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Abstract

When speakers code-switch between their na-
tive language and a second language or lan-
guage variant, they follow a syntactic pattern
where words and phrases from the embedded
language are inserted into the matrix language.
This paper explores the possibility of utiliz-
ing this pattern in improving code-switching
identification between Modern Standard Ara-
bic (MSA) and Egyptian Arabic (EA). We try
to answer the question of how strong is the
POS signal in word-level code-switching iden-
tification. We build a deep learning model en-
riched with linguistic features (including POS
tags) that outperforms the state-of-the-art re-
sults by 1.9% on the development set and 1.0%
on the test set. We also show that in intra-
sentential code-switching, the selection of lex-
ical items is constrained by POS categories,
where function words tend to come more often
from the dialectal language while the majority
of content words come from the standard lan-
guage.

1 Introduction

Code-switching (CS) is common in multilingual
communities as well as diglossic ones, where the
language of information and education is different
from the language of speaking and daily interac-
tion. With the increased level of education, mobil-
ity, globalization, multiculturalism, and multilin-
gualism in modern societies, combined with the
rise of social media, where people write in the
way they speak, CS has become a pervasive phe-
nomenon, particularly in user-generated data, and
a major challenge for NLP systems dealing with
that data.

CS is interesting for two reasons: first, there is a
large population of bilingual and diglossic speak-
ers, or at least speakers with some exposure to a
foreign language, who tend to mix and blend two
languages for various pragmatic, psycholinguistic

and sociolinguistic reasons. Second, existing the-
oretical and computational linguistic models are
based on monolingual data and cannot adequately
explain or deal with the influx of CS data whether
spoken or written.

CS has been studied for over half a century
from different perspectives, including theoretical
linguistics (Muysken, 1995; Parkin, 1974), ap-
plied linguistics (Walsh, 1969; Boztepe, 2003; Se-
tati, 1998), socio-linguistics (Barker, 1972; Heller,
2010), psycho-linguistics (Grosjean, 1989; Prior
and Gollan, 2011; Kecskes, 2006), and more re-
cently computational linguistics (Solorio and Liu,
2008a; Çetinoğlu et al., 2016; Adel et al., 2013b).

In this paper, we investigate the possibility of
using POS tagging to improve word-level lan-
guage identification for diglossic Arabic in a
deep-learning system. We present some syn-
tactic characterization of intra-sentential code-
switching, and show that POS can be a power-
ful signal for code-switching identification. We
also pay special attention to intra-sentential code-
switching and examine the distribution of POS
categories involved in this type of data.

The paper is organized as follows: in the re-
mainder of this introduction we present chal-
lenges, definitions, and types of CS, and the partic-
ular aspects involved in Arabic CS. Section 2 gives
an overview of related works. In Section 3, we de-
scribe and record our observations on the data used
in our experiments. Section 4 presents a descrip-
tion of our system and the features used. Section 5
gives the details of our experiments and discusses
the results, and finally we conclude in Section 6.

1.1 Why is CS Computationally
Challenging?

When two languages are blended together in
a single utterance, the traditional phonological
and morphosyntactic rules are perturbed. When
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judged by a standard monolingual model, these ut-
terances can be deemed as ungrammatical or un-
natural. Therefore, CS should generally be treated
in its own terms and not to be conceived of as
a peripheral phenomenon that can be understood
by tweaking and twisting monolingual models and
theories. When two languages come in contact,
this implies the cross-fertilization and the emer-
gence of structures that may be absent in either
languages. When code-switching, speakers com-
promise the syntactic rules of the two languages
involved, sometime adding in or leaving out a de-
terminer, or applying a system of affixation from
one language and not the other.

CS has conveniently been used as a cover term
(Myers-Scotton, 1997; Çetinoğlu et al., 2016) for
all operations where two languages are used si-
multaneously or alternately by the same speaker.
When the user speaks one sentence in one lan-
guage and another sentence in another language,
this has been referred to as inter-sentential code-
switching, while mixing elements from the two
languages together in the same sentence has been
termed intra-sentential. The language that pro-
vides the function words and grammatical struc-
ture is called the host (Bokamba, 1989) or ma-
trix language, while the language being inserted
is called the guest or embedded language.

While inter-sentential CS is relatively less chal-
lenging for computational analysis, as each sen-
tence still follows a monolingual model, intra-
sentential CS poses a bottleneck challenge. It
needs a special amount of attention, because it is
only this type that involves the lexical and syn-
tactic integration and activation of two language
models at the same time. NLP systems trained on
monolingual data suffer significantly when trying
to process this kind bilingual text or utterance.

CS has proved challenging for NLP technolo-
gies, not only because current tools are geared
toward the processing of one language at a time
(AlGhamdi et al., 2016), but also because code-
switched data is typically associated with addi-
tional challenges such as the non-conventional or-
thography, non-canonicity (nonstandard or incom-
plete) of syntactic structures, and the large number
of OOV-words (Çetinoğlu et al., 2016), which sug-
gest the need for larger training data than what is
typically used in monolingual models. Unfortu-
nately, shortage of training data has usually been
cited as the reason for the under-performance of

computational models when dealing with CS data
(Adel et al., 2015).

The study of CS does not only help downstream
tasks (like ASR (automatic speech recognition),
IR (information retrieval), parsing, etc.), but it is
also crucial for language generation (e.g. TTS
(text to speech), MT (machine translation), and
automated responses by virtual assistants) in order
to allow computational models to produce natural
sentences that closely match how modern societies
talk.

1.2 Definition and Defining Perspectives

The definition of CS has varied greatly depend-
ing on the different researchers’ attitude and per-
spectives of the operation involved. While some
viewed it as a process where two languages are ac-
tively interacting with each other (ultimately cre-
ating a new code), other viewed the operation just
as two separate languages sitting side-by-side as
isolated islands. Following the first perspective,
Joshi (1982) defined code-switching as the situ-
ation when two languages systematically interact
with each other in the production of sentences
in a framework which consists of two grammat-
ical systems and a mechanism for switching be-
tween the two. Following the second perspec-
tive, Muysken (1995) defined CS as “the alterna-
tive use by bilinguals of two or more languages
in the same conversation”, while other researchers
(Auer, 1999; Nilep, 2006) defined it as the “jux-
taposition” of elements from two different gram-
matical systems within the same speech.

The juxtaposition definition has been widely
cited in the research on code-switching, advanc-
ing a monolingual view on the topic and promot-
ing the idea that bilingual speech is the sum (or
juxtaposition) of two monolingual utterances. The
literal meaning suggests placing two heteroge-
neous and isolated pieces from different languages
next to each other, but, in fact, foreign phrases
are usually syntactically integrated and may often
change phonologically, morphologically and prag-
matically to fit homogeneously in the new posi-
tion. The term also has a sense of randomness,
which departs from the fact that CS is patterned
and predictable.

The view we adopt is that when people code-
switch, they interweave (Lipski, 2005) or blend
two languages together, and the grammar of code-
switching depends, to a large extent, on which lan-
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guages are being interwoven, where, when, how,
and by whom. The where and when relates to the
sociolinguistic factors, such as the situation and
power relations, and the how and by whom to the
psycholinguistic factors, such as speakers’ compe-
tence and proficiency in either or both languages.
This is why we see a wide range of regular patterns
as well as highly idiosyncratic behavior.

1.3 CS Types and Categories

A speaker can turn from one language to the
other at the sentence level, or he/she can make
the turn within the same sentence. Some re-
searchers (Muysken et al., 2000) use the term
“code-switching” to refer to the former case while
reserving the term “code-mixing” to refer to the
latter. However, these two types have more con-
ventionally been termed as inter-sentential and
intra-sentential code-switching, respectively, as
explained above.

Intra-sentential CS has further been divided by
Muysken et al. (2000) into three types: 1) insertion
where words or phrases from one language are in-
serted into another, 2) alternation where there is a
total shift from one language into the other, e.g.
starting the sentence in one language and ending
in another, and 3) congruent lexicalization similar
to insertion, but with a high frequency, and found
in typologically similar language pairs by fluent
bilinguals.

Another classification is by looking at the na-
ture of the language pairs, CS can be classified
as diglossic, i.e. between varieties of the same
language (e.g. Standard and Egyptian Arabic);
typologically-related, i.e. between language pairs
that belong to the same language family (e.g. En-
glish and Spanish); or typologically-distinct, i.e.
between language pairs that come from different
language families (e.g. Chinese and English). It
has been suggested that CS between typologically
similar languages is facilitated in ways that are
different from (and not found in) those in typo-
logically distinct languages (Lipski, 2005; Chan,
2009). By contrast, dialect/standard variation has
been viewed by some as a form of style shifting
(Trudgill, 1986) rather than proper CS, while oth-
ers argue that style-shifting may serve the same
kind of functions in conversation as CS (Boztepe,
2003), and that CS can happen between language
varieties as well as different languages (Gardner-
Chloros, 1991). It is to be noted however, that in

diglossic code-switching, the shift is more likely
to be lexical, morphological, and structural, rather
than phonological, unlike the other two cases
when we have two completely distinct language
systems.

1.4 Peculiarities of Arabic CS

Arabic is a diglossic language, where the lan-
guage of education is different from the language
of speaking. Dialectal Arabic has traditionally not
enjoyed the same prestige, socio-economic sta-
tus, and official recognition as MSA. Dialects, by
nature, diverge from the standard language, and,
therefore, they can easily and freely draw from the
larger repository of the standard language.

It has been suggested that CS most frequently
happens from the subordinate language to the
more superior one not vice versa (Lipski, 2005).
This, however, might be true in general, but not in
the absolute sense, as CS to the so-called subordi-
nate language may be for the back-stage commu-
nicative purposes (e.g. establishing identity and
friendliness or referencing a cultral meme).

Code-switching to MSA is used to establish au-
thority and maintain credibility. Using the dialect
(or mother tongue) on the other hand signifies a
sense of belonging, community and solidarity, and
attracts a higher level of attention and understand-
ability. In other words, MSA is the intellectual
language, while dialect is the emotive one.

The data used in the experiments in this pa-
per comes from Twitter which are in the written
modality, and this can significantly vary from the
spoken interactions. Arabic speakers’ competence
in spoken MSA is remarkably lower than in the
written one. While most Arabic speakers with
some level of education can write in MSA, far
fewer are able to utilize MSA in speaking. Spo-
ken CS can be observed more with public speak-
ers, like presenters, politicians and lecturers, and
less often with ordinary people.

Moreover, there is a large number of lexi-
cal items which have shared orthography in EA
(Egyptian) and MSA, though the pronunciation
is different, e.g. Y»


A
�
JÓ muta>ak~id/mito>ak~id

“sure”, �
éÊÓA¿ kamilap/kamolap “full”, and I. K
Q

�
¯

qariyb/quray~ib “near”. This is generic to some
extent, as the pattern mutaR1aR2~iR3, for in-
stance, is changed to mitoR1aR2~iR3 where R
stands for the root letter, or cardinal. As Twit-
ter data is written without diacritization, there is
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no way to know precisely whether words are pro-
nounced with dialectal or standard accent, though
the context can give some clue, and we think that
this kind of distinction was left to the annotators’
best judgment.

Arabic, as a morphologically-rich language,
has its peculiar behavior of merging morphemes
and clitics from the matrix language to the em-
bedded language. In diglossic mixed codes,
standard verbs can show dialectal morphology,
whether through affixes or templatic vowel shift-
ing, e.g. ÑêËAêÊ�Q�
ë hayirosilhAlohum “will send
it to them”. For foreign words, they can re-
ceive agreement morphology AîD
J.ºJ
ë haykabiyhA
“he will copy it”. This type of morpho-syntactic
blending is stereotypical of CS when Arabic, or
one if its dialects, is the matrix language.

2 Related Work

2.1 Computational Approaches
Research on computational approaches to CS has
been mainly concentrated in four areas: predict-
ing code-switching points, word-level language
identification, POS tagging, and automatic speech
recognition. However, some relatively recent re-
search has tried to tackle CS in MT (Johnson et al.,
2017), question answering (Raghavi et al., 2015),
sentiment analysis (Vilares et al., 2015) and infor-
mation retrieval (Chakma and Das, 2016).

The task of predicting code-switching points
is significantly different from word-level code-
switching identification, because in the former the
classifier is allowed only to look at the past (pre-
vious) words and predict which language the com-
ing word is going to be in, whereas in the latter, the
classifier has the fuller context and evidently can
achieve much higher accuracy. Moreover the for-
mer focuses on the elements or points after which
you can make the switch, while the latter looks at
the elements being switched themselves.

Solorio and Liu (2008a) pioneered the work on
CS and developed an ML (machine learning) clas-
sifier to predict code-switching points in Spanish-
English. The data they used was recorded con-
versations among three English-Spanish bilingual
speakers. The conversations included 922 sen-
tences and were manually transcribed and anno-
tated with POS tags. They trained their Naive
Bayes classifier on a number of features including
language ID, lemma and POS tags and reported an
f-score of 28%, with 1% positive variance gained

through the POS feature.
In another effort, Solorio and Liu (2008b) tried

POS tagging on Spanish-English CS data and con-
cluded that feeding the output of two monolingual
taggers to an ML algorithm yielded the best re-
sults.

Çetinoğlu et al. (2016) pointed out that POS
tagging of CS data proved much harder than tag-
ging monolingual texts, as models could reach
97% accuracy for the latter, but only around 77%
for the former. They attribute the poor perfor-
mance largely to the lack of CS annotated data,
and the fact that many systems just devise meth-
ods to choose from the output of two monolingual
POS taggers, e.g. the work of Solorio and Liu
(2008b) and Sharma et al. (2016).

Similar to the work of (Solorio and Liu,
2008a), Adel et al. (2013b,a) tried to predict code-
switching points for conversational speech in the
Mandarin-English SEAME corpus to improve an
ASR model. They used recurrent neural network
language modeling relying on POS tags and using
a factorized output layer. They noted that speak-
ers most frequently switch to another language
for nouns and object noun phrases. They also
assumed that the switching attitude is speaker-
dependent and clustered speakers into classes with
similar switching attitude. They reported an ac-
curacy of 43.31% and proved that POS tags have
statistically significant role on improving the re-
sults. Adel et al. (2013b) tried to accommodate
bilingual data by merging monolingual resources,
such as the English and Mandarin Dictionaries,
the output of two separate POS taggers, the Stan-
ford POS tagger for Mandarin, and the Stanford
tagger for English, and using two monolingual
language models. Additionally they hard-coded
some phonological rules to accommodate Singa-
porean English. They later extended their features
to include Brown clusters, open class words and
word embeddings (Adel et al., 2015) and found
that Brown word clusters, part-of-speech tags and
open-class words are the most effective at reduc-
ing the perplexity.

Fewer studies have focused on CS between
related language varieties which is typically a
diglossic kind of CS between a standard language
and a dialect, e.g. Cypriot Greek and Standard
Modern Greek (Tsiplakou, 2009).

CS research on Arabic included POS tagging
and word-level language identification. AlGhamdi
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et al. (2016) explored different technique for the
POS tagging of CS data and concluded that ap-
plying a machine learning framework as a voting
mechanism on top of the output of two mono-
lingual POS taggers achieves the best perfor-
mance. Word-level CS identification for Ara-
bic (along with Spanish–English) has been fea-
tured in a couple of shared tasks: the First
Shared Task on Language Identification in Code-
Switched Data (Solorio et al., 2014) and the Sec-
ond Shared Task on Language Identification in
Code-Switched Data (Molina et al., 2016), of
which Samih et al. (2016) was the winning sys-
tem, and against which we compare our results in
this project.

Eskander et al. (2014) studied CS between EA
written in Roman script (Arabizi) and English.
Habash et al. (2008) created a standard annotation
guidelines for CS between MSA and dialects.

CS has also been studied in Arabic as a predictor
of social influence in the collaborative writing in
Wikipedia discussion pages in (Yoder et al., 2017)
and it was found that CS is positively associated
with the editor’s success in winning an argument.

We notice from the literature that in some in-
stances POS tagging has been used to aid with
the identification of code-switching points, and in
some other instances language identification has
been used as an indicator or a feature for POS
tagging, showing what (Çetinoğlu et al., 2016) re-
ferred to as task inter-relatedness, or the cyclic na-
ture of task dependencies. In our work, we use a
POS tagger as a predictor of CS. The POS tagger
used has been trained specifically on CS data.

3 Data Description

The organizers of the Second Shared Task on
Language Identification in Code-Switched Data
(Molina et al., 2016) provided the annotated
dataset for the MSA–EA code-switched pairs. The
data consists of 8,862 tweets (185,928 tokens) as
training set, 1,117 tweets (20,688 tokens) as de-
velopment set and 1,262 tweets (20,713 tokens) as
final test set. The tagset statistics for the training
set are shown in Table 1.

Furthermore, the training data contains 970
(11%) intra-sentential CS tweets, i.e. tweets with
both lang1 (MSA) and lang2 (EA); 865 (10%)
tweets with lang2 only; and the remaining tweets
(79%) with lang1 only.

We analyze the POS distribution in the data us-

Labels Token Count Token Ratio %
ambiguous 1,186 0.64
unk 0 0.00
lang1 127,690 68.70
lang2 21,722 11.69
mixed 16 0.01
ne 21,567 11.60
other 13,691 7.37

Table 1: Tag count and ratio in the training set, where
lang1 is MSA, lang2 is EA, and ne is a named entity.

ing the prediction of a specially designed POS tag-
ger, described in 4.1, and notice that in those intra-
sentential CS sentences, the majority of func-
tion words (particles, adverbs and pronouns) come
from lang2 (dialect), while the majority of content
words (adjectives, verbs and nouns) come from
the lang1 (standard language). The distribution
of lang1 and lang2 by POS is shown in Figure 1.

Figure 1: POS Distribution in CS data

Figure 2 shows CS behavior on a sample of
users, and it indicates that the switching attitude
is idiosyncratic and user-dependent.

Figure 2: CS Distribution by Users

Data preprocessing: We transformed Arabic
scripts to SafeBuckwalter (Roth et al., 2008), a
character-to-character mapping that replaces Ara-
bic UTF alphabet with Latin characters to reduce
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size and streamline processing. Also in order to re-
duce data sparsity, we converted all Persian num-
bers (e.g. 2 ,1) to Arabic numbers (e.g. 1, 2),

Arabic punctuation (e.g. ‘,’ and ‘;’) to Latin punc-
tuation (e.g. ‘,’ and ‘;’), removed kashida (elonga-
tion character) and diacritics, and separated punc-
tuation marks from words.

4 System Description

Deep learning and neural nets have been used ex-
tensively in the past decade and were shown to sig-
nificantly outperform traditional (linear) ML mod-
els. The proclaimed advantage of deep learning is
that it eliminates the need for feature engineering.
Yet, there has been a growing interest recently to
augment neural nets with more and more linguis-
tic features, which has been shown to boost per-
formance for many tasks.

We use a DNN (Deep Neural Network) model
mainly suited for sequence tagging and is a
variant of the bi-LSTM-CRF architecture (Ma
and Hovy, 2016; Lample et al., 2016; Reimers
and Gurevych, 2017; Huang et al., 2015). Our
implementation is mostly inspired by the work
of Reimers and Gurevych (2017). In its basic
configuration, it combines a double representation
of the input words by using word embeddings
and a character-based representation with CNNs
(convolutional Neural Networks). The input
sequence is processed with bi-LSTMs, and the
output layer is a linear chain CRF. We augment
this model with various layers to accommodate
the different features we want to incorporate. The
features used in our model are explained below.

4.1 Dialectal POS Tagger
We develop a POS tagger using the data described
in Darwish et al. (2018). The tagger used in this
paper is developed using a deep neural network
model, unlike Darwish et al. (2018) who use a lin-
ear model. Our model predicts POS tagging at the
word level (not the token level), to suit how the
CS data is structured. We experiment with two
variants of the model, one that works with fine-
grained POS tags and one that uses coarse-grained
tags.

Basically, the difference between fine and
coarse tags is that in fine tags we preserve and con-
catenate the POS representation of the affixes and
clitics, while in coarse tags we eliminate affix rep-

Word Translit. / Fine Coarse
Gloss Tag Tag

½J.j�
K. byHbk prog_part Verb

likes+you +v+pron
A
	
KQ�.ªJ
ë hyEbrnA will+ fut_part Verb

consider+us +v+pron
QÒªË@ð wAlEmr and+ conj+det Noun

the+life +noun
½J.Ê

�
¯ qlbk noun+pron Noun

your+heart
½

�
®K
A£ TAyqk adj+pron Adj

standing+you

É
�
¯


BA« EAl>ql at+ prep+det Adj

the+least +adj

Table 2: Examples of unsegmented words with fine and
coarse POS tags.

resentation and keep the POS for stems only. The
distinction between fine and coarse tags is illus-
trated further with some examples in Table 2.

Our system achieves 92.38% accuracy with the
coarse tags and 88.43% using the fine tags. The
gap in performance is mostly due to the size of the
tagset. The number fine POS tags observed in the
data is 218, while there are only 28 coarse tags.
It is to be mentioned that the reported accuracy
for segmented words by Darwish et al. (2018) is
92.9%.

4.2 Features Used
Here we describe the features used in our deep
learning model.

POS tags. We include POS tags, as predicted by
the specially developed model described in 4.1
above, as a layer in the neural network model.

Word-level embeddings allow the learning algo-
rithms to use large unlabeled data to generalize be-
yond the seen training data. We explore randomly
initialized embeddings based on the seen training
data and pre-trained embedding.

For pre-trained embedding, we use FastText
(Bojanowski et al., 2017) on a corpus that we
crawled from the web with a total size of
383,261,475 words, consisting of user-generated
texts from Facebook posts (8,241,244), Twitter
tweets (2,813,016), user comments on the news
(95,241,480), and MSA texts of news articles
(from Al-Jazeera and Al-Ahram) of 276,965,735
words. After building the embeddings, we run the
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list of words in our dataset by the predictor in the
word vector model to ensure that we get represen-
tations of all the words and reduce the number of
OOVs (out of vocabulary words).

We find significant improvement using FastText
embedding over the traditional word2vec repre-
sentation (Mikolov et al., 2013). This is probably
due to the utilization of sub-word (ex. prefixes or
suffixes) information in the former.

Character-level CNNs. Although originally
designed for image recognition, CNNs have
proven effective for various NLP tasks due to their
ability to encode character-level representations
of words as well as extract sub-word information
(Collobert et al., 2011; Chiu and Nichols, 2016;
dos Santos and Guimarães, 2015).

Bi-LSTM Recurrent neural networks (RNN)
are well suited for modeling sequential data,
achieving ground-breaking results in many
NLP tasks (e.g., machine translation). Bi-
LSTMs (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) are capable of
learning long-term dependencies and maintaining
contextual features from both past and future
states while avoiding the vanishing/exploding
gradients problem. They consist of two separate
bidirectional hidden layers that feed forward to
the same output layer.

CRF is used jointly with bi-LSTMs to avoid
the output label independence assumptions of
bi-LSTMs and to impose sequence labeling
constraints as in Lample et al. (2016). In our
experiments with this task we find that CRF has a
slight advantage over the softmax optimizer.

Brown clusters (BC). Brown clustering is an
unsupervised learning method where words are
grouped based on the contexts in which they
appear (Brown et al., 1992). The assumption
is that words that behave in similar ways tend
to appear in similar contexts and hence belong
to the same cluster. BCs can be learned from a
large unlabeled corpus and have been shown to
improve POS tagging as well as other sequence
labelling tasks (Owoputi et al., 2013; Stratos and
Collins, 2015). We test the effectiveness of using
Brown clusters in the context of code-switching
experimentation in a DNN model by training

Figure 3: DNN Architecture.

BCs on our crawled code-switched corpus of 380
million words (mentioned above) with 100 Brown
Clusters.

Named Entity Gazetteers We use a large collec-
tion of named entity gazetteers of 40,719 unique
names from Attia et al. (2010), who collected
named entities from the Arabic Wikipedia, and
Benajiba et al. (2007), who annotated a corpus as
part of a named entity recognition system. The
assumption is that the gazetteer will enhance the
system’s recognition of NE’s which constitutes
between 11 and 14% of the tags in the datasets.
The feature is used as a binary class, i.e. whether
the word is present in the gazetteer list or not.

Spell Checking Word List Dialectal lexicon and
inflection can vary significantly from the standard
one. Based on this assumption we check for each
word whether or not it exists in a large word list
of fully inflected MSA words (Attia et al., 2012).
The word list contains 9,196,215 and is obtained
from the web as an open source resource 1.

The architecture of our model (with the best
performance) is shown in Figure 3. For each
word in the sequence, the CNN computes the
character-level representation with character em-
beddings as inputs. Then the character-level rep-

1https://sourceforge.net/projects/arabic-wordlist/
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resentation vector is concatenated with both word
embeddings vector and feature embedding vec-
tors (Brown Clusters, POS, and Gazetteers) to
feed into the bi-LSTM layer. Finally, an affine
transformation followed by a CRF is applied over
the hidden representation of the bi-LSTM to ob-
tain the probability distribution over all the code-
switching labels. Training is performed using
stochastic gradient descent with a momentum of
0.9 and batch size equal to 150. We employ
dropout (Hinton et al., 2012) to mitigate over-
fitting, and early-stopping (Caruana et al., 2000)
(with patience of 35). We further use the hyper-
parameters detailed in Table 3.

Layer Hyper-Parameters Value
Word Emb. dimension 300
Characters Emb. dimension 100

Characters CNN
window size 4
number of filters 40

POS Emb. dimension 166
Clustering Emb. dimension 100
Gazetteer Emb. dimension 2
Bi-LSTM state size 100

Dropout
dropout rate 0.5
batch size 150

Table 3: Parameter fine-tuning

5 Experiments and Results

We conduct a number experiments with different
layers in the neural network model stacked on
top of each other, making use of word and char-
acter representation, POS, FastText pre-trained
embeddings, and other features. This allows
us to see the significance of each feature and
how it contributes to the overall performance of
the system. The experiments are shown in Table 4.

The results in Table 4 are reported for the
f-score measure on the validation set, except for
the last row which gives the best model results
on the test set. The results generally show that
the DNN model is incrementally improving by
adding more features and external resources. The
best result is obtained with the aggregation of all
features, excluding the SP (spell checking word
list).

In the training data, lang1 (MSA) is the major-
ity class representing 68.7% of the labels. We use
majority voting as the baseline in order to detect if

# Experiments f-score averaged
f-score

1 Baseline 30.97 7.88
(majority voting)

2 POS-coarse 66.19 40.57
3 POS-fine 72.99 45.28
4 Words 83.78 55.78
5 Words+POS-fine 84.68 57.06
6 Chars 84.02 56.52
7 Words+Chars 84.87 57.36
8 Words+Chars 86.47 58.15

+POS-fine
9 Words+Chars 89.18 59.71

+POS+BC
10 Words+Chars 89.21 59.63

+POS+BC+GZ
11 Words+Chars 91.90 61.33

+POS+BC+GZ
+Embed

12 Words+Chars 91.48 61.02
+POS+Embed
+BC+GZ+SP

13 Words+Chars 91.92 61.35
+POS+BC+GZ
+Embed+PP
Results on 88.92 50.48
Test set

Table 4: DNN experiments and Results. Abbreviations:
BC: Brown Clusters, GZ: named entity gazetteer, SP:
Spelling word list, PP: post-processing

POS tags alone do send any positive signal to the
model at all. We note that the baseline is very low
which is due to the fact that the tag distribution in
the training set is disproportionate with both the
validation and the test set, where lang1 represents
only 30.96% and 28.10% of the data respectively.

It is to be noted that we apply post-processing
(PP) to the output of the prediction. The idea is
that foreign words (words written in Latin script),
punctuation marks, user names (words starting
with the ‘@’ sign), and hashtags (words starting
with the ‘#’ sign) should all be assigned the other
tag. As these are deterministic cases, we develop a
post-process procedure to correct errors in the pre-
dictions of the probabilistic model, and to make
sure that they are assigned the right tag.

Our experiments show that POS tags do give a
strong signal to the network that leads to a signifi-
cant improvement over the baseline, from 30.97%
to 66.19% using coarse-grained POS features and
72.99% using the fine-grained tags. We also no-
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Labels Token
Count

Token
Ratio %

Samih et
al. (2016)

Current
System

ambiguous 10 0.05 0.00 0.00
lang1 6,406 30.96 0.88 0.91
lang2 9,355 45.22 0.92 0.93
mixed 2 0.01 0.00 0.00
ne 3,024 14.62 0.84 0.86
other 1,891 9.14 0.97 0.98
Accuracy – – 0.900 0.919

Table 5: F1 score token level comparison between
Samih et al. (2016) and the current system on the de-
velopment dataset.

Labels Token
Count

Token
Ratio %

Samih et
al. (2016)

Current
System

ambiguous 117 0.57 0.000 0.00
unk 26 0.13 0.000 0.00
lang1 5,804 28.10 0.854 0.860
lang2 9,630 46.62 0.904 0.913
mixed 1 0.00 0.000 0.000
ne 2,363 11.31 0.777 0.789
other 2,743 13.28 0.957 0.965
Accuracy – – 0.879 0.889

Table 6: F1 score token level comparison between
Samih et al. (2016) and the current system on the test
dataset.

tice that using the predicted fine-grained POS is
significantly more helpful than using the predicted
coarse-grained one (although the prediction ac-
curacy for fine-grained tags is lower). This is
probably because the fine-grained POS tags en-
code more lexical information (related to clitics
and affixes) that can have distinctive combina-
tions. Adel et al. (2015) claimed that part-of-
speech (POS) tags can predict CS points more re-
liably than words themselves, but our results show
that words still give a stronger signal than POS
tags alone.

We also notice that Brown Clusters, named en-
tity gazetteers and FastText pre-trained embed-
dings contribute to incrementally improve the per-
formance of the system. Unfortunately adding in-
formation from the spelling word list did not show
any improvement on the system, and this is why it
is removed from the final system architecture.

Now we compare our best model to the state-of-
the-art system of Samih et al. (2016), which won
the 2016 Second Shared Task on Language Iden-
tification in Code-Switched Data (Molina et al.,
2016) on the MSA–EA dataset. We compare the
performance of the two systems in terms of f-score
accuracy on both the development and test set,
in Table 5 and Table 6 respectively. We also in-
clude the number of instances and the ratio per-
centage for each label. As the tables show, the cat-
egory lang2 constitutes the majority class for both

amb ne mixed other L1 L2
amb 0 0 0 0 1 9
ne 0 2507 0 14 277 226
mx 0 0 0 0 0 2
other 0 4 0 1844 7 36
L1 12 121 0 9 5931 333
L2 1 188 0 9 423 8734

Table 7: Confusion matrix for the development dataset.

the validation and test sets (45.22% and 46.62%
respectively), contrary to the training set where
lang1 makes up 68.70% of the labels.

For the development set our system outperforms
that of Samih et al. (2016) by 1.9% absolute with
significant gains for lang1 (3% absolute) and ne
(2% absolute). For the test set our system again
outperforms that of Samih et al. (2016) by 1.0%
absolute with the gain spread almost evenly across
all labels.

Table 7 presents the confusion matrix for the
validation set, which shows that ne suffers the
largest confusion as it gets mixed up as either
lang2 (EA) or lang1 (MSA). This is due to the
fact that many named entities in Arabic can also be
used as ordinary words, and, unlike English, there
is no case marking or other orthographic features
that can superficially distinguish the two. For ex-
ample, the word Õç'
Q» krym, can mean either “Ka-
reem” as an ne or “generous” as an adjective, and
ÈAÔg

.
jmAl can mean “Jamal” as an ne or “beauty”

as a noun. The second largest confusion is be-
tween lang1 and lang2, where we find that a con-
siderable amount of the mix-up coming from func-
tion words, such as ð wa “and”, ð


@ >aw “or” and

úÍ@

<ilY “to”, which can equally be used as either

lang1 or lang2, depending on the context.

6 Conclusion

We have presented a neural network system for
conducting word-level code-switching identifica-
tion. Our system outperforms the current state-
of-the-art, and we show that adding linguistic fea-
tures can contribute to improving the performance
of the deep learning models. We show that POS
tagging gives a strong positive signal for code-
switching prediction. We also examine the syntac-
tic patterns in diglossic code-switching, and ob-
serve that dialects show a bias in the choice of
word categories toward dialectal function words
over content words.
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