
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 200–208
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

200

Improving Word Embeddings Using Kernel PCA

Vishwani Gupta Sven Giesselbach Stefan Rüping Christian Bauckhage
Fraunhofer IAIS, Sankt Augustin, Germany

firstname.lastname@iais.fraunhofer.de

Abstract

Word-based embedding approaches such as
Word2Vec capture the meaning of words and
relations between them, particularly well when
trained with large text collections; however,
they fail to do so with small datasets. Exten-
sions such as fastText reduce the amount of
data needed slightly, however, the joint task
of learning meaningful morphology, syntac-
tic and semantic representations still requires
a lot of data. In this paper, we introduce a
new approach to warm-start embedding mod-
els with morphological information, in order
to reduce training time and enhance their per-
formance. We use word embeddings gener-
ated using both word2vec and fastText mod-
els and enrich them with morphological infor-
mation of words, derived from kernel princi-
pal component analysis (KPCA) of word sim-
ilarity matrices. This can be seen as explic-
itly feeding the network morphological simi-
larities and letting it learn semantic and syn-
tactic similarities. Evaluating our models on
word similarity and analogy tasks in English
and German, we find that they not only achieve
higher accuracies than the original skip-gram
and fastText models but also require signifi-
cantly less training data and time. Another
benefit of our approach is that it is capable of
generating a high-quality representation of in-
frequent words as, for example, found in very
recent news articles with rapidly changing vo-
cabularies. Lastly, we evaluate the different
models on a downstream sentence classifica-
tion task in which a CNN model is initialized
with our embeddings and find promising re-
sults.

1 Introduction

Continuous vector representations of words
learned from unstructured text corpora are an ef-
fective way of capturing semantic relationships
among words. Approaches to computing word
embeddings are typically based on the context

of words, their morphemes, or corpus-wide co-
occurrence statistics. As of this writing, arguably
the most popular approaches are the Word2Vec
skip-gram model (Mikolov et al., 2013a) and the
fastText model (Bojanowski et al., 2017). The
skip-gram model generates embeddings based on
windowed word contexts. While it incorporates
semantic information, it ignores word morphol-
ogy. Yet, the latter might be beneficial espe-
cially for morphologically rich languages such as
German and Turkish. Bojanowski et al. (2017)
therefore introduced fastText which builds on the
Word2Vec approach but also incorporates mor-
phology by considering sub-word units and rep-
resenting a word by a sum of its character n-grams
as well as the word itself.

To learn high-quality embeddings, Word2Vec
requires huge text corpora with billions of words
and still fails to generate high-quality vector rep-
resentations for less frequent or unknown words.
Although fastText improves the results by incor-
porating subword information, it still fails in many
cases. This is particularly evident in the news do-
main where frequently new words such as names
occur over time which, in turn, impacts the per-
formance of downstream applications. In this pa-
per, we therefore propose an alternative approach
which not only makes use of morphological in-
formation but also performs well when trained on
smaller datasets or domains with rapidly changing
vocabulary. Research questions we answer in this
paper are:

1. Can high-quality word embeddings be
trained on small datasets?

2. Can high-quality embeddings be generated
for infrequent words?

3. Can the use of morphological information in-
crease the efficiency of learning semantic and
syntactic similarities?

201

linguistically

cushitic

couscous

sardinian

austroasiatic

hassaniya

(a) Skip-gram

linguistically

linguistic

artistically

linguistica

calling

recalling

(b) KPCA skip-gram

linguistically

artistically

stylistically

linguistica

simplistically

altruistically

(c) FastText

linguisticallylinguistic

distinguishable

linguists

distinguishes

distinguishing

(d) KPCA fastText

Figure 1: Visualization of 5-nearest neighbors for the word “Linguistically”.

2 Related work

Mikolov et al. (2013a) proposed log-bilinear mod-
els to learn vector representations of words from
the context in which they appear in large corpora.
These are the Continuous Bag-of-Words Model
(CBOW) and the Continuous Skip-gram Model
(skip-gram) which predict target words from
source context words and source context words
from target words, respectively. An extension pro-
posed by Mnih and Kavukcuoglu (2013) involves
training lightweight log-bilinear language models
with noise-contrastive estimation and achieves re-
sults comparable to the best previous models with
one quarter of the training data and in less com-
puting time.

There are some recent works which try
to incorporate morphological structures into the
computation of embeddings. Soricut and Och

(2015) learn vector representation of morpholog-
ical transformations and are able to obtain repre-
sentations for unseen words. Cotterell et al. (2016)
presented a morpheme-based post-processor for
word embeddings. They proposed a Gaussian
graphical model which can be extended to contin-
uous representations for unknown words as well
as helps in smoothing the representations of the
observed words in the training dataset. Bhatia
et al. (2016) proposed a new unified probabilis-
tic framework in which they combine morpholog-
ical and distributional information. The word em-
beddings act as a latent variable for which mor-
phological information provides a prior distribu-
tion. This in turn condition a likelihood function
over an observed dataset. Bojanowski et al. (2017)
proposed fastText, an extension of the skip-gram
model, which learns word representations by in-

202

cluding sub-word information. This is achieved by
not only representing words with vectors but also
the subword parts they consist of. Word vector
representations are finally built as the sum of their
sub-word vectors and their own representation.

3 KPCA-based skip-gram and fastText
models

In this section, we propose a general extension
to word embedding methods which we evaluate
on the skip-gram model as well as on the fast-
Text model. We propose pre-training embeddings
with a kernel PCA computed on word similarity
matrices, generated using a string similarity func-
tion, for words in a vocabulary and then inject-
ing the pre-trained embeddings in the Word2Vec
and fastText embeddings by initializing them with
the KPCA word and subword embeddings. This
seamlessly incorporates sub-word structures in
Word2Vec and yields a better starting point for
fastText training. It is especially useful for mor-
phologically rich languages because their seman-
tically similar words often share some common
morphemes such as roots, affixes, and syllables.

3.1 Kernel PCA on string similarities

Embedding words according to morphological
similarities can be seen as a clustering problem
in a higher dimensional feature space which can
be tackled using Kernel PCA (Schölkopf et al.,
1997), a nonlinear form of principal component
analysis. Suppose a vocabulary V of words wi, a
string similarity measure S (e.g. the n-gram simi-
larity (Brito et al., 2017)), and a non-linear kernel
function K (e.g. the Gaussian) to be given. This
allows us to compute a |V | × |V | word similarity
matrix K where

Kij = K
(
S(wi, wj)

)
(1)

Centering this kernel matrix (Schölkopf et al.,
1997) yields a feature space representation of
words in V , because column vector ki of K can
be seen as a |V |-dimensional representation of wi.
Performing PCA in this feature space then allows
for selecting the first d < |V | nonlinear principal
components vi which, in turn, allow for project-
ing word vectors into lower dimensional spaces.
Using projection matrix,

P =

[
v1

λ1
, ...,

vd

λd

]
(2)

generated by selecting d eigenvectors v1 to vd

corresponding to the highest eigenvalues, λ1 to λd,
the d-dimensional projections are

ei = Pᵀki. (3)

3.2 Models with KPCA embeddings

Computing Kernel PCA for a large vocabulary is
computationally demanding. We thus restrict our
vocabulary V to contain only the most frequent
words of a text corpus. For any new or out of vo-
cabulary word snew not contained in V , we can
compute its kernel vector

knew = K
(
S(snew, V)

)
(4)

and obtain a lower dimensional representation as

enew = Pᵀknew. (5)

Note that word embeddings computed
this way only encode morphological similar-
ity. To incorporate semantic similarities, we
initialize Word2Vec and fastText models with
the pre-trained KPCA embeddings. We train
the Word2Vec skip-gram model with negative
sampling (Mikolov et al., 2013b) on our morpho-
logical embeddings using the C implementation
of Word2vec package1.

To initialize the fastText model with morpho-
logical embeddings, we also compute the KPCA
vectors for the subword units in the dictionary,
as fastText also has vector representations for
character n-grams contained in words. We train
the fastText model initialized with our morpholog-
ical embeddings using the C++ implementation
of fastText 2. After training both the models,
we obtain embeddings encoded with semantic,
syntactic and morphological similarities whose
practical merits we evaluate in the next section.

4 Experimental Results

To evaluate our models’ performance when trained
on datasets of different sizes, we consider English
and German datasets such as Text8 3, 20 News

1https://code.google.com/p/word2vec/
2https://github.com/facebookresearch/

fastText/
3http://mattmahoney.net/dc/text8.zip

https://code.google.com/p/word2vec/
https://github.com/facebookresearch/fastText/
https://github.com/facebookresearch/fastText/
http://mattmahoney.net/dc/text8.zip

203

Dataset name Language Corpus size (words) Vocab Size (words)

20 Newsgroups English 1 million ≈ 19, 000

Text8 English 10 million ≈ 70, 000

English Wiki 2016 English 1,192 million ≈ 330, 000

German news 2013 German 183 million ≈ 247, 000

Table 1: Details of the datasets used for evaluation.

groups 4, English Wiki 2016 and German news
2013 5 for training. Each dataset contains articles
crawled from news websites or Wikipedia. These
raw text corpora contain a large amount of irrele-
vant text and are pre-processed using a script by
Mahoney6. In Table 1, we list all the datasets that
we have used to train the models.

4.1 Baseline

One of our main results is the observation that
the KPCA fastText model and the KPCA skip-
gram model generate high-quality word embed-
dings even when trained only on small datasets
when compared to fastText or skip-gram model
respectively. To compare how well our models
perform in comparison to the original skip-gram
model and fastText model, we consider both of
them as the baselines in all our experiments and
use the same parameters and datasets for generat-
ing and evaluating embeddings for all models.

4.2 Evaluation

We evaluate our models using intrinsic evaluation
tasks which assess how well the vectors capture
meanings of and relationships between words. In
particular, we evaluate all the models with respect
to

1. Word similarity tasks which include finding a
word’s nearest neighbors.

2. Word analogy tasks which include calculat-
ing the semantic and the syntactic similarities
between words and their relations.

3. Performance in a downstream application
which illustrates how well the embeddings

4http://qwone.com/˜jason/
20Newsgroups/

5http://www.statmt.org/wmt14/
training-monolingual-news-crawl/news.
2013.de.shuffled.gz

6http://mattmahoney.net/dc/textdata.
html

work for subsequent processing steps such as
a sentence classification task (Kim, 2014).

4.3 Word similarity Evaluation
Word similarity tasks evaluate word embeddings
in terms of their k-nearest neighbors. For selected
words, we show nearest neighbors according to
cosine similarity for vectors trained using the pro-
posed models as well as the baseline models. Here
we illustrate how the models performed for fre-
quent as well as for infrequent words. Table 2
presents examples for all the models obtained af-
ter being trained for an epoch on the small Text8
dataset.

The table illustrates that for the frequent
words, all the models learn a good representation
and are able to produce relevant nearest neigh-
bors. For the infrequent words, the skip-gram
did not learn a very good representation as there
are not enough examples for the word to learn
from. In these cases the nearest neighbor of
the skip-gram model are not very meaningful,
e.g. it places firecracker close to “prochnow”,
while the KPCA fastText model places it closer to
“cracker” and “fire” related words. Since the fast-
Text model uses sub-word information, it achieves
better performance at this task compared to the
skip-gram model. It finds meaningful neighbors
for “placental”, however it fails for words such
as “cruel”. KPCA skip-gram gets a warm start
with the morphological information learned from
KPCA, which helps in learning a better represen-
tation for scarce words, thus producing better k-
nearest neighbors for words such as “cruel”.

When we compare KPCA skip-gram with
KPCA fastText, we observe that KPCA fastText
generally generates better neighbors. We assume
this is because of the fact that it benefits from the
fastText approach of jointly refining subword and
word representations. Comparing fastText with
the better initialized KPCA fastText model, KPCA
produces decidedly better neighbors, especially
for “scrubbing”, “firecracker”, “linguistically” and

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.de.shuffled.gz
http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.de.shuffled.gz
http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.de.shuffled.gz
http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html

204

Word (frequency) Model k-nearest neighbors (sorted by similarity)

three (114,775)

Skip-gram four, five, seven, eight, runways

KPCA skip-gram four, seven, five, eight, nine

fastText four, five, seven, zero, eight

KPCA fastText seven, five, four, eight, nine

history (12,623)

Skip-gram overview, timeline, prehistory, origins, beginnings

KPCA skip-gram article, origins, pamphlets, references, offshoot

fastText prehistory, historique, historica, historiques, historiography

KPCA fastText historical, prehistory, histories, historiography, historic

april (3,069)

Skip-gram june, march, august, february, november

KPCA skip-gram august, march, june, february, december

fastText february, january, october, september, november

KPCA fastText february, august, june, october, november

biblical (703)

Skip-gram talmud, josephus, apocrypha, tanakh, commentaries

KPCA skip-gram judaica, mythical, mexica, metaphysical, micah

fastText evangelical, biblically, bibliographical, noncanonical, mythological

KPCA fastText bible, bibles, bibl, testament, biblically

moscow (622)

Skip-gram warsaw, armistice, versailles, hostage, daoud

KPCA skip-gram kabul, prague, beirut, bonn, cpsu

fastText mosby, mokhehle, moonwalks, mocha, rsfsr

KPCA fastText borisovich, soviet, helsinki, denisovich, warsaw

cruel (140)

Skip-gram injustice, urge, fears, zeal, appease

KPCA skip-gram cruelty, foes, lawful, imbued, idols

fastText cruzi, crusoe, crux, cruijff, duel

KPCA fastText cruelty, cruelly, ruelle, cruzi, duel

linguistically (46)

Skip-gram cushitic, hassaniya, couscous, austroasiatic, sardinian

KPCA skip-gram linguistic, recalling, artistically, calling, linguistics

fastText simplistically, altruistically, stylistically, artistically ,linguistica

KPCA fastText linguistic, linguists, distinguishes, distinguishing, distinguishable

placental (30)

Skip-gram intestine, condense, spikes, greasy, sideways

KPCA skip-gram placenta, centaurus, labiodental, centaur, centaurs

fastText placentals, placenta, dental, placement, placement, segmental

KPCA fastText placentals, placenta, parental, placement, concentrates

firecracker (5)

Skip-gram prochnow, caff, gwen, hillis, horovitz

KPCA skip-gram mccracken, racked, wracked, rackets, racket

fastText cracker, nutcracker, acker, thacker, skywalker

KPCA fastText cracker, crackers, fireplace, firestrom, firewall

scrubbing (5)

Skip-gram underpowered, transceivers, refineries, heliport, gasification

KPCA skip-gram ingot, ingots, xing, mcing, plying

fastText scrying, dubbing, rubbing, ebing, screwing

KPCA fastText rubbing, clubbing, scrubbed, scraping, scrying

Table 2: The k = 5-nearest neighbors of word embeddings in R128 , trained on the Text8 dataset.

“cruel”. In figure 1, we can visualize the t-SNE 2-
D representation of the nearest neighbors for the
word “linguistically”.

205

Epoch No. Model Total Semantic Syntactic

1

Skip-gram 7.84% 3.92% 11.24%

KPCA skip-gram 15.74% 2.96% 26.71%

fastText 36.89% 0.89% 67.80%

KPCA fastText 38.04% 1.12% 69.76%

2

Skip-gram 17.09% 9.59% 23.50%

KPCA skip-gram 21.14% 7.26% 33.07%

fastText 41.19% 1.60% 75.19%

KPCA fastText 40.48% 2.10% 73.43%

5

Skip-gram 24.21% 19.28% 28.45%

KPCA skip-gram 26.20% 15.56% 35.34%

fastText 43.60% 5.51% 76.31%

KPCA fastText 43.42% 7.37% 74.39%

10

Skip-gram 26.68% 24.61% 28.45%

KPCA skip-gram 28.65% 22.22% 34.18%

fastText 44.49% 12.10% 71.75%

KPCA fastText 44.68% 13.17% 72.29%

Table 3: Analogy accuracies of embeddings in R128 trained for different epochs on Text8 dataset.

Epoch No. Model Total Semantic Syntactic

1

Skip-gram 0.18% 0.20% 0.17%

KPCA skip-gram 15.47% 0.66% 19.80%

fastText 3.07% 0.26% 3.89%

KPCA fastText 33.66% 0.79% 43.26.%

2

Skip-gram 0.99% 1.26% 0.91%

KPCA skip-gram 14.83% 1.65% 18.68%

fastText 28.52% 0.33% 36.76%

KPCA fastText 45.85% 1.19% 58.91%

3

Skip-gram 0.96% 1.46% 0.81%

KPCA skip-gram 14.07% 1.92% 17.62%

fastText 44.84% 0.79% 57.71%

KPCA fastText 47.44% 1.39% 60.90%

Table 4: Analogy accuracies of embeddings in R128

trained for different epochs on 20 Newsgroups dataset.

4.4 Word Analogy Evaluation

Pre-trained word vectors are available for a dataset
of 100 billion words from Google News. Mikolov
et al. (2013a) observed that, when word vectors are
trained on such a large dataset, they are able to an-
swer very subtle relationships between words. Yet,
for the news data or for a small dataset such re-
sults cannot be achieved. Warm-starting the mod-
els with our KPCA embeddings, however, yields
good performance in such settings, too.

To assess accuracies in the word analogy
task, we use a comprehensive test set provided
by Mikolov et al. (2013a). This test consists of
semantic and syntactic similarity questions which
include relationships like adjective-to-adverb, cur-
rency, plural-verbs, city-in-state, comparative, su-
perlative relationships, and others. A question is
assumed to be correctly answered only if the clos-
est word to the vector is exactly the same as the
correct word in the question; synonyms are con-
sidered as mistakes. In order to use this evalua-
tion to compare our models’ results to those of the
skip-gram and the fastText models, we train the
models on the different datasets shown in Table 1.
Results are reported in Tables 3, 4, 5 and 6.

A comparison of 300-dimensional and 128-
dimensional embeddings on the analogy tasks
on the text8 and 20-Newsgroups datasets showed
that all models (including baselines) perform best
when we picked 128-dimensional embeddings.
For the sake of simplicity we used 128-dimensions
in all tasks. From Table 4, it is evident that our
KPCA fastText model outperforms the skip-gram
as well as the fastText model when trained on a
small dataset. KPCA skip-gram as well as KPCA
fastText models have better accuracies for both se-
mantic and syntactic questions in the initial epochs
compared to their cold-start counterparts. One
question arising in this context is whether the skip-

206

gram or the fastText models can also learn from
smaller datasets. The answer for the 20 News-
group as well as for the text8 datasets is “yes”, but
only if they are trained for several epochs.

The results for the 20 Newsgroups dataset
in Table 4 also show that the skip-gram models
completely fail to learn analogies on this dataset.
The KPCA fastText embeddings benefit from their
warm-start and show a quicker convergence rate.
We make the following observations from the ac-
curacies obtained after each epoch of training.
During the 1st epoch, the skip-gram and the fast-
Text model do not perform well. However, after
the 2nd epoch, the fastText model starts perform-
ing better on the syntactic questions. Meanwhile
KPCA skip-gram and KPCA fastText models still
achieve higher accuracies than the respective skip-
gram and fastText models. Hence, considering ac-
curacies from the initial epochs, we can conclude
that training of our model converges faster than the
training of the fastText model and the skip-gram
model.

From Table 3, we observe that the skip-gram
model always seems to perform better on the se-
mantic questions but when we compare these ac-
curacies with the nearest neighbors results from
Table 2, it can be observed that although KPCA
models seem to work badly on semantic tasks,
they generate better k-nearest neighbors than the
respective skip-gram and fastText models.

We also compare the accuracies achieved by
the models when trained for one epoch on a large
data set, namely English Wikipedia dataset. The
results in Table 5, illustrate the performance of the
different models when training them on a large
training dataset size. When compared to fast-
Text, KPCA skip-gram performs better on seman-
tic questions, but worse on syntactic questions.
Noticeably KPCA fastText performs better on se-
mantic questions than all the other models. How-
ever plain fastText outperforms it on the syntactic
questions. The overall accuracy of fastText is also
slightly higher than for KPCA fastText model.

We also report accuracies for the analogy
task when the models are trained on the Ger-
man news dataset for morphologically rich Ger-
man language. We use the German version of the
semantic/syntactic analogy dataset, introduced by
(Köper et al., 2015) for evaluation. Table 6 shows
how different models perform on the analogies
tasks. We note that morphological information

Epochs Model Total Sem Syn

1

Skip-gram 70.95% 85.29% 66.67%

KPCA skip-gram 75.00% 85.29% 71.93%

fastText 81.43% 82.35% 80.46%

KPCA fastText 80.41% 88.24% 78.07%

Table 5: Analogy accuracies of embeddings in R128

trained for one epoch on English Wiki 2016 dataset.

Epochs Model Total Sem Syn

1

Skip-gram 34.43% 35.89% 31.69%

KPCA skip-gram 35.71% 37.72% 31.94%

fastText 29.56% 14.34% 58.20%

KPCA fastText 30.15% 14.54% 59.56%

Table 6: Analogy accuracies of embeddings in R128

trained for one epoch on German news 2012 dataset.

Dataset Model Accuracies

20 Newsgroups

Skip-gram 72.82%

KPCA Skip-gram 73.57%

fastText 72.07%

KPCA fastText 72.73%

english Wiki 2016

Skip-gram 73.90%

KPCA Skip-gram 74.56%

fastText 73.96%

KPCA fastText 74.09%

Table 7: Sentence classification task trained using pre-
trained embeddings obtained from different models af-
ter 10 epochs of training.

significantly improves the syntactic tasks when we
compare KPCA fastText and fastText with KPCA
skip-gram and skip-gram. While the semantic ac-
curacy degrades for both KPCA fastText and fast-
Text. Initializing the skip-gram and fastText with
KPCA embeddings has improved the performance
of both the models. The KPCA skip-gram model
shows the overall best performance. This shows
that the initialization of the models with morpho-
logical information, is beneficial for the German
language as well.

4.5 Evaluation of performance on
downstream applications

Finally, we investigate how well the embeddings
obtained from the different models and different
datasets perform on a downstream task in a neu-
ral network architecture. We choose the convo-

207

lutional neural network proposed in (Kim, 2014)
and evaluate it with the embeddings in a sentence
classification task. We initialize the CNN with the
embeddings obtained from the different embed-
ding models and keep the embeddings static dur-
ing training. Initializing the word vectors with the
pre-trained word embeddings instead of random
embeddings improves the performance as noted by
(Collobert et al., 2011) and (Iyyer et al., 2014).

In our experiment, the classification task is
a sentiment classification task, i.e. detecting
whether reviews are positive or negative. The
dataset used for it, consists of movie reviews7 with
one sentence per review. We use embeddings gen-
erated by training the embedding models on the 20
Newsgroups and English Wikipedia datasets. The
CNN network is trained for 10 epochs.

In Table 7, we list the accuracies for the
model trained with different embeddings obtained
from the two datasets. In both cases, the model ini-
tialized with embeddings generated using KPCA
skip-gram model and the KPCA fastText outper-
form the models initialized with the respective
cold-start embeddings, albeit with a small margin.
The models initialized with the KPCA skip-gram
model achieve the best results in both cases.

5 Conclusion

In this paper, we explored a simple method to
improve models for computing word embeddings
and evaluated it with the popular skip-gram and
fastText models.

Our approach relies on string similarity ma-
trices computed from small vocabularies which, in
a first step, are subjected to kernel PCA (KPCA)
in order to generate non-linear, morphologically
informed word embeddings. In a second step, the
KPCA-based vector representations of words are
used as input to the skip-gram model in order to
obtain embeddings that also account for word con-
texts.

In practical experiments, we evaluated the
quality of our embeddings using intrinsic mea-
sures such as word similarity and word anal-
ogy. In our experiments the KPCA skip-gram
and KPCA fastText were found to outperform the
original continuous skip-gram and fastText model.
In particular, we found that the continuous skip-
gram model can learn similarity among words

7http://www.cs.cornell.edu/people/
pabo/movie-review-data/

only when it has seen a sufficiently large num-
ber of examples. When feeding the models with
morphologically informed vector representations
of words, they seem to be able to learn from a
better starting point when computing semantically
informed embeddings. Using KPCA fastText or
KPCA skip-gram model, we found that it is possi-
ble to obtain high-quality word vectors even when
training with small datasets and fewer epochs.

6 Future Work

Future work concerns deeper analysis of how to
choose words in the vocabulary to construct the
projection matrix used to generate Kernel PCA
embeddings. We would like to explore different
string similarity functions which would help in
creating better clusters of the similar words.
We would also like to extend our experiments to
different embeddings such as GloVe as well as to
further downstream tasks such as Named Entity
Recognition or Relation Extraction.

7 Acknowledgements

This work was funded by the German Federal
Ministry of Education and Research under the
Competence Center Machine Learning Rhine-
Ruhr ML2R, Foerderkennzeichen 01S18038B.

References
Parminder Bhatia, Robert Guthrie, and Jacob Eisen-

stein. 2016. Morphological priors for proba-
bilistic neural word embeddings. arXiv preprint
arXiv:1608.01056.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the
Association for Computational Linguistics, pages
135–146.

Eduardo Brito, Rafet Sifa, Kostadin Cvejoski, Cesar
Ojeda, and Christian Bauckhage. 2017. Towards
german word embeddings: A use case with pre-
dictive sentiment analysis. In Proceedings of
Data Science, Analytics, and Applications, pages
59–62.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(Aug):2493–2537.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016. Morphological smoothing and extrapola-
tion of word embeddings. In Proceedings of the

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/

208

54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1651–1660.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection
using recursive neural networks. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 1113–1122.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1746–1751.

Maximilian Köper, Christian Scheible, and
Sabine Schulte im Walde. 2015. Multilingual
reliability and semantic structure of continuous
word spaces. In Proceedings of the 11th Interna-
tional Conference on Computational Semantics
(IWCS).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in neural information
processing systems, pages 3111–3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learn-
ing word embeddings efficiently with noise-
contrastive estimation. In Advances in neural in-
formation processing systems, pages 2265–2273.

Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. 1997. Kernel principal component
analysis. In International conference on artificial
neural networks, pages 583–588.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In
Proceedings of the 2015 Conference of the North
American Chapter of the ACL: Human Language
Technologies, pages 1627–1637.

