
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 159–167
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

159

The LAIX Systems in the BEA-2019 GEC Shared Task

Ruobing Li† Chuan Wang Yefei Zha Yonghong Yu Shiman Guo Qiang Wang
Yang Liu† Hui Lin†

LAIX Inc.

†{ruobing.li, yang.liu, hui.lin}@liulishuo.com

Abstract

In this paper, we describe two systems we de-
veloped for the three tracks we have partic-
ipated in the BEA-2019 GEC Shared Task.
We investigate competitive classification mod-
els with bi-directional recurrent neural net-
works (Bi-RNN) and neural machine transla-
tion (NMT) models. For different tracks, we
use ensemble systems to selectively combine
the NMT models, the classification models,
and some rules, and demonstrate that an en-
semble solution can effectively improve GEC
performance over single systems. Our GEC
systems ranked the first in the Unrestricted
Track, and the third in both the Restricted
Track and the Low Resource Track.

1 Introduction

Grammatical error correction (GEC) is the task
of automatically correcting grammatical errors in
text. With the increasing number of language
learners, GEC has gained more and more atten-
tion from educationists and researchers in the past
decade. The following is a GEC example: I [fall
→ fell] asleep at 11 p.m. last [nigh → night].
Here fall needs to be corrected to its past tense
form and nigh is a spelling mistake.

GEC is considered as a mapping task from in-
correct sentences to correct sentences. Incorrect
sentences can be seen as being produced by adding
noises to correct sentences. The added noise does
not happen randomly, but occurs when people
learn or use the language according to a certain er-
ror distribution and language usage bias. Initially,
people used rule-based approaches to solve GEC
problems (Naber and Miłkowski, 2005). Rules are
relatively easy to make but with poor generaliza-
tion. Later researchers began to treat GEC as a
classification task. According to the grammati-
cal information around the target word, classifiers

can be constructed to predict the true grammati-
cal role of the target word. One drawback of the
classification methods for GEC is that training dif-
ferent classifiers for different error types may be
resource-intensive and inefficient since there are
many grammatical error types. Recently, transla-
tion methods have become the focus of research,
and there is a clear trend that state-of-the-art GEC
systems are being shifted from traditional NLP
methods to NMT based methods.

In recent years, GEC performance has seen sig-
nificant improvement in some public GEC test
sets (Ge et al., 2018). In CoNLL-2013 (Ng et al.,
2013) and CoNLL-2014 (Ng et al., 2014) GEC
Shared Task, machine learning based GEC meth-
ods emerged with relatively good performance.
Classification methods achieved the best result in
CoNLL-2013 (Rozovskaya et al., 2013). After
that, statistical machine translation (SMT) meth-
ods began to show better performance in CoNLL-
2014 (Felice et al., 2014). (Chollampatt et al.,
2016) was the first study to obtain the state-of-
the-art result with neural networks. Then af-
ter (Junczys-Dowmunt and Grundkiewicz, 2016),
machine translation methods became the main-
stream in GEC solutions. In addition, an RNN-
based context model achieved better results than
previous traditional classification models (Wang
et al., 2017). Using a CNN-based sequence-
to-sequence architecture (Gehring et al., 2017),
(Chollampatt and Ng, 2018) proposed the first
end-to-end NMT model and reported the state-of-
the-art result. As Transformer (Vaswani et al.,
2017) plays an increasingly important role in se-
quence modeling, Transformer-based end-to-end
NMT models began to lead the current GEC re-
search (Junczys-Dowmunt et al., 2018; Grund-
kiewicz and Junczys-Dowmunt, 2018; Ge et al.,
2018; Zhao et al., 2019). It is worth mentioning
that (Lichtarge et al., 2019) used Wikipedia ed-



160

its history corpus, which is huge but noisy, and
gained a result very close to the state-of-the-art
result. Learning a GEC translation model from
noisy data is a worthy future direction as the GEC
parallel corpus is expensive to obtain.

This paper describes our two systems for
the three tracks in the BEA-2019 GEC Shared
Task (Bryant et al., 2019). We use two popular
NMT models and two improved versions of neu-
ral classification models to train the basic models.
Ensemble strategies are then used to combine out-
comes from different models. Our two systems for
the three tracks are described in next section. In
Section 3, we evaluate the systems on the devel-
opment data and show the final results on the test
data. Section 4 concludes the paper and summa-
rizes the future work.

2 System Overview

2.1 Restricted and Unrestricted Track

We submitted the same system output for the Re-
stricted and Unrestricted tasks. The system uses
several ensemble methods to combine the CNN-
based and Transformer-based translation models,
described in details below.

2.1.1 CNN-based translation ensemble
systems

We found that CNN-based systems obtained the
best results for some error types, likely due
to some characteristics derived from CNN. We
trained four CNN-based ensemble systems, using
the model architecture in (Chollampatt and Ng,
2018), but without reranking. Four best combina-
tions to build the ensemble systems were selected.
Unlike (Chollampatt and Ng, 2018), we did not
use fastText (Bojanowski et al., 2017) to initial-
ize word embeddings because we found no im-
provement on the development set by doing that.
We tuned parameters for the system, such as batch
size, word embedding dimension, etc.

2.1.2 Transformer-based translation systems
Transformer is currently considered to be one of
the most powerful models for sequence model-
ing. For GEC, some of the best recent results re-
ported on CoNLL-2014 test set are obtained by
Transformer-based translation models. We trained
eight Transformer-based translation models in
a low resource translation paradigm (Junczys-
Dowmunt et al., 2018). We tuned parameters for

domain and error adaptation. We also compared
the results using 2 GPUs and 4 GPUs as the au-
thors reported the difference in their Github repos-
itory1.

2.1.3 Ensemble methods
We expect to combine these models trained above
into a more powerful system through effective en-
semble methods. Our ensemble work mainly fo-
cuses on rule-based solutions. We will introduce
two main modules first.

Confidence Table We can obtain the precision
and F0.5 metric on each error type through sen-
tence alignment and error type classification by
Errant (Bryant et al., 2017). Errant provides per-
formance statistics based on 55 error types and is
also the tool used to evaluate this GEC shared task,
thus we use the result of operation and error type
span-level (Bryant et al., 2017) for a model or sys-
tem as the confidence table.

Conflict Solver We often encounter GEC error
conflicts when combining multiple models or sys-
tems. For example, We love played soccer. One
system corrects played to playing, while another
system may correct played to to play. When two
different corrections occur in the same place, we
need to consider which one to choose.

We solve this problem in a unified pipeline,
which can also be seen as an ensemble way:

(1) We sort each group of conflicting correc-
tions proposed by all the systems in a reverse order
of location index and confidence.

(2) We apply three sub-strategies:

• When combining outcomes from different
systems, we treat the precision in a confi-
dence table as the confidence. Each correc-
tion has its confidence obtained by looking
up the precision of the corresponding type of
the correction in the table. If two conflict-
ing corrections are the same, we merge them
and add α to the confidence of the correction;
otherwise, the correction with a lower confi-
dence will be discarded.

• After combining outcomes, if the confidence
of a correction is lower than β, the correction
is discarded.

• γ is used to distinguish when it is more im-
portant to focus on the precision or F0.5 of

1https://github.com/grammatical/
neural-naacl2018

https://github.com/grammatical/neural-naacl2018
https://github.com/grammatical/neural-naacl2018


161

Figure 1: The architecture of the ensemble system in Restricted and Unrestricted Tracks.

a correction. When we move to the final
ensemble with confidence tables of existing
systems, if the confidence is larger than γ, we
select the correction proposed by the system
that has the best F0.5 on the type of this cor-
rection. Otherwise, the correction by a sys-
tem with the best precision is selected.

In Figure 1, ⊗ means the outcome is obtained
by combining two systems represented by inter-
secting lines of two different colours. If there are
multiple ⊗ on a line, it means the ensemble is
over all of these ⊗ on this line. Figure 1 displays
three types of ensemble methods based on all of
the CNN-based and Transformer-based translation
models.

• Combine each CNN-based ensemble model
with each of the selected five of the
Transformer-based models. This is noted as
‘ensemble-by-2’.

• Perform ensemble over all of the ensemble
models relating to either CNN ensemble 1 or
CNN ensemble 2, noted as EoE (Ensemble
over Ensemble) 1 and 2.

• Ensemble each CNN ensemble model with
some selected combinations of Transformer-

based models to produce 16 strong ensemble
system outcomes, represented as ‘Hybrid En-
semble’ in Figure 1. It is where multiple lines
of the same color are merged into one line in
Figure 1.

After getting all of the ensemble outcomes, we
will do the final ensemble step: select the best con-
fidence for each type from each single or ensem-
ble system to form the strongest final outcome. In
this ensemble step, we use the last aforementioned
sub-strategy, and discard the error types with very
low confidence to boost the final performance.

2.2 Low Resource Track
For the Low Resource Track we developed dif-
ferent individual systems and used an ensemble
method to combine them. For the translation
model, we did not obtain very strong performance
because the training data is limited. We also ex-
plored the noisy Wikipedia edit history corpus for
the Transformer-based translation model. How-
ever, we noticed that, for some error types with
clear definitions, the classifiers trained on a large
amount of native corpus have good performance.
In addition, we made some grammatical rules to
correct errors and adopted an off-the-shelf spelling
checker (Kelly, 2006). Finally, we leverage a sim-



162

ple ensemble method to combine all of the classi-
fiers, rules, spelling checker and translation mod-
els. Note that for the Restricted and Unrestricted
tracks, we did not observe any gain from the clas-
sification models or the rule-based methods, there-
fore only the translation systems were used for
those tracks.

2.2.1 Classification model
After an analysis of the development sets, we de-
cided to build classifiers for eight common error
types. Based on (Wang et al., 2017), we devel-
oped two classification model structures for the
eight error types.

(A) Bi-GRU context model
Figure 2 shows the bi-directional GRU context

model we use to determine the right grammatical
category for a target word. The concatenated left
and right source states of the target word form the
contextual semantic vector representation. This is
used as a query to calculate the attention weight
at. An attention vector Ct is then computed as
the weighted average, according to at, over all the
source states. Ct is then fed through a fully con-
nected layer and softmax layer to produce the pre-
dictive distribution.

Figure 2: Bi-GRU Context model structure.

We use this to train models for the following er-
ror types: Subject-verb agreement, Article, Plural
or singular noun, Verb form, Preposition substi-
tution, Missing comma and Period comma substi-
tution. Labels for each task were extracted auto-
matically from the native corpus through part-of-
speech tagging tools.

(B) Pointer context model
The classifiers above use the same classification

labels for different target words. We also need a
classification model to deal with the problem as in
the Word form task, where each word has a dif-
ferent set of predictive labels (as shown for word
‘gone’ in Figure 3). Inspired by the Pointer net-
work model (Vinyals et al., 2015), we proposed
the pointer context model. Figure 3 shows the
pointer context model that takes the target word’s
confusion set as the label candidates. The compu-
tation path is the same as the Bi-GRU model struc-
ture. We concatenate the target word’s char-based
embedding and Ct to obtain C1

t , and then use it
as the query to compute dot product a1t with each
of the word embeddings in the confusion set. a1t
is then fed through a softmax layer to produce the
predictive distribution. This model is very effec-
tive at dealing with varying number of candidates
as seen in the Word form task.

Figure 3: Pointer Context model structure.

2.2.2 NMT model
We use the same Transformer-based translation
model mentioned in Subsection 3.2.2. Due
to the limitation of the corpus, we leverage
the Wiked (Grundkiewicz and Junczys-Dowmunt,
2014) as our training corpus for the NMT model.

2.2.3 Rules and spell checker
We have implemented the following GEC rules.

(1) ‘a’ and ‘an’ substitution. For this problem,
we made rules based on the first phoneme of the
following word.

(2) Comma deletion. After a prepositional



163

Track FCE Lang-8 NUCLE W&I+
LOCNESS

Common
Crawl Wiked Wiki

dumps
Restricted Track Yes Yes Yes Yes Yes - -

Unrestricted Track Yes Yes Yes Yes Yes - -
Low Resource Track - - - - Yes Yes Yes

Table 1: Corpus used for training in corresponding track.

Seed Batch size Word embedding
dimension

Number of
input channels

Number of
output channels

Number
of layers F0.5

5001 32 128 256 256 7 0.3370
5002 32 128 256 256 7 0.3219
5003 32 128 256 256 7 0.3370
5004 32 128 256 256 7 0.3411
5005 32 128 256 256 7 0.3449
5012 32 256 512 512 10 0.3339
5102 32 128 512 512 7 0.3329
7011 16 256 512 512 7 0.3328
7205 32 256 512 512 14 0.3328

Table 2: Results of tuned single CNN-based translation models on the development set.

phrase at the beginning of a sentence, we add a
comma. For example, “Despite our differences we
collaborate well.” A comma should be added after
Despite our differences.

(3) Orthography mistakes. We obtain statis-
tics of named entities that require initial capital-
ization and make a white list using the Wikipedia
corpus. If a word is on the white list, we will force
the conversion to the initial capitalization form.

In addition, we use Pyenchant as our spell
checker (Kelly, 2006). The top candidate is con-
sidered to be the correction.

2.2.4 Ensemble
We use the conflict solver described above to do
the ensemble for all of the outputs of the classi-
fiers, rules, spell checker and NMT model.

3 Experiments

3.1 Data Sets
Table 1 lists the data sets used in Restricted Track
and Unrestricted Track, including FCE (Yan-
nakoudakis et al., 2011), Lang-82 (Mizumoto
et al., 2012), NUCLE (Ng et al., 2014),
W&I+LOCNESS (Bryant et al., 2019) and Com-
mon Crawl. We use Common Crawl to pretrain
the decoder parameters for the Transformer-based
translation model. FCE, Lang-8, NUCLE and
W&I are used to train all of the translation models.

2https://lang-8.com

It is worth noting that we did data augmentation
for W&I to train all of the translation models. The
data sets used in Low Resource Track include
Wiked, Wikipedia Dumps and Common Crawl.
All of the classifiers are trained on Wikipedia
Dumps and the translation model is trained on
Wiked corpus. For Wiked corpus, we did some
data cleaning work. We discarded some noisy sen-
tences that include error types such as U:OTHER,
R:OTHER, R:NOUN, etc. The development set
from W&I+LOCNESS are used in all the tracks.
Following the data pre-processing pipeline used to
generate the data provided by the shared task, we
tokenize all of the data using spaCy3.

3.2 Restricted and Unrestricted Track

3.2.1 CNN-based translation ensemble
models

We added the W&I corpus eight times to the train-
ing corpus for domain adaptation. Table 2 shows
the performance of the single CNN-based trans-
lation models. All the parameters in Table 2 are
tuned over the W&I+LOCNESS development set.

Table 3 shows the results of the four CNN-based
ensemble systems. We use ensembles in the same
way as (Chollampatt and Ng, 2018). The above
results prove that the ensemble method has yielded
a very large improvement in this task.

3https://spacy.io

https://lang-8.com
https://spacy.io


164

Ensemble index Combination Precision Recall F0.5

1 5012,5102,7011,7205 0.5076 0.2195 0.4021
2 5001,5002,5003,5004 0.5003 0.1951 0.3811
3 5005,5012,5102,7205 0.5156 0.2150 0.4029
4 5005,5012,7011,7205 0.5152 0.2159 0.4034

Table 3: Results of CNN-based ensemble systems on the development set.

Model index Error weight Copy number of
W&I trainset

GPU
number Precision Recall F0.5

1 3 10 2 0.4585 0.3525 0.4325
2 3 10 4 0.4602 0.3514 0.4333
3 3 8 2 0.4592 0.3575 0.4345
4 3 8 4 0.4641 0.3548 0.4372
5 3 15 2 0.4494 0.3479 0.4247
6 3 15 4 0.4648 0.3467 0.4352
7 2 10 2 0.4715 0.3303 0.4343
8 2 10 4 0.4868 0.3412 0.4485

Table 4: Results of Transformer-based translation models on the development set.

3.2.2 Transformer-based translation models

We trained eight Transformer-based translation
models in different combinations of error adapta-
tion, domain adaptation, and GPU set.

In Table 4, we notice that a smaller error weight
yields higher precision and a slight decrease in re-
call. We set the copy number as 8, 10 and 15,
and find that domain adaptation has no significant
effect on the results. 4 GPU is obviously better
than 2 GPU sets, which is probably because of the
larger batch size accumulation for gradient calcu-
lation.

3.2.3 Ensemble methods

As described in Section 2.1.3, we need to ensem-
ble all of the CNN-based and Transformer-based
translation models. We have already introduced
the configuration of the single models in Section
3.2.1 and Section 3.2.2. Next we will describe the
configuration of the ensemble system.

For the three ensemble types: Ensemble-by-2,
EoE and Hybrid Ensemble, as shown in Figure 1,
we used different parameters in the conflict solver.

We did a small-scale grid search for the param-
eters in Table 5. When combining two models that
are not strong, we expect a higher recall so β was
not high. For EoE and hybrid ensemble, we expect
a higher precision so that they can provide high
quality single type performance. Corrections pro-
posed by multiple models are given higher weights
(controlled by α). If the confidence of a correction

Ensemble method α β γ

Ensemble-by-2 0.2 0.4 -
EoE 0.15 0.8 -

Hybrid ensemble 0.15 0.62 -
Final ensemble 0.0 0.5 0.52

Table 5: Parameters in the conflict solver for the
ensemble methods in Restricted and Unrestricted
Track.

finally reaches β, the correction will be adopted.
In the final ensemble, we select the best perfor-
mance on each type from each single system or
ensemble system and discard the corrections with
low precision (controlled by β). To get higher
F0.5, in the case where the precision is greater than
a predefined threshold (controlled by γ), we will
choose the model with the highest F0.5 for the cor-
responding error type. The final outcome of the
data set is then fed through the translation models
and ensemble systems again to do a second pass
correction.

3.2.4 Results
Table 6 summarizes some results on the develop-
ment set and gives the official test result. We can
see that the individual CNN or Transformer-based
translation models perform reasonably well, and
the ensemble methods consistently outperform the
individual systems. The second pass correction
further improves the performance, and the last
post-processing step boosts both recall and F0.5.



165

Step Precision Recall F0.5

Best CNN-based ensemble model 0.5152 0.2159 0.4034
Best Transformer-based translation model 0.4868 0.3412 0.4485
Best ensemble-by-2 0.5281 0.3434 0.4768
Best hybrid ensemble 0.5885 0.3278 0.5078
+ Combine best performance 0.6283 0.3269 0.5305
+ Second pass 0.6272 0.3412 0.5372
Submission system (+ Post-processing, Dev set) 0.6243 0.3457 0.5376
Submission system (Test set) 0.7317 0.4950 0.6678

Table 6: Results of Restricted and Unrestricted Track.

Ensemble method α β γ

Ensemble for all 0.15 0.3 -
Final ensemble 0.0 0.25 0.3

Table 7: Parameters for the ensemble method in Low
Resource Track.

Table 6 also shows that there is a big gap between
the performance on the development set and test
set, partly because the final test set uses a combi-
nation of five annotators.

3.3 Low Resource Track

3.3.1 Classification models
We trained classifiers for seven error types:
Subject-verb agreement, Article, Plural or singular
noun, Verb form, Preposition substitution, Miss-
ing comma and Period comma substitution and
Word form. As mentioned in Subsection 2.2.1,
Word form model is trained using the Pointer Con-
text model. The other error types are trained using
Bi-GRU Context model.

3.3.2 NMT model
A Transformer-based translation model is trained
on the filtered Wiked corpus. The model archi-
tecture follows that in (Junczys-Dowmunt et al.,
2018). Although the performance of the NMT
model is not strong, it provides good performance
equivalent to the classifiers for some error types.

3.3.3 Ensemble
We use one conflict solver to combine the outputs
from all of the systems in this task. Parameters for
this ensemble system are shown in Table 7.

3.3.4 Results
Table 8 shows results for different systems (for
classification models, different error type classi-
fiers) on the development set, and the overall re-

Model Precision Recall F0.5

Rule 0.4497 0.0216 0.0905
Spelling 0.3188 0.0363 0.1248
Article 0.4367 0.0134 0.0597

Missing comma 0.4729 0.0503 0.1763
Period comma

substitution
0.4561 0.0070 0.0328

Plural or
singular noun

0.3203 0.0121 0.0524

Preposition
substitution

0.3713 0.0101 0.0454

Subject-verb
agreement

0.3981 0.0115 0.0517

Verb form 0.4135 0.0074 0.0344
Word form 0.4506 0.0294 0.1164

NMT 0.1279 0.1480 0.1315
Submission
system (Dev

set)
0.4970 0.1686 0.3577

Submission
system (Test

set)
0.6201 0.3125 0.5181

Table 8: Results of Low Resource Track.

sults on the test set. We can see that the base sys-
tems are not very strong, and the ensemble system
significantly improves the performance. The dif-
ference between the development set and test set
can still be observed in this task.

4 Conclusions and Future Work

We have presented two different systems for the
three GEC tracks. When there is a sufficient
parallel learner corpus, such as in Restricted
Track and Unrestricted Track, the NMT en-
semble model is the best choice to implement a
GEC system. We have evaluated two kinds of
NMT models: CNN-based and Transformer-based
translation models. We have also explored differ-
ent ensemble strategies from multiple base mod-



166

els to maximize the overall system performance.
Finally we reached the result of F0.5=0.6678 on
the official test set in Restricted Track and Unre-
stricted Track, ranking the third in the Restricted
track4. It is worth noting that there is a huge gap
between the results on the development set and
the test set, which suggests that there might be an
unneglectable mismatch between the development
set and the test set. Indeed, the development set
is annotated by one annotator, while the test set is
annotated by five, as announced officially.

For Low Resource Track, there is a lack of
parallel learner corpus, and thus we rely less on
the translation models. We have built eight classi-
fiers trained on Wikipedia dumps according to dif-
ferent error types and an NMT model trained on
the Wikipedia edits history corpus. By a simple
ensemble method, we reached F0.5=0.5181, plac-
ing our system in the third place in Low Resource
Track.

Although GEC has reached the human level per-
formance on some GEC test sets, there is still
room for improvement. In a low resource setup,
how to deal with the huge but noisy data is worth
exploring. (Lichtarge et al., 2019) gave a good
solution on this topic, but more work needs to
be done. Second, we will investigate methods
such as the reinforcement learning based method
(Wu et al., 2018) to address the mismatch between
the training objectives and evaluation methods in
GEC.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 Shared
Task on Grammatical Error Correction. In Proceed-
ings of the 14th Workshop on Innovative Use of NLP
for Building Educational Applications. Association
for Computational Linguistics.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In Proceedings of
the 32nd AAAI Conference on Artificial Intelligence.
4https://www.cl.cam.ac.uk/research/nl/

bea2019st/#results

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016. Neural network translation models for
grammatical error correction. In Proceedings of the
25th International Joint Conference on Artifcial In-
telligence.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. Eighteenth Conference on Com-
putational Natural Language Learning.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching
human-level performance in automatic grammatical
error correction: An empirical study. Microsoft Re-
search Technical Report.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. Proceedings of the
34th International Conference on Machine Learn-
ing.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2014. The wiked error corpus: A corpus of correc-
tive wikipedia edits and its application to grammat-
ical error correction. In Advances in Natural Lan-
guage Processing – Lecture Notes in Computer Sci-
ence, volume 8686, pages 478–490. Springer.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2018. Near human-level performance in grammati-
cal error correction with hybrid machine translation.
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
The 2016 Conference on Empirical Methods on Nat-
ural Language Processing.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics.

Ryan Kelly. 2006. Pyenchant.

Jared Lichtarge, Christopher Alberti, Shankar Kumar,
Noam Shazeer, and Niki Parmar. 2019. Weakly su-
pervised grammatical error correction using iterative
decoding.

Tomoya Mizumoto, Yuta Hayashibe, Mamoru Ko-
machi, Masaaki Nagata, and Yu Matsumoto. 2012.
The effect of learner corpus size in grammatical er-
ror correction of esl writings. In Proceedings of
COLING 2012.

Daniel Naber and Marcin Miłkowski. 2005. Language-
Tool.

https://arxiv.org/pdf/1607.04606.pdf
https://arxiv.org/pdf/1607.04606.pdf
https://aclweb.org/anthology/P17-1074
https://aclweb.org/anthology/P17-1074
https://arxiv.org/pdf/1606.00189.pdf
https://arxiv.org/pdf/1606.00189.pdf
https://arxiv.org/pdf/1606.00189.pdf
https://www.cl.cam.ac.uk/research/nl/bea2019st/#results
https://www.cl.cam.ac.uk/research/nl/bea2019st/#results
https://arxiv.org/pdf/1606.00189.pdf
https://arxiv.org/pdf/1606.00189.pdf
https://aclweb.org/anthology/W14-1702.pdf
https://aclweb.org/anthology/W14-1702.pdf
https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1705.03122.pdf
http://emjotde.github.io/publications/pdf/mjd.poltal2014.draft.pdf
http://emjotde.github.io/publications/pdf/mjd.poltal2014.draft.pdf
http://emjotde.github.io/publications/pdf/mjd.poltal2014.draft.pdf
https://arxiv.org/pdf/1804.05945.pdf
https://arxiv.org/pdf/1804.05945.pdf
https://arxiv.org/pdf/1605.06353.pdf
https://arxiv.org/pdf/1605.06353.pdf
https://arxiv.org/pdf/1804.05940.pdf
https://arxiv.org/pdf/1804.05940.pdf
https://arxiv.org/pdf/1804.05940.pdf
https://github.com/rfk/pyenchant
https://arxiv.org/pdf/1811.01710.pdf
https://arxiv.org/pdf/1811.01710.pdf
https://arxiv.org/pdf/1811.01710.pdf
https://aclweb.org/anthology/C12-2084
https://aclweb.org/anthology/C12-2084
https://languagetool.org
https://languagetool.org


167

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. Eighteenth Confer-
ence on Computational Natural Language Learning.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The conll-
2013 shared task on grammatical error correction.
Seventeenth Conference on Computational Natural
Language Learning.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons,
and Dan Roth. 2013. The university of illinois sys-
tem in the conll-2013 shared task. Seventeenth Con-
ference on Computational Natural Language Learn-
ing.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. 31st Conference on Neural Information
Processing Systems.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Proceedings of the 28th In-
ternational Conference on Neural Information Pro-
cessing Systems.

Chuan Wang, RuoBing Li, and Hui Lin. 2017. Deep
context model for grammatical error correction.
Proceedings of the Seventh ISCA workshop on
Speech and Language Technology in Education
2017.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A study of reinforcement learning
for neural machine translation. Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics.

https://www.aclweb.org/anthology/W14-1701
https://www.aclweb.org/anthology/W14-1701
https://aclweb.org/anthology/W13-3601
https://aclweb.org/anthology/W13-3601
https://www.aclweb.org/anthology/W13-3602
https://www.aclweb.org/anthology/W13-3602
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1506.03134.pdf
http://www.slate2017.org/papers/SLaTE_2017_paper_5.pdf
http://www.slate2017.org/papers/SLaTE_2017_paper_5.pdf
https://arxiv.org/pdf/1808.08866.pdf
https://arxiv.org/pdf/1808.08866.pdf
https://www.aclweb.org/anthology/P11-1019
https://www.aclweb.org/anthology/P11-1019
https://arxiv.org/pdf/1903.00138.pdf
https://arxiv.org/pdf/1903.00138.pdf
https://arxiv.org/pdf/1903.00138.pdf

