
Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 233–240
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

233

Adversarial Attack on Sentiment Classification

Alicia Yi-Ting Tsai
aliciatsai@berkeley.edu

Tobey Yang
minchu.yang@berkeley.edu

Erica Chen
hanyu chen@berkeley.edu

Abstract

In this paper, we propose a white-box
attack algorithm called “Global Search”
method and compare it with a simple mis-
spelling noise and a more sophisticated
and common white-box attack approach
called “Greedy Search”. The attack meth-
ods are evaluated on the Convolutional
Neural Network (CNN) sentiment classi-
fier trained on the IMDB movie review
dataset. The attack success rate is used
to evaluate the effectiveness of the attack
methods and the perplexity of the sen-
tences is used to measure the degree of dis-
tortion of the generated adversarial exam-
ples. The experiment results show that the
proposed “Global Search” method gener-
ates more powerful adversarial examples
with less distortion or less modification to
the source text.

1 Introduction

In the past few decades, machine learning and
deep learning techniques have been successful in
several applications. However, these techniques
developed so far are proven to be vulnerable given
some manipulated inputs, which are called ad-
versarial examples, that human can easily distin-
guish but algorithms can not (Szegedy et al., 2014;
Goodfellow et al., 2015).

Current research have shown successful results
in producing adversarial images that cause the al-
gorithms to completely fail in computer vision
(Kurakin et al., 2016). Studies of adversarial ex-
amples in the applications of natural language pro-
cessing such as sentiment analysis, fake news de-
tection and machine translation remain relatively
low. Nonetheless, it is an emerging field that is
worth exploring and has increased attention re-

cently due to the success of adversarial learning in
images. When generating an adversarial example,
if the adversary does not have knowledge of the
classifier or the training data, we call this a black-
box setting. On the other hand, if the adversary
has full knowledge of the classifier and the train-
ing data, we call this a white-box setting.

In a black-box setting, Belinkov and Bisk intro-
duces a simple attack method by randomly replac-
ing characters with their nearby key on the key-
board, which is similar to keyboard typos, to at-
tack a machine translation system (Belinkov and
Bisk, 2017). Similar idea can be found in the
work of Hosseini et al., the authors generate ad-
versaries that deceive Google Perspective API by
misspelling the abusive words or adding punctua-
tion to the letters (Hosseini et al., 2017). Another
work from Alzantot et al. attempts to generate
semantically and syntactically similar adversarial
examples by word replacement (Alzantot et al.,
2018). They develop an genetic algorithm that
uses population-based gradient-free optimization,
inspired by the process of natural selection. In the
black-box setting, the adversary tries different per-
turbations and evaluates the quality of perturba-
tions by querying the model to get the classifica-
tion result or the output score. The adversary con-
tinues to altered the sentence until the model fails
or until score reduces significantly.

In the white-box setting, the adversary has ac-
cess to the model and thus is capable of gen-
erating more sophisticated adversarial examples.
Ebrahimi et al. show that adversarial examples
generated in a white-box setting achieve a higher
success rate than examples generated in a black-
box setting. The authors introduce a white-box ad-
versary against differentiable classifiers that sub-
stitutes characters (”flips”) in a sentence. When
operating in a white-box setting, the adversary has
full access to the gradients of the classifier, giv-



234

ing the adversary important information to find the
classifier’s weak points. Because white-box adver-
sary has access to the gradients of the model, the
adversary does not have to query the output score
from the classifier every time. Using the gradients
as a surrogate loss, the white-box adversary can
efficiently find the best changes that maximize the
surrogate loss simply by backpropagation.

Other white-box adversary includes word-level
substitution. Kuleshov et al. try to replace 10-30%
of words in the source text by solving an optimiza-
tion problem that maximizes a surrogate loss sub-
ject using a greedy approach, which is similar to
the “Greedy Search” baseline used in the exper-
iment. A similar idea can be found in Samanta
and Mehta where the authors apply different rules
(insertion, replacement and deletion of words) to
generate adversarial examples. Liang et al. later
combine the strategies above and try to avoid in-
troducing excessive modification or insertion to
the original source text.

In this paper, we consider the task of white-box
attack where the adversary has full knowledge of
the model under attack. We propose a ”Global
Search” attack method that mitigates some of the
problems faced in the commonly used greedy ap-
proach. A very simple misspelling noise baseline
is also reported to show the effectiveness of the 2
white-box attack methods in the experiment.

2 Attack Method

2.1 Misspelling Noise

We first consider a very simple case by swap-
ping two characters in a word (eg. perfect →
pefrect), which is similar to keyboard typos or
misspelling. To maintain the readability of source
text, the noise is only applied to word of length
longer than 3 and 50% of the words in the source
text are randomly swapped.

2.2 Greedy Search Approach

We follow a similar greedy optimization strategy
in (Kuleshov et al., 2018) for constructing adver-
sarial examples for sentiment classification. At
each iteration, the algorithm considers k nearest
neighbors of each word in the word embedding
space. It then picks the one among the k neighbors
that has the greatest impact on the prediction re-
sult. Consider a sentiment classifier f , the greedy
approach forms the adversarial example by replac-
ing the original word w with the candidates w′. If

the label is positive, then the final sigmoid layer
of the model should output a value σ greater than
0.5. The algorithm then replaces the original word
w with each candidate w′ among the k neighbors
and see if the sigmoid value of the adversary x′

is less than σ, indicating that replacing w with w′

can contribute to flipping the prediction result to
negative. The candidate w′ that results in the max-
imum difference is then chosen to be the final re-
placement, i.e. smallest σ′ for positive class (1)
and the largest σ′ for the negative class (0).

arg min
w′

fsigmoid(x′)

s.t. fsigmoid(x′) < fsigmoid(x) if positive class

arg max
w′

fsigmoid(x′)

s.t. fsigmoid(x′) > fsigmoid(x) if negative class

Algorithm 1 summarizes the “Greedy Search”
approach. Although the objective of the algorithm
is to fool the sentiment classifier, the grammar, se-
mantic and sentiment should not be altered. Thus,
some constraints are imposed in order to maintain
the similarity between the original source text and
the adversarial example.

Algorithm 1 Generate adversarial example via
greedy search

1: σ ← fsigmoid(x)
2: Initialize x′ ← x, count ← 0
3: for w in x′ do
4: candidates ← k nearest neighbors of w

within distance d and have the same POS tag
as w

5: Σ← ∅
6: for w′ in candidates do
7: x̄← replace w with w′

8: σ′ ← fsigmoid(x̄)
9: Σ← Σ append σ′

10: if positive and min Σ < σ then
11: x′ ← argminx̄ Σ
12: count ← count +1
13: else if negative and max Σ > σ then
14: x′ ← argmaxx̄ Σ
15: count ← count +1

16: σ ← fsigmoid(x′)
17: if positive and σ < 0.5 then return x′

18: if negative and σ > 0.5 then return x′

19: if count/len(x) > r then return None



235

Word Choice. When picking the word can-
didates in each iteration, we consider the top k
nearest neighbors in the word embedding space.
The nearest neighbors in GloVE word embedding
space usually appear in the same context as the
original word. Thus, by picking nearest neighbors
in GloVE vectors, we can ensure semantic simi-
larity after word replacement. Although word em-
bedding helps to find words that are used in sim-
ilar context, it does not guarantee that the part of
speech (POS) will remain the same after replace-
ment. Therefore, we examine the part of speech
of the original word and ensure the selected candi-
dates have the same part of speech as the original
word.

Hyper-parameters. There are 3 hyper-
parameters, k, d, and r, used in Algorithm 1 to
maintain the semantic similarity of the sentences.
The first parameter k is used to decide how many
nearest neighbors should be considered in the first
place. When k is too small, there might not be
enough candidates to successfully form an adver-
sarial example. d represents the maximum dis-
tance allowed between the candidate words and
the original word in the word embedding space.
When d is large, the meaning of the altered sen-
tence is generally farther from the original one.
When d gets too small, the chance of generat-
ing a successful attack decreases. The last hyper-
parameter, r, stands for the percentage of replace-
ment allowed in the sentence. When the threshold
r is too low, the chance of generating a successful
adversarial example decreases. Similarly, when r
is too large, too many words will be replaced and
thus the generated sentence will be very dissimilar
to the original one.

2.3 Global Search Approach

The greedy approach proposed above does not
guarantee to produce the optimal results and is
sometimes time consuming because the algorithm
needs to search the candidate words for every it-
eration. To mitigate the problem, we propose to
search for the candidates globally by computing a
small perturbation, δ.

To learn the perturbation, δ, we define an ob-
jective function J(δ). The objective function tries
to maximize the difference between the sigmoid
value of the original input x and that of perturbed
input x + δ. Furthermore, we add two regular-
ization terms in the objective function. The first

regularization penalizes large perturbations and is
controlled via the hyperparameters λ1. The second
regularization penalizes large distance between
original word embedding and perturbed word em-
bedding and is controlled by the hyperparameters
λ2. The two regularization terms are added to help
keep the semantic of chosen words.

J (δ) =(fsigmoid(Ex)− fsigmoid(Ex + δ))2

+ λ1 · ‖δ‖2
+ λ2 · ‖(Ex − (Ex + δ))‖2

The attack algorithm is described in Algorithm
2. We first initialize the perturbation δ to be 0.
Here, the original input embedding is denoated
as Ex and the perturbed embedding is denoted as
E′x = Ex + δ. For each iteration, the algorithm
computes the gradient, ∇δ, of the objective func-
tion J(δ) with respect to the perturbation δ, and
update the perturbation δ via backpropagation. We
then form a perturbed embedding E′x. The per-
turbed embedding E′x is a matrix and each row
of E′x is the perturbed word embedding for each
word, denoted as e, in the source text. The per-
turbed embedding e usually does not have a actual
word that can be mapped back to. Thus, we find
the candidate words w′ in the embedding space
that is the closest to the perturbed word embed-
ding e and record the w′ in the candidate list ke.
The candidate words for replacement are recorded
in another list W ′. After computing the perturbed
embedding, and record the candidate words, the
algorithm checks if the current perturbed embed-
ding E′x flips the prediction result. The algorithm
continues to compute new E′x and record the can-
didate words if the previous E′x fails to fool the
model, otherwise, the algorithm returns the candi-
date words and the perturbation.

Next, we can use the generated candidate words
list and the perturbation to generate the adversar-
ial example. The algorithm is described in algo-
rithm 3. The algorithm sorts the magnitude of the
perturbation and replaces words in the positions
that have higher perturbation magnitude. A higher
perturbation magnitude indicates that the classifier
is more sensitive to changes of the original word.
Here, we have a hyperparameter d that controls the
threshold for word distance. If the last candidate
w′n in the candidate words list is too far away from
the original word, then the algorithm rejects the
candidate w′n and move to the previous candidate
w′n−1 in the list. The hyperparameter r controls



236

Algorithm 2 Global Search Attack Function
1: y ← Round(fsigmoid(x))
2: Initialize δ ← 0, success = False
3: Ex ← input embedding
4: W ′ ← Ø
5: for e in E′x do
6: ke ← Ø . Empty candidate list
7: W ′ ←W ′ append ke
8: while not success do
9: ∇δ ← via back-propagation

10: δ ← δ − ε · ∇δ
11: E′x ← Ex + δ . perturbed embedding
12: for e in E′x do
13: ke ← ke append argminw′ ‖e−Ew′‖2
14: ŷ ← Round(fsigmoid(E′x))
15: W ′ ←W ′ ∪ {ke}
16: if ŷ 6= y then
17: return W ′, δ

the percentage of changes allowed as the described
earlier.

Algorithm 3 Global Search Generate Adversary
Function

1: y ← Round(fsigmoid(x))
2: positions ← reversed (argsort ‖δ‖2)
3: Initialize success = False
4: for i in positions do
5: w ← i-th word in the source text x
6: candidates ←W ′i
7: candidates ← reversed(candidates)
8: for w′ in candidates do
9: if ‖ew − ew′‖2 < d then

10: E′i ← ew′ . replace embedding
11: break
12: x′i ← w′ . replace word
13: ŷ ← Round(fsigmoid(E′x))
14: if ŷ 6= y then
15: success = True
16: return x′
17: if i

len(x) > r then
18: return None

3 Experiment

3.1 Dataset

We use a dataset of 25,000 informal movie re-
views from the Internet Movie Database (IMDB)
(Maas et al., 2011) and randomly select 80% of
the dataset to include in the training set, and 20%

in the testing set 1.

3.1.1 CNN Sentiment Classifier
In this experiment, we used the convolutional neu-
ral network classifier (Kim, 2014) as the target
model to be attacked. We replicated the archi-
tecture of the CNN model from Kim work. In
the CNN model, an embedding of a fixed dictio-
nary and size serves as the very first layer. Con-
volutional layers with filter widths of 3, 4, 5 and
100 are added with a max-over-time pooling layer
and a fully connected layer with dropout rate of
0.5. We trained the model with 20,000 reviews and
tested it with another 5,000 reviews with batch size
of 64, reaching testing accuracy of 0.9. The result
is summarized in Table 1.

3.2 Evaluation
3.2.1 Success Rate
The end goal of the attack algorithms is to trick
the model to make wrong prediction by manip-
ulating the input. To access the effectiveness of
the attack models, we select 500 examples that
are correctly classified from the test set, so that
the accuracy of the classifiers does not affect the
evaluation. We then input these source text into
the attack algorithms to generate adversarial ex-
amples. The adversarial examples are then fed into
the CNN classifier to get the final prediction. The
success rate of the attack algorithm is defined as
the percentage of wrong prediction by the CNN
classifier. Higher success rate means that the at-
tack algorithm can generate more powerful adver-
saries that can cause the CNN classifier to mis-
behave. The experiment result in Table 2 shows
that Global Search approach has 72% success rate
while Greedy Search approach has 65%. Com-
pared with the Global Search method, it gener-
ally requires higher percentage of words replace-
ment for Greedy Search to successfully generate
an adversary. Because of the greedy nature, the
algorithm replaces words as long as changing the
words can help confuse the classifier; hence, the
algorithm can replace sub-optimal words in a ear-
lier position that do not contribute the most to the
end goal. Another limitation of the Greedy Search
approach is that word replacements tend to locate
in a close area of the sentence, especially in an ear-
lier position. This greatly reduce the readability of

1https://pytorchnlp.readthedocs.io/en/
latest/_modules/torchnlp/datasets/imdb.
html

https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/datasets/imdb.html
https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/datasets/imdb.html
https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/datasets/imdb.html


237

Accuracy Training Testing
CNN 0.99 0.90

Table 1: Sentiment Classifier Result

the sentences and can destroy the semantic mean-
ing of the source text.

3.2.2 Hyper-parameters Choice
As mentioned above, there are 3 hyper-parameters
in the greedy approach, which are k, the number of
candidates to be considered; d, the maximum dis-
tance allowed between the original word and the
candidate; r, the ratio of word changes allowed
with respect to the length of the sentence. The
global search algorithm also includes the hyper-
parameters d and r. In our experiment of the
greedy approach, k is set to 20. This parameter
does not affect much since the maximum word dis-
tance allowed and the limitation of picking words
with the same part-of-speech tag help to main-
tain similarity. The parameter is used to reduce
the run-time complexity of the algorithm by lim-
iting the number of candidates. As for d, we run
the algorithm for a few different values, we de-
cide to set d to 20 to reach a high success rate
while not picking words too far from the origi-
nal one. There exists a trade-off between simi-
larity and success rate in choosing the value for
d. While allowing words farther from the original
word, the success rate increases but similarity de-
creases as a penalty. The threshold r controls how
many words are allowed to change in a sentence;
it is also shared by the two approaches. In greedy
approach, r should be at least set to 0.2 to achieve
a good result. When r is set to 0.1, the success
rate is merely 0.18; when r is 0.2, the success rate
increases to 0.65. So we decide to set the thresh-
old r to 0.2 for greedy approach in the following
experiment. On the other hand, the global search
algorithm can reach a pretty good result when r
is set to 0.1. In our experiment, we found that
global search algorithm is more effective than the
greedy approach since the global search algorithm
looks for the word that contributes most to classi-
fication result while greedy algorithm swap words
with any degree of contribution.

3.2.3 Perplexity
In order to evaluate the adversarial examples gen-
erated from our models, we decide to measure
the perplexity, which is widely used in assessing

Figure 1: Success Rate vs Replacement Ratio

Figure 2: Success Rate vs Word Distance



238

Misspelling Noise Greedy Search Global Search
6% 65% 72%

Table 2: Success rate of attacking methods

Figure 3: Average Perplexity vs Word Distance

language models, of 20 examples with different
hyper-parameters. As Figure 3 shows, the per-
plexity increases as the word distance increases
in the greedy approach, meaning that the gener-
ated examples are less likely to occur in the cor-
pus. However, in the global search approach, it
is the opposite. It might be that the number of
change decreases while allowing larger word dis-
tance. We also calculate the perplexity with differ-
ent values of proportion of changes. The perplex-
ity increases as the proportion of changes allowed
in both attacking models. See result in Figure 4.
When comparing the perplexity of the two attack-
ing models, the global search approach generally
does better than the greedy one. Since the greedy
algorithm usually requires more changes than the
global search approach even though we have set
the threshold for the replacement rate.

3.2.4 Human Evaluation

We conduct a survey and propose two criteria to
measure the performance of the adversarial exam-
ples from three attack methods. The first criteria is
the sentiment classification accuracy of the adver-
sarial examples which is predicted by human, and
the second is the similarity between the adversar-
ial examples and the original sentence.

Human Prediction Accuracy. Unlike adver-
sarial examples in the context of image classifi-
cation, natural language perturbation is generally
perceptible since words are deleted, added, or re-

Figure 4: Average Perplexity vs Replacement Ra-
tio

placed. Thus, we need to redefine imperceptibility
in the context of natural language. Since we are
crafting adversarial example to fool the sentiment
classifier, we define it as imperceptible if human
can still correctly classify without being fooled by
the perturbation. Therefore, we ask some volun-
teers to evaluate adversarial examples and look at
the percentage of responses that match the original
classification.

Sentence Similarity. In addition to classifica-
tion accuracy, we also care about how similar the
generated adversaries examples are to the original
unaltered sentences. we ask volunteers to rate the
similarity, from 1 to 5, which means less similar to
very similar between the adversarial sentence and
original sentence.

We choose two sentences which originally clas-
sified as positive comment and negative comment,
and then flipped to opposite sentiment result af-
ter applying three attack methods. After asking
15 volunteers and analyzing the survey data, we
found that the adversarial example from Global
Search is most similar to the original sentence,
with an average similarity of 4.4, while the exam-
ple from Greedy Search is less similar, with the
score of 2.9.

Refer to human prediction accuracy, Global
Search method also reaches the highest accuracy,
which is 0.83. It means that although sentiment
classifier make the wrong prediction on the Global



239

Search adversarial examples, human could still
classify sentiment correctly. However, greedy
search only has 0.30 accuracy because it alter too
many words to fool the sentiment classifier. In this
survey, some of the volunteers feel that the adver-
sarial sentences from Greedy Search are hard to
read and can not tell the sentiment of the sene-
tence.

Examples of adversarial text generated

Original reviews: as long as you go into this
movie knowing that it ’s terrible : bad acting ,
bad ” effects , ” bad story , bad ... everything ,
then you ’ll love it . this is one of my favorite
” goof on ” movies ; watch it as a comedy and
have a dozen good laughs !

Global Search: as long as you go into this
movie knowing that it ’s terrible : worse act-
ing , bad ” effects , ” bad story , bad ... ev-
erything , then you ’ll love it . this is one of
my favorite ” goof on ” movies ; watch it as a
comedy and have a dozen good laughs yes

Greedy Search: as long as you leave into this
blockbuster telling whether it ’s horrendous :
bad acting , bad ” effects , ” bad story , bad ...
everything , then you ’ll love it . this is one of
my favorite ” goof on ” movies ; watch it as ...

Misspelling Noise: as lnog as you go into this
mvoie knowing that it’s terirble : bad atcing ,
bad ” effects , ” bad sotry , bad ... everything ,
then you ’ll lvoe it . this is one of my favorite
” goof on ” movies ; watch it as a comedy and
hvae a dzoen good laguhs !

4 Conclusion and Future Work

In this experiment, we generalize the concept of
adversarial examples to the context of sentiment
classification in natural language. We prove that
some machine learning algorithms are vulnerable
to adversarial examples. Some works have been
done using the greedy approach and have proved
the method to be effective; however, the global
search algorithm is proved to be much more pow-
erful than the greedy approach. The global search

method requires less change to the original sen-
tence and maintain a higher level of similarity in
terms of both human evaluation and perplexity
measure.

Both of the greedy and global search algorithms
are operating in a white-box scenario; they are
not as powerful as the black-box algorithms. The
black-box character swapping algorithm could be
further applied to CNN model with character-level
embedding. Other word-level attacking models
operating in black-box scenarios can be a way to
improve the limitation of white-box models.

By far, we developed some successful strategies
to attack the sentiment classifiers. Further stud-
ies can be done to strengthen the classifiers. By
training the classifiers with generated adversarial
examples, we hope to help defend the classifier
against adversarial attack and improve the model
accuracy.

References

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. CoRR, abs/1711.02173.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial exam-
ples for NLP. CoRR, abs/1712.06751.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations.

Hossein Hosseini, Sreeram Kannan, Baosen Zhang,
and Radha Poovendran. 2017. Deceiving google’s
perspective API built for detecting toxic comments.
CoRR, abs/1702.08138.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung
Lau, and Stefano Ermon. 2018. Adversarial exam-
ples for natural language classification problems.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
2016. Adversarial examples in the physical world.
CoRR, abs/1607.02533.

http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1702.08138
http://arxiv.org/abs/1702.08138
https://openreview.net/forum?id=r1QZ3zbAZ
https://openreview.net/forum?id=r1QZ3zbAZ
http://arxiv.org/abs/1607.02533


240

Misspelling Noise Greedy Search Global Search
Semantic Similarity (Scale: 1-5) 3.8 2.9 4.4
Human Prediction Accuracy 0.70 0.30 0.83

Table 3: Human Evaluation Survey Results

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2018. Deep text clas-
sification can be fooled. Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

S. Samanta and S. Mehta. 2017. Towards Crafting Text
Adversarial Samples. ArXiv e-prints.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

https://doi.org/10.24963/ijcai.2018/585
https://doi.org/10.24963/ijcai.2018/585
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1707.02812
http://arxiv.org/abs/1707.02812
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

