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Abstract

We propose a novel approach to the study
of how artificial neural network perceive the
distinction between grammatical and ungram-
matical sentences, a crucial task in the grow-
ing field of synthetic linguistics. The method
is based on performance measures of lan-
guage models trained on corpora and fine-
tuned with either grammatical or ungram-
matical sentences, then applied to (different
types of) grammatical or ungrammatical sen-
tences. The results show that both in the dif-
ficult and highly symmetrical task of detect-
ing subject islands and in the more open CoLA
dataset, grammatical sentences give rise to bet-
ter scores than ungrammatical ones, possibly
because they can be better integrated within
the body of linguistic structural knowledge
that the language model has accumulated.

1 Introduction

As the language modeling abilities of Artificial
Neural Network (ANN) expand, a growing num-
ber of studies have started to address a network’s
ability to distinguish sentences contain various
types of syntactic errors from minimally differ-
ent correct sentences, thus providing the equiva-
lent of human grammaticality judgments, one of
the cornerstones of theoretical linguistics since
Chomsky (1957). These studies are important
for at least two reasons: they can shed light on
the type and amount of information which can be
learned from pure linguistic data without any spe-
cialized language-learning device (thus contribut-
ing to the debate on human Universal Grammar,
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Chomsky 1986; Lasnik and Lidz. 2015; Chowd-
hury and Zamparelli 2018), and they can be used
as probes on the ANNs themselves, investigating
whether models which are apparently proficient
at language modeling are actually sensitive to the
same syntactic and semantic cues humans use.

The ANNs used in this area of research (often
LSTMs, Hochreiter and Schmidhuber 1997, but
recently also transformer-based ANN, Vaswani
et al. 2017, all trained on large datasets of nor-
mal text) are tested on a mix of grammatical or
ungrammatical sentences. The latter are obtained
either by altering naturally occurring sentences
(semi-randomly, as in Lau et al. 2017, or systemat-
ically, Linzen et al. 2016; Gulordava et al. 2018),
by collecting examples from the published linguis-
tic literature (Warstadt et al., 2018) or by creating
minimal pairs by hand (individually, Wilcox et al.
2018, or with sentence-schemata, as in Chowd-
hury and Zamparelli 2018).1

Once test data have been acquired, the liter-
ature has threaded between two very different
approaches: treating grammaticality as a clas-
sification problem (i.e. feeding grammatical/-
ungrammatical sentences to a classifier and asking
it to discriminate, cf. the first experiment in Linzen
et al. 2016), or feeding the test sentences to a Lan-
guage Model (LM) pretrained on normal language
and measuring the perplexity accumulated by the
LM as it traverses the sentence.2

The classification approach works somewhat
better, and can tell us if the possibility to spot un-

1Most studies except Lau et al. (2017) take the simplify-
ing assumption that judgments can be treated as binary (e.g.
acceptable/non-acceptable). This position is not entirely sat-
isfactory, theoretically, but we believe that it won’t do much
harm at this early stage of research.

2Intermediate methods are possible: Warstadt et al.
(2018) and Warstadt and Bowman (2019) train a classifier
on sentence vectors produced by various types of language
models.
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grammaticality can in principle be learned from
the data, but is not directly comparable with the
human ability to detect ungrammaticality, since
explicit syntactic judgments play a negligible role
in language acquisition.

The approach which reads (un)grammaticality
from the performance of a LM starts from a more
naturalistic task—predicting what’s coming (van
Berkum, 2010)—and can thus be more directly
compared to human performances, but the proba-
bility assigned by a LM to the words reflects many
factors (sentence complexity, level of embedding,
semantic coherence, etc.), making it difficult to
tease apart ‘grammaticality’ from a more general
notion of ‘acceptability’ or ‘processing load’.

In this paper we propose a third approach to
measuring grammaticality, derived from the LM
method. In this approach, we utilized our in-
house pre-trained LSTM LM and adapt the model
via fine-tuning (Pan and Yang, 2010; Li, 2012) on
variations of the test sentences.

Grammaticality is then treated as a compara-
tive measure of coherence: to what extent the new
(un)grammatical input can be integrated with what
the ANN has learned so far, and to what extent it
can improve similar grammatical or ungrammati-
cal constructions. We test this method with a large
number of artificially generated examples, focus-
ing on a particularly difficult contrast, the case of
subject vs. object subextraction3. We then apply
the method to a more general scenario, the CoLA
dataset, tuning a LM with either grammatical or
ungrammatical CoLA sentences and measuring its
performance in various testing scenarios.4

In the following sections, we first present a de-
tailed task description, in Section 2, followed by
a brief overview of the methodology and datasets
used for the study (Section 3). In Section 4, we
formalize our hypothesis of how the model should
behave and report the results and observation of
the network behavior in Section 5; we then dis-
cuss our observation and conclude the study with
future directions in Section 6.

3The expanded test sets for each task can be found in
https://github.com/LiCo-TREiL/
Computational-Ungrammaticality/tree/
master/blackboxnlp2019.

4See Warstadt et al. (2018). Every sen-
tence in the corpus, which can be found at
https://nyu-mll.github.io/CoLA/, is marked as
grammatical or ungrammatical. The values are drawn from
the published literature, see Warstadt et al. (2018, Tab.2) for
details.

2 Task Description

It has been noted since Ross (1967) that while
Wh-questions and relatives clauses (RC) can give
raise to gaps at unbounded distance (as in Who
did Mary say that John saw and The boy that
Mary thinks that John adopted ), gaps in certain
positions (e.g. inside relative clauses, individual
conjuncts, or certain adjuncts) are perceived as de-
graded. Ross coined the term syntactic islands for
these environments, which have been the focus of
a huge amount of research in theoretical linguistics
(see e.g. Szabolcsi and den Dikken 1999). Studies
on ANNs’ sensitivity to grammaticality have tried
to model certain types of islands, with varying de-
gree of success (Lau et al., 2017; Wilcox et al.,
2018, 2019; Jumelet and Hupkes, 2018). In this
paper, we address subject islands, i.e. the differ-
ence between (1a) and (b) for Wh-interrogatives,
and between (2a) and (b) for RCs.

(1) a. Which people did activists love [fighting
for ]?

b. *Which people did [fighting for ] appeal
to activists?

(2) a. the causes that Mary feared [fighting
against ]

b. *the causes that [fighting against ]
scared Mary

Subject islands are an interesting domain for var-
ious reasons: (i) extractions from subjects and
object can contain nearly the same words (like
above), and there are no lexical cues which signal
one or the other type (e.g. both cases in (1) re-
quire do-support); (ii) while (1) and (2) share the
extraction phenomenon, they have completely dif-
ferent discourse functions and distributions: is not
obvious that a model that learns relative clauses
should boost its processing of Wh-questions, or
vice-versa; (iii) extractions out of PPs inside nom-
inals are rare in naturally occurring data, so they
stand as a challenging test of the ANN’s general-
ization abilities.

Embedded Wh extractions out of PPs (*I know
who the painting by fetched a high price at
auction.) were one of the violations studied in
Wilcox et al. (2018), using Google’s LM and the
model from Gulordava et al. (2018). Neither LMs
managed to model extractions out of PPs, treat-
ing the PP either as a possible extraction domain
(Google’s LM) or an island in both subject and

https://github.com/LiCo-TREiL/Computational-Ungrammaticality/tree/master/blackboxnlp2019
https://github.com/LiCo-TREiL/Computational-Ungrammaticality/tree/master/blackboxnlp2019
https://github.com/LiCo-TREiL/Computational-Ungrammaticality/tree/master/blackboxnlp2019
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Figure 1: Experimental Pipeline.

object position (Gulorodova’s). The study didn’t
address RCs like (2). This case thus presents an
interesting challenge for our technique: combined
with the sentence schemata method described in
Section 3, it gives a highly controlled environ-
ment; however, this comes at the cost of a high lex-
ical overlap (after fine-tuning, the ANN is tested
on structures which contain many words it has al-
ready practiced with). To try a different and more
open testing environment we applied the same
method to the 5 test sets of the CoLA dataset (see
Section 3 for details) . In this case, we fine-tuned
the ANN on grammatical or ungrammatical sen-
tences from the CoLA training set, and tested it on
different CoLA test-phenomena sentences, check-
ing the interactions. Since this part of CoLA is
categorized by topic this gives a sense of which
types of phenomena improve with this method.

3 Methodology

In this section, we describe our pipeline, includ-
ing details of the datasets used in each steps. In
addition, we present the evaluation measure used
to validate the effects (if any) of the fine-tuning
method on our tasks.

Figure 1 shows the pipeline we propose
for exploring the effect of rehearsing new
(un)grammatical input on a trained LSTM lan-
guage model.

LM Architecture: The first step (Step 1 in Fig.
1) is to train a language model (LMO) using
a large text corpus. For the study, we used
a left-to-right long-short term memory (LSTM)
language model (Hochreiter and Schmidhuber,
1997), trained with 500 hidden units in each layer
(layers = 2) and an embedding dimension of
256. The model was trained using a PyTorch RNN
implementation with dropout regularization tech-
nique applied in different layers of the architec-
ture, along with SGD optimizer using a fixed batch

Corpus Style %
Wiki-103 Encyclopedic data 12.15

Gutenberg6

Dataset

Narrative style:
includes collection of
English books

36.58

UKWaC
Mixed, crawled
from .uk domain

51.27

Table 1: Composition of the training set and style of
training data.

size of 80. We have not tuned the models for dif-
ferent dropouts or learning rate parameters, among
other parameters.

Datasets for Training LM: To train the LSTM
model, we used different English corpora — for
stylistic variety — extracted from Wikipedia, the
Gutenberg Dataset (Lahiri, 2014) and UKWaC
(Ferraresi et al., 2008), as shown in Table 1.
We then tokenized the input sentences, removing
URLs, email addresses, emoticons and text en-
closed in any form of brackets ({.},(.), [.]). We re-
placed rare words (tokens with frequency < 20)5

with <UNK> token along with its signatures (e.g.
-ed, -ing, -ly etc.) to represent every possible out-
of-vocabulary (OOV) words. We also replaced
numbers (exponential, comma separated etc) with
a <NUM> tag. We removed the sentences from
UKWaC with OOV tags. Therefore, to train LM
we used a training set consisted of ≈ 0.7B words
in ≈ 31M sentences, with a vocabulary of size
|V | = 0.1M .

Adaptation via fine-tuning: The trained LM0

was used to initialize the weights of the new
LSTM LMX , so as to transfer the knowledge

5For preparing the vocabulary set V , we only considered
tokens presents in WikiText and Gutenberg dataset.

6We intentionally removed the stories that overlapped
with the test and dev set of Childrens Book Test (CBT) (Hill
et al., 2015), for training purpose.
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LM0 has acquired so far (Step 2 Fig. 1). To adapt
the models LMX to new (un)grammatical struc-
tures, we fine-tuned the models by feeding the sen-
tences from our small training data sets, with batch
size of 20 and epoch e (e = {3, 10}). All other pa-
rameters remained unchanged with respect to the
original LM0. In this paper, for brevity, we only
report the results after 3 epochs.

Datasets for Adaptation: LMs can be quite
sensitive to the specific content words used.
To minimize this effect and focus on structure,
we used the ‘sentence schemata’ method from
Chowdhury and Zamparelli (2018): starting from
a schema such as (3), a script automatically
generates sentences containing all the possible
combinations of the bracketed expressions. The
schema in (3) (tagged Aff(irmatives with com-
plex) Obj(ects)) gives 160 affirmative sentences
(e.g. Activists hated fighting for these laws); we
also constructed schemata for affirmatives with the
gerund in subject position (AffSubj, e.g. fight-
ing for these causes scares politicians), as well as
for the corresponding root Wh-clauses (WhSubj,
WhObj, as in (1a)/(1b), and relatives (RelSubj,
RelObj, as in (2a)/(2b)).7 In total, we have 6
train/test sets, see Table 2 for details.

(3) [ John Mary politicians activists governments
] [ feared loved hated thought about ] fighting
[ for against ] these [ causes movements peo-
ple laws ] .

Apart from exploring adaptation of subject is-
lands, we also explored the effect of adaptation
in an open testing environment (as mentioned in
Section 2). For this setting, our training and test-
ing data is less likely to have a substantial lexi-
cal overlap. For the adaptation part, we split the
CoLA training set in two parts—one consisting of
grammatical sentences (CoLAG), the other one of
ungrammatical sentences (CoLAUG), both cover-
ing different linguistic phenomena such as islands,
passives, coordination, negative polarity, etc. As
test sets, we used different CoLA-test phenom-
ena.8 They are:

• Subject-Verb-Object (SVO): The test set con-
sists of utterances, generated using different
permutation of subject (S), verb (V) and ob-

7For training, we merged AffObj and AffSubj to create a
general set of affirmatives, Aff.

8Please check Warstadt et al. (2018, Tab. 2) for details.

ject (O). The set containes 10 subjects, 2
verbs and 5 objects.

• Wh-Extraction (WhExt): This set tests the
ability to note that a Wh- must correspond to
a gap, with pairs such as What did John fry?
/ *What did John fry the potato? (cf. Wilcox
et al. 2018, Sec.2.3, Chowdhury and Zampar-
elli 2018, Task B).

• Causative-Inchoative Alternation (CausAlt):
Based on verbs that do or do not undergo
the alternation (Kelly popped/blew the bub-
ble. vs. The bubble popped/*blew.).

• Subject-Verb Agreement (SVAgr): A set
based on number agreement mismatch, such
as the child (that was accompanied by his
parents) has/*have left. This is the task
used in Linzen et al. (2016); Gulordava et al.
(2018).

• Reflexive-Antecedent Agreement (ReflAgr):
A test on whether reflexive pronouns have ap-
propriate local antecedents (cf. I amused my-
self / *yourself / *herself / *him- self / *our-
selves / *themselves).

Evaluation Measure: To track the performance
of our LSTM on the test sets, we adopted the popu-
lar acceptability measure Syntactic log-odds ratio
(SLOR), introduced in this domain by Lau et al.
(2017) and shown in Equation 1.

SLOR(ε) =
log(pm(ε))− log(pu(ε))

|ε|
(1)

where ε represents the sentence; pm(.) is the prob-
ability of the ε given by the model, calculated
by multiplying probabilities of each target words,
present in the sentence; pu(.) is the unigram prob-
ability of the ε and |ε| represent the length of the
sentence.

The measure considers the structure and po-
sition of the words, subtracting out the unigram
log-probability so that sentences that use rare
words are not penalized, and is normalized by
sentence length, thus removing (positive or neg-
ative) biases due to long sentences. Higher SLOR
values correspond to ‘better’ (i.e. more pre-
dictable/acceptable) sentences.
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Sets # inst. Used for Sets # inst. Used for
Close Environment Testing Open Environment Testing

AffObj: X likes [ fighting for Y ] 160 test CoLAG 6029 train
AffSubj: [ fighting for Y ] pleases X 160 test CoLAUG 2532 train
Aff: AffSubj∪AffObj 320 train SVO 500 test
RelObj: the Y that X likes [ fighting for ] 160 train/test WhExt 520 test
RelSubj: the Y that [ fighting for ] pleases X 120 train/test CausAlt 182 test
WhObj: What did X like [ fighting for ]? 200 train/test SVAgr 676 test
WhSubj: What did [ fighting for ] please X ? 150 train/test RiflAgr 144 test

Table 2: Detailed information of the training/testing set for the adaptation experiments. inst. represent instances

4 Our Hypothesis

We expect the adapted LM to improve in pro-
portion to the similarity between the tasks, but
also in proportion to how well the material pre-
sented in the fine-tuning learning phase is consis-
tent with what the ANN already knows about lan-
guage structures.

Our expectations are that retraining with un-
grammatical sentences should be harder to incor-
porate into previous knowledge, thus leading to
worse performances in terms of generalization.
Note that improvements when the ANN is trained
on Wh and tested on RC or vice-versa can be at-
tributed in part to lexical familiarity (the training
contained most of the words seen in the testing),
in part to the model’s ability to note the common
element in the two constructions, i.e. the extrac-
tion. We can mitigate the lexical overlap prob-
lem by subtracting the scores of a LM fine-tuned
on the affirmative cases (i.e. the sentences gener-
ated from (3)) from those obtained from the cor-
responding extraction cases (RC and Wh), since
our affirmative cases already contain most of the
lexicon found in the RC/Wh sentences.

In the second experiment, where we tested on
CoLA, there is no reason to expect a very high
lexical overlap, so any effect found there can be
attributed purely to the structures.

5 Results

Subject/Object Extraction Figure 2 gives an
overview of the SLOR values of our LSTM tuned
for 3 epochs just on the affirmative sentences
(LMX , left), compared to the original (LMO,
right). Unsurprisingly, the LMX shows a large im-
provement in the AffSubj/AffObj cases, but also
an improvement in Wh case and especially in rel-
ative clauses. Note that after fine-tuning, all con-
ditions (Aff,Rel and Wh) show a significant pref-

erence for the object case (present in Aff/Wh even
in the original run). This effect emerged also in
Chowdhury and Zamparelli (2018) (and in work
of ours, under review, which specifically addresses
this phenomenon). Since it is also present in affir-
matives, it cannot obviously be attributed to a sen-
sitivity to islands, but can probably be put down
to a general preference of LSTM LMs for hav-
ing complex structures in object position. This ef-
fect seems to overcome an effect found in Chowd-
hury and Zamparelli (2018) (Task A, which how-
ever uses different measures), where subject rela-
tives scored better than object relatives (while both
being grammatical), in line with human parsing
preferences widely discussed in the psycholinguis-
tic literature (Gibson, 1998; Gordon et al., 2001;
Friedmann et al., 2009). The general lower score
for RCs, compared to Wh cases, could also be at-
tributed to the fact that in the testing phase the LM
receives an End-of-Input signal before the sen-
tence is over (i.e. RC are sentence fragments).

Figure 3 shows the effect of fine-tuning the orig-
inal LM on different parts of the test set and test-
ing it on the others. At a global level, if we com-
pare the scores with the affirmative baseline (the
performance of the model fine-tuned with affir-
matives only, as in Figure 2, left), we see that
on average adding Wh-clauses significantly boosts
RCs (+0.64) and vice-versa, though not as strongly
(+0.39). Next, tuning with grammatical material
gives a larger overall boost than tuning on ungram-
matical material. This can be seen from the Total
in Table 3 (using the notation ARelObj(RelObj-
Aff(RelObj)) to mean “SLOR of LMO fine-tuned
with Aff+RelObj (ARelObj) and applied to Rela-
tives with OBJect subextraction minus the SLOR
of the test set using model adapted by Aff)”).
Within construction, tuning with Aff plus Obj ex-
tractions boosts other object cases (green cells)
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Figure 2: Variation of SLOR measure for different test groups using the model adapted on affirmative sentences
(Aff, both AffSubj and AffObj) and the original LM0 (Ori) model. Higher is better. The blue arrows with the ∆
values represents the difference in SLOR between grammatical and ungrammatical sentences. ∗ warns that the
same testset is used to adapt the respective model. ns indicates that the results are not significantly different from
each other.

Figure 3: Variation of SLOR measure for different test groups using models adapted on: relative clause-object
(ARelObj); relative clause-subject (ARelSubj); wh-object (AWhObj); wh-subject (AWhSubj). All the models
are initially adapted on affirmative sentences, hence the presence of A in ARelObj and all other models. The
blue arrows with the ∆ values represents the difference between the SLOR of grammatical correct sentences with
ungrammatical sentences. The ∗ warns when the same testset was used to adapt the corresponding model.

more than tuning on Aff plus Subj extractions
boosts other Subj cases (pink cells); across con-
struction, Aff+WhObj tuning boosts RelObj and
even RelSub and, to a lesser extent, Aff+RelObj
tuning boosts WhObj more than Aff+RelSubj
boosts WhSubj.

CoLA results Figure 4 shows the results on
the 5 test sets for the original model (LMO) and
the LM fine-tuned with the CoLA grammatical
and ungrammatical sentences, respectively. The
first thing to note is that LMO is already able
to significantly distinguish, on average, the two
classes, with the worst performances coming from
the Causative-Inchoative Alternation, a construc-
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Fine-tuned with
Testing scores ARelObj ARelSubj AWhObj AWhSubj

a. RelSubj–Aff(RelSubj) 1.35 2.19 0.52 0.65
b. RelObj–Aff(RelObj) 2.49 1.31 0.96 0.46
c. WhSubj–Aff(WhSubj) 0.28 0.42 1.19 2.03
d. WhObj–Aff(WhObj) 0.54 0.34 2.28 1.14
e. Total: 4.66 4.26 4.95 4.28

Table 3: Effect of fine-tuning. AX represent the models tuned with affirmatives followed by X. Y-Aff(Y) represent
the test scores (SLOR) using the particular model minus the SLOR of the model adapted on affirmatives (Aff) for
the Y test set. X,Y ∈ {RelObj,RelSubj,WhObj,WhSubj}.

tion linked to the lexical semantics of a class of
verbs which are not likely to be encountered in
many other examples. As in the previous experi-
ment, fine-tuning improves the SLOR scores of all
cases, ungrammatical ones included. In keeping
with the previous experiment, we verify whether
the switch from CoLAG to CoLAUG has a sig-
nificant effect on the improvements (esp. CoLA-
G(G) vs. CoLA-UG(UG), keeping in mind that
here, unlike in the previous experiment, the train-
ing can contain at most a small dose of the lexi-
con and the phenomena in the testing set). Given
the results in the Subj/Obj island task, our expec-
tations are that tuning on CoLAG should work
better than tuning on CoLAUG. The difference
turns out not to be significant with Subject-Verb
Agreement cases (SVArg, Figure 4a), significant
but with ungrammatical cases coming out best for
the Subject-Verb-Object permutation cases (SVO,
Figure 4b), significantly bigger with grammatical
tuning in the remaining cases (see 4f for the over-
all picture). The case of SVArg might be due to
the fact that the contrastive examples found in the
syntactic literature might not cover something as
basic as wrong subject-verb agreement. The be-
havior of SVO remains unclear.

6 Discussions and Conclusions

The results of ours first experiment suggest that,
even though the contrast between subject and ob-
ject subextraction is one of the hardest for ANNs
to detect (see Wilcox et al. 2018), fine-tuning a
language model with one of the two conditions
does not give the same effect: above and beyond
the effect of assertions (see Figure 3), tuning with
grammatical extractions (i.e. object cases) yields
a larger boost for the construction used for tun-
ing than tuning with the ungrammatical cases. In
small measure, the boost extends to the related
construction (Wh to RC, and partially vice-versa).

The same effect is found with the much less con-
trolled CoLA dataset, at least for some of the con-
structions we tested.

The results are consistent with the hypothesis
that grammatical cases are somehow easier to in-
tegrate into what the ANN has already discovered
about linguistic structures. Of course, positive
examples of grammatical extractions like WhObj
and RelOBj also boost the ungrammatical cases,
but possibly this is because they apply to parts of
the sentence different from the extraction site (in-
deed, ungrammatical cases boost grammatical and
ungrammatical cases almost to the same degree).
This suggests that the methodology we are propos-
ing could be a useful addition to the toolbox of this
research area.

An obvious question, at this point, is whether
the fine-tuning approach could be turned into
a classification method. One could for in-
stance imagine classifying a sentence as gram-
matical or ungrammatical on the basis of its
SLOR difference across LMs tuned with gram-
matical/ungrammatical sets (e.g. CoLAG and
CoLAUG conditions). Recall however that SLOR
is sensitive to a variety of factors which have noth-
ing to do with grammaticality (e.g. collocations,
pragmatic plausibility), and that it has been used
to study grammaticality only with carefully con-
structed minimal pairs. While not impossible,
we suspect that a classification experiment could
not be done with relatively open data like CoLA,
though it is possible that with more balanced ma-
terials such an experiment might become possible.
Probably a better use for the technique proposed
here would be to study similarity across construc-
tions as seen by the network. Using the more fine-
grained classification of the CoLA data given in
Warstadt and Bowman (2019), it might be possi-
ble to selectively fine-tune a model with one con-
struction, test it with all the others and discover
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Figure 4: Variation of global SLOR measure for: Figure 4a - Subject-Verb Agreement (SVAgr); In Figure 4b -
Subject-Verb-Object (SVO); In Figure 4c - Wh-Extraction (WhExt); In Figure 4d - Reflexive-Antecedent Agree-
ment (RiflAgr); Figure 4e - Causative-Inchoative Alternation (CausAlt). For all Figure 4 a-e, Original model
is un-adapted LM model, where as Adapted Cola-G(UG) represent the results from the model which is adapted
on CoLA train grammatical (ungrammatical) instances. Figure 4f represents the difference in the measure of
SLOR value, for grammatical (G) and ungrammatical (UG) examples, between Cola-G and Cola-UG model, i.e.
AG(SLOR) − AUG(SLOR) for all the above test cases (a-e), where AG represents result from Cola-G model
and similarly AUG represents result from Cola-UG. The blue arrows with the ∆ values represents the difference
between the SLOR of grammatical correct sentences with ungrammatical sentences. ns indicates that the results
are not significantly different from each other.

from the variations in a performance measure like
SLOR how the ANN ‘sees’ the relation between
different linguistic cases.
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