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Abstract

The goal of text classification is to automat-
ically assign categories to documents. Deep
learning automatically learns effective features
from data instead of adopting human-designed
features. In this paper, we focus specifically
on biomedical document classification using a
deep learning approach. We present a novel
multichannel TextCNN model for MeSH term
indexing. Beyond the normal use of the text
from the abstract and title for model training,
we also consider figure and table captions, as
well as paragraphs associated with the figures
and tables. We demonstrate that these lat-
ter text sources are important feature sources
for our method. A new dataset consisting of
these text segments curated from 257,590 full
text articles together with the articles’ MED-
LINE/PubMed MeSH terms is publicly avail-
able.

1 Introduction

Text classification is a process that assigns labels
or tags to text according to its contents. It can be
done manually or automatically. Most text clas-
sification tasks were done by human annotators
prior to the information age. A human annotator
reads and interprets the content of the text and then
classifies it into certain categories. Traditional text
classification is time consuming and expensive,
especially when dealing with a large number of
documents.

Currently, there is a trend to support text clas-
sification through automatic tools as it does the
same job as human annotators, but accomplishes
it in more accurate and efficient ways. Automatic
text classification is an important application and
research topic in natural language processing be-
cause of the exponentially increasing number of
online documents. It saves time and money in gen-
eral, leading to its continued and enthusiastic us-
age in both business and research.

MEDLINE1 and PubMed2 are databases that
can access publications of life sciences and
biomedical topics. They are maintained by
the United States National Library of Medicine
(NLM).

The MEDLINE database includes bibliographic
information for articles in various disciplines of
life sciences and biomedicine, such as medicine,
health care, biology, biochemistry and molecular
evolution. The database contains more than 25
million records in over 5,200 worldwide journals.
More than 800,000 citations were added to MED-
LINE in 2017, which is more than 2,000 updates
daily1.

PubMed has a web server that can freely ac-
cess the MEDLINE database of references and
abstracts. Some PubMed records have full text
articles available on PubMed Central3. Journal
articles in MEDLINE are indexed according to
Medical subject headings (MeSH)4, which are the
NLM’s controlled vocabulary thesaurus.

MeSH is a hierarchically-organized terminol-
ogy indexing system that categorizes biomedical
documents in the NLM databases. It is updated
annually. The 2018 version of MeSH contains
28,939 headings5. Among these MeSH terms,
there are 29 check tags which are a special group
of MeSH terms describing subjects of research
(human or animal; mice or rats, etc.). MeSH
terms are distinctive features of MEDLINE, which
are great tools for indexers and searchers. Index-
ers from NLM use MeSH terms to classify doc-
uments based on the contents of journal articles
in the MEDLINE database. Searchers and re-
searchers use MeSH terms to assist subject search-
ing in MEDLINE, PubMed and other databases.

1https://www.nlm.nih.gov/bsd/medline.html
2https://www.nlm.nih.gov/bsd/pubmed.html
3https://en.wikipedia.org/wiki/PubMed Central
4https://www.nlm.nih.gov/mesh/meshhome.html
5https://www.nlm.nih.gov/pubs/techbull/nd17/

nd17 mesh.html

https://www.nlm.nih.gov/bsd/medline.html
https://www.nlm.nih.gov/bsd/pubmed.html
https://en.wikipedia.org/wiki/PubMed_Central
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/pubs/techbull/nd17/nd17_mesh.html
https://www.nlm.nih.gov/pubs/techbull/nd17/nd17_mesh.html
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Currently MeSH term indexing is performed by
a large number of human annotators, who review
full text documents and assign suitable MeSH
terms to each article. Human annotation is time
consuming and costly. Research shows that the
average cost of annotation per document is around
$9.40 (Mork et al., 2013), which translates into
a huge cost for indexing a large number of doc-
uments. Meanwhile, there is a large number of
documents uploaded to MEDLINE and PubMed
databases every day (approximately 2,000–4,000
on a daily basis)2. It is challenging to annotate
all new incoming documents in a relatively short
time. Therefore, a computational system that can
assist the indexing of a large number of biomedi-
cal articles is highly desired.

In this paper, we focus on the task of auto-
matic MeSH indexing. We propose a novel deep
learning based discriminative method, multichan-
nel TextCNN, which uses convolutional neural
network based feature selection to extract impor-
tant information from the article to be indexed.
In addition to extracting information from the ti-
tle and abstract of the article, our innovation inte-
grates figure and table captions, as well as relevant
paragraphs into the indexing process. We summa-
rize the most major contributions as follows:

• We explore the use of multichannel deep
learning architectures for the automatic
MeSH indexing task.

• Experimental results show that incorporat-
ing figure and table information improves the
performance of automatic MeSH indexing.

• We make available a labeled full text biomed-
ical document dataset (including title, ab-
stract, figure and table captions, as well as
paragraphs related to the figures and tables)
to the research community.

2 Related Work

Due to the growth in the number of documents in
MEDLINE, and the increasing number of MeSH
terms every year, automatic MeSH indexing is
a difficult challenge. The Medical Text In-
dexer (MTI) (Aronson et al., 2004) produced by
the U.S. National Library of Medicine (NLM),
is the first program that automatically produces
MeSH indexing recommendations. Given the
title and abstract for an article in MEDLINE,

MTI will provide a ranked list of MeSH terms.
The initial MTI system was developed in 2002,
and has been continuously improved over the
years. There are two main components in MTI,
namely, MetaMap (Aronson and Lang, 2010), and
PubMed Related Citations (PRC) (Lin and Wilbur,
2007). MetaMap analyzes documents and anno-
tates them using the Unified Medical Language
System (UMLS)6. The PRC algorithm7 with k-
nearest neighbours (k-NN) uses document simi-
larity to find MeSH terms. MTI is an important
tool in MeSH indexing, and indexers can use MTI
suggestions for documents that they are annotat-
ing. Another method, Restrict-To-Mesh (Kin-
Wah Fung, 2007) also maps from UMLS to MeSH
terms.

BioASQ8, a European Union-funded project,
has organized challenges on automatic MeSH in-
dexing since 2013. Participants are required to an-
notate unlabelled PubMed citations with abstracts
and titles using their models before these articles
are indexed by human annotators. The winning
system in 2013, for example, used the MetaLa-
beler algorithm (Tang et al., 2009) to learn two
models, one for ranking and the other for predict-
ing the number of related labels. MeSHLabeler
(Liu et al., 2015) won first place in 2014. It also
has two components: MeSHRanker and MeSH-
Number. MeSHRanker returns a ranked list of
candidate MeSH terms. MeSHNumber predicts
the number of output MeSH terms. DeepMeSH
(Peng et al., 2016) was the best system in 2017.
It incorporates deep semantic information into
MeSHLabeler using a dense semantic representa-
tion for documents, namely document to vectors
(D2V). In addition, DeepMeSH has a second clas-
sifier to find the number of MeSH terms returned.
AttentionMeSH (Jin et al., 2018), also proposed in
2017, uses a bi-direction recurrent gated unit (Bi-
GRU) architecture to capture contextual features,
and attention mechanisms to select MeSH terms
from the candidate list.

Rios and Kavuluru (2015) used a convolutional
neural network (CNN) to classify the 29 most fre-
quent MeSH terms on a small dataset comprised
of 9,000 citations. Gargiulo et al. (2018) applied
deep CNN on the abstracts and titles of 1,115,090
articles. Besides deep learning approaches, other

6https://www.nlm.nih.gov/research/umls/
7https://ii.nlm.nih.gov/MTI/Details/related.shtml
8http://bioasq.org

https://www.nlm.nih.gov/research/umls/
https://ii.nlm.nih.gov/MTI/Details/related.shtml
http://bioasq.org
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machine learning algorithms have also been ex-
plored in the hopes of solving MeSH indexing
tasks. A few examples are: Naı̈ve Bayes (NB),
support vector machines (SVM), linear regression,
and AdaBoost (Jimeno-Yepes et al., 2012, 2013).

3 Proposed Model

3.1 Problem Statement

Multi-label classification studies the problem
where each document is associated with a set of
labels (Zhang and Zhou, 2014). In the MeSH in-
dexing problem, each MeSH term can be treated as
a class label and each biomedical article can have
multiple MeSH terms. Because of the large num-
ber of MeSH terms we regard automatic MeSH
term indexing as an extreme multi-label classifi-
cation problem.

The learning framework is defined as follows.
Suppose X is a set of biomedical documents (at
this point we won’t prejudice how these docu-
ments are represented, these representational de-
tails are discussed below) and Y is the set of
MeSH terms. Multi-label classification studies the
learning function f : X → 2Y using the training
setD = (xi, Yi), i = 1 . . . D, whereD is the num-
ber of documents in the set X . Each instance xi is
an n-dimensional vector, where n is the number
of words in document xi, and Yi ⊆ Y is the set of
labels associated with instance xi. The objective
of multi-label classification is to predict the proper
label set Yk for any unseen instance xk (Zhang and
Zhou, 2014).

Two challenges should be considered when
solving automatic MeSH indexing tasks (Zhai
et al., 2015). First, the number of MeSH terms
is large and they have widely varying occurrence
frequencies. There are around 29,000 MeSH term
and they are updated annually. The frequency of
each MeSH term appearing as a document label is
quite biased. For instance, of the 29,000 MeSH
terms, the most frequent term “Humans”, appears
in 8,152,852 citations; and “Pandanaceae”, on the
other hand, only appears in 31 documents (Zhai
et al., 2015). Second, the number of MeSH terms
assigned to each document varies. Some docu-
ments have more than 30 MeSH terms and some
have fewer than 5. In this paper, we have used
the 2018 version of MeSH which contains 28,939
headings in total.

3.2 Model Overview
We propose multichannel TextCNN, a novel deep
learning approach to assign proper MeSH terms
to given documents. To make use of multimodal
features, our model has two input channels:

• Channel 1: word embeddings from abstract
and title

• Channel 2: word embeddings from figure and
table captions and corresponding paragraphs
that mention the figures and tables

As promised above, we now discuss the repre-
sentational details of a document. A document
is composed of n words. We use d-dimensional
word embeddings to represent the words. The
word embedding matrix e for each document is
then e ∈ Rd×n. For each document, we have
two texts: the abstract and title, and the captions
and paragraphs. These two texts are represented
by two embedding matrices, namely eAT, the word
embedding matrix for the abstract and title text,
and eCP, the word embedding matrix for the cap-
tions and paragraphs.

The model structure, shown in Figure 1, is
a variant convolutional neural network (CNN)
with multichannel inputs, which is inspired by
TextCNN (Kim, 2014). We have chosen the CNN-
based model because it has been successful in var-
ious text classification tasks. For each channel,
the architecture is similar to TextCNN. The repre-
sentation of abstract and title, eAT, is input to one
channel. The representation of captions and para-
graphs, eCP, is input to the other. We also use a
single channel architecture by concatenating these
two representations as input to one of the channels.

The model learns feature representations by
passing embedded documents to the convolutional
layer. The entire input document in each channel
can be represented as e1:n = [e1, e2, . . . , en] ∈
Rd×n, where n is the length of the document and
ei ∈ Rd, where ei represents the i-th word in the
document. The convolutional layer is composed of
128 convolutional filters each with sizes 3, 4, and
5. Recalling, we have d-dimensional word embed-
ding vectors. So, the convolutional windows are
m× d, where m ∈ {3, 4, 5}.

In the convolutional layer, we have 128 feature
maps for each filter size. The feature maps are then
passed to a pooling layer which takes the maxi-
mum value for each associated feature map. Af-
ter pooling, we get the feature map for each chan-
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Figure 1: Multichannel TextCNN Architecture - filter 1, filter 2, and filter 3 indicate convolutional filters of size 3,
4, and 5, respectively. In this figure, we characterized our model with a 7 × 6 input document, where the number
of words in the document n is 7, and the dimensionality of the word embedding d is 6.

nel and we concatenate these two feature maps to
form a single feature vector. This feature vector is
then passed to a fully connected bottleneck layer
with 512 hidden units followed by a sigmoid clas-
sifier that returns a probability value for each of
the 28,939 MeSH terms.

The training of our proposed methods uses bi-
nary cross-entropy as the loss function on the sig-
moid classifier. We use the sigmoid function to
return the probability score of each class. The sig-
moid function is defined as:

σ(x) =
1

1 + e−x

Binary cross-entropy is formulated as:

H(q) =− 1

L

L∑
i=1

yi · log(σ(yi)) +

(1− yi) · log(1− σ(yi))

where σ is the sigmoid function, L is the total
number of labels, yi is the original label of doc-
ument i, and σ(yi) is the predicted probability of
label y for document i. The sigmoid binary cross-
entropy optimizes a label one-versus-all loss based
on max-entropy.

We have also experimented with multichannel
XMLCNN, which is inspired by XMLCNN (Liu
et al., 2017), a variant CNN model developed
for extreme multi-label classification; multichan-
nel biLSTM, a bidirectional long short term mem-
ory neural network (Schuster and Paliwal, 1997)
with multichannel inputs; and multichannel atten-
tion based convLSTM, which is a stacked CNN
and LSTM followed by an attention layer. The
experimental results indicate that the multichannel
TextCNN model performed best among all of the
models mentioned above in both execution time
and evaluation metrics. Details of these experi-
ments are available (Wang, 2019).

3.3 Setup and Model Hyper-parameters

In our proposed multichannel TextCNN model,
we used rectified linear units (ReLU) as the ac-
tivation function, convolutional filter windows of
size 3, 4, and 5 with 128 filters each, dropout
rate of 0.5, 512 hidden units in the bottleneck
layer, batch size of 10, and learning rate of 0.001.
The number of epochs in training is 20. These
hyper-parameters are fixed across the different
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datasets. In each dataset, we used 90% of the
data as the training set and 10% to test the per-
formance of the model. We reserved 20% of the
training data, chosen randomly, as the validation
set, and the remaining 80% is used for training
the model. All experiments are performed on the
Nvidia GeForce 1080Ti GPU. Models for Fulltext
(Large) are trained on 2 GPUs and training with
the other datasets is performed on a single GPU.

For word embeddings in our proposed model
we used the pre-trained 200-dimensional BioASQ
word embedding vectors (Pavlopoulos et al.,
2019) to represent the words in our vocabu-
lary. These pre-trained word vectors are trained
on 10,876,004 English biomedical abstracts from
PubMed, and represent 1,701,632 distinct words.

4 Experiments

4.1 Datasets

Most existing approaches in automatic MeSH in-
dexing are performed on datasets with abstracts
and titles only. In this paper, we created a full
text dataset which is composed of table and fig-
ure captions as well as associated paragraphs, as
we believe figures and tables might provide im-
portant MeSH features for classification. The two
datasets that were used to build our four datasets
are described below:

• 2015 Subject Extraction Test Collection
(SETC2015): SETC2015 contains 14,828
PMC full text articles used by Demner-
Fushman and Mork (2015). We used this
dataset to create the following two Small (S)
datasets:

– AT (S): labelled documents from
SETC2015 which contain abstract and
title only

– Full (S): labelled documents from
SETC2015 which contain abstract, title,
figure and table captions, and associated
paragraphs

• PMC Full Text Collection9 (PMC Collec-
tion): We used a downloaded dataset of
257,590 PMC full text documents in XML
format, and used this dataset to create the fol-
lowing two Large (L) datasets:

9https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

– AT (L): labelled documents from PMC
Collection which are composed of ab-
stract and title only

– Full (L): labelled documents from PMC
Collection which are composed of ab-
stract, title, figure and table captions,
and associated paragraphs

Datasets D F L L̄ L̃

AT (S) 14828 63004 14365 13.15 13.5
Full (S) 14828 148330 14365 13.15 13.5
AT (L) 257590 188693 22881 13.34 150
Full (L) 257590 669999 22881 13.34 150

Table 1: Statistics of Datasets: D is the total number
of documents (90% training, 10% testing); F repre-
sents the number of unique tokens contained in all of
the documents; L is the number of class labels; L̄ is
the average number of labels per document; L̃ is the
average number of documents per label

Table 1 provides statistical information for the
described datasets. Our labeled datasets are using
28,939 MeSH terms in total. To assist in our un-
derstanding of the hierarchical evaluation, we ex-
plored the MeSH hierarchical structure and split
them into 5 levels to see how many MeSH terms
exist at each level (it should be noted that there is
some overlap of MeSH terms between levels). The
number of MeSH terms in the first, the second, the
third, the fourth and the fifth level, are: 16, 120,
1903, 6,808, and 11,127, respectively.

4.2 Data pre-processing

The full text source files from PMC are in XML
format. We extracted article information (includ-
ing PMID, abstract, title, captions, and figure and
table related paragraphs) from these downloaded
XML files. Paragraphs are considered related to
figures or tables if they contain the words “Fig-
ure” or “Table”. MeSH terms for each article
were scraped from its citation on PubMed by lo-
cating the citation using its PMID, the unique arti-
cle identifier number used in PubMed.

In pre-processing, we first did word level tok-
enization of our input documents, to split the doc-
uments into a list of words. Then we prepared our
data by using the following process: set all char-
acters to lowercase; convert numbers to “NUM”,
percentage sign “%” to “PERCENTAGE”, chem-
ical notations (i.e., H2O) to “CHEM”, and rela-
tion symbols, namely “=”, “<”, “>”, “≤”, “≥”,

https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
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to “EQUAL”, “LESS”, “GREATER”, “LessAnd-
Equal”, “GreaterAndEqual”; remove punctuation.

After the above process, we utilized the Keras
(Chollet et al., 2015) Tokenizer API to vectorize
our data into a sequence of integers. Each integer
represents the index of a token in the dictionary
generated from the dataset.

4.3 Evaluation Metrics

There is generally no accepted standard for the
evaluation of multi-label classifications. Eval-
uation metrics adopted from multi-class clas-
sification and binary classification are used to
measure multi-label classification in an effective
way. In automatic MeSH indexing, even if the
label space is very large, only relatively few
MeSH terms match each document. To evalu-
ate the performance of our proposed model, we
present three groups of measurements suggested
by Tsoumakas et al. (2010) and Kosmopoulos
et al. (2015), namely bipartition-based, ranking-
based and hierarchy-based evaluation.

To set the stage to discuss the three metrics,
we define a test set of N document-label pairs
{xi, yi}Ni=1 taken from the dataset, where xi is the
document text and yi ∈ {0, 1}L. The vector yi
denotes the set of true labels (i.e., MeSH terms)
for each document i (0 meaning the label is not
in the set, 1 meaning it is in the set), N denotes
the number of test examples, and L is the total
number of labels. Given a document xi, the set
of labels predicted by the classifiers is denoted as
{ŷi}Ni=1, where ŷi ∈ {0, 1}L, and the ranking in-
dexes of predicted labels among the top k is de-
noted as rk (ŷ), where ŷ = {ŷi}Ni=1.

Bipartition evaluation is further divided into
example-based and label-based metrics. Example-
based measurements calculate precision, recall,
and F-score over (in our evaluation) the top 5,
top 10, and top 15 ranked labels over all of the
documents of the test set. The measurements in-
clude example-based precision (EBP), example-
based recall (EBR) and example-based F-score
(EBF). The metrics are defined as:

EBP =
1

N

N∑
i=1

|yi ∩ ŷi|
|ŷi|

EBR =
1

N

N∑
i=1

|yi ∩ ŷi|
|yi|

EBF =
1

N

N∑
i=1

2× |yi ∩ ŷi|
|yi|+ |ŷi|

Label-based evaluation is calculated for each label
in the label set. The measurements include macro-
and micro-average precision (MaP, MiP), macro-
and micro-average recall (MaR, MiR),and macro-
and micro-average F-score (MaF, MiF). The met-
rics are defined as:

MaP =
1

L

L∑
j=1

TPj

TPj + FPj

MiP =

∑L
j=1 TPj∑L

j=1 TPj +
∑L

j=1 FPj

MaR =
1

L

L∑
j=1

TPj

TPj + FNj

MiR =

∑L
j=1 TPj∑L

j=1 TPj +
∑L

j=1 FNj

MaF =
2×MaR×MaP

MaR + MaP

MiF =
2×MiR×MiP

MiR + MiP
where TPj , FPj and FNj as true positives, false
positives, and false negatives respectively for each
label lj in the set of total labels L.

Ranking-based evaluation, including precision
at k (p@k), and normalized discounted cumulative
gain (nDCG), ranks the predicted labels and aims
to rank the relevant labels higher than the irrele-
vant ones. The metrics are defined as follows:

p@k =
1

k

∑
l∈rk(ŷ)

yl

DCG@k =
∑

l∈rk(ŷ)

yl
log (l + 1)

IDCG =

min(k,‖y‖0)∑
l=1

1

log (l + 1)

nDCG@k =
DCG@k

IDCG
Hierarchy-based evaluation, including hierar-

chical precision (HP) and hierarchical recall (HR),
is used to measure a hierarchical classification that
classifies elements into a hierarchy of classes. It
measures performance based on the gold standard
labels and the predicted labels augmented with
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their ancestors and descendants within distances
1 and 2. The augmented gold standard labels Yaug

and predicted labels Ŷaug are used in the hierarchi-
cal evaluation. HP and HR are defined as follows:

HP =
1

N

N∑
i=1

|Ŷaug ∩ Yaug|
|Ŷaug|

HR =
1

N

N∑
i=1

|Ŷaug ∩ Yaug|
|Yaug|

In ranking-based evaluation, for p@k, k ∈
{1, 3, 5, 10, 15}, and k ∈ {1, 3, 5} for nDCG@k.
In example-based, label-based, and hierarchy-
based evaluations, the calculation is done with the
top 5, 10, and 15 predicted labels. In hierarchi-
cal evaluation, we used distances 1 and 2 for HP
and HR. The example-based, ranking-based, and
hierarchical evaluation metrics are calculated for
each document. An average score over all doc-
uments in the test set is returned. Likewise, the
label-based evaluation is calculated for each label
and averaged over all labels in the test set.

5 Results

We first conducted our experiments on datasets
with titles and abstracts only (designated AT),
passing the appropriate word embeddings to the
single channel TextCNN. Next, we did our ex-
periments on the full text datasets (designated
Full), passing the word embeddings for titles, ab-
stracts, captions and paragraphs to the single chan-
nel TextCNN. Finally, we conducted our experi-
ments on the full text datasets using the multichan-
nel model: we passed word embeddings for titles
and abstracts to the first channel, and word embed-
dings for captions and paragraphs to the second
channel. Four datasets have been used: two Small

datasets (comprised of text from SETC2015)—AT
(S) and Full (S)—and two Large datasets (com-
prised of text from PMC Collection)—AT (L) and
Full (L).

The p@k and nDCG@k performance of the
single channel TextCNN and the multichannel
TextCNN on all four datasets is summarized in
Table 2. Each row in the table compares all
datasets on a specific metric, where the best score
for each metric (the Small and Large datasets be-
ing observed separately) is in boldface. The re-
sults clearly indicate that when dealing with the
same dataset, multi-channel TextCNN performs
the best, which indicates that integrating cap-
tions and paragraphs indeed helps to improve the
performance of classification. Also, the multi-
channel TextCNN outperforms the single chan-
nel TextCNN, suggesting that the multi-channel
TextCNN architecture has an advantage over the
single channel TextCNN architecture. The rea-
son for this could be that the single channel model
misses some important features in the captions and
related paragraphs in the convolutional and pool-
ing layers. To be more explicit, the single chan-
nel model may be extracting insignificant features
in the convolutional layer from which the max-
pooling layer can take only one value in each filter.
Further observation indicates that for the Small
dataset, the Fulltext single channel TextCNN out-
performs the AT TextCNN model (with only the
p@10 and p@15 results differing from this general
trend), while interestingly for the Large dataset,
the AT TextCNN model outperforms the Fulltext
single channel TextCNN model by a wide margin.

Now looking only at the multichannel TextCNN
model when comparing the results, using data that
comes from abstracts and titles only (AT) with
the Fulltext data, the Small dataset shows the

Datasets
Metrics AT (S) Full (S) Full (S) AT (L) Full (L) Full (L)

Single Channel Multichannel Single Channel Multichannel

p@k

p@1 0.76197 0.78220 0.80512 0.87600 0.72305 0.87907
p@3 0.58283 0.59699 0.62980 0.70951 0.51016 0.72139
p@5 0.47633 0.48901 0.52057 0.60532 0.41908 0.61479
p@10 0.39641 0.38815 0.41958 0.51000 0.32631 0.51793
p@15 0.37281 0.35910 0.39587 0.47127 0.28318 0.48009

nDCG@k
nDCG@1 0.76197 0.78219 0.80512 0.87600 0.72305 0.87907
nDCG@3 0.62306 0.63744 0.66982 0.74737 0.55327 0.75737
nDCG@5 0.53918 0.55227 0.58409 0.66640 0.48009 0.67521

Table 2: Results for TextCNN in p@k and nDCG@k. Boldface indicates the best result on the each dataset.
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Metrics
Datasets top k EBP EBR EBF MiP MaP MiF MaF HP1 HR1 HP2 HR2

AT (S)
@5 0.477 0.187 0.261 0.498 0.499 0.456 0.478 0.521 0.135 0.605 0.144
@10 0.349 0.253 0.288 0.473 0.498 0.456 0.478 0.381 0.208 0.456 0.225
@15 0.301 0.278 0.288 0.458 0.497 0.453 0.478 0.325 0.241 0.399 0.262

Full (S)
Single

Channel

@5 0.490 0.185 0.261 0.499 0.500 0.456 0.478 0.521 0.126 0.578 0.129
@10 0.345 0.245 0.281 0.472 0.499 0.454 0.478 0.338 0.193 0.377 0.212
@15 0.291 0.267 0.277 0.455 0.498 0.449 0.478 0.281 0.221 0.329 0.250

Full (S)
Multi-

channel

@5 0.521 0.200 0.282 0.503 0.498 0.460 0.478 0.539 0.161 0.608 0.176
@10 0.377 0.270 0.309 0.478 0.495 0.460 0.477 0.386 0.237 0.442 0.265
@15 0.325 0.298 0.310 0.463 0.494 0.457 0.477 0.326 0.268 0.380 0.304

AT (L)
@5 0.606 0.239 0.332 0.575 0.502 0.364 0.398 0.632 0.196 0.685 0.197
@10 0.462 0.334 0.380 0.479 0.500 0.407 0.401 0.478 0.304 0.532 0.315
@15 0.404 0.372 0.386 0.434 0.497 0.414 0.403 0.413 0.352 0.468 0.371

Full (L)
Single

Channel

@5 0.420 0.162 0.227 0.446 0.500 0.282 0.396 0.394 0.100 0.405 0.091
@10 0.290 0.206 0.236 0.338 0.500 0.287 0.396 0.313 0.119 0.336 0.105
@15 0.240 0.220 0.228 0.290 0.500 0.277 0.396 0.223 0.135 0.262 0.137

Full (L)
Multi-

channel

@5 0.616 0.243 0.338 0.581 0.503 0.369 0.400 0.640 0.199 0.702 0.199
@10 0.468 0.339 0.386 0.484 0.500 0.413 0.403 0.492 0.307 0.558 0.319
@15 0.411 0.379 0.392 0.440 0.497 0.420 0.405 0.426 0.357 0.491 0.378

Table 3: Flat and Hierarchical Measures for TextCNN on Different Datasets. top k indicates the top k labels re-
turned by the classifier; EBP, EBR, EBF are example based precision, recall, and F-score, respectively; MiP and
MiF are micro precision and F-score; MaP and MaF are macro precision and F-score; HPm and HRm are hierar-
chical precision, where m denotes the maximum distance from the original label to its ancestors and descendants.

greater improvement, approximately 2-5 percent-
age points for each p@k and each nDCG@k value.
The improvement for the Large dataset is typically
closer to 1 percentage point. It should be noted
that the Large dataset has a somewhat higher, thus
more difficult to improve upon, abstract and title
baseline for each metric (10 percentage points or
more than the Small dataset). Another reason for
this difference could be that more training exam-
ples simply gives better models, so the extra in-
formation provided by the new data sources does
not have as significant an effect as the increase
in the number of training examples. Comparing
AT (L) to AT (S) and Full (L) to Full (S) shows
an approximately 7-13 percentage point improve-
ment for each p@k and nDCG@k. Another pos-
sibility could be that the Small and Large datasets
were generated from documents with different at-
tributes. We have not investigated this possibility.

Table 3 reports the performance of flat and hi-
erarchical evaluations on all datasets giving a fur-
ther assessment of introducing the extra informa-
tion sources. When comparing AT to Full Multi-
channel in the Small and Large datasets, we see an
approximate .5-5 percentage point improvement in
all of the measures except MaP. Most importantly,
there is improvement in precision without a de-

crease in recall. The obtained results further sug-
gest that our hypothesis that adding captions and
paragraphs indeed provides valuable information
in automatic MeSH indexing. Comparing EBP,
which is the same as HP0, with the HP values, an
approximate 1-5 percentage point improvement in
all cases at HP1 and an approximate 6-13 percent-
age point improvement in all cases at HP2 can be
seen. These observations indicate that some of the
predicted MeSH terms are not exactly the same as
the gold standard labels, but the model has sug-
gested MeSH terms that are in the correct branch
of the MeSH term hierarchy. With this latter ob-
servation we have investigated how the predicted
results correspond to the gold standard results. To
do this investigation, we look at the parents above
and the children below the predicted labels.

An in-depth analysis of the hierarchical evalu-
ation on the AT (L) and Full (L) datasets are re-
ported in Table 4. We have computed the aver-
age number of gold standard MeSH term labels
in common with the predicted labels including m
levels up and n levels down over all documents,
where m ∈ {0, 1, 2} and n ∈ {0, 1, 2}. Each
row in the table compares model performance at
a certain MeSH hierarchy, where Cm indicates the
predicted label augmented with children with dis-
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top 5 predicted top 10 predicted top 15 predicted
AT (L) Full (L) Full (L) AT (L) Full (L) Full (L) AT (L) Full (L) Full (L)

Single Multi- Single Multi- Single Multi-
Channel channel Channel channel Channel channel

C0 P1 0.0256 0.0021 0.0748 0.0236 0.0008 0.1107 0.0290 0.0067 0.1424
C1 P0 0.1119 0.4154 0.4551 0.2420 0.5040 0.8545 0.2791 0.5763 1.0379
C0 P2 0.2387 0.1988 0.4904 0.2933 0.1536 0.6983 0.3405 0.2741 0.8269
C2 P0 0.1591 0.4860 0.6528 0.3202 0.6480 1.1166 0.3681 0.7296 1.3542
C2 P1 0.1847 0.4881 0.7276 0.3438 0.6489 1.2267 0.3971 0.7363 1.4954
C1 P2 0.3506 0.6142 0.9455 0.5354 0.6576 1.5528 0.6196 0.8504 1.8649

Table 4: Hierarchical Analysis on TextCNN - top k selected indicates the top k labels return by the classifier

tance m, and Pn is predicted label augmented with
parents with distance n. As an example: C0 P1 on
AT (L) with the top 5 predicted labels indicates
that if the predicted labels are augmented with
their parents with distance 1, the number of com-
mon labels between true labels and predicted ones
will increase on average by 0.0256 over all docu-
ments in the test set. For each top k predicted la-
bels returned by the TextCNN model, comparisons
within the same dataset but expanded augmenta-
tions show that the number of common MeSH
terms between the gold standard and predicted
ones increase in all but four cases: two instances
of an increased window size for the multichan-
nel TextCNN, the single channel TextCNN aug-
mented with two parent labels, and the AT (L)
dataset for top 5 predicted. Observing each col-
umn, this can a ten-fold increase or more. Com-
paring AT with Full multichannel TextCNN the in-
crease is approximately three times when adding
captions and related texts. This observation gives
us confidence in concluding that the multichannel
TextCNN model gives MeSH terms that are in the
correct branch of the MeSH hierarchy and adding
figure captions and related texts does provide valu-
able improvement in automatic MeSH indexing.

6 Conclusions and Future Work

This paper has presented a novel multichannel
TextCNN model for MeSH term indexing. In ad-
dition, this paper has included figure and table in-
formation for the automatic MeSH indexing task.
Notably, our deep learning model introduced a va-
riety of features obtained from different parts of
the document. The experimental results indicate
that adding more features obtained from captions
and related paragraphs indeed improve the perfor-
mance of our proposed multi-channel TextCNN

model, supporting the initial hypothesis that figure
and table captions as well as associated paragraphs
provide valuable evidence in automatic MeSH in-
dexing. In addition, introducing the extra informa-
tion in a separate channel appears to have a posi-
tive effect compared with presenting all of the in-
formation in one channel.

We have contributed a labeled text-enhanced
biomedical document dataset for the research
community. It includes title, abstract, figure and
table captions, and paragraphs related to figures
and tables. This dataset and our software is avail-
able at https://github.com/xdwang0726/Mesh.

In the future, we first intend to extend our exper-
iments on different optimizers, learning rates and
classifiers in order to improve the performance of
our models. Secondly, in this paper, we focused
on finding a classifier to capture important fea-
tures in the document. We manually set the num-
ber of MeSH terms returned from the model, i.e.,
in this work, we asked our model to return the top
k predicted MeSH terms, where k ∈ {5, 10, 15}.
We plan to improve our model by implementing a
ranking system module which can be added right
after the classifier. The ranking module would au-
tomatically suggest the number of labels returned
for each document, which could help the index-
ing system to return more accurate MeSH terms.
Thirdly, we also aim to develop a tool which could
help human annotators locate the places in the
document that has text important for determining
MeSH terms in order to improve the efficiency of
computer assisted human MeSH indexing.
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