@inproceedings{choe-etal-2019-neural,
title = "A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning",
author = "Choe, Yo Joong and
Ham, Jiyeon and
Park, Kyubyong and
Yoon, Yeoil",
editor = "Yannakoudakis, Helen and
Kochmar, Ekaterina and
Leacock, Claudia and
Madnani, Nitin and
Pil{\'a}n, Ildik{\'o} and
Zesch, Torsten",
booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/W19-4423/",
doi = "10.18653/v1/W19-4423",
pages = "213--227",
abstract = "Grammatical error correction can be viewed as a low-resource sequence-to-sequence task, because publicly available parallel corpora are limited. To tackle this challenge, we first generate erroneous versions of large unannotated corpora using a realistic noising function. The resulting parallel corpora are sub-sequently used to pre-train Transformer models. Then, by sequentially applying transfer learning, we adapt these models to the domain and style of the test set. Combined with a context-aware neural spellchecker, our system achieves competitive results in both restricted and low resource tracks in ACL 2019 BEAShared Task. We release all of our code and materials for reproducibility."
}
Markdown (Informal)
[A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning](https://preview.aclanthology.org/fix-sig-urls/W19-4423/) (Choe et al., BEA 2019)
ACL