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Abstract

Short text clustering is a challenging problem
when adopting traditional bag-of-words or TF-
IDF representations, since these lead to sparse
vector representations for short texts. Low-
dimensional continuous representations or em-
beddings can counter that sparseness prob-
lem: their high representational power is ex-
ploited in deep clustering algorithms. While
deep clustering has been studied extensively in
computer vision, relatively little work has fo-
cused on NLP. The method we propose, learns
discriminative features from both an autoen-
coder and a sentence embedding, then uses as-
signments from a clustering algorithm as su-
pervision to update weights of the encoder net-
work. Experiments on three short text datasets
empirically validate the effectiveness of our
method.

1 Introduction

Text clustering groups semantically similar text
without using supervision or manually assigned
labels. Text clusters have proven to be benefi-
cial in many applications including news recom-
mendation (Wang et al., 2010), language model-
ing (Liu and Croft, 2004), query expansion (Amini
and Usunier, 2007), visualization (Cadez et al.,
2003), and corpus summarization (Schutze and
Silverstein, 1997).

Due to the popularity of social media and on-
line fora such as Twitter and Reddit, texts con-
taining only few words have become prevalent
on the web. Compared to clustering of long
documents, Short Text Clustering (STC) intro-
duces additional challenges. Traditionally, text is
represented as a bag-of-words (BOW) or term-
frequency inverse-document-frequency (TF-IDF)
vectors, after which a clustering algorithm such as
k-means is applied to partition the texts into homo-
geneous groups (Xu et al., 2017). Due to the short

lengths of such texts, their vector representations
tend to become very sparse. As a result, traditional
measures for similarity, which rely on word over-
lap or distance between high-dimensional vectors,
become ineffective (Xu et al., 2015).

Previous work on STC enriched short text rep-
resentations by incorporating features from exter-
nal resources. Hu et al. (2009) and Banerjee et al.
(2007) extended short texts using articles from
Wikipedia. In similar fashion, Hotho et al. (2003)
and Wei et al. (2015) proposed different meth-
ods to enrich text representation using ontologies.
More recently, low-dimensional representations
have shown potential to counter the sparsity prob-
lem in STC. Combined with neural network ar-
chitectures, embeddings of words (Mikolov et al.,
2013; Pennington et al., 2014), sentences (Le and
Mikolov, 2014; Kiros et al., 2015) and documents
(Dai et al., 2015) were proven to be effective on a
variety of tasks in machine learning for NLP.

Deep clustering methods first embed the high-
dimensional data into a lower dimensional space,
after which a clustering algorithm is applied.
These methods either perform clustering after hav-
ing trained the embedding transformation (Tian
et al., 2014; De Boom et al., 2016), or jointly op-
timize both the embedding and clustering (Yang
et al., 2016), and we situate our method in the for-
mer. Closely related to our work is the method
of Deep Embedded Clustering (DEC) (Xie et al.,
2016), which learns feature representations and
cluster assignments using deep neural networks.
DEC learns a mapping from the data space to a
lower-dimensional feature space while iteratively
optimizing a clustering objective. The self-taught
convolutional neural network (STC2) framework
proposed by Xu et al. (2017) uses a dimensional-
ity reduction technique to generate auxiliary tar-
gets for a neural network architecture. A convo-
lutional neural network (CNN) learns feature rep-
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Figure 1: Short text clustering using SIF embedding,
an autoencoder architecture and self-training.

resentations in order to reconstruct these auxiliary
targets. Trained representations from the CNN are
clustered using the k-means algorithm. Two re-
cent surveys provide an overview of research on
deep clustering methods (Aljalbout et al., 2018;
Min et al., 2018).

Similar to Xie et al. (2016), we follow a multi-
phase approach and train a neural network (which
we will refer to as the encoder) to transform em-
beddings to a latent space before clustering. How-
ever, we apply two crucial modifications. As op-
posed to CNN-based encoders (Xu et al., 2017),
we propose the use of Smooth Inverse Frequency
(SIF) embeddings (Arora et al., 2017) in order to
simplify and make clustering more efficient while
maintaining performance.

During the second stage of clustering, we ap-
ply self-training using soft cluster assigments to
fine-tune the encoder before applying a final clus-
tering. We describe our methodology in more de-
tail in Section 2. In Section 3, we evaluate our
method using three short text datasets, measuring
for clustering accuracy and normalized mutual in-
formation. Our model matches or produces better
results compared to more sophisticated neural net-
work architectures.

2 Methodology

Our model for short text clustering includes three
steps: (1) Short texts are embedded using SIF em-
beddings (Section 2.1); (2) During a pre-training
phase, a deep autoencoder is applied to encode
and reconstruct the short text SIF embeddings
(Section 2.2); (3) In a self-training phase, we use
soft cluster assignments as an auxiliary target dis-
tribution, and jointly fine-tune the encoder weights
and the clustering assignments (Section 2.3). The
described setup is illustrated in Figure 1.

2.1 SIF Embedding

We apply a relatively simple and yet effective
strategy for embedding short texts, called Smooth
Inverse Frequency (SIF) embeddings. For SIF em-
bedding, first, a weighted average of pre-trained
word embeddings is computed. The contribution
of each word is calculated as a

a+p(w) with a be-
ing a hyperparameter and p(w) being the empir-
ical word frequency in the text corpus. SIF em-
beddings are then produced by computing the first
principal component of all the resulting vectors
and removing it from the weighted embeddings.

2.2 Autoencoder

The parameters of the encoder network are initial-
ized using a deep autoencoder architecture such
as the one used by Hinton and Salakhutdinov
(2006). The mean squared error is used to mea-
sure reconstruction loss after the encoded embed-
dings are decoded by the decoder subnetwork (see
Fig. 1). This non-clustering loss is independent
of the clustering algorithm and controls preserva-
tion of the original text representations. Yang et al.
(2017) demonstrated that the absence of such a
non-clustering loss can lead to worse representa-
tions, or trivial solutions where the clusters all col-
lapse into a single representation.

2.3 Self-Training

After pre-training using the autoencoder architec-
ture, we obtain an initial estimate of the non-
linear mapping from the SIF embedding to a low-
dimensional representation, on which a cluster al-
gorithm is applied. Next, we improve clustering
using a second self-training phase: we assign ini-
tial cluster centroids after which we alternate be-
tween two steps: (i) first, the probability of as-
signing a data point to each cluster is computed;
(ii) second, an auxiliary probability distribution
is calculated and used as target for the encoder
network. Network weights and cluster centroids
are updated iteratively until a stopping criterion is
met.

For Step (i), we compute a soft cluster assign-
ment for each data point. Maaten and Hinton
(2008) propose the Student’s t-distribution Q with
a single degree of freedom to measure the similar-
ity between embedded points zi and centroids µj :

qij =
(1 + ‖zi − µj‖2)−1∑

j′
(1 + ‖zi − µj′‖2)−1

, (1)
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in which qij can be interpreted as the probability
of assigning sample i to cluster j. Then qij can be
used as a soft assignment of embeddings to cen-
troids. The encoder is then fine-tuned to match
this soft assignment qi to a target distribution pj .

For Step (ii), as Xie et al. (2016), we use an
auxiliary target distribution P which has “stricter”
probabilities compared to the similarity score qij ,
with the aim to improve cluster purity and put
more emphasis on data points assigned with high
confidence. This prevents large clusters from dis-
torting the hidden feature space. The probabilities
pij in the proposed distribution P are calculated
as:

pij =

q2ij/
∑
i′
qi′j∑

j′
(q2ij′/

∑
i′
qi′j′)

, (2)

in which the squared summation terms q2ij are nor-
malized by the soft cluster frequencies (

∑
i′
qi′j).

The KL-divergence between the two probabil-
ity distributions P and Q is then used as training
objective, i.e., the training loss L is defined as:

L = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij
. (3)

The strategy outlined above can be seen as a form
of self-supervision (Nigam and Ghani, 2000).
Centroids of a standard clustering algorithm (e.g.,
k-means) are used to intialize the weights of the
clustering layer, after which high confidence pre-
dictions are used to fine-tune the encoder and cen-
troids. After convergence of this procedure, short
texts are encoded and final cluster assignments are
made using k-means.

3 Experimental Results

After describing the datasets (Section 3.1) and the
experiment design (Section 3.2), we will present
the results of these experiments (Section 3.3).

3.1 Data

We replicate the test setting used by Xu et al.
(2017) and evaluate our model on three datasets
for short text clustering: (1) SearchSnippets:
a text collection comprising Web search snip-
pets categorized in 8 different topics (Phan et al.,
2008). (2) Stackoverflow: a collection of posts

from question and answer site stackoverflow, pub-
lished as part of a Kaggle challenge.1 This sub-
set contains question titles from 20 different cate-
gories selected by Xu et al. (2017). (3) Biomed-
ical, a snapshot of one year of PubMed data dis-
tributed by BioASQ for evaluation of large-scale
online biomedical semantic indexing.2 Table 2
provides an overview of the main characteristics
of the presented short text datasets.

3.2 Experimental Setup

We compare our method to baselines for STC in-
cluding clustering of TF and TF-IDF representa-
tions, Skip-thought Vectors (Kiros et al., 2015)
and the best reported STC2 model by Xu et al.
(2017). Following (Van Der Maaten, 2009; Xie
et al., 2016), we set sizes of hidden layers to
d:500:500:2000:20 for all datasets, where d is the
short text embedding dimension for all datasets.
We used pre-trained word2vec embeddings3 with
fixed α = 0.1 value for all corpora. We set the
batch size to 64 and pre-trained the autoencoder
for 15 epochs. We initialized stochastic gradient
descent with a learning rate of 0.01 and momen-
tum value of 0.9.

During experiments, the choice of initial cen-
troids had considerable impact on clustering per-
formance when applying the k-means algorithm.
To reduce this influence of initialization, we
restarted k-means 100 times with different initial
centroids, as Huang et al. (2014); Xu et al. (2017),
and selected the best centroids, which obtained
the lowest sum of squared distances of samples to
their closest cluster center. Similar to Xu et al.
(2017), results are averaged over 5 trials and we
also report the standard deviation on the scores.

3.3 Results and Discussion

We evaluate clustering performance based on the
correspondence between clusters and partitions as
per the ground truth class labels assigned to each
of the short texts. We report two widely used per-
formance metrics, the clustering accuracy (ACC)
and the normalized mutual information (NMI)
(Huang et al., 2014; Xu et al., 2017).

NMI measures the information shared between
the predicted assignments A, and the ground truth

1https://www.kaggle.com/c/predict-
closed-questions-on-stack-overflow/

2http://participants-area.bioasq.org
3Available from https://github.com/jacoxu/

STC2

https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/
http://participants-area.bioasq.org
https://github.com/jacoxu/STC2
https://github.com/jacoxu/STC2
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SearchSnippets Stackoverflow Biomedical

Method ACC NMI ACC NMI ACC NMI

TF 24.7±2.22 9.0±2.30 13.5±2.18 7.8±2.56 15.2±1.78 9.4±2.04
TF-IDF 33.8±3.92 21.4±4.35 20.3±3.95 15.6±4.68 28.0±2.83 25.4±3.23
Skip-Thought 33.6±1.95 13.8±0.78 9.3±0.24 2.7±0.34 16.3±0.33 10.7±0.46
SIF 53.4±1.86 36.9±0.90 30.5±0.28 28.9±0.17 33.7±2.35 30.1±0.64

STC2 77.0±4.1 62.9±1.7 51.14±2.9 49.0±1.5 43.0±1.3 38.1±0.5
SIF + Aut., Self-Train. 77.1±1.1 56.7±1.0 59.8±1.9 54.8±1.0 54.8±2.3 47.1±0.8

Table 1: Clustering results (accuracy ACC and normalized mutal information NMI) for three short text collections
using various representations and self-training methods. STC2 and our method involve additional fine-tuning of
encoders, others apply k-means directly on short text representations. Performance results are average and standard
deviations over 5 runs.

Dataset C N T |V |

SearchSnippets 8 12.3k 17.9 31k
StackOverflow 20 20k 8.3 23k

Biomedical 20 20k 12.9 19k

Table 2: Statistics for the short text clustering datasets
as used by Xu et al. (2017): number of classes (C),
number of short texts (N ), average number of tokens
per text (T ) and vocabulary size (|V |).

assignments B, and is defined as

NMI(A,B) =
I(A,B)√
H(A)H(B)

, (4)

where I is the mutual information andH is the en-
tropy. When data is partitioned perfectly, the NMI
score is 1, and when A and B are independent, it
becomes 0.

The clustering accuracy is defined as

ACC =

∑N
i=1 δ(yi = map(ci))

N
, (5)

where δ() is an indicator function, ci is the clus-
tering label for xi, map() transforms the clustering
label ci to its group label by the Hungarian algo-
rithm (Papadimitriou and Steiglitz, 1982), and yi
is the true group label of xi. Results for NMI and
accuracy of existing work and the presented model
are shown in Table 1.

While generic, low-dimensional representations
such as Skip-Thought or SIF embeddings have
demonstrated to be beneficial for NLP on many
tasks, for STC, additional fine-tuning and self-
training leads to improved cluster quality. The
evaluation results show the superiority of our ap-
proach, compared to the STC2 model, on all but
one of the metrics.

TfIdf + KMeans SIF + KMeans Our model

Figure 2: Two dimensional representations of Search-
Snippets short texts before application of k-means.
Colors indicate the C = 8 different ground truth labels.

Qualitatively, the improved cluster quality is
also visually apparent in Figure 2, which shows
a two-dimensional t-SNE (Maaten and Hinton,
2008) representation of the SearchSnippets short
texts before clustering.

The source code of our model, implemented us-
ing Tensorflow, is publicly available to encourage
further research on STC.4

4 Conclusion

We proposed a method for clustering of short texts
using sentence embeddings and a multi-phase ap-
proach, starting from unsupervised SIF embed-
dings for the short texts. Our STC model then
adopts an autoencoder architecture which is fine-
tuned for clustering using self-training. Our em-
pirical evaluation on three short text clustering
datasets demonstrates resulting accuracies ranging
from at least as good up to 12 percentage points,
compared to the state-of-the-art STC2 method.
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