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Abstract

We present de-lexical segmentation, a lin-
guistically motivated alternative to greedy or
other unsupervised methods, requiring lan-
guage specific knowledge, but no direct su-
pervision. Our technique involves creating a
small grammar of closed-class affixes which
can be written in a few hours. The gram-
mar over generates analyses for word forms
attested in a raw corpus which are disam-
biguated based on features of the linguis-
tic base proposed for each form. Extending
the grammar to cover orthographic, morpho-
syntactic or lexical variation is simple, mak-
ing it an ideal solution for challenging corpora
with noisy, dialect-inconsistent, or otherwise
non-standard content. We demonstrate the
utility of de-lexical segmentation on several
dialects of Arabic. We consistently outper-
form competitive unsupervised baselines and
approach the performance of state-of-the-art
supervised models trained on large amounts of
data, providing evidence for the value of lin-
guistic input during preprocessing.

1 Introduction

Non-standard domains, dialectal variation, and
unstandardized spelling make segmentation chal-
lenging, though morphologically rich languages
require good segmentation to enable downstream
applications from syntactic parsing to machine
translation (MT). For domains lacking sufficient
annotated data to train segmenters, one must re-
sort to language specific greedy techniques or lan-
guage agnostic unsupervised techniques. Greedy
techniques use maximum matching to identify
base words, leveraging large dictionaries (Guo,
1997). Yet such dictionaries are often unavailable
or too expensive for low resource languages. Lan-
guage agnostic unsupervised options like MOR-
FESSOR (Creutz and Lagus, 2005) and byte pair
encoding (BPE) (Sennrich et al., 2016) assume no

resources beyond raw text but can yield lower per-
formance on downstream tasks (Vania and Lopez,
2017; Kann et al., 2018). They also suffer from
typological biases and favor intended applications
at the expense of others.

To this end, we present De-lexical Segmenta-
tion (DESEG), a slightly more expensive but pow-
erful alternative to language agnostic morpholog-
ical segmentation, realizing most of the benefits
of supervised segmentation at far less a cost. DE-
SEG requires language specific input in the form
of a small grammar describing the combinatorics
of closed-class affixes. We demonstrate that such
a grammar can be constructed easily and rapidly
for a new language or dialect. Hence, DESEG ad-
dresses the scenario in which there is no super-
vised segmenter available for a given language or
dialect (or no segmenter trained on a domain with
sufficient lexical overlap with the target domain in
its training data), but the user does have linguistic
knowledge of the target language/dialect.

The user-provided grammar is employed in con-
junction with a large, raw corpus. The grammar
over generates analyses for all words therein, al-
lowing for maximal recall not only of the possible
affix combinations, but also variant spellings and
dialectal idiosyncrasies. The preferred analysis is
disambiguated based on the fertility with which its
proposed base attaches to different affixes in anal-
yses of other words throughout the corpus. This
follows from the logic that valid bases are more
likely to productively combine with more expo-
nents1 (Bertram et al., 2000). By leveraging lan-
guage specific resources but learning to disam-
biguate empirically without supervision, we mit-
igate much of the sparsity inherent in processing

1Exponents refer to recurring means by which morpho-
syntactic properties are realized within classes of words, e.g.,
adding suffix +s to get the third person singular present tense
for verbs like WALK, TALK, and SKIP.
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non-standard domains.
Using a corpus of several Arabic dialects ex-

hibiting rich and complex morphology, unstan-
dardized spelling, and variation bordering on mu-
tual unintelligibility, we evaluate DESEG intrin-
sically on language modeling (LM) and extrin-
sically on MT. DESEG consistently outperforms
MORFESSOR and BPE while only costing a few
hours of grammar-building labor; and in some en-
vironments it outperforms state-of-the-art super-
vised Arabic tokenizers MADAMIRA (Pasha et al.,
2014) and FARASA (Abdelali et al., 2016). The
success of such a simple model is strong evidence
for the value of linguistic input during preprocess-
ing. DESEG is publicly available at github.
com/CAMeL-Lab/deSeg.

2 Related Work

Many morphologically rich languages lack crucial
preprocessing resources like morphological ana-
lyzers or segmenters. Even well resourced lan-
guages often lack such resources for non-standard
dialects and domains. There have been many ap-
proaches to address this problem, varying along a
number of dimensions: the degree of language in-
dependence or specificity, the required amount of
machine learning supervision, the degree of depth
and richness of the morphological representations.

Language agnostic unsupervised models
There are many works using minimally super-
vised to unsupervised models of morphology
for connecting morphologically related words
and identifying optimal (and at times application
dependent) segmentations (Smith and Eisner,
2005; Creutz and Lagus, 2005; Snyder and Barzi-
lay, 2008; Poon et al., 2009; Dreyer and Eisner,
2011; Stallard et al., 2012; Sirts and Goldwater,
2013; Narasimhan et al., 2015; Sennrich et al.,
2016; Eskander et al., 2016b; Ataman et al.,
2017; Ataman and Federico, 2018; Eskander
et al., 2018). In this paper, we compare to two
popular language agnostic segmentation systems:
MORFESSOR (Creutz and Lagus, 2005) and BPE

(Sennrich et al., 2016). Both train on large corpora
of unannotated text in an unsupervised manner.

Standard Arabic models Modern Standard
Arabic (MSA) morphological analysis, disam-
biguation and tokenization has been the focus of
a large number of efforts. Khoja and Garside
(1999) was one of the earliest published efforts

on automatic shallow and deterministic segmen-
tation for MSA. Darwish (2002) used limited re-
sources and greedy techniques to automatically
learn rules and statistics to build a shallow mor-
phological analyzer. There are many MSA mor-
phological analyzers with rich representations and
good coverage that required very intensive efforts
to create (Beesley, 1998; Buckwalter, 2004; Attia,
2006, 2007; Smrž, 2007; Boudchiche et al., 2017).
Buckwalter (2004) is perhaps the most commonly
used among them, as it contributed the repre-
sentations for the Penn Arabic treebank (PATB)
(Maamouri and Bies, 2004). The PATB has been
the most used resource for supervised morpho-
logical disambiguation (Diab et al., 2004; Habash
and Rambow, 2005; Pasha et al., 2014; AlGah-
tani and McNaught, 2015; Zalmout and Habash,
2017). Some efforts have used other annotated
resources and/or large unannotated data sets (Lee
et al., 2003; Abdelali et al., 2016; Freihat et al.,
2018). More closely related to this paper, Erd-
mann and Habash (2018) demonstrated that de-
lexicalized information provides a cheap means
of inducing morphological knowledge and thereby
predicting lexical information in MSA. They em-
ploy a de-lexicalized grammar which is similar to
ours, but they do not handle dialectal variants or
spelling variation. They also do not use the gram-
mar for segmentation, but for pruning word em-
bedding clusters in order to predict the paradigm
membership of forms encountered in raw text.

Dialectal Arabic models Work on dialectal
Arabic morphology and tokenization is relatively
newer than work on MSA. Some of the earlier ef-
forts worked on rule-based approaches to model
dialectal morphology directly (Habash and Ram-
bow, 2006; Habash et al., 2012), or exploiting
existing MSA resources (Salloum and Habash,
2014). Later, a number of annotation efforts
have led to the creation of varying sizes of di-
alectal annotated corpora following the style of
the PATB (Maamouri et al., 2014; Jarrar et al.,
2016; Al-Shargi et al., 2016; Khalifa et al., 2018;
Alshargi et al., 2019). The created annotations
supported models for dialectal Arabic analysis,
disambiguation and tokenization building on the
same successful approaches in MSA (Eskander
et al., 2016a; Habash et al., 2013; Pasha et al.,
2014; Zalmout et al., 2018; Zalmout and Habash,
2019). More closely related to this paper, El-
desouki et al. (2017) used de-lexicalized analy-

github.com/CAMeL-Lab/deSeg
github.com/CAMeL-Lab/deSeg


115

sis strategy for four colloquial varieties of Arabic,
though they also use minimal training data and ex-
tract features from an open class lexicon to learn
either an SVM or bi-LSTM-CRF disambiguation
model. They further show that domain adapta-
tion from existing MSA training data is benefi-
cial. Also, Samih et al. (2017) applied a related
model to segmentation, allowing different Arabic
dialects to inform one another, thus avoiding the
need to perform dialect identification during pre-
processing.

We compare our model to MADAMIRA (Pasha
et al., 2014) and FARASA (Abdelali et al., 2016),
which represent the fully supervised state of the art
for segmenting Arabic in the standard domain, but
have limited support for multiple colloquial vari-
ants of the language.

Finally, we note that, linguistically, our work is
inspired by Bertram et al. (2000) who find that
prolific stems with large derivational families are
accessed more quickly. Their work suggests that
stem fertility—or the productivity with which a
stem can combine with different affixes—is cog-
nitively relevant to morphological organization.

3 De-lexical Segmentation for Arabic

In this section, we introduce a case study on seg-
menting a multi-dialect Arabic corpus and explain
the linguistic challenges it presents for popular ap-
proaches to segmentation. Furthermore, we dis-
cuss the construction of DESEG’s grammar and its
disambiguation algorithm.

3.1 Arabic and its Dialects

Arabic is highly diaglossic (Ferguson, 1959), with
the relatively consistent high register of Modern
Standard Arabic being learned in schools across
the Arab World. Meanwhile the often mutually
unintelligible low register variants—collectively
known as dialectal Arabic (DA)—are spoken col-
loquially. The phonological, morpho-syntactic,
and lexical variation within the Arabic sprachbund
is comparable to that among Romance languages
(Chiang et al., 2006; Rouchdy, 2013; Erdmann
et al., 2017), leading to problematic noise in multi-
dialect corpora (Erdmann et al., 2018). Further-
more, lack of spelling conventions in DA exacer-
bates data sparsity, as does a rich morphology fea-
turing templatic phenomena and robust cliticiza-
tion, making it challenging to train quality seg-
menters even with much supervised data.

3.2 Data

To demonstrate how our model handles such chal-
lenging phenomena, we apply it to the CORPUS6
subset of the MADAR-BTEC (Takezawa et al.,
2002) corpus of Arabic dialects (Salameh et al.,
2018). This consists of 12,000 sentences in the
travel domain (9,000 for training) parallel between
English, MSA, and the DA varieties spoken in
Beirut, Cairo, Doha, Rabat, and Tunis. This com-
prises a representative sample of the breadth of
intra-DA variation (Bouamor et al., 2018).

In addition to CORPUS6, we also use large
amounts of raw monolingual data to train our
segmenter and the unsupervised baselines. To
avoid introducing even more noise, we restrict our
monolingual datasets as much as possible to sim-
ilar domains. For DA, we use the four subsets of
Almeman and Lee (2013)’s web crawl of forums,
comments and blogs, consisting of over 10 mil-
lion words for each subset’s dialect region. It is
worth noting however, that the granularity of their
dialect regions is coarser than the granularity of
CORPUS6. Hence, their Maghrebi dialect corre-
sponds to two dialects in CORPUS6, Tunis and Ra-
bat, while the remaining three dialect regions have
rather obvious one-to-one correspondences with
CORPUS6, i.e., Egyptian to Cairo, Levantine to
Beirut, and Gulf to Doha. For MSA, which rarely
occurs consistently (i.e., outside of brief instances
of code-mixing) in such casual domains, we used
the TED corpus (Cettolo and Girardi, 2012) for
our monolingual data set, finding a compromise
between domain relevance and corpus size. It con-
tains about 2.5 million words.

Obviously, CORPUS6 is small relative to other
MT corpora, but this is exactly why it is a mean-
ingful evaluation corpus. Larger parallel cor-
pora are often only available for better resourced
languages/domains where fully supervised seg-
menters are also more likely to be available, negat-
ing the need to build one’s own segmenter. Fur-
thermore, as parallel data becomes less sparse, to-
kenization necessarily has less of an effect since
models can memorize and effectively use longer
sequences. With that said, CORPUS6 is commis-
sioned, and in future work we would like to also
test DESEG’s performance on natural corpora.

3.3 De-lexical Analysis

The DESEG grammar provides all possible de-
lexical analyses of words by assuming any n-gram
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(A)
Morph.Feat. Prefix Suffix

PV.1US ∅ +t �
H+

PV.1UP ∅ +nA A
	
K+

PV.2MS ∅ +t �
H+

PV.2FS ∅ +t/ty ú



�
G/ �

H+

PV.2US ∅ +ty ú



�
G+

PV.2UP ∅ +twA @ñ
�
K+

PV.3MS ∅ ∅
PV.3FS ∅ +t �

H+
PV.3UP ∅ +wA @ð+

IV.1US A/n+ + 	
à/ @ ∅

IV.1UP n+ + 	
à +wA/∅ ∅/ @ð+

IV.2MS t+ + �
H ∅

IV.2FS t+ + �
H +y/yn/∅ ∅/ 	áK
/ø



+

IV.2UP t+ + �
H +wA/wn 	

àð/ @ð+
IV.3MS y+ +ø



∅

IV.3FS t+ + �
H ∅

IV.3UP y+ +ø



+wA/wn 	
àð/ @ð+

CV.2MS ∅ ∅
CV.2FS ∅ +y/∅ ∅/ø



+

CV.2UP ∅ +wA @ð+

NOM.MS ∅ ∅
NOM.FS ∅ +~ �

è+
NOM.MD ∅ +yn 	áK
+
NOM.FD ∅ +tyn 	á�


�
K+

NOM.MP ∅ +yn 	áK
+
NOM.FP ∅ +At �

H@+

PART ∅ ∅

(B)
Proclitics Orth POS

ART Al+ +È@ DET
ART h+Al+ +È@+ è DEM_PART+DET

PARTn š+ + �
� INTERROG_PART

PARTn ς+ +¨ PREP

PARTn b+ +H. PREP
PARTn d+ +X PREP
PARTn f+ +

	
¬ PREP

PARTn k+ +¼ PREP
PARTn w+ +ð PREP
PARTn yA+ + AK
 VOC_PART
PARTn Ā/A+ +

�
@/ @ VOC_PART

PARTn l+ +È PREP
PARTv H+ +h FUT_PART

PARTv b/m+ +Ð/H. PROG_PART
PARTv b+ +H. FUT_PART
PARTv g+ +

	
¨ FUT_PART

PARTv h+ + è FUT_PART
PARTv k+ +¼ PROG_PART
PARTv t+ + �

H PROG_PART
PARTv l+ +È JUS_PART

m_NEG m/mA+ + AÓ/Ð NEG_PART

CONJ f+ +
	

¬ CONJ
CONJ f+ +

	
¬ CONNEC_PART

CONJ f+ +
	

¬ RC_PART
CONJ t+ + �

H SUB_CONJ
CONJ w+ +ð CONJ
CONJ w+ +ð SUB_CONJ

(C)
Enclitics Orth POS
PRONn,v +kw ñ»+ 2UP
PRONn,v +ky ú



»+ 2UP

PRONn,v +km Õ»+ 2MP/2UP

PRONn,v +h/w ð/ è+ 3MS
PRONn,v +hA Aë+ 3FS
PRONn,v +hm Ñë+ 3UP
PRONn,v +hn 	áë+ 3FP
PRONn,v +hn/n 	áë/ 	

à+ 3UP
PRONn,v +j h. + 2FS

PRONn,v +k ¼+ 2MS/2FS
PRONn,v +kn 	á»+ 2UP/2FP
PRONn,v +nA A

	
K+ 1UP

PRONn,v +y ø



+ 1US

PRONv +ny ú



	
G+ 1US

IOBJ +l+h/w ð/ è+È+ PREP+3MS
IOBJ +l+hA Aë+È+ PREP+3FS
IOBJ +l+hm Ñë+È+ PREP+3MP/3UP
IOBJ +l+hn/n 	

à/ 	áë+È+ PREP+3FP/3UP
IOBJ +l+j h. +È+ PREP+2FS

IOBJ +l+k ¼+È+ PREP+2MS/2FS
IOBJ +l+km Õ»+È+ PREP+2MP/2UP

IOBJ +l+kn 	á»+È+ PREP+2FP/2UP
IOBJ +l+nA A

	
K+È+ PREP+1UP

IOBJ +l+y ø



+È+ PREP+1US

NEG_PART +š �
�+ NEG_PART

(D) WORD → CONJ? (NOM|VERB|PART)
PART → PART0 PRONn?
NOM → PARTn? (ART? NOM0|NOM0 PRONn?)
VERB → m_NEG? VERB1 NEG_PART?

VERB1 → (PARTv? VERB0.iv |VERB0.pv |VERB0.cv) PRONv? IOBJ?

Table 1: All the elements needed to build a de-lexicalized morphological analyzer for the five dialects. (A) rep-
resents all the abstract meta paradigms for the basic Arabic POS: verbs (perfective (PV), imperfective (IV), and
command (CV)), nominals (NOM), and particles (PART). (B) and (C) are the set of clitics along with their re-
spective POS, categorized by their morphological role. The CFG in (D) describes the valencies of the clitics
surrounding the base form.

of some minimum length can be an open class
base, provided the remaining characters comprise
a supported affix pattern. Hence, a simple gram-
mar which only supports words without affixes or
with a single suffix, +s, would return two analyses
for wugs: wugs and wug +s, and one for foo: foo.
To build such a grammar for an Arabic dialect, we
target clitic affixation, as this phenomenon is non-
templatic with minimal fusional edits, making it
easier to model with a smaller grammar, yet it ac-
counts for a great deal of sparsity, as Arabic clitics
are as productive as regular inflectional exponents.

We use our grammar to build a de-lexicalized
morphological analyzer for all DA dialects target-
ing the D3 segmentation scheme (Habash, 2010),
which separates all clitics and only clitics from the
base forms to which they attach. We chose D3

as Sadat and Habash (2006) demonstrate it to be
the most effective scheme for low resource Ara-
bic MT. 2 While Arabic exhibits many other non-
concatenative, templatic phenomena which com-
plicate segmentation and tokenization, clitics are
always concatenated to the outsides of base forms
after the templatic pattern has been applied and
are thus easier to separate. Occasionally, fusional
processes can alter phonemes/graphemes on either
side of base–clitic or clitic–clitic boundaries, but
no templatic process is ever invoked to alter the
internal structure of bases by affixing any clitic.

We follow Khalifa et al. (2017)’s approach to

2With more data, the more effective schemes are ATB and
D2 (Sadat and Habash, 2006). ATB resembles D3 but does
not separate the definite article proclitic. D2 resembles ATB
but does not separate the pronominal enclitic.
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extending paradigms with possible clitic combi-
nations, though we don’t require any stem lexi-
cal information. Hence, we cheaply enable the
grammar to over generate, accommodating more
spelling variants and removing the need to con-
struct an open class lexicon. Instead, we simply
provide meta paradigms for abstractions over base
forms with the same combinatorics. Each cell in
a meta paradigm represents a unique exponent, or
possible mapping of clitics to positions surround-
ing the abstract base, such that the inflected form
would be valid for any real base represented by
that meta paradigm. Considering verbal affixation
in English, walk and talk would be two real bases
taking the same meta paradigm with four cells,
represented by exponents _+ing _+s, _, and _+ed.
Thus, any two bases exhibiting distinct exponent
signatures will belong to distinct meta paradigms.

In Arabic, by contrast, paradigms are enu-
meratively and integratively more complex than
the TALK/WALK meta paradigm (Ackerman and
Malouf, 2013). Table 13 exemplifies Arabic’s enu-
merative complexity, as verbs, for instance, de-
pending on dialect, can take some 20 affixes ac-
cording to (A), realizing various combinations of
aspect, person, gender, and number.

Having taken an affix, the verb can participate
in myriad possible additional combinations with
clitics in (B) and (C) as dictated by the bottom
two rules in the CFG in (D). Arabic is thus, in-
tegratively complex in that rich exponents can be
comprised of many interacting morphemes whose
meanings are often affected by each other’s pres-
ence. Furthermore, fusional processes acting on
such complex forms results in frequent allomor-
phy. Allomorphy is mostly limited to internal,
non-clitic morphemes, which enables us to greatly
reduce sparcity without propagating error by fo-
cusing on clitics. Hence, we can represent all
verbs with a single meta paradigm which is large,
but can be described in two CFG rules. In prac-
tice then, each of the 20 possible affixes in (A)
will correspond to distinct abstract bases, though
this eliminates the need to specify 20 distinct meta
paradigms for single lexemes. We target relat-
ing these abstract bases to each other via non-
concatenative modeling in future work.

In terms of the effort required to create the
grammar, there are a total of 98 unique affixes for

3POS tags in Table 1 are presented in the Buckwalter
scheme used in annotating the Penn Arabic Treebank (PATB)
(Maamouri and Bies, 2004)

all dialects. We include the non-clitic affixes in Ta-
ble 1 (A) in this count as they are used to restrict
the set of possible meta paradigms. Of these, 45%
appear in at least two dialects and 33% appear in
all dialects. The total number of affix–dialect pairs
is 288. On average, 88% of each dialect’s affixes
are shared by at least one other dialect and 45%
by all dialects. The average dialect specific list
contains 58 affixes and adding a second dialect re-
quires an additional 16. Adding a third, fourth, and
fifth dialect requires 10, 8, and 7 additional affixes
on average, respectively. Thus, building a sin-
gle dialect grammar is cheap and adding dialects
is even cheaper. Our final grammar contains five
meta paradigms, one for each of the basic Arabic
parts-of-speech—verbs (PV, IV, and CV), nomi-
nals, and particles—compiled into an analyzer like
that of Buckwalter (2004).

3.4 Unsupervised Disambiguation

DESEG supports two simple, fast models for dis-
ambiguating the grammar’s analyses. The first,
DESEGg, greedily selects the maximum match
analysis, or that with the smallest base after match-
ing affixes. The second, DESEGf , selects the anal-
ysis with the most fertile base. The fertility of each
candidate base is calculated in the raw corpus by
counting the possible combinations of adjacent af-
fixes with which it appears over all analyses for all
words in which it is proposed as a base.

For example, consider the three-word toy cor-
pus in Table 2. AêËñ

�
®J
K. byqwlhA, correctly seg-

mented as b+ yqwl +hA, PROG+ say.3MS +it, ‘he
is saying it’, has six possible analyses, each with
a different candidate base. Two candidate bases,
yqwl and byqwl, are also candidate bases for an-
other word, Èñ

�
®J
K. byqwl ‘he’s not saying’, but only

yqwl exhibits multiple unique adjoining affix sets.
In byqwlhA, it takes the circumfix b | hA, while in
byqwl, it takes the prefix b. The fertility of base
yqwl suggests it is more likely to be a productive
stem in the language, whereas the lack of fertil-
ity for the base byqwl suggests it is not systemat-
ically utilized in the language as a base might be
expected to be used, and that it is more likely a
simple coincidence that enables the over permis-
sive grammar to allow such a candidate.

The final word in the vocabulary, ú


Íñ

�
®J. K
 ybqwly,

correctly segmented as ybqw +l +y, remain.3MP
+to +me ‘they remain for me’, is challenging be-
cause no other inflection of the lexeme is attested.
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Vocabulary Candidate Segmentations Candidate Bases Attested Adjoining Affixes Fertility Base Length

byqwlhA AêËñ
�
®J
K.

b+ yqwl +hA Aë+ Èñ
�
®K
 +H. yqwl Èñ

�
®K
 b | ∅∅∅ , b | hA Aë | H. , ∅∅∅ | H. 2 4

byqwlhA AêËñ
�
®J
K. byqwlhA AêËñ

�
®J
K. 0 7

b+ yqwlhA AêËñ
�
®K
 +H. yqwlhA AêËñ

�
®K
 b | ∅ ∅ | H. 1 6

b+ yqw +l +hA Aë+ È+ ñ
�
®K
 +H. yqw ñ

�
®K
 b | l È | H. 1 3

byqwl +hA Aë+ Èñ
�
®J
K. byqwl Èñ

�
®J
K. ∅ | hA ∅ | Aë 1 5

byqw +l +hA Aë+ È+ ñ
�
®J
K. byqw ñ

�
®J
K. ∅ | l ∅ | È 1 4

byqwl Èñ
�
®J
K.

b+ yqwl Èñ
�
®K
 +H. yqwl Èñ

�
®K
 b | ∅∅∅ , b | hA Aë | H. , ∅∅∅ | H. 2 4

byqwl Èñ
�
®J
K. byqwl Èñ

�
®J
K. ∅ | hA ∅ | Aë 1 5

ybqwly ú


Íñ

�
®J. K


ybqw +l +y ø



+ È+ ñ
�
®J. K
 ybqw ñ

�
®J. K
 ∅∅∅ | l ∅∅∅ | È 1 4

ybqwly ú


Íñ

�
®J. K
 ybqwly ú



Íñ

�
®J. K
 0 6

ybqwl +y ø



+ Èñ
�
®J. K
 ybqwl Èñ

�
®J. K
 ∅ | y ∅ | ø



1 5

Table 2: Calculating fertility in a toy Arabic corpus of three words given all possible candidate analyses of the
input corpus vocabulary. Correct analyses are depicted in bold.

Yet, by maximum matching on the affixes, we
choose the correct analysis—ybqw plus the com-
plex suffix of prepositional l followed by object
y—as the proposed base ybqw is shorter than the
other candidate base which is produced by erro-
neously assuming a nominal meta paradigm. The
nominal analysis re-analyzes y as the first person
possessive enclitic and crucially extends the base
with l, as l is not a viable nominal enclitic. Thus,
choosing the shortest base can help to eliminate
coincidentally feasible analyses.

Each model, DESEGf and DESEGg, breaks ties
using the other. Thus, DESEGf would correctly
segment the entire toy corpus, as the correct anal-
yses in byqwlhA and byqwl feature the uniquely
most fertile candidate bases, and while there is a
fertility tie for ybqwly, backing off to the candi-
date segmentation with the smallest base length
correctly selects the segmentation with ybqw as
the base. DESEGg correctly segments byqwl and
ybqwly, but incorrectly predicts that the stem-final
l in byqwlhA is actually the same enclitic preposi-
tion present in ybqwly and thus, over segments.

In the event of ties after considering both
fertility and base length, both models back off
again to the analysis with the base that most fre-
quently occurs as a full word in the raw corpus.
Prioritizing this frequency above either fertility
or base length minimization always hurt perfor-
mance, even though it proved quite useful as a fea-
ture for Narasimhan et al. (2015). We attribute this
seeming discrepancy to the interaction of Arabic’s
rich morphology with the noise of unstandardized
DA data. Many gold bases actually cannot appear
as stand-alone words due to the fusional morphol-
ogy and various writing conventions greatly affect

the frequency with which bases that can manifest
as stand-alone words actually do.

4 Evaluation

We compare DESEG to several alternative segmen-
tation models. We use the CORPUS6 dev set to
pick the optimal minimum base length on an in-
trinsic LM perplexity evaluation, and then perform
an extrinsic MT evaluation on the test set.

4.1 Models

We evaluate the following models:

PLAIN This baseline segments only punctuation.

MADAMIRA Egyptian and MSA versions are
available for MADAMIRA, which disambiguates a
rule-based morphological analyzer’s output with
an SVM trained on morphologically annotated
data. We use the Egyptian version as it is pre-
trained on a superset of the MSA data to capture
code switching. Thus, performance does not sig-
nificantly drop when testing on MSA, and perfor-
mance is significantly greater when testing on DA
varietes—even those far outside of Egypt—due to
many shared intra-DA linguistic traits not present
in MSA (Khalifa et al., 2017). MADAMIRA is a
tokenizer in that it not only segments but also mit-
igates data sparsity due to allomorphy by recover-
ing the canonical underlying morpheme for each
segment. We run MADAMIRA in D3 tokenization
mode, facilitating comparison with DESEG.

FARASA Similar to MADAMIRA, FARASA is a
pre-trained, SVM-based system leveraging gold
annotations and external dictionaries. Together,
FARASA and MADAMIRA represent the state of
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Invariable Trainable
Rule-based Pre-trained Unsupervised Unsupervised + De-lexical Grammar

PLAIN MADAMIRA FARASA BPE MORFESSOR DESEGg3 DESEGf3 DESEGg2 DESEGf2

Tokens 42,125 54,559 58,728 53,617 53,509 62823 64708 72644 70704
OOV% 6.8% 3.0% 2.60% 0.7% 2.6% 2.0% 2.1% 1.8% 1.7%

Perplexity 163.0 75.0 59 132.2 96.5 52.6 48.0 33.5 36.2

Table 3: Out of vocabulary (OOV) and perplexity for all tokenization models in the pooled dialects environment.

Dialects
used to Train
Segmenter(s)

Dialects
used to Train
MT System(s)

Invariable Trainable
Rule-based Pre-trained Unsupervised Unsupervised + De-lexical Grammar

PLAIN MADAMIRA FARASA BPE MORFESSOR DESEGg2 DESEGf2

Pooled Pooled 29.8 31.5 32.7 29.9 30.6 32.0 32.3
Individual Individual 28.7 31.4 31.2 28.4 30.1 30.9 31.3
Individual Pooled 29.8 31.5 32.7 30.6 31.8 32.5 32.9

Table 4: Macro BLEU scores for each tokenization model on CORPUS6 in three environments distinguishing how
dialects are pooled or treated separately when training the tokenizer and MT system.

the art for a number of morphological tasks in
Arabic. FARASA differs from MADAMIRA in that
only one version is publicly available, it segments
only, not attempting to tokenize, and the segmen-
tation scheme is linguistically ad hoc, tending to
be slightly more granular than D3.

BPE Byte pair encoding uses an algorithm origi-
nally designed for file compression to perform un-
supervised segmentation. BPE was originally pro-
posed to reduce vocabulary size to make neural
MT tractable (Sennrich et al., 2016), as the algo-
rithm’s simplicity enables easy application to any
language. It separates all characters in the corpus,
then performs a pre-determined number of join
operations, merging all instances of specified bi-
grams. Joins are determined such that the resulting
corpus will contain as few tokens as possible given
the number of join operations allowed. Thus,
while the algorithm is unsupervised and easy to
apply to any language, it is linguistically naive, as-
suming that morphological organization is driven
solely by enumerative efficiency concerns. Likely
for this reason, BPE has not been demonstrated to
be particularly useful for applications beyond neu-
ral MT (Kann et al., 2018).

MORFESSOR The de facto publicly available
unsupervised segmentation system is MORFES-
SOR. Like BPE, MORFESSOR trains in an unsu-
pervised fashion on large amounts of data and is
easily run on any language. Efficient encoding of
morphology is also at the center of MORFESSOR’s
objective function, though it considers not only
how compact the corpus can be represented, but

also how compact the grammar describing mor-
pheme combinatorics can be represented. Stem
morphemes are distinguished from affixal mor-
phemes as the model seeks to limit the number
of unique signatures—the sets of unique affixes
which can occur with a given stem—that result
from the learned segmentation scheme. While
MORFESSOR performs well on a number of unsu-
pervised segmentation tasks, it is known to have
typological biases toward the languages for which
it was originally developed (Kirschenbaum, 2015).

DESEG Our model, described in Section 3, finds
a compromise between the convenience of lan-
guage agnostic unsupervised systems and the per-
formance of systems leveraging language specific
resources. DESEG can be run with a minimum
base length of either 2 or 3 characters and a prior-
ity of base fertility maximization (f ) over greedy
base length minimization, or vice versa (g). Min-
imum base length and priority are represented as
subscripts in all relevant tables.

4.2 Intrinsic Language Modeling Evaluation

Table 3 shows the LM results for tokenizing COR-
PUS6 where all trainable segmenters are trained on
all of the raw data pooled together instead of train-
ing dialect specific tokenizers on relevant subsec-
tions of the 40+ million word corpus. To enable
pooled DESEG grammars, each dialect’s grammar
is merged into one highly permissive, over gener-
ating pan-Arabic grammar. In the unpooled train-
ing scenario, perplexity rankings were consistent
with those displayed here. Our model greatly re-
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duces both perplexity and out of vocabulary over
all competitive models, though we also exhibit a
tendency to over segment. Our best DESEG vari-
ants use a minimum base length of two, which is
logical because while Arabic features mainly tri-
radical roots, gemination causes many base forms
to reduce to only two graphemes. In the intrinsic
evaluation, it is difficult to tell whether the prefer-
ence for greed (DESEGg2) or fertility (DESEGf2) is
better. Our success is likely due to the fact that we
alone cover all the dialects, yet that coverage was
achieved in a fraction of the time spent construct-
ing the annotated data upon which state-of-the-art
systems rely to cover just a single dialect.

4.3 Extrinsic Machine Translation
Evaluation

We conduct MT experiments translating Ara-
bic dialects to English in three environments.
Pooled–pooled trains segmenters (only trainable
segmenters) on the monolingual corpus with all
dialects pooled and the MT system on all the di-
alects pooled. Individual–individual trains six seg-
menters on relevant subsections of the monolin-
gual data and six MT systems on the relevant par-
titions of CORPUS6. Individual–pooled trains in-
dividual segmenters but one pan-Arabic MT sys-
tem, which is reasonable to reduce the over gen-
eration of the morphological model but leverage
shared information during MT. Neural MT has
been used with dialects (Hassan et al., 2017),
but given the extreme scarcity of in-domain data,
statistical MT (Koehn et al., 2007) is the better
choice (Farajian et al., 2017) for comparing qual-
ity of segmentation in our setting. DESEG consis-
tently outperforms unsupervised alternatives BPE

and MORFESSOR in Table 4 while approaching
and even beating state-of-the-art systems FARASA

and MADAMIRA in the individual–pooled environ-
ment. The Fertility-based model DESEGf2 outper-
forms its greedy counterpart, supporting the argu-
ment that base fertility plays a meaningful role in
morphological organization.

5 Error Analysis

We performed a quantitative error analysis on 100
sentences randomly selected from CORPUS6 for
each variety, creating a gold segmentation set.
In Table 5, accuracy is computed given the two
modes of training DESEGf2 (i.e., pooled or indi-
vidual), and compared with the PLAIN input base-

line. Average segmentation accuracy over all va-
rieties correlates with the extrinsic evaluation for
both modes of training DESEGf2. In both modes,
the best performance is on MSA and the worst is
on Rabat then Tunis.

In individual mode, the poor performance of
Rabat and Tunis is expected as we could not ob-
tain sufficiently large monolingual data sets that
distinguish these two quite linguistically distinct
North African varieties. Thus, we were forced to
train both grammars’ disambiguators on the same
data, propagating error whenever a form occurred
in the Rabat dialect not analyzable by the Tunis
grammar or vice versa. As for pooled mode, care-
ful inspection revealed an exceptional amount of
inconsistent spellings in the Tunis and Rabat par-
titions of CORPUS6 that were not anticipated when
constructing the grammar. The definite article pro-
clitic +È@ Al+ for example, frequently appears as
its own word, reduced to just È l, or deleted al-
together when preceded by another proclitic, es-
pecially when the È l assimilates phonologically
to the following phoneme. In MSA, by contrast,
the definite article is always attached to the follow-
ing noun, the È l is never deleted, and the @ A can
only be deleted following the prepositional pro-
clitic +È l+, ‘for’. It is not surprising then that
MSA performs the best in both modes as there
is only negligible inconsistency in MSA spelling,
meaning that the grammar need not anticipate an
unbounded set of spelling alternatives exacerbat-
ing over generation and putting more stress on the
disambiguator.

The best DA performance is achieved on Beirut
for the pooled mode and Doha for the Individual.
Beirut is the least verbose of all dialects in unseg-
mented space, and also exhibits the lowest ratio
of unsegmented tokens to gold segmented tokens,
meaning that it rewards over segmenting, which
we know DESEGf2 is biased toward given its sec-
ondary preference for short bases. As for the high
performance on Doha, it is worth noting that Doha
is also the highest performing dialect on all MT
experiments, even recording higher BLEU scores
than MSA. It is thus likely that the Doha partition
of CORPUS6 is simply more internally consistent
than the others, not just in terms of spelling, but
also lexical choices and syntactic structure. This
could be idiosyncratic to CORPUS6 more than it is
characteristic of the Doha dialect, though an inde-
pendent test corpus would be needed to investigate
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this further.
While the extrinsic MT results vouch for the

effectiveness of pooled grammars when training
data cannot be separated by dialect, the pooled
training mode consistently fails to outperform
PLAIN on the harsh evaluation metric of segmen-
tation accuracy. On average, the pooled mode is
15% less accurate than individual—which does
consistently improve over PLAIN—demonstrating
that reducing the grammar’s capacity to over gen-
erate by determining the dialect before segmenting
greatly facilitates disambiguation. Indeed, there is
a 94% correlation between the verbosity reduction
and accuracy increase going from the pooled to in-
dividual mode, indicating that the pooled model is
over segmenting as more options for mistakenly
identifying segmentable clitics become available
across different dialects.

This is especially problematic for words like the
noun XQ

	
¯ frd, ‘individual’, which contain highly

fertile, analyzable bases within their true base.
That is, XQ

	
¯ frd can also be analyzed out of con-

text as a conjunction followed by a verb XP +
	

¬

f+ rd ‘so he responded’, where the verbal base XP

is highly fertile, especially since it is identical to
the nominal XP rd, ‘response’ and thus can par-
ticipate in a large number of clitic combinations
as licensed by three feasible meta paradigms (ver-
bal PV, verbal CV, or nominal). Furthermore, the
increased uncertainty caused by greater over gen-
eration of the analyzer in pooled mode gives the
base length minimization back off more influence.
Base length minimization as a disambiguation
strategy will always over segment by definition if
the analyzer permits it. Thus, low frequency or
unknown words like the proper name ñ

	
Kð@ Awnw,

‘Ono’ are frequently over segmented, as occurs in
all dialects except Doha and MSA, where the lead-
ing or trailing sequences of graphemes happen to
not be confusable with any viable clitics according
to the grammar.

Considering context will be crucial to improv-
ing the model’s handling of such cases in future
work, as the Cairene sentence ?ñ

	
Kð@ Ð@YÓ ø



X ù



ë

hy dy mdAm Awnw?, ‘Is this Madame Ono?’
provides a blatant clue in the title ‘Madame’,
that ñ

	
Kð@ Awnw is a name and need not be

segmented. Similarly, the Beiruti sentence,
... �

é
	
¯

A

�
� XQ

	
¯

�
é�Ò

	
j« PBðX

�
èQå

�
�ªËAë ú



Î

	
Q̄å� YK


Q�
�K. @ 	P @

AzA btryd Srfly hAlςšr~ dwlAr ςxms~ frd šÂf~ ...,

Seg Verbosity Accuracy Best
Input Pooled Indiv Input Pooled Indiv ER

Beirut 0.69 1.22 1.13 56.7 68.7 79.7 53
Cairo 0.80 1.29 1.15 77.8 65.9 81.3 16
Rabat 0.72 1.30 1.19 66.1 57.9 70.0 11
Tunis 0.81 1.32 1.15 79.4 62.9 78.5 0
Doha 0.79 1.27 1.11 77.3 67.6 85.2 35
MSA 0.80 1.24 1.07 76.3 69.6 88.3 50

Average 0.77 1.27 1.13 72.3 65.4 80.5 30

Table 5: Segmentation accuracy of DESEG trained on
Pooled versus Indiv(idual) dialects/grammars and eval-
uated on CORPUS6 against the PLAIN input baseline.
Seg(mentation) verbosity is the ratio of segmented to-
kens over gold segmented tokens while accuracy and
error reduction (ER) are reported as percentages.

‘Please exchange for me this ten dollar [bill] for a
single five...’ indicates that a noun should follow
the numerical modifier �

é�Ô
	

g xms~, ‘five’, not the
proclitic conjunction +

	
¬ f+, ‘so’.

6 Conclusion and Future Work

We present an effective unsupervised means of in-
troducing linguistic information for segmentation
that greatly improves performance over other un-
supervised systems as evaluated both intrinsically
and extrinsically. We target robust handling of
rich morphological phenomena and noisy corpora,
achieving performance on a multi-dialect Arabic
corpus comparable to state-of-the-art supervised
systems. The success of our simple system is
strong evidence for the value of linguistic input
during preprocessing.

In the future, we plan to evaluate our models on
natural (uncommissioned) dialectal corpora. We
also plan to enhance our delexicalize models with
non-concatenative components. And we also in
tend to develop models that consider context.
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