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Abstract

In data ranking applications, pairwise anno-
tation is often more consistent than cardi-
nal annotation for learning ranking models.
We examine this in a case study on rank-
ing text passages for argument convincing-
ness. Our task is to choose text passages that
provide the highest-quality, most-convincing
arguments for opposing sides of a topic. Us-
ing data from a deployed system within the
Bing search engine, we construct a pairwise-
labeled dataset for argument convincingness
that is substantially more comprehensive in
topical coverage compared to existing pub-
lic resources. We detail the process of ex-
tracting topical passages for queries submit-
ted to a search engine, creating annotated sets
of passages aligned to different stances on a
topic, and assessing argument convincingness
of passages using pairwise annotation. Using
a state-of-the-art convincingness model, we
evaluate several methods for using pairwise-
annotated data examples to train models for
ranking passages. Our results show pairwise
training outperforms training that regresses to
a target score for each passage. Our results
also show a simple ‘win-rate’ score is a bet-
ter regression target than the previously pro-
posed page-rank target. Lastly, addressing the
need to filter noisy crowd-sourced annotations
when constructing a dataset, we show that fil-
tering for transitivity within pairwise annota-
tions is more effective than filtering based on
annotation confidence measures for individual
examples.

1 Introduction

In online searches, results are typically presented
to users ranked only by the relevancy of the re-
sults to the query. Search engines typically learn
such relevancy through the positive reinforcement
of user clicks. However, when queries address
topics with multiple perspectives, some of which

may be polarizing and divisive, search result click-
through may reinforce biases of users contribut-
ing to the digital filter bubble or echo chamber
phenomena (Barberá et al., 2015; Vaccari, 2013;
Jamieson and Cappella, 2008; Wallsten, 2005).

To counter the filter bubble effect, search en-
gines may seek to actively provide diverse results
to topical queries (Yom-Tov et al., 2014), or even
explicitly present arguments on different sides of
an issue (Stab et al., 2018). In such scenarios, it is
desirable to not only consider the relevancy of the
diverse search results, but also their quality and
convincingness. In our work, we seek to rank a
collection of text passages by their argument con-
vincingness, for use in Bing’s multi-perspective
search feature that presents arguments on differ-
ent sides of a topical issue requested by a search
query. An example of our use case and the goal
of the model we aim to construct are presented in
Table 1.

Habernal and Gurevych (2016) formally intro-
duced the task of predicting argument convinc-
ingness to the language processing community by
providing the first annotated corpus1 (the UKP
dataset), as well as providing initial experimental
results on the dataset. The UKP dataset is anno-
tated in a pairwise fashion: given two arguments
with the same stance toward an issue, label which
argument is more convincing. The implementa-
tion of pairwise annotation for this dataset is theo-
retically and practically grounded.

Motivated by the pioneering work of Thurstone
(1927), pairwise labeling is a popular method for
annotating items for attribute value (Heldsinger

1 Although the ChangeMyView (CMV) (Tan et al., 2016)
dataset had been published several months earlier, we believe
the argumentation involved in the CMV dataset is more along
the lines of debate and persuasion because commentators are
trying to rebut the initial opinions and assertions made by
the original poster. The same also holds for the dataset from
Durmus and Cardie (2018).
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Query: reasons why nafta is good
Passages with a “Pro” stance Passages with a “Con” stance
Candidate 1: NAFTA has six advantages. First,
it quadrupled trade between Canada, Mexico, and
the United States. That’s because the agreement
eliminated tariffs. Trade increased to $1.14 tril-
lion in 2015. Second, it lowered prices. The
United States imports Mexican oil for less than
before the agreement.

Candidate 1: Is NAFTA a Bad Deal? The North
American Free Trade Agreement (NAFTA) has
come under fire recently, with some labeling it
a disaster and claiming that it is the driving force
behind the relocation of American firms like Ford
Motor Company to Mexico.

Candidate 2: Because it helps in political inter-
ests. NAFTA is meant to lower tariffs and there-
fore create pro business alliances between the
three signing nations. This allows for the U.S.
to buy products cheaper from Canada and tears
down the barriers to trade such as tariffs fees etc.

Candidate 2: Best Answer: see... the problem
is... people who support NAFTA only compare it
to either all out free trade... or no trade. trade is
good and needed... but that doesn’t mean it has to
be, or should be FREE trade... so stop with these
false comparisons of we have to trade...

Table 1: The table above shows the use-case for a ranking model for convincingness. Suppose a user has typed the
query ‘reasons why nafta is good’. Normally, this query will elicit links to texts that reflect only a positive stance
toward the ‘nafta’ issue. Alternatively, a system can be designed to show arguments from both sides of the issue.
In our system, we seek to select and present one passage to show for each side of the issue. Given passages that
have been mapped to the pro and con sides of the issue, we will use our model to choose the best passage to show
for each side of the issue. The above example illustrates a situation with two passage candidates for each of the
pro/con sides, and our model needs to choose the most convincing one to display for each side.

and Humphry, 2010; Loewen et al., 2012). Re-
cently, Shah et al. (2014) have conducted a suite
of annotation experiments in order to empirically
validate the belief that pairwise annotation is faster
and more accurate than cardinal annotation for
comparative tasks2. This paper presents a prac-
tical case study of a scenario where we have anno-
tated data in a pairwise fashion and wish to train a
model for ranking purposes.

The base model we use for predicting argu-
ment convincingness is an extension of the sum-
of-embeddings model proposed by Potash et al.
(2017). Our base model records state-of-the-art
performance on the ranking subtask from the UKP
dataset. Building on the base model, we explain
two primary methods for going from pairwise data
to a general ranking model: 1) Train a model
that independently produces scores for each pas-
sage using a pairwise training paradigm to min-
imize a cross entropy objective function; 2) As-
sign real-valued scores to each passage, and train
a model with a regression objective function to
minimize the model’s error against these scores.
The second approach requires a method to pre-
generate the real-valued passage scores used as

2In cardinal annotation, each individual example is as-
signed a score from a scale to signify the intensity of a given
attributed being annotated.

the regression targets using only pairwise annota-
tions. Towards this secondary goal, we test two
approaches: 1) Following Habernal and Gurevych
(2016), we generate PageRank (PR) (Page et al.,
1999) scores using directed graphs derived from
the labeled pairs; 2) We compute a simple ‘Win-
Rate’ (WR) percentage based on how often a pas-
sage is rated more convincing against its competi-
tor passages.

In order to test the robustness of the proposed
techniques for using pairwise-labeled data to cre-
ate a ranking model, we construct a new dataset for
convincingness with a superior coverage of topics
compared to the UKP dataset, which only has pas-
sages for 16 topics and roughly 1k total passages.
In comparison, our dataset covers 3,234 topics,
with roughly 30k total passages. The results of
experiments on the large-scale dataset show that
the best method for training a ranking model is to
use the pairwise labels directly. Secondly, regard-
ing the regression-based models, regressing to WR
is better than PR, and even competitive with pair-
wise training. Finally, filtering data based on la-
bel confidence can actually hurt performance, al-
though it can be beneficial to weight a pairwise
model based on label confidence. Alternatively,
removing query-passage sets where cycles appear
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in the directed graphs induced by the labels of pas-
sage pairs is a preferred method for data-filtering
in our case study.

2 Related Work

In terms of predicting argument convincingness,
only four authors have published results on the
UKP dataset (Habernal and Gurevych, 2016; Cha-
laguine and Schulz, 2017; Potash et al., 2017;
Simpson and Gurevych, 2018), with Potash et al.
(2017) and Simpson and Gurevych (2018) post-
ing state-of-the-art results on the pairwise classi-
fication3 and ranking tasks, respectively. Simp-
son and Gurevych’s model uses Gaussian Pro-
cess Preference Learning (Chu and Ghahramani,
2005), which learns a mapping from input passage
representations to real-valued scores.

Related to our use of label confidence to
weight training examples, solving problems in
NLP with models that leverage annotator agree-
ment/confidence has previously been explored.
Plank et al. (2014) and Alonso et al. (2015) use
the information from individual annotations on ex-
amples to improve sequential (part-of-speech tag-
ging) and structural (dependency parsing) tasks.
Previously, Beigman and Klebanov (2009) had
shown theoretically that noise from ambiguously-
annotated examples are more harmful to certain
learning models, namely the Voting Perceptron al-
gorithm (Freund and Schapire, 1999).

Lastly, methods for ranking from pairs is a rele-
vant research area for our work. Chen et al. (2013)
adopt an active learning framework for the popu-
lar Bradley-Terry model (Bradley and Terry, 1952)
in order to minimize the amount of annotations
required to train a ranking model from pairwise
data. Negahban et al. (2016) propose an algo-
rithm, Rank Centrality, that works on a graph in-
duced by pairwise annotations where node scores
come from their stationary probability under a ran-
dom walk. Chen and Suh (2015) improve upon
Rank Centrality by introducing an algorithm that
is specifically intended to recover the top k rank-
ings via spectral initialization and continued re-
finement over the pairs with a maximum likeli-
hood estimation.

3See Section 4.1 for more details of this model, as it is
the basis for our approach for modeling argument convinc-
ingness. Moreover, the model from Simpson and Gurevych
was not yet public as we were developing our model.

3 Dataset

Throughout the paper, we will refer to elements of
our dataset using terms that form a hierarchy. At
the top level, we use the term topic. A topic is
an idea/issue devoid of a specific stance/assertion.
Examples of topics are “coffee”, “nafta”, “mar-
garine”, and “fluoride”. Within each topic are
queries, which are search statements/questions
that possess a specific thesis/stance with regard to
its topic. For the topic “coffee”, a query may be “is
coffee good for you”, which takes as the assertion:
“coffee is good for you”. An alternative query may
be “is coffee bad for you”. The third element of
the hierarchy is a passage. A passage exists with
respect to a query, and argues the position that is
present in a query. Each query has multiple pas-
sages, all with the same stance toward a topic. In
this section we describe the process of going from
raw search data to a cleaned and annotated dataset
with passages of the same topic and stance anno-
tated for argument convincingness. The reason we
want to have data annotated in this manner is it re-
flects the context in which we would plan to use
the proposed model: we make the assumption that
the input passages to be ranked are all on the same
side of a stance related to a given issue, which, in a
practical scenario, has been dealt with by upstream
processing.

3.1 Dataset Creation

In order to test the utility of a convincingness
model over a large variety of topics we created a
dataset with larger topical coverage compared to
the UKP data. We seeded the process with data
collected for Bing’s multi-perspective search fea-
ture, which was designed to show two short pas-
sages arguing for opposing stances of an issue ex-
pressed by a user query submitted to the system
(e.g., “is coffee good for you”). The dataset con-
sists of topic, query, passage triples. Each query
conveys a pro or con sentiment for the expressed
topic. Multiple potential passages are matched
with each topic based on the Bing search engine’s
relevancy rankings with each passage assigned to
the pro or con side of the topic based on a senti-
ment analysis classifier trained for the task. The
passages themselves are snippets of text that have
been scraped from the Web. For each query in a
triplet, we have also automatically determined a
paired query expressing the opposing stance (e.g.,
“is coffee bad for you”) which we use to help
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Figure 1: For stance annotation, workers are presented
with a passage and a query pair, where each query is
meant to reflect either a positive or negative stance to-
ward an issue. The worker must choose which query
best aligns with the passage.

validate the stance of passages as detailed be-
low. The initial seed set contained 95,318 triples
across 18,864 unique queries covering 3,439 top-
ics. The initial annotations of the pro/con stances
of queries and passages of the data available from
the pre-existing system were created using auto-
matic means (e.g., a sentiment analysis model) and
were hence errorful. Additionally, no assessment
of the convincingness of the passages had been
conducted. Thus, we performed a two-stage man-
ual annotation process on the dataset to (1) gen-
erate ground truth stance labels for query/passage
pairs, and (2) generate pairwise convincingness
assessments of passages associated with the same
topic and stance.

3.2 Stance Annotation

Passage stance was determined by crowd work-
ers judging which query from a positive-negative
pair best aligns with a given passage. Workers
also had the option of labeling that neither query
aligns (i.e., the passage does not express a specific
stance), or that both queries align with the passage
(i.e., the passage provides arguments for both sides
of the issue). To ensure that the query pairs them-
selves are valid, a fifth option specifying invalidity
was provided for instances when a query is off-
topic from the passage, is ambiguous in meaning,
expresses multiple stances, or if both queries hold
the same stance. Figure 1 shows the stance an-
notation layout. The goal of stance annotation is
to identify pairs of passages that argue the same
stance on a topic, as expressed by a query.

To contribute to the dataset, workers first had to
read accompanying guidelines and examples then
pass a qualification test with a grade of 70%. This
test consisted of ten judgements made on passages
pre-determined to represent two of each of the five
available options. Feedback on the correct option
was given after each judgement. If workers failed
the initial qualifying set, they were provided with a
second attempt on ten new instances to encourage
learning and skill development.

Qualified workers who later hit an average
speed less than six seconds per judgement4, com-
pared to the overall average of 16 seconds, or who
had a low agreement score with other annotators,
were removed from the task and their work was
re-assigned to others. To prevent worker fatigue
and ensure a wide breadth of participation, indi-
vidual workers were prohibited from performing
more than 10% of the available annotations tasks.
The average number of annotations provided per
worker was 1,178. Using this approach, each
raw data point was annotated three times from a
pool of 223 workers. The process yielded a total
of 71,840 passage pairs associated with the same
stance on the same topic.

3.3 Convincingness Annotation

Comparisons on passage convincingness are per-
formed by workers judging which passage, from
a pair with the same stance toward an issue, is
more convincing. Refer to Figure 2 for the lay-
out of the convincingness annotation. Workers
are provided with tips on how to determine con-
vincingness, such as evaluating topic deviation,
use of facts, and citation of authority figures. To
force workers to make a decision, workers were
not given the option to rate the passages as equally
convincing. Workers are instructed to consider the
passage coherency and writing quality in the event
of a tie in convincingness. Each of the 71,840
passage pairs identified during the stance annota-
tion was annotated for convincingness by five dif-
ferent workers. We again applied techniques to
pre-qualify workers and remove workers produc-
ing low-quality work.

Workers for this stage were also required to read
guidelines and examples before passing a quali-
fication test, though with an increased grade re-
quirement of 80%. The test was composed of ten

4If a worker goes this speed, or faster, they are believed to
be clicking answers randomly or spamming.
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Figure 2: For convincingness annotation, workers are
presented with two passages, with the same stance to-
ward a topic (the search query), and are asked to label
which passage is more convincing.

judgements, split evenly between easy and hard
levels of difficulty, to be made on queries with
passage convincingness predetermined. Feedback
on the correct option was given after each judge-
ment again and another attempt was provided in
the event of failure, however this time without
feedback. Workers whose average speed mea-
sured less than six seconds per judgement com-
pared to the overall average of 20 seconds or who
had low agreement scores with other annotators
were blocked with their work being redone by the
remaining annotators. The total number of judge-
ments made per worker in this stage was limited
to 5% of the total annotations with 12 reaching the
limit and an overall average of 907 annotations per
worker. A total of 71,840 query-passage pair sets
were annotated five times each from a pool of 396
workers.

3.4 Constructing Passage Graphs
One key term for our work is Passage Graph,
which is the result of using binary annotations of
passage pairs to generate a directed graph. Mir-
roring the process from Habernal and Gurevych
(2016), a directed graph is constructed from all
the passage pairs that have been annotated with the
same topic-stance (query). The nodes of the graph
represent the individual passages associated with
a topic-stance. For a given passage pair (A,B),
if passage A is more convincing than passage B
(based on the combined assessments from multi-
ple annotators), a directed edge from node A to
node B is created. Assuming that every possible
passage pair has been annotated, the initial pas-

sage graph will be complete.

4 Ranking Model for Convincingness

In this section we describe our base model for pre-
dicting argument convincingness, as well as the
various approaches for using pairwise-labeled data
to train a model for ranking passages. We imple-
ment all our models in TensorFlow (Abadi et al.,
2016) and tokenize text using NLTK (Bird and
Loper, 2004).

4.1 Base Convincingness Model

The base model we use for predicting argument
convincingness is an extension of the sum-of-
word-embedding approach used by Potash et al.
(2017). Their model uses pretrained GloVe word
embeddings (Pennington et al., 2014), and, instead
of continuing to update the word embedding pa-
rameters during training, the model learns a fully-
connected layer that projects the embeddings into
a new embedding space. By doing so, the original
300-dimensional embeddings are transformed into
a 100-dimensional space. The model then sums
the projected word embeddings to create a single
vector representation of the full passage.5

We extend the original model by adding further
capacity in the form of a Feed Forward Neural
Network (FFNN) after summing the word embed-
dings. Specifically, we add three additional layers
(the original model had a single layer after sum-
ming embeddings) of sequentially decreasing size,
activated by the ReLU function: these layers have
dimensions of 32, 16, 8, and 1. Thus, there is a
total of four layers after creating the passage rep-
resentation, where the last layer produces a single
score.

Aside from the strong performance of this
model, the fact that it only requires pretrained
word embeddings as an external resource makes
it appealing, as it increases portability and short-
ens the preprocessing pipeline. In comparison,
the linguistic feature proposed by Habernal and
Gurevych (2016) require substantial preprocess-
ing, including part-of-speech tagging, named-
entity recognition, and sentiment analysis.

Using the publicly available UKP convincing-
ness dataset from Habernal and Gurevych (2016),

5Simple sum-of-word-embeddings has been shown to be
a strong (almost unreasonably so) approach for modeling
multi-token sequences (Conneau et al., 2017; Joulin et al.,
2017).
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Model Pearson’s r Spearman’s ρ Kendall’s τ
GPPL (linguistic+word embedding features) .44 .67 .50
Sum-of-Word-Embeddings+FFNN (our model) .48 (±.013) .69 (±.003) .52 (±.002)

Table 2: Results on the UKP argument convincingness dataset (Habernal and Gurevych, 2016) from our model
(Sum-of-Embeddings+FFNN) and Simpson and Gurevych (2018) (GPPL), which had previously been state-of-
the-art. Note that our model uses only pretrained word embeddings as features, whereas the GPPL uses pretrained
word embeddings plus a linguistic feature space of 32,010. Our numbers are the average across eight identical runs
(standard deviation in parentheses).

we test the effectiveness of our base convincing-
ness model against the the current state-of-the-art
(Simpson and Gurevych, 2018): Gaussian Pro-
cess Preference Learning (GPPL) with word em-
beddings and linguistic features (of dimensional-
ity 32,010) used to represent passages. The eval-
uation uses a leave-one-topic-out paradigm, mea-
sures correlation between our model’s predictions
and the gold standard scores, and averages the cor-
relation scores across topics. Results of our exper-
iments are presented in Table 2 and show that our
model achieves a new state-of-the art on the con-
vincingness ranking subtask across all three corre-
lation measures, which were the metrics used by
previous researchers on the dataset.

4.2 Methods for Ranking Model

Although Habernal and Gurevych (2016) used PR
over directed graphs induced from the pairwise
annotations to create unique convincingness
scores for single passages within a set, we posit
that such a methodology might be sub-optimal
for training a ranking model. We address two
primary concerns with this approach, and propose
solutions, which we detail below.

Train ranking model directly with pair-
wise data Regressing to any target induced
by pairwise-labeled data introduces a system
bias based on how the real-valued scores are
calculated. It may be better to use the pairwise an-
notations directly and train with an objective akin
to RankNet (Burges et al., 2005). Thus, our base
ranking model produces scores independently for
each passage in a pair, with the pair of scores
then normalized by the softmax function. The
softmax outputs become the input probabilities
for optimizing a two-class classification function
with cross-entropy, where the one-hot target is the
argument annotated as more convincing. At test
time, our base model then independently produces

a global convincingness score for each passage.

Optimize regression based on ‘Win-Rate’,
not PR Assuming we keep the regression objec-
tive for training, is there a better way to induce
real-valued scores for individual passages? Our
training data set, despite its wide topical coverage,
only averages four passages per query, with
many queries only having two passages. When
running PR on a graph with two nodes, directed
from one to the other, the node scores become
roughly 2

3 and 1
3 . A simpler, intuitive method

for scoring passages would be to assign 1 to the
more convincing passage, and 0 to the other.
Thus, as an alternative to PR we propose the
Win-Rate (WR) of a passage as the regression
target. We start with our dataset of passage pairs
with a single label assigned to the passage that is
more convincing (produced by the MACE (Hovy
et al., 2013) algorithm taking into account the
five raw annotations). We calculate the WR for
an individual passage by dividing the number of
times a passage is labeled more convincing than
another passage by the number of passage pairs
it appears in. The scores produced by WR are
normalized between 0 and 1 but have a higher
variance compared to PR because they do not
reflect a probability distribution.

Consequently, we propose to evaluate three
different methods of leveraging pairwise-labeled
data for training a ranking model: 1) Train
directly with pairwise data using a classification
objective; 2) Optimize a regression model for
WR; 3) Optimize a regression model for PR6.

5 Experimental Design

In this section we describe the details for eval-
uating the methods we propose in Section 4.2,

6We use the Python package NetworkX (Hagberg et al.,
2008) to create graphs and calculate PR scores.
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namely the approaches for filtering the fully anno-
tated dataset, as well as creating a properly curated
train/test split.

5.1 Creating Train/Test Split
A goal of the convincingness model is to be ag-
nostic to an argument’s topic, i.e. the model
should perform well on passages even for top-
ics not seen during training. Thus, we create a
train/test split not over individual examples, but
over topics (where a topic has an associated set
of queries, and each query has an associated set of
passages). We assign 80% of topics to the training
set and the remaining 20% to the test set.

For evaluation, we require gold-standard rank-
ings for passages in a query set. First, we filter
the individual examples in the test set by anno-
tator confidence, using a MACE entropy thresh-
old of .95. Next, to ensure no ambiguity in the
resulting ranking, we filter all queries that have
cycles in their directed passage graphs induced
from the pairwise MACE scores7 (we also re-
move graphs that have become disconnected due
to MACE filtering removing certain edges). To
further ensure that the resulting passage rankings
are gold-standard, despite not being set-ordered
during annotation, we only keep queries whose
passage rankings, determined by both WR and
longest walk on the passage graphs, are identi-
cal. The resulting gold-standard test set contains
659 queries with an average of 2.23 passages per
query.

5.2 Filtering/Weighting Training Data
Although the rigorous filtering process for creat-
ing the gold-standard test set maintains that the
ranks created by sorting on WR generate an un-
ambiguous ordering, doing so reduces the amount
of data available. The question then becomes, is
it better to keep data with noisy labeling in or-
der to increase the amount of data available for
training? In order to evaluate the effect of filtering
data in the training set, we experiment with filter-
ing data based on two methods: (1) removing in-
dividual annotated passage pairs with MACE en-
tropy score below 0.958, and (2) removing query-

7For example, if we have labeled pairs for passages a, b, c,
where a is more convincing than b, b is more convincing than
c, and c is more convincing than a, then the labeled graph
contains a directed cycle.

8This process remains the same regardless of whether a
model trains on individual passage examples for regression
training or passage pairs for pairwise training. However, this

passage sets if there are cycles present in the
passage-graph. Because MACE assigns entropy to
each label given to an annotated pair, we also ex-
periment with weighting the training cost of each
training example in the pairwise model using its
MACE entropy. Specifically, since the passage
rated as more convincing has a MACE entropy be-
tween 0.5 and 1, we set the training cost weight to
(2∗entropy)−1 producing a weight in the interval
(0,1).

6 Results

The results of our experiments are shown in Ta-
ble 3. For each query-passage set in the test set
we predict scores for each passage individually,
and evaluate the scores against the gold-standard
ranking, as described in Section 5.1. We calculate
Kendall’s tau and the top 1 accuracy (i.e., the pro-
portion of passage sets where the most convincing
passage in the set is ranked first)9,10. We average
the scores on each query across the test set to pro-
duce a single number for each metric. We compare
the results of our models with the results of a ran-
dom baseline and the relevancy score assigned by
the search engine to the original passage, query,
topic triple (see Section 3).

An initial result of our experiments is that train-
ing a pairwise model leads to better ranking per-
formance compared to regressing to a target score
for each passage. Furthermore, the use of weight-
ing in training for the pairwise model makes the
model more robust with respect to different fil-
tering scenarios of the training data, though we
achieve the best correlation with gold standard
without using the weighting. Indeed, without
weighting during training, the pairwise model
only outperforms regression to WR, in terms of
correlation to gold standard, in one out of four
scenarios of training data filtering. Alternatively,
when training models with the complete dataset,

procedure affects the amount of data for these types of mod-
els differently. For example, given N passages, there are
N choose 2 pairs. However, if one pair (edge in the pas-
sage graph) is removed due to MACE filtering, there still re-
mains N passages for regression training (assuming the pas-
sage graph hasn’t become disconnected), but only (N choose
2)-1 passage pairs for pairwise training.

9We do not use normalized discounted cumulative gain
(nDCG) (Järvelin and Kekäläinen, 2002) because our passage
sets are so small. For example, when the set only has two ele-
ments, predicting the inverse of the gold-standard still yields
an nDCG@2 of 0.63.

10Additionally, we do not use Pearson or Spearman corre-
lation, which we used in the UKP experiments, because they
are not classical ranking metrics.
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Training Objective Cycles Filtered MACE Filtered % Filtered Kendall’s τ Top1
Pairwise No No 0% .419 .684
Pairwise No Yes 43% .436 .692
Pairwise Yes No 61% .464* .701
Pairwise Yes Yes 48% .431 .690
Pairwise, Weighted No No 0% .445 .690
Pairwise, Weighted No Yes 43% .451 .701
Pairwise, Weighted Yes No 61% .458 .704*
Pairwise, Weighted Yes Yes 48% .455 .700
Regression to PR No No 0% .408 .677
Regression to PR No Yes 13% .411 .676
Regression to PR Yes No 40% .392 .657
Regression to PR Yes Yes 18% .399 .669
Regression to WR No No 0% .442 .688
Regression to WR No Yes 13% .445 .692
Regression to WR Yes No 40% .456 .695
Regression to WR Yes Yes 18% .431 .684
Random - - - .000 .447
Relevancy Ranking - - - .204 .585

Table 3: Results of ranking experiments on our newly-annotated dataset. Bold indicates the best performance for
a given model on a given evaluation metric, and * indicates the best result across all models.

i.e. not using any filtering, regressing to WR is
better than pairwise training without weighting.

In terms of regression targets, WR is shown to
be a superior objective compared to PR. Further-
more, this holds across all variations of filtering
the training data. In fact, PR exhibits its worst per-
formance under the filtering constraints where WR
performs the best. These results show that even
if one has decided on a regression objective, the
way in which one calculates the scores to which
the model fits is important.

When examining the effects of data filtering,
combining strategies is not always better. Our
results show that it is better to filter out whole
passage sets that have cycles, as opposed to fil-
tering out individual examples based on MACE
score. However, if MACE filtering has already
been done, it is generally better to leave cycle-
inducing passage sets in the training data. These
results indicate that there may be a fine line be-
tween removing noise and removing useful infor-
mation. There is also an interesting relationship
between MACE filtering and cycle filtering. We
observe that filtering for cycles after initially filter-
ing by MACE results in more data being left, when
compared with solely filtering by cycles. This im-
plies that MACE entropy scores are able to predict

which labels may lead to cycles in a passage graph.

6.1 Convincingness versus Relevancy
Regarding the actual utility of ranking passages by
argument convincingness, as opposed to just using
topical relevancy, our results show that in fact con-
vincingness and relevancy are separate attributes
when it comes to grading a passage. Although
the use of relevancy ranking scores results in more
convincing passages being selected than random
guessing, the relevancy model does not predict ar-
gument convincingness as effectively as a model
trained specifically to do so. In other words, when
constructing a search engine for arguments, the
most topically relevant passage may not be the
most convincing with regard to its stance on an
issue. Future work can evaluate the best practice
for combining these different attributes for the best
user experience.

7 Conclusion

Our work provides a practical case study in the
use of pairwise-annotated data to train a model
for ranking passages with respect to their argu-
mentative convincingness. We describe an anno-
tation process that takes the raw output of a search
engine and transforms the data into pairs of pas-
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sages with the same stance toward an issue, anno-
tated for which passage is more convincing. We
then construct a base model for predicting argu-
ment convincingness that posts state-of-the-art on
a publicly available dataset. We conclude with
a comprehension evaluation of different ranking
models using our newly-annotated dataset. Our
results show that a pairwise model trained with
cross-entropy objective provides the best perfor-
mance, though regressing to a simple Win-Rate
target can also perform competitively.
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