tj(q,n). Then Coemit(σ, i) is
simply written as

Coemit(σ, i) =

∏K
j=1 Tj(q(j, i), σ)∑

σ′∈Σ

∏K
j=1 Tj(q(j, i), σ

′).
(5)

The probability that the machine
⊗

1≤j≤KMj ac-
cepts w is obtained by taking the product of the
co-emission probabilities for all i:

P (wn) =
N+1∏
i=1

Coemit(σi, i), (6)

where σN+1 = n.
Since we are concerned with the co-emission

probabilities, which is a ratio, it is notewor-
thy that in fact it does not matter if the sum∑

σ′∈Σ Tj(q, σ
′) is 1. The ratio Coemit(σ, i) and

thus P (wn) are invariant with respect to the scale
of Tj(q, σ′) and the sum

∑
σ′∈Σ Tj(q, σ

′). Writ-
ing this last value as z(j, q), it can easily be con-
firmed by the fact that multiplying both the de-
nominator and the numerator by 1/z(j, q) does
not change the value of Coemit(σ, i) while nor-
malizing Tj(q, ·). Thus, we can relax the condi-
tion in Equation 1 when discussing co-emission
probabilities. The only condition that needs to
be satisfied with respect to the transitions is that
Tj(q, σ

′) ≥ 0 for all j, q, σ′. Note that relaxing
this condition does not affect the number of free
parameters. This is because the numerical values
associated with the transitions, once normalized,
will always sum to 1. In the following, we assume
this relaxed condition.



λstart λstart a λstart b

a,b

a

b a,b

b

a a,b

Figure 3: The 2-set of of SD-PDFAs with Σ = {a, b}.

4.2 Frequency and Empirical Mean of
Co-emission Probability

Before describing the main theorem, we define
two terms; the frequency of an emission and
the empirical mean of a co-emission probability,
which play important roles in estimating transition
probabilities for product machines.

Definition 4 (Frequency of Emission) For given
w, we define the frequency of σ at q ∈ Qj as fol-
lows. Let

• mw(Mj , q, σ) ∈ Z+ denotes how many times
σ is emitted at the state q while the machine
Mj emits w.

• nw(Mj , q) ∈ Z+ denotes how many times
the state q is visited while the machine Mj

emits w.

Then

freqw(σ|Mj , q) =
mw(Mj , q, σ)

nw(Mj , q)
, (7)

So freqw(σ|Mj , q) represents the relative fre-
quency that Mj emits σ at q during emission of
w.

These concepts can be lifted to a sequence of
strings D drawn i.i.d. from some stochastic lan-
guage. Let

mD(Mj , q, σ) =
∑
w∈D

mw(Mj , q, σ)

and
nD(Mj , q) =

∑
w∈D

nw(Mj , q) .

It follows that

freqD(σ|Mj , q) =
mD(Mj , q, σ)

nD(Mj , q)
.

So freqD(σ|Mj , q) represents the relative fre-
quency that Mj emits σ at q during emission of
D.

As an example, consider the 2-set of PDFAs
in Figure 3 and consider the sample data D =

〈abbn, aban〉. Figure 4 shows the paths of these
strings through each SD-PDFA. Figure 5 shows
some of the frequency computations.

If K = 1, i.e., the product machine consists
of one PDFA then freqw(σ|M1, q) is the MLE of
T1(q, σ) (Vidal et al., 2005a,b). Meanwhile, if
K ≥ 2, the probability of the emission, which
equals the co-emission probability, fluctuates with
states that other machines are currently at. Thus
freqw(σ|Mk, q), as a random variable, is not inde-
pendent from other machines’ states. This moti-
vates the following definition.

Definition 5 (Empirical Mean) Let

sumCoemitw(σ,Mj , q) =
∑

i s.t. q(j,i)=q

Coemit(σ, i).

The empirical mean of a co-emission probability
is defined as follows:

Coemitw(σ|Mj , q) =
sumCoemitw(σ,Mj , q)

nw(Mj , q)
,

(8)
i.e., the sample average of the co-emission proba-
bility when q ∈ Qj is visited.

When a state in Mj is visited more than once
while emittingw, it does not imply that some other
state in Mh is also visited more than once. In
other words, if there are positions i 6= ` such that
q(j, i) = q(j, `) then it does not have to follow that
q(h, i) = q(h, `) for another machine Mh. Thus,
even when Mj and the value of q(j, i) are fixed,
Coemit(σ, i) fluctuates. The empirical mean is the
average taken over such fluctuating co-emission
probabilities.

4.3 Main Theorem and Convexity

Theorems 2 and 3 are our main results. We sim-
plify the proofs by assuming that D consists of
a single sentence. That is, in both theorems, we
consider D = {wn}. We can do this with-
out loss of generality because any finite sequence
of strings D drawn i.i.d. from a stochastic lan-
guage can be converted into a single sentence



Mλ: λ λ λ λ λ λ λ λ
a b b n b b b n

Ma: λ a a a λ λ λ λ
a b b n b b b n

Mb: λ λ b b λ b b b
a b b n b b b n

Figure 4: The paths of {abbn,bbbn} through the 2-set of of SD-PDFAs with Σ = {a, b}.

freqD(a|Mλ, λ) = 1/8 freqD(a|Ma, λ) = 1/5 freqD(a|Ma, a) = 0/3,

freqD(b|Mλ, λ) = 5/8 freqD(b|Ma, λ) = 3/5 freqD(b|Ma, a) = 2/3,

freqD(n|Mλ, λ) = 2/8 freqD(n|Ma, λ) = 1/5 freqD(n|Ma, a) = 1/3,

freqD(a|Mb, λ) = 1/3 freqD(a|Mb, b) = 3/5,

freqD(b|Mb, λ) = 2/3 freqD(b|Mb, b) = 0/5,

freqD(n|Mb, λ) = 0/3 freqD(n|Mb, b) = 2/5,

Figure 5: Frequency computations with D={abbn,bbbn} and the 2-set of of SD-PDFAs in Figure 4.

without changing the probability of its production.
To see why, we can adjust the transition func-
tion of each PDFA Mj so that δj(q,n) = q0j

for each q ∈ Qj . In other words, once n is
emitted, the machines reset to their start states.
Then for any D = {w1n, · · · , wkn}, we have
P (D) = P (concat(D)) where concat(D) =
w1 n w2 n · · · n wkn. Thus, wn in both theo-
rems can be understood as concat(D).
Theorem 2 Suppose that P (wn) is defined as
Equation 6 for a product machine

⊗
1≤j≤KMj

and a word w. Then, ∂P (wn)/∂Tj = 0 holds for
all j if and only if the following equation is satis-
fied for all 1 ≤ j ≤ K:

freqw(σ|Mj , q) = Coemitw(σ|Mj , q) .

From Theorem 3, it will then follow that
T1, . . . TK are the MLE.

Proof By taking the log of Eq. 6 , we have

logP (wn) =
N+1∑
i=1

 K∑
j=1

log Tj(q(j, i), σi)

− log
∑
σ′∈Σ

K∏
j=1

Tj(q(j, i), σ
′)


=

N+1∑
i=1

K∑
j=1

log Tj(q(j, i), σi)

−
N+1∑
i=1

log
∑
σ′∈Σ

K∏
j=1

Tj(q(j, i), σ
′).

We differentiate this by a log emission probabil-
ity log Th(q, σ) for some 1 ≤ h ≤ K. Let

A =
∂

∂ log Th(q, σ)

N+1∑
i=1

K∑
j=1

log Tj(q(j, i), σi) ,

and

B =
∂

∂ log Th(q, σ)

N+1∑
i=1

log
∑
σ′∈Σ

K∏
j=1

Tj(q(j, i), σ
′) .

Then

∂

∂ log Th(q, σ)
logP (wn) = A−B.

First, we calculate A. Since

∂Tj(q(j, i), σi)

∂ log Th(q, σ)
=


1 if 〈Mh, q, σ〉

= 〈Mj , q(j, i), σi〉 ,
0 otherwise,

we have

A =
N+1∑
i=1

K∑
j=1

I
[
〈Mh, q, σ〉 = 〈Mj , q(j, i), σi〉

]
=

N+1∑
i=1

I
[
〈q, σ〉 = 〈q(h, i), σi〉

]
= mw(Mh, q, σ) (9)

where I[ · ] denotes the indicator function and
mw(Mh, q, σ) is defined as in Definition 4.



B =
∂

∂ log Th(q, σ)

N+1∑
i=1

log

∑
a∈Σ

K∏
j=1

Tj(q(j, i), a)


=
N+1∑
i=1

∂
∂ log Th(q,σ)

∑
a∈Σ

∏K
j=1 Tj(q(j, i), a)∑

a∈Σ

∏K
j=1 Tj(q(j, i), a)

=
N+1∑
i=1

∂
∂ log Th(q,σ)

∑
a∈Σ exp

(∑K
j=1 log Tj(q(j, i), a)

)∑
a∈Σ

∏K
j=1 Tj(q(j, i), a)

=

N+1∑
i=1

∑
a∈Σ

(
exp

(∑K
j=1 log Tj(q(j, i), a)

)∑K
j=1

∂ log Th(q(j,i),a)
∂ log Th(q,σ)

)
∑

a∈Σ

∏K
j=1 Tj(q(j, i), a)

=
N+1∑
i=1

∑
a∈Σ

(∏K
j=1 Tj(q(j, i), a)

∑K
j=1

∂ log Tj(q(j,i),a)
∂ log Th(q,σ)

)
∑

a∈Σ

∏K
j=1 Tj(q(j, i), a)

=
N+1∑
i=1

∑
a∈Σ

 ∏K
j=1 Tj(q(j, i), a)∑

b∈Σ

∏K
j=1 Tj(q(j, i), b)

K∑
j=1

∂ log Tj(q(j, i), a)

∂ log Th(q, σ)


Figure 6: Initial calculation of B in the proof of Theorem 2.

Second, we calculate B as shown in Figure 6.
There are two large terms in the large parentheses
in the last line of the calculation of B in Figure 6.
The first one is is the co-emission probability by
Equation 5. Thus B =

N+1∑
i=1

∑
a∈Σ

K∑
j=1

Coemit(a, i)
∂ log Tj(q(j, i), a)

∂ log Th(q, σ)
.

Recall that

∂ log Tj(q(j, i), a)

∂ log Th(q, σ)

equals

I[〈Mh, q, σ〉 = 〈Mj , q(j, i), a〉].

This indicator function equals I[h = j ]I[ q =
q(j, i) ]I[σ = a ]. Abbreviating I[h = j ] with
I1, I[ q = q(j, i) ] with I2, and I[σ = a ] with I3,
we see that

∑
a∈Σ

K∑
j=1

Coemit(a, i) I1I2I3

=

K∑
j=1

Coemit(σ, i) I1I2

=Coemit(σ, i) I[q = q(h, i)].

We conclude that

B =
N+1∑
i=1

Coemit(σ, i)I[q = q(h, i)]

=
∑

i s.t. q(h,i)=q

Coemit(σ, i)

= sumCoemitw(σ,Mh, q). (10)

By plugging our calculations of A (Eq. 9) and
B (Eq. 10) into A = B and dividing the both sides
by nw(Mh, q), we obtain the result

freqw(σ|Mh, q) = Coemitw(σ|Mh, q)

from the definitions of the relative frequency of
an emission (Eq. 7) and the empirical mean of a
co-emission probability (Eq. 8). This concludes
the proof of Theorem 2. ���

Next we prove that maximizing P (w) is a con-
vex optimization problem to ensure that the solu-
tion is the maximum point.

Following Boyd and Vandenberghe (2004), A
set of points C in Rn is convex if the line segment
between any two points in C also lies in C. For-
mally, C is convex provided for any x1, x2 ∈ C
and any t with 0 ≤ t ≤ 1, we have tx1 + (1 −
t)x2 ∈ C. A function f : Rn → R is convex if



the domain of f is a convex set and if for all x, y
in the domain of f , and t with 0 ≤ t ≤ 1, we have
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). We say
f is concave if −f is convex.

Recall from section 2.4 that the likelihood of a
sequence of data D to a stochastic language L be-
longing to a class with parameters Θ is lhd(D |
Θ) =

∏
w∈D PL(w). The likelihood function is a

function f : Rn → R where n is the number of
parameters |Θ|.

Let τj,q,σ denote log Tj(q, σ); i.e. the log
of some parameter in Θ. There are n =
|Σ|
∑K

j=1 |Qj | parameters in Θ since σ ∈ Σ,
1 ≤ j ≤ K, and q ∈ Qj . This τ can be thought of
as a vector in Rn.

The problem of maximizing P (wn) is the same
as minimizing − logP (wn) as a function of τ .
We show that logP (wn) is concave with respect
to log Tj(q, σ) (Theorem 3). If so, it is true that
the solution shown in Theorem 2 is a global max-
imum.

Theorem 3 logP (wn) is concave with respect to
τ ∈ Rn.

Proof By taking the log of Eq. 6 , we have
logP (wn) =

N+1∑
i=1

 K∑
j=1

log Tj(q(j, i), σi)

− log
∑
a∈Σ

K∏
j=1

Tj(q(j, i), a)

 .

Substituting in τ , it follows that logP (wn) =

N+1∑
i=1

 K∑
j=1

τj,q(j,i),σi − log
∑
a∈Σ

K∏
j=1

exp(τj,q(j,i),a)

 .

Since

K∏
j=1

exp(τj,q(j,i),a) = exp

(
K∑
k=1

τk,q(j,i),a

)
,

and by letting ga(τ) =
∑

j τj,q(j,i),a, we obtain
logP (wn) =

N+1∑
i=1

(
gσi(τ)− log

∑
a∈Σ

exp (ga(τ))

)
.

Generally speaking, a composition f(x) =
h(g1(x), · · · , gk(x)) obeys the following rule: f

is convex if h is convex, h is non-decreasing
in each argument, and gi is convex (see vector
composition in Boyd and Vandenberghe, 2004,
section 3.2.4)). Furthermore, it is known that
log
∑

exp(·) is convex (see section 3.1.5), and
log
∑

exp(·) is non-decreasing in each argument
since both exp(·) and log(·) are non-decreasing.
In addition, ga(·) is both convex and concave since
every linear function is so from the definition (see
section 3.1.1). Thus, log

∑
a exp(ga(·)) is convex,

and − log
∑

a exp(ga(·)) is concave.
Finally, from the fact that non-negative

weighted sum preserves convexity and concavity
(Boyd and Vandenberghe, 2004, section 3.2.1),
logP (wn) is concave. ���

It follows that the negative log of P (wn) is con-
vex.

It is noteworthy to point out that establishing
concavity does not mean the solution is unique. In
fact, the solutions can be a set of points. An exam-
ple FRPD class illustrating this is one which con-
tains two PDFAM1 andM2 with the same struc-
ture. For example suppose each had exactly one
state with self-loop transitions for every symbol in
Σ. The co-emission productM1

⊗
M2 does not

uniquely factorize though the above theorem es-
tablishes its convexity.

Of course it is also of interest to know when the
solution is unique. In this case, we have to show
the negative log probability is strictly convex ex-
cept for multiplying the emission probability by a
constant. We leave this as an area of future re-
search.

5 Optimization and Time Complexity

In this section, we discuss the time complexity and
also how to optimize. From the proof of Theo-
rem 2, we have the following fact immediately.

Corollary 1 The update equation for max-
imization of logP (wn) is represented as:
log Tj(q, σ) :=

log Tj(q, σ) + η (freqw(σ|Mj , q)

− Coemitw(σ|Mj , q)
)

(11)

if the simplest gradient method is applied, and
where η is the step size. The time complexity for
each update is O(NK|Σ|).

The time complexity for freqw(σ|Mj , q) and
Coemitw(σ|Mj , q) are shown in Lemma 1
and Lemma 2. The time complexity for



Coemitw(σ|Mj , q) is a little higher than that of
freqw(σ|Mj , q).

Lemma 1 For all Mj and q ∈ Qj ,
freqw(σ|Mj , q) are computed in the time
O(NK).

Proof We trace all machines while they are
emitting σ1, · · · , σN . Suppose that machines
are at q(1, i), · · · , q(K, i) after σ1, · · · , σi−1

are emitted sequentially. For each step i, for all
machines Mj , we have to update the counting for
the pair of q(k, i) and σi, in order to calculate
mw(Mj , q, σ). So the computational cost for each
step i is O(K). ���

Lemma 2 For all Mj and q ∈ Qj ,
Coemitw(σ|Mj , q) are computed in the time
O(NK|Σ|).

Proof We trace all machines while they are
emitting σ1, · · · , σN . Suppose that machines
are at q(1, i), · · · , q(K, i) after σ1, · · · , σi−1

are emitted sequentially. The critical part is
calculating sumCoemit(σ)〈Mj ,q〉(w) . For each
step i, we have to update emission probabilities
for all pairs of Mj and σ ∈ Σ. This update is in
the time O(K|Σ|). Thus, the time complexity for
calculating sumCoemitw(σ,Mj , q) isO(NK|Σ|).
���

6 Conclusion

The negative log likelihood function associated
with a FRPD class C is convex, and it is pos-
sible to efficiently find a MLE of any sequences
of data generated i.i.d. with respect to C. Es-
sentially, the parameters of the model are found
by running the corpus through each of the indi-
vidual factor PDFAs and calculating the relative
frequencies. While this was the approach adopted
by Heinz and Rogers (2010) for SP stochastic lan-
guages, we have generalized it to sets of finitely
many PDFAs.

There are several directions for future research,
both theoretical and applied. On the theoretical
side, one clear avenue is to better understand these
results in terms of probabilistic graphical mod-
els (Koller and Friedman, 2009). As a reviewer
pointed out, the application of those methods to
formal language theory and grammatical inference
(de la Higuera, 2010) appears fruitful.

On the applied side, there are several different
opportunities. One area of interest is language
modeling. The results here permit a modular ap-
proach to constructing language models, where
certain primitive factors are included or excluded.
For example, we expect that language models
which incorporate both n-gram models (Jurafsky
and Martin, 2008) (which cannot describe long-
distance dependencies) and SP stochastic lan-
guages (which can describe some kinds of long-
distance dependencies) will have lower perplex-
ity, a hypothesis under current investigation. More
generally, researchers can use aspects of the sub-
regular hierarchies of languages (Thomas, 1997;
Rogers et al., 2013) to identify a range of ‘primi-
tive factors’ whose DFA models can form the basis
of various FRPD classes.

Finally, we are also interested in extending
these results to weighted deterministic automata
for computing regular relations (Beros and de la
Higuera, 2016) or elements of other monoids
(Gerdjikov, 2018).
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