
Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 138–146
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

138

Learning the Dyck Language with Attention-based Seq2Seq Models

Xiang Yu, Ngoc Thang Vu, Jonas Kuhn
Institute for Natural Language Processing (IMS)

Universität Stuttgart, Germany
{xiangyu,thangvu,jonas}@ims.uni-stuttgart.de

Abstract

The generalized Dyck language has been used
to analyze the ability of Recurrent Neural Net-
works (RNNs) to learn context-free grammars
(CFGs). Recent studies draw conflicting con-
clusions on their performance, especially re-
garding the generalizability of the models with
respect to the depth of recursion. In this paper,
we revisit several common models and experi-
mental settings, discuss the potential problems
of the tasks and analyses. Furthermore, we ex-
plore the use of attention mechanisms within
the seq2seq framework to learn the Dyck lan-
guage, which could compensate for the limited
encoding ability of RNNs. Our findings reveal
that attention mechanisms still cannot truly
generalize over the recursion depth, although
they perform much better than other models
on the closing bracket tagging task. Moreover,
this also suggests that this commonly used task
is not sufficient to test a model’s understanding
of CFGs.

1 Introduction

The generalized Dyck language has been a testbed
for several research on the ability of Recurrent
Neural Networks (RNNs), in particular the Long
Short-term Memory model (LSTM) (Hochre-
iter and Schmidhuber, 1997), to learn context-
free grammars. It consists of strings with bal-
anced pairs of brackets of different types, e.g.,
“[< >] [] < [] >”. Recognizing the
generalized Dyck language is considered to be
more difficult than anbn as tested in Gers and
Schmidhuber (2001), since it cannot be simply
solved by counting. Rather, the model has to
remember the sequence of different (unclosed)
brackets.

Among the recent studies, Sennhauser and
Berwick (2018) analyze the generalizability of
LSTMs to learn the generalized Dyck language

with two pairs of brackets, and conclude that the
model cannot learn the underlying grammar rules.
In contrast, Skachkova et al. (2018) concludes that
the LSTM can model the language quite well.
Bernardy (2018) experiment with several variants
of RNNs, and find that the LSTM works reason-
ably well on the given task, but fails to generalize
to cases with deeper recursion.

All the aforementioned work explores the abil-
ity to “understand” context-free languages with
some tagging task similar to language model-
ing. In these tasks, the RNN encodes a sequence,
which is the prefix of a valid sequence in the lan-
guage, and predicts the next possible token either
for the last token or for every token. These prob-
ing tasks have one thing in common, namely they
predict only one token, which does not necessarily
close the whole sequence, and thus are not suffi-
cient to prove that the model learns the whole se-
quence.

In this work, we show that a seq2seq model with
attention mechanism not only solves the tagging
task, but also generalizes well over unseen depths.
While it appears to have “understood” the Dyck
language, under closer inspection, it fails to com-
plete deeper sequences and only closes the first
several brackets correctly, which happens to be the
evaluation metric of the tagging task.

2 Related Work

Modeling context-free grammars with RNNs is
of great interest for natural language processing,
since recursion is considered an essential char-
acteristic of natural languages if not universal
(Hauser et al., 2002). Several recent studies focus
on the RNNs’ ability to model deeper structural in-
formation against surface-level attractors (Linzen
et al., 2016; Gulordava et al., 2018; Wilcox et al.,
2018).

139

Instead of natural language data, where
the correlation between structural and contex-
tual/semantic information is difficult to avoid,
many analyses with synthetic data have been
conducted on RNNs since their invention, e.g.,
handling the XOR problem (Elman, 1990), the
context-free language anbn and context-sensitive
language anbncn (Gers and Schmidhuber, 2001;
Weiss et al., 2018b), and extracting finite-state au-
tomata (Weiss et al., 2018a).

Among the context-free languages, the general-
ized Dyck language is a popular choice since it is
simple enough in concept while expressive enough
to represent all context-free languages (Chomsky
and Schützenberger, 1963).

Skachkova et al. (2018) probes the recognition
of the generalized Dyck language in two tasks.
The first one is a language modeling task which
predicts the next bracket in the actual generated
data and measures the perplexity, which compli-
cates the evaluation by introducing unnecessary
non-determinism. The second task predicts the
last closing bracket of a balanced Dyck word,
which could be solved with a short-cut. One
simply needs to keep a counter for the depth of
the sequence, and record the most recent opening
bracket each time the counter hits zero. The task
is over-simplified by the fact that all the instances
are balanced, thus there is no need to memorize
anything deeper than the outmost bracket.

Bernardy (2018) and Sennhauser and Berwick
(2018) both frame the task as predicting the next
valid closing bracket at any position in a Dyck
word, which is arguably more difficult to by-
pass. Both works also put much emphasis on
the generalization over the depth. Comparing to
Sennhauser and Berwick (2018), our tagger mod-
els, while not perfectly generalizable, perform
well above chance level, and the discrepancy be-
tween training and testing performance is much
smaller. But the general conclusion holds, the
RNN-based taggers do not generalize well for the
task. Bernardy (2018) reports better results, but
they use much shorter sequences (less than 20)
where the model has a chance to memorize instead
of generalize.

With a different architecture, Deleu and Dureau
(2016) uses a Neural Turing Machine (Graves
et al., 2014) to recognize the Dyck language. They
use the model as an acceptor for the original Dyck
language with only one type of bracket pair, which

is much simpler both as a task and as a language.
To solve this task, the model only needs to approx-
imate a counter, and increment or decrement upon
an opening or closing bracket. The LSTM’s abil-
ity to approximate a counter machine is discussed
in Weiss et al. (2018b).

While all these studies test the RNNs as ac-
ceptor (classifier) or transducer (tagger), we also
test their ability to decode sequences, which is ar-
guably a harder task.

3 Task and Models

The Dyck language consists of strings (a Dyck
word) of equal number of opening and closing
brackets, and the number of closing brackets is
never more than the opening brackets in any pre-
fix of the string (a Dyck prefix). The general-
ized Dyck language has more than one type of
bracket pairs, where all pairs have to be balanced
and no crossing of different pairs is allowed. For-
mally, the generalized Dyck language is defined
as DP with (oi,ci) ∈ P, where (oi,ci) are different
bracket pairs. The language can be described by
the following grammar:

S→ S S
S→ oi S ci

S→ oi ci

We adopt the commonly used tagging task, in
which the model has to predict the next valid clos-
ing bracket given any Dyck prefix shorter than
100. Note that this differs from the language mod-
eling task, since the target is not from the ac-
tual, stochastic dataset, but an unambiguous clos-
ing bracket. If the prefix is already a balanced
Dyck word, then the target is a special symbol ‘$’,
which also makes it a recognition task for balanced
Dyck words.

We compare four models with different archi-
tectures and different training objectives, but the
main target is the same. All models have the
same encoder architecture, a one-layer bidirec-
tional LSTM with 50 hidden units, and only differ
in the decoder.

The first model tagger-last predicts the tar-
get with a simple linear transformation from the
LSTM state of the last token.

The second model tagger-all has exactly the
same architecture, but it is trained to predict a clos-
ing bracket after every token in the sequence. The
last predicted bracket is the main target for evalua-

140

tion and comparison, while the rest can be viewed
as an auxiliary task.

The third model generator-simple follows the
common seq2seq architecture (Sutskever et al.,
2014). It generates a sequence of closing brack-
ets to eagerly complete the Dyck prefix into a bal-
anced Dyck word, and the generation stops when
the ‘$’ symbol is predicted. For this model, the
first generated bracket is the main target and the
rest is the auxiliary task.

The fourth model generator-attention aug-
ments the decoder with the attention mechanism
(Bahdanau et al., 2014). It uses the general vari-
ant of attention (Luong et al., 2015):

score
(
ht ,hs

)
= h>t W ahs

where ht denotes the decoder state, hs denotes all
encoder states, and W a is the model parameter.

All the models are trained with the Adam opti-
mizer (Kingma and Ba, 2014) with the default pa-
rameters in the Dynet library (Neubig et al., 2017).
The generator models are trained with the stan-
dard teacher forcing method, since there is only
one correct target sequence and the model is eval-
uated on exact match.

No special tuning of hyperparameters is per-
formed, and we do not use mini-batch or dropout,
since the training is fast and stable enough.1

4 Experiments

4.1 Data

We largely adopt the experimental settings and ter-
minologies in Sennhauser and Berwick (2018) for
comparison.

The dataset we use in the experiment consists
of 1 million instances, each one is a Dyck pre-
fix of length up to 100 with two different types of
brackets(‘[’, ‘]’ and ‘<’, ‘>’). The instances are
sampled proportional to their lengths, i.e., there
are twice as many instances of length 20 as in-
stances of length 10. We have a preference for
longer sequences, since they represent the more
difficult cases.

The instances are generated in the following
procedure: Until the desired length is reached,
generate a random opening bracket with a branch-
ing probability p or a valid closing bracket with

1The code as well as the dataset are available at the first
author’s homepage.

distance = 8

embedded
depth = 3

depth = 2
[

<

<

[

[

[

< [

[

]

>

>

>

]

]

]

[< < [] > > [[< > [[]]]

Figure 1: A visual representation of a Dyck prefix and
the property values of the target token (the last ‘]’).

probability 1− p. If the current sequence is bal-
anced (no unclosed brackets), then generating a
random opening bracket is the only option.

This generation procedure is similar to
Skachkova et al. (2018), except that we do not
stop generation once the sequence is balanced,
instead we generate a new opening bracket and
continue until the desired length is reached. Also,
the generated sequence is not necessarily a Dyck
word, but a prefix of it.

We adopt the following properties from
Sennhauser and Berwick (2018) to describe the
Dyck prefixes:

• depth is the number of unclosed brackets;

• embedded depth is the maximum depth be-
tween the target closing bracket and the cor-
responding opening bracket, which is also
called the relevant clause;

• distance is the number of tokens in the rele-
vant clause.

Intuitively, embedded depth correlates with dis-
tance, since the deeper the relevant clause, the
longer the distance between the outermost brack-
ets. Figure 1 illustrates an example of a Dyck pre-
fix and the properties of the final target token.

The branching probability p controls the distri-
bution of the these properties in the samples, the
higher its value, the deeper the string is likely to
be. Figure 2 visualizes the distribution of each
property value when selecting different p in the
generation. We choose p = 0.5 since it generates
enough samples of reasonably high values of both
depth and embedded depth/distance.

We ensure that all the instances are unique,
mainly to avoid replicating shorter sequences.

141

0 20 40 60 80
depth

10−5
10−4
10−3
10−2
10−1

de
ns
ity

p = 0.2
p = 0.5
p = 0.8

0 5 10 15
embedded depth

10−4

10−2

100

de
ns
ity

p = 0.2
p = 0.5
p = 0.8

0 20 40 60 80 100
distance

10−5
10−4
10−3
10−2
10−1

de
ns
ity

p = 0.2
p = 0.5
p = 0.8

Figure 2: Distribution of depth, embedded depth, and
distance of the dataset with different p values. The
plots are on logarithmic scales.

Generating identical longer sequences is practi-
cally impossible, since the number of generalized
Dyck prefixes of length 100 is orders of magni-
tudes larger than the dataset2.

The main target of an instance is the matching
closing bracket given the prefix, and if the prefix
is balanced, a special symbol ‘$’ is the target. To
avoid inflated results in the evaluation, we ignore
the easy cases where the last token is an opening
bracket, since the target is simply the correspond-
ing closing bracket, and does not require further
memory to make the correct prediction. However,
we do not remove these cases from training, since
it is still a correct behavior to learn, albeit very
simple.

We split the dataset into training set and test set
in different ways. In the in-domain setting, the
dataset is equally split into training set and test set,
and both sets have roughly the same distribution of

2The exact number is beyond the scope of this work, but
a simple lower-bound would be the 50-th Catalan number
(greater than 1027), which is the number of Dyck words of
length 100 with only one pair of brackets.

the property values. In the out-of-domain setting,
where we test the generalization of the models, we
sort the dataset by the respective maximum prop-
erty values of the whole sequence, and train on the
instances where the value is smaller than 1

3 of the
maximum in the dataset, i.e., we test the general-
ization on up to three times the training depth.

Note that the selection criteria is the maximum
value over the whole sequence, not just of the final
target. This is a much stricter condition than in
Sennhauser and Berwick (2018), since the encoder
would never see a training instance that is too deep
at any step. For example in Figure 1, the target
depth is 2, while the maximum depth is 5.

We test the models on the development set (a
held-out portion of the training set) after every
10000 training steps, and stop training if the per-
formance do not improve 5 times in a row. Most
of the time, the training terminates before even it-
erating through the training data once.

Due to the stochastic nature of neural networks,
we report the results of each model/condition from
the average of 10 runs with different random
seeds.

4.2 In-Domain Results

target all-tags completion

tagger-last 96.4% 98.8% -
tagger-all 98.7% 99.8% -
gen-simple 96.3% - 82.1%
gen-attn 99.9% - 97.8%

Table 1: Average accuracy of the models in differ-
ent evaluations in the in-domain setting. In the three
columns, target measures the accuracy of the main tar-
get, all-tag measures the average accuracy of predict-
ing the next bracket for all tokens, completion mea-
sures the exact match of closing all the brackets. All
results are averaged from 10 runs.

The average results of the in-domain experi-
ments are shown in Table 1. All the models are
evaluated on the main target of the same test set
(the first column), and the tagger models are addi-
tionally evaluated on predicting the target for ev-
ery token in the sequence (the second column).

Overall, all models perform reasonably well,
while tagger-all performs better than tagger-last
both for the main target and all targets. Although
the training data is sufficient for all models, judged
by the fact that they all stop training in one itera-

142

in-domain out-of-domain

ta
gg

er
-la

st

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

ta
gg

er
-a

ll

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

ge
n-

si
m

pl
e

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

ge
n-

at
tn

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

Figure 3: Errors of each model in the in-domain vs. out-of-domain setting for the depth property.

in-domain out-of-domain

ta
gg

er
-la

st

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

ta
gg

er
-a

ll

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

ge
n-

si
m

pl
e

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

ge
n-

at
tn

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

0 5 10 15 20
embeded depth

0.0
0.2
0.4

er
ro
r r
at
e

Figure 4: Errors of each model in the in-domain vs. out-of-domain setting for the embedded depth property.

tion, training on multiple targets in one sequence
is still beneficial. We hypothesize that it is because
predicting for all tokens in one sequence requires
the model to encode the information more consis-
tently. However, more experiments are needed to
confirm the hypothesis. Both models have higher
accuracies on all tags than the last tag, presum-
ably because the average prefix depth and embed-
ded depth on all tags are lower than that of the last

tag, which are easier to predict.
The two generator models are evaluated on the

accuracy of the main target as well as the exact
match rate of the completion task (the third col-
umn), where the main target is the first predic-
tion in the completion sequence. The generator-
simple model performs on par with tagger-last.
However, they tend to have different errors, as an-
alyzed in in Section 4.3.

143

in-domain out-of-domain

ta
gg

er
-la

st

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

ta
gg

er
-a

ll

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

ge
n-

si
m

pl
e

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

ge
n-

at
tn

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

0 20 40 60 80 100
distance

0.0
0.2
0.4

er
ro
r r

at
e

Figure 5: Errors of each model in the in-domain vs. out-of-domain setting for the distance property.

Finally, when the generator model is equipped
with attention, it achieves almost perfect perfor-
mance even for the exact completion.

4.3 Generalization

The detailed results of the four models in the in-
domain vs. out-of-domain settings according to
different properties (depth, embedded depth, and
distance) are shown in Figure 3, 4, and 5, respec-
tively. We remove the noisy points from the plot
when there are less than 10 cases. The chance
level of the error rate lies slightly over 0.5, since
the two closing brackets are equiprobable and in
about 10% of the case the target is ‘$’ (a balanced
Dyck word). In each group of plots, the ones on
the left show the in-domain setting, on the right
the out-of-domain setting. The four rows are the
four models: tagger-last, tagger-all, generator-
simple, and generator-attention. In each figure,
the blue triangles are the training error rates, and
the red dots the test error rates.

It is evident from the in-domain experiments on
the left side of the plots that all the models gen-
eralize well in the in-domain setting (but not nec-
essarily performing well), since the training errors
(blue triangles) and test errors (red dots) align very
closely. This means that all the models are not
simply memorizing the training data.

The more interesting case is the out-of-domain
condition, where we test the models on sequences

up to three times as deep as the training data.
Among the two weaker models, generator-simple
is very sensitive to the depth, while tagger-last
is more sensitive to the embedded depth and dis-
tance. This means that the two models are prone
to different problems, although having comparable
performance.

Note that in the out-of-domain setting for depth,
the first three models have higher test error rate
even for smaller depth. Recall that we split the
dataset by the maximum depth of the sequence,
while reporting the error by the depth of the cur-
rent target, which means that they are tested on se-
quences that have deeper recursion at some point,
and the encoder can not recover from it. The only
exception is generator-attention, which is not af-
fected by this situation. Furthermore, this model
generalize well in all conditions.

4.4 Tasks Revisited

The different tasks of “understanding” the Dyck
language also give rise to the question of what is
exactly meant when stating that RNNs learn the
language, and whether the task can sufficiently
tests the claim. As mentioned before, some tasks
are clearly flawed, since they can be reduced to
the counting problem. For example, recogniz-
ing a Dyck word with only one type of brackets
(Deleu and Dureau, 2016) only requires counting
the depth. Similarly, completing the final bracket

144

0 10 20 30 40
depth

0.0
0.2
0.4

er
ro
r r

at
e

(a) Tagging error rate.

0 10 20 30 40
depth

0.0

0.5

1.0

er
ro
r r

at
e

(b) Completion error rate.

Figure 6: Error rates of the tagging and completion
tasks of the generator-attention model in the out-of-
domain setting.

of a Dyck word (Skachkova et al., 2018) also only
requires counting the depth and keeping track of
the most recent opening bracket of depth 0.

In our tagging task, the generator-simple
model performs very poorly when the depth is
high. This is because the model has to memo-
rize all the opening brackets, in order to generate
the full closing sequences. Apparently, the RNN
encoder alone is not capable of memorizing the
whole sequence (even in the in-domain condition),
and the noise in the memory causes the decoder
unable to correctly predict even the first bracket,
which is the main evaluation target.

The generator-attention model consistently
performs better, since it avoids compressing the
whole sequence into a fixed sized vector. Instead,
it keeps all the input tokens as individual (contex-
tualized) vectors, and use the attention mechanism
to find out the corresponding opening bracket, and
the decoder only needs to map the attended open-
ing bracket into the corresponding closing one.

Figure 6 shows the tagging error rate and the
completion (exact match) error rate of the same
generator-attention model in the out-of-domain
setting. The completion performance deteriorate
very rapidly beyond the depth that the model is
trained on, while the tagging performance seems
quite stable. This contrast clearly demonstrates
that the tagging task is inadequate to test the
RNN’s ability of modeling CFGs.

4.5 Attention

We have seen that even the best performing
generator-attention model cannot generalize in

(a) depth = 10. (b) depth = 20.

Figure 7: Attention matrices of a model trained on data
with maximum depth of 10 and tested on sequences
with depths of 10 and 20.

the out-of-domain condition to complete the full
closing bracket sequence, although it is able to
predict the first bracket correctly.

To identify the problem, Figure 7 visualizes the
attention matrices in the out-of-domain setting,
in which we take a generator-attention model
trained on the dataset with maximum depth of 10,
and test on the sequences with depth of 10 and
20. While the attention alignment seems perfect
for the sequence of depth 10, it gets blurry on a
deeper sequence. The first 9 output brackets are
still correctly aligned and predicted, the attention
then jumps over to the beginning of the source and
finishes the generation. This explains the sudden
deterioration of completion performance in Fig-
ure 6b, since almost all instances that are too deep
are closed prematurely.

This problem, however, is not manifested in the
tagging task as in Figure 6a, since it only mea-
sures whether the first generated bracket is correct,
while the generator only starts to make mistakes
after a certain number of steps.

4.6 Equivalence Test

As human, while performing the tagging and
completion tasks (as well as many other tasks
mentioned before) on the generalized Dyck lan-
guage, one can utilize an important property
to simplify the task, namely the equivalence of
different prefixes. For example, two prefixes
“[< < [< < [] > >” and “[< < [”
are equivalent with respect to predicting the next
closing bracket, since the closed clause is already
irrelevant. An ideal composition model should
also realize this fact and have the same or very

145

(a) tagger-last (b) tagger-all

(c) recurrent-simple (d) recurrent-attention

Figure 8: Equivalence test of four models.

similar representation for the two prefixes.

We thus design an experiment to test whether
our different models are capable of realize such
equivalence, and how well it holds under different
conditions, namely the depth and embedded depth
of the prefix. We construct the dataset by concate-
nating an open prefix ([< < [) to a balanced
clause (< < [] > >) of different lengths, and
measure the L2-norm of the distance of the en-
coder LSTM states after reading the open prefix
and the balanced clause. Ideally the two states
should be very similar, thus the L2-distance close
to 0. We randomly generate open prefixes up to
length 40, and balanced clauses also up to 40,
which correspond to the maximum depth of 40
and embedded depth of 20. We take the in-domain
models which have been trained on instances up
to these maximum values, but not necessarily the
combination of both maximums. For each model,
we plot the average L2-distance of 100 samples

for each combination.
Figure 8 shows the results, where lighter cells

means two equivalent prefixes have more similar
representations. Similar to the main task result,
the tagger-last model shows the worst ability to
capture the equivalence. Both tagger models are
insensitive to the depth and sensitive to the em-
bedded depth, which also agrees with the results
in Figure 4.

The generator models clearly capture the equiv-
alence better. However, we observe that the L2-
distance at higher depth is slightly smaller, while
Figure 3 has shown that recurrent-simple per-
forms worse at higher depth. This suggests that
the representation at deeper recursion may be sim-
ilar but contains only noisy information, which re-
quires further investigation in the future work.

5 Conclusion

In this work, we revisit the tasks based on the
Dyck language to probe the ability and limitation
of RNNs to encode context-free grammars.

We argue that the bracket tagging task is insuf-
ficient to prove the ability or expose the limitation
of a model, while the bracket completion task has
higher requirement as a test. Seq2seq models out-
perform the tagger models in the tagging task, but
still fail to generalize in the completion task. The
failure is especially apparent when visualizing the
model’s attention. We also conduct analysis on the
RNN’s representation of equivalent prefixes of dif-
ferent prefix depth and embedded depth.

Our results suggest that the RNNs can not truly
model CFGs, even when powered by the attention
mechanism. However, the seq2seq model with at-
tention is still a good approximation and fully ca-
pable of dealing with recursions as deep as it is
trained on.

As future work, we plan to further investigate
the open questions in our experiments, especially
regarding the attention alignment and equivalence
test. Furthermore, the equivalence property could
be used not only as a test for the representation, but
also as an auxiliary task to enforce better encoding
of the RNN.

6 Acknowledgments

This work was in part supported by funding from
the Ministry of Science, Research and the Arts of
the State of Baden-Württemberg (MWK), within
the CLARIN-D research project.

146

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jean-Philippe Bernardy. 2018. Can recurrent neural
networks learn nested recursion? LiLT (Linguistic
Issues in Language Technology), 16(1).

Noam Chomsky and Marcel P Schützenberger. 1963.
The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathemat-
ics, volume 35, pages 118–161. Elsevier.

Tristan Deleu and Joseph Dureau. 2016. Learning
operations on a stack with neural turing machines.
arXiv preprint arXiv:1612.00827.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Felix A Gers and E Schmidhuber. 2001. LSTM recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333–1340.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

Marc D Hauser, Noam Chomsky, and W Tecumseh
Fitch. 2002. The faculty of language: what is
it, who has it, and how did it evolve? science,
298(5598):1569–1579.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Associa-
tion for Computational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Luzi Sennhauser and Robert Berwick. 2018. Evalu-
ating the ability of lstms to learn context-free gram-
mars. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 115–124.

Natalia Skachkova, Thomas Trost, and Dietrich
Klakow. 2018. Closing brackets with recurrent neu-
ral networks. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, pages 232–239.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018a.
Extracting automata from recurrent neural networks
using queries and counterexamples. In International
Conference on Machine Learning, pages 5244–
5253.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018b.
On the practical computational power of finite pre-
cision rnns for language recognition. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), volume 2, pages 740–745.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN Language
Models Learn about Filler–Gap Dependencies? In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 211–221.

