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Abstract

Over the years a number of machine transla-
tion metrics have been developed in order to
evaluate the accuracy and quality of machine-
generated translations. Metrics such as BLEU
and TER have been used for decades. How-
ever, with the rapid progress of machine trans-
lation systems, the need for better metrics is
growing. This paper proposes an extension of
the edit distance, which achieves better human
correlation, whilst remaining fast, flexible and
easy to understand.

1 Introduction

Machine Translation (MT) has been a popular re-
search topic for the past few years. It deals with
the paradigm of how to automatically translate a
sentence or a set of sentences from a source lan-
guage to a different target language. In statistical
MT, this can be formally described as finding the
translation eI1 = e1 . . . ei . . . eI with the highest
probability for a given source language sentence
fJ1 = f1 . . . fj . . . fJ :

êÎ1 = argmax
I,eI1

{p(eI1 | fJ1 )} (1)

This approach models the translation task by
defining it as a search for the sentence that best
suits a given criterion. For example through log-
linear models as described by Och and Ney, 2002.

However, all approaches have to be evaluated to
quantify the quality and accuracy of the produced
translations. Naturally, the best method would be
to have human experts rate each produced trans-
lation in order to evaluate the whole MT system.
This is quite a costly process and is not viable for
development of MT systems. For this reason a
number of metrics exist that automate the process
and use different scoring methods to automatically
evaluate the produced translation based on a refer-
ence sentence. Two of the earliest and most pop-

ular metrics are BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006).

This paper introduces a new MT metric: Ex-
tended Edit Distance (EED), based on an extension
of the Levenshtein distance (Levenshtein, 1966).
This metric follows a number of criteria:

• It is bound between zero and one.

• Its definition is kept simple, as it does not
depend on external dictionaries or language
analysis.

• It has competitive human correlation.

• It is fast to compute.

The remainder of this paper is structured as fol-
lows: first, related work is reviewed in Section 2;
Section 3 introduces the concept of edit distance
and the different existing extensions of it; Sec-
tion 4 introduces the EED metric in detail; A com-
parison with other metrics regarding human corre-
lation and speed is performed in Section 5; Finally,
a conclusion is drawn in Section 6.

2 Background

MT metrics compute a score based on the output
of a MT system, here called “candidate”, and a
“reference” sentence, which is provided. The ref-
erence is a valid translation of the original source
sentence to the target language, usually obtained
through a human expert. A metric aims to use
the pair of reference and candidate to give a nu-
merical value to the correctness of the translation.
A naı̈ve approach would be to directly compare
the candidate and reference in order to consider
the translation quality. This, however, cannot be
a good evaluation criterion since human language
has multiple ways of expressing the same idea, and
thus there is seldom one unique translation of a
sentence from one language to another.

Over the years, a number of metrics have been
created based on a variety of ideas and principles.
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Some examples for such principles can be seen in
the count-based metrics (BLEU, CHRF (Popovic,
2015)) or the edit distance based metrics (TER,
CHARACTER (Wang et al., 2016), CDER (Leusch
et al., 2006)).

Count-based metrics compute the n-grams of
both reference and candidate and then compare
them with each other using a scoring function.
One of the most used metrics – BLEU, uses word
level n-grams as input to a modified version of
precision to evaluate the translation accuracy. Fur-
thermore, a brevity penalty is applied if the candi-
date is shorter than the reference. CHRF uses the
F-score to produce a scoring based on character
level n-grams. In most cases, the shift from word
level n-grams to the character level results in bet-
ter human correlation (Popovic, 2015).

Edit distance based metrics utilise the edit dis-
tance to express the difference between the can-
didate and the reference. Since written language
allows for the word order to be changed without
significant change in meaning, the pure edit dis-
tance is too restrictive and is often extended by
additional operations. TER extends it by introduc-
ing “shifts” which allow for words or phrases to
be moved from one position in the candidate to
another with a certain cost.

CDER gives another solution to the problem
by introducing the operation of jumps. These
“jumps” allow for a more flexible alignment. Of
course, as in the n-gram based metrics, it is pos-
sible to apply these methods at both the word and
the character level. CHARACTER uses the edit dis-
tance at the character level while keeping the shift
operations at the word level with suitably adjusted
costs.

3 Edit Distance

Since the metric presented in this paper belongs to
the category of the edit distance based metrics, a
more thorough introduction to the concept of edit
distance is needed. The goal of the Levenshtein
distance is to find the minimum number of opera-
tions required to transform the candidate into the
reference. The Levenshtein distance in its purest
form consists of three basic operations:

• Substitution: the act of switching one symbol
with another

• Deletion: the removal of a symbol

• Insertion: the addition of a symbol

All of the basic operations are defined as having
an uniform cost of one. To not penalise match-
ing symbols with substitutions, substitutions can
be defined via the Kroneker delta: 1 − δ(cn, rm)
with cn and rm standing for the symbol at posi-
tion m ∈ {1, 2 . . . |r|}, n ∈ {1, 2 . . . |c|} for the
candidate c and reference r, respectively. The edit
distance is then computed as the sum of substitu-
tion, insertion and deletion operations made.

The edit distance can be efficiently computed
via the dynamic programming algorithm by Wag-
ner and Fischer, 1974. This allows for a computa-
tion in O(cr).

In MT, the Levenshtein distance is not usually
used in its original definition since it does not pro-
vide the required flexibility. The reason is that
written language allows for multiple ways to ex-
press the same concept or idea. To alleviate this
problem extensions to the edit distance have been
proposed.

The most prominent extension of the edit
distance, implemented by both TER and
CHARACTER, is the introduction of an addi-
tional operation prior to computing the edit
distance on the candidate. Namely, to permute
the words in the candidate to most closely match
the reference. This permutation is termed shift.
Since computing all possible shifts of a given
sentence is quite costly, in practice, the beam
search algorithm is used to reduce the search
space.

Another possible extension of the edit distance
is to define so called jumps. Jumps provide the
opportunity to continue the edit distance computa-
tion from a different point. A more detailed expla-
nation of the jumps is presented in the next section.

To obtain a final score, the edit distance is nor-
malised either over the length of the candidate or
over the length of the reference. Naturally, in the
case where every symbol is wrong and the normal-
ising term is the shorter one of the candidate and
the reference, the resulting score may significantly
exceed 1.0. This in turn results in scores which are
not easily interpretable.

4 Extended Edit Distance

One aspect of each metric is its input which usu-
ally comes in tokenized form. Punctuation marks
are separated from words via a white space and
abbreviation dots are kept next to the word e.g.
“e.g.”. EED additionally adds a white space at



516

both beginning and end of each sentence.
EED utilises the idea of jumps as an extension of

the edit distance. EED operates at character level
and is defined as follows:

EED = min

(
(e+ α · j) + ρ · v
|r|+ ρ · v

, 1

)
(2)

where e is the sum of the edit operation with uni-
form cost of 1 for insertions and substitutions and
0.2 for deletions. j denotes the number of jumps
performed with the corresponding control param-
eter α = 2.0. v defines the number of charac-
ters that have been visited multiple times or not
at all and scales over ρ = 0.3. The parame-
ter values have been optimised based on the aver-
age correlation scores (both from and to English)
from WMT17 and WMT18 (Bojar et al., 2017; Ma
et al., 2018). EED is normalised over the length of
the reference |r| and the coverage penalty. To keep
it within the [0,1] boundary, the minimum between
1 and the metric score is taken. This makes the
metric more robust in cases of extreme discrep-
ancy between candidate and reference length.

Jumps are a way to move between characters or
blocks thereof and can be incorporated into the dy-
namic programming algorithm for the Levenshtein
distance (Leusch et al., 2006). This provides an
optimal solution for the matching between can-
didate and reference in reasonable computation
time. In EED jumps may only be performed when
a blank in the reference is reached, allowing the
metric to take word boundaries into account and
restricting the inter-word jumps. Figure 1 illus-
trates the way jumps work. Here Die Fans from
the reference are aligned with die Fans from
the candidate via a jump, after which normal edit
distance operations are performed. When the s is
reached, another jump is made to the blank before
n, in order to align nicht to Nicht. Finally an-
other jump is performed to align the period and
white spaces. In total, this results in two edit oper-
ation errors (from the difference in capitalisation)
and three jumps.

To further refine the metric a coverage penalty is
introduced that aims to penalise characters which
are aligned to more than once or not at all in the
candidate. This allows the metric to penalise rep-
etition of words in the reference with more than
just the jump costs. The sum v of visits for all
characters visited more than once is computed and
is added, after multiplication with a scaling factor
ρ to the total cost. To keep the situations where 1
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Figure 1: EED alignment lattice. Identity operations
are marked with solid points, jumps with dashed lines,
edit operations with full lines and blanks with .

is chosen by the minimum in Equation (2) as few
as possible, the coverage penalty is also used in
the denominator.

Using only the length of the reference as part
of the normalisation factor does not guarantee that
the metric score is in the range [0,1]. This is unde-
sirable since scores above one are not interpretable
as an error measure. For this reason a number of
strategies were considered to enforce this bound:

• Taking the maximum length between candi-
date and reference;

• Taking the average length between candidate
and reference;

• Using just the candidate or just the reference;

• Cutting the score to 1.0 if it is above 1.0;

• Mapping the score to accuracy via the func-
tion 1/(1− EED) (Zhang et al., 2011).

Out of all of these methods, the simplest and most
efficient method is to use the reference as normal-
isation and to cut the score if it is above one. In
our experiments taking the maximum or average
between candidate and reference leads to a decline
in correlation. The use of accuracy mapping yields
different results depending on the parameter set-
ting of the metric and the test set used. For this
reason EED uses the cut method for normalisation.

Although EED utilises the same movement tech-
nique as CDER, there are a few notable differ-
ences:
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• Edit distance is performed on the character
level;

• Jumps are performed only upon reaching a
blank in the reference;

• An additional penalty for multiple matching
of the same symbol (coverage cost) is applied

5 Results

EED is implemented in C++ and imported in
python via a wrapper. This implementation re-
tains the ease of use of python while getting the
speed from a C++ implementation.

EED was evaluated via the scripts provided by
Ma et al., 2018 as part of WMT18. The evalu-
ation is done both on segment and system level.
The data consists of about 3000 sentences per lan-
guage pair as part of the newstest2018 test set
and provides one reference per translation. In total
there are 14 language pairs. For the system level
evaluation, direct assessment (DA) (Graham et al.,
2017) was used to obtain human scores and Pear-
son’s r is used as the correlation coefficient. The
segment level uses the relative ranking (RR) which
is pooled from system level DA scores. This re-
sults in DARR. The correlation coefficient used for
the segment level is the Kendall’s τ like formula-
tion defined by Graham et al., 2015.

Figure 2: Human correlation variation as a function of
deletion cost on WMT18 to English � and from En-
glish on segment-level.

To obtain the best possible human correlation,
a parameter search was performed over ρ, α and
the edit operation costs. For substitution and in-
sertions there is no relevant correlation improve-
ment. However, changes to the deletion cost pa-
rameter resulted in human correlation improve-

ment. Using the WMT18 segment level test set, a
parameter search was performed. Since searching
over the whole search space is infeasible, the pa-
rameter search was done in a sequential manner.
The results of the search are shown in Figure 2.
From these results, combined with the findings on
WMT16 and WMT17 (Bojar et al., 2016, 2017),
the deletion cost is set to 0.2.

Figure 3: Human correlation variation as a function of
jump cost on WMT18 to English � and from English

on segment-level.

The error distribution of EED was skewed quite
heavily towards performing jumps even after re-
stricting jump operation only to blanks on the ref-
erence side. For this reason it was restricted fur-
ther by increasing the jump costs. In order to de-
termine the optimal jump penalty α, a parame-
ter search was performed, which is presented Fig-
ure 3. It is evident that the optimal jump cost lie
close to 2.0 for the to English direction. For the
from English direction the optimum is clear, thus
α is set to 2.0.

Similar to the deletion cost and the jump
penalty, a parameter search was carried out for the
coverage cost in order to increase human corre-
lation. The results of the search are presented in
Figure 4. The resulting optimum is ρ = 0.3.

After the parameter tuning, the performance
of EED was measured by the human correlation
achieved on the WMT18 test set. The results
of this measurement obtained at the segment and
system level and also in the directions to En-
glish and from English are presented in Tables 1
to 4. At the segment level, EED offers competi-
tive results compared with the top-ranking metrics
BEER, RUSE and CHRF +. On system level EED

performs best for the out of English direction, fol-
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cs-en de-en et-en fi-en ru-en zh-en Average

# Sentences 5110 77811 56721 15648 10404 33357 33181
EED 0.297 0.486 0.335 0.227 0.284 0.225 0.309
BEER1 0.295 0.481 0.341 0.232 0.288 0.214 0.309
CHARACTER 0.256 0.450 0.286 0.185 0.244 0.202 0.271
CHRF + 0.288 0.479 0.332 0.234 0.279 0.207 0.303
ITER2 0.198 0.396 0.235 0.128 0.139 0.144 0.206
RUSE3 0.347 0.498 0.368 0.273 0.311 0.218 0.336
sentBLEU 0.233 0.415 0.285 0.154 0.228 0.178 0.248

Table 1: Segment-level human correlation measured through DARR to English on newstest18 as part of
WMT18 via absolute Kendall’s τ .
1 Stanojevic and Sima’an, 2014
2 Panja and Naskar, 2018
3 Shimanaka et al., 2018

en-cs en-de en-et en-fi en-ru en-zh Average

# Sentences 5413 19711 32202 9809 22181 28602 19820
EED 0.508 0.674 0.572 0.503 0.405 0.350 0.502
BEER 0.518 0.686 0.558 0.511 0.403 0.302 0.496
CHARACTER 0.414 0.604 0.464 0.403 0.352 0.313 0.425
CHRF + 0.513 0.680 0.573 0.525 0.392 0.328 0.502
ITER 0.333 0.610 0.392 0.311 0.291 − 0.387
sentBLEU 0.389 0.620 0.414 0.355 0.330 0.311 0.403

Table 2: Segment-level human correlation measured through DARR from English on newstest18 as part of
WMT18 via absolute Kendall’s τ .

Figure 4: Human correlation variation as a function of
coverage cost on WMT18 to English � and from En-
glish on segment-level.

lowed by CHARACTER and CDER. For the to En-
glish direction, EED is the second best after RUSE.

Apart from human correlation, EED was com-
pared to the performance of the most common
metrics. This measurement was performed by let-
ting each metric evaluate 1M (106) sentence pairs

and tracking the time and memory needed to com-
plete the task. The following metrics have been
tested: BEER, BLEU, CHARACTER, CHRF, EED.
The results of the resource usage test are sum-
marised in Table 5. The fastest is BLEU followed
by EED. Concerning memory usage all metrics
have similar memory needs, except for the shift
based metrics which needed considerably more.
Since CHARACTER needs more memory, candi-
date sentences above 200 words were restricted to
200 words for this test.

6 Conclusion

A number of different metrics have been devel-
oped over the years to help evaluate MT. Metrics
such as BLEU and TER have been used for some
time, but are surpassed by others both in terms of
speed and human correlation.

EED as a metric provides a fast and reliable way
to measure human correlation. It achieves compet-
itive human correlation in comparison to the best
metrics – BEER and CHRF and surpasses the most
used metrics – BLEU and TER. Due to its sim-
plicity and low resource usage it can be used to
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cs-en de-en et-en fi-en ru-en zh-en Average

# Systems 5 16 14 9 8 14 11
BEER 0.958 0.994 0.985 0.991 0.982 0.976 0.981
BLEU 0.970 0.971 0.986 0.973 0.979 0.978 0.976
CDER 0.972 0.980 0.990 0.984 0.980 0.982 0.981
CHARACTER 0.970 0.993 0.979 0.989 0.991 0.950 0.979
CHRF + 0.966 0.993 0.981 0.989 0.990 0.964 0.981
EED 0.970 0.994 0.984 0.991 0.993 0.974 0.984
ITER 0.975 0.990 0.975 0.996 0.937 0.980 0.976
NIST1 0.954 0.984 0.983 0.975 0.973 0.968 0.973
RUSE 0.981 0.997 0.990 0.991 0.988 0.981 0.988
TER 0.950 0.970 0.990 0.968 0.970 0.975 0.971

Table 3: System-level human correlation as DA to English on newstest18 as part of WMT18 via absolute
Pearson’s r.
1 Doddington, 2002

en-cs en-de en-et en-fi en-ru en-zh Average

# Systems 5 16 14 12 9 14 12
BEER 0.992 0.991 0.980 0.961 0.988 0.928 0.973
BLEU 0.995 0.981 0.975 0.962 0.983 0.947 0.973
CDER 0.997 0.986 0.984 0.964 0.984 0.961 0.979
CHARACTER 0.993 0.989 0.956 0.974 0.983 0.983 0.980
CHRF + 0.990 0.989 0.982 0.970 0.989 0.943 0.977
EED 0.988 0.990 0.983 0.977 0.990 0.955 0.981
ITER 0.915 0.984 0.981 0.973 0.975 − 0.966
NIST 0.999 0.986 0.983 0.949 0.990 0.950 0.976
TER 0.997 0.988 0.981 0.942 0.987 0.963 0.976

Table 4: System-level human correlation as DA from English on newstest18 as part of WMT18 via absolute
Pearson’s r.

Metric EED BEER CHRF ++ CHARACTER BLEU TER
Sentences/s 969.9 621.5 261.7 9.5 6410.2 316.6
Memory 1.3G 1.1G 0.3G 48.4G 0.3G 8.4G

Table 5: Speed and memory comparison between metrics, as sentences per second and memory in gigabyte.
Measured on 1M sentences.

quickly evaluate a MT system’s output during de-
velopment.

Since there are a number of metrics based on
some extensions of the Levenshtein distance, a
more in-depth analysis of the field is required.
Furthermore, the relationship between shifts and
jumps will be investigated in the future.
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Ondřej Bojar, Yvette Graham, and Amir Kamran.

2017. Results of the wmt17 metrics shared task. In
Proceedings of the Second Conference on Machine
Translation, pages 489–513.
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