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Abstract

Generic responses frequently generated by
neural models are a critical problem for user
engagement in dialogue systems. For a more
engaging chit-chat experience, we propose
a response generation model motivated by
the interpersonal process model for intimacy.
It generates responsive and self-expressive
replies, which are implemented as domain-
awareness and sentiment-richness, respec-
tively. Experiments empirically confirmed
that our model outperformed the sequence-
to-sequence model; 68.1% of our responses
were domain-aware with sentiment polarities,
which was only 2.7% for responses generated
by the sequence-to-sequence model.

1 Introduction

Dialogue systems that conduct non-goal-oriented
chat, i.e., chit-chat, is an active research area. The
sequence-to-sequence model (SEQ2SEQ) (Vinyals
and Le, 2015; Shang et al., 2015) is commonly
used for implementation, however, recent studies,
e.g., (Li et al., 2016a), point out that SEQ2SEQ

frequently generates overly generic responses.
Among different approaches to address this prob-
lem, previous studies propose to generate more en-
gaging responses by reacting to topics in users’ ut-
terances (Xing et al., 2017) or embodying emo-
tions (Zhou et al., 2018; Huang et al., 2018).
Herein we make a step further to generate respon-
sive and self-expressive replies simultaneously.1

The interpersonal process model for inti-
macy (Reis and Shaver, 1988) indicates that
conversational responsiveness (Miller and Berg,
1984), i.e., showing concern for what was said,
and self-expression, i.e., sharing thoughts and feel-
ings, are primary factors to create intimacy. Mo-
tivated by this theory, we believe that the con-

1In this study, we focus on single-turn conversations, i.e.,
generating a response to a single utterance from the user.

Domain: Baseball

Domain: Pokémon GO

User: Sugano will be the ace for Japan! 
(菅野は日本のエースになるよ)  

Seq2Seq: Really? (そうなの？)
Our model (+): Sugano is cool! 

(菅野は良いですよね！)
Our model (-): No way? There is no hope for Sugano!

(菅野は無理ですね！)

User: Caught my first Pikachu! So cute!! 
(初めてピカチュウ捕まえた！可愛い！！)

Seq2Seq: Wow, awesome!  (え 、まじでいいよ !)
Our model (+): Shiny Pikachu is pretty cute.  
(ピカチュウの色違いがなかなか可愛いですよね)

Our model (-): Shiny Pikachu is pretty hard, indeed. 
(ピカチュウの色違いが、なかなか難しいですよね)

Figure 1: Responses generated by our model and
SEQ2SEQ ((+) represents a positive response and (-)
represents a negative response. )

versational responsiveness and self-expression are
also valid for a dialogue system to generate engag-
ing responses. We implement the conversational
responsiveness as domain-awareness because it
effectively conveys an impression that the dia-
logue agent is listening to the user by respond-
ing about mentioned topics. Also, we implement
the self-expression as sentiment-richness by rep-
resenting sentiment polarity to generate subjective
responses with feelings.

Specifically, the encoder predicts the domain of
a user’s utterance and integrates domain and ut-
terance representations to tell the decoder the tar-
get domain explicitly. Then the decoder embodies
sentiment polarity in its generation process. Fig. 1
shows real responses generated by our model. You
may find that our responses react to the domains of
input utterances while showing salient sentiments.
On the other hand, SEQ2SEQ ends up generating
generic responses.

To the best of our knowledge, this is the first
study that simultaneously achieved both domain-
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Figure 2: Architecture of the proposed model, on which the encoder is responsible for domain-awareness and the
decoder takes care of embodying sentiment polarity.

aware and sentiment-rich response generation.
Our contributions are twofold. First, we achieve
these features in a simple architecture integrating
existing methods on top of SEQ2SEQ in order to
make it easily reproducible in existing dialogue
systems. Second, our model utilizes fine-tuning
to compensate for the training data scarcity, which
is essential because there is a limited amount of
domain-dependent and sentiment-rich dialogues.
Our codes and scripts are publicly available.2

Evaluation results empirically confirmed that
our model significantly outperformed SEQ2SEQ

from the human perspective. Annotators judged
that responses generated by our model are consis-
tent with the utterances’ domains and show salient
sentiments for 89% and 72% of cases while pre-
serving fluency and consistency. Furthermore,
they judged 68.1% responses by our model as both
domain-aware and sentiment-rich, which was only
2.7% for responses by SEQ2SEQ.

2 Related Work

The generic response problem in SEQ2SEQ is
a central concern in recent studies. Different
approaches have been proposed to generate di-
versified responses; by an objective function (Li
et al., 2016a; Zhang et al., 2018b), segment-level
reranking via a stochastic beam-search in a de-
coder (Shao et al., 2017), or by incorporating
auto-encoders so that latent vectors are expressive
enough for the utterance and response (Zou et al.,
2018). In these approaches, balancing the diver-
sity and coherency in a response is not trivial. Zou
et al. (2018) show that metrics to measure the di-
versity are not proportional to human evaluation.

Another group of studies tackles the generic re-
sponse problem by improving coherence in the
response, which is relevant to conversational re-
sponsiveness. Approaches include reinforcement

2https://github.com/KChikai/
Responsive-Dialogue-Generation

learning (Zhang et al., 2018a) and prediction of a
keyword that will be the gist of a response given
an input utterance and its generation in the de-
coder (Mou et al., 2016; Yao et al., 2017; Wang
et al., 2018). In our study, we consider domain-
level coherency to achieve the conversational re-
sponsiveness similar to (Xing et al., 2017).

Several studies focus on self-expression in re-
sponses. Some add persona in dialogue agents
to generate consistent responses to paraphrased
input utterances (Li et al., 2016b; Zhang et al.,
2018c; Qian et al., 2018). Zhou et al. (2018) con-
ducted the first study that controls emotions in di-
alogue agents using two factors. The first is em-
bedding of a desired emotion label as in (Li et al.,
2016b; Huang et al., 2018). The second is inter-
nal and external memories, which control the emo-
tional state and the output of the decoder, respec-
tively. These previous studies propose methods
to achieve either conversational responsiveness or
self-expression. Herein we aim to achieve both
features simultaneously.

3 Proposed Architecture

To be easily implemented on existing dialogue
systems, our model design aims to be simple.
We integrate TWEET2VEC (Dhingra et al., 2016)
and the external memory (Zhou et al., 2018) with
SEQ2SEQ (Fig. 2). While sentiments in texts are
well-understood in natural language processing,
emotions need more studies to be considered in
practical applications. Besides, determining the
appropriate emotions for a specific utterance re-
mains problematic (Hasegawa et al., 2013). In
our model, we focus on sentiments and input the
embedding of a sentiment label s to the decoder,
which specifies the desired sentiment to represent
in a response.

3.1 Encoder
Fig. 3 shows the design of our encoder, which in-
tegrates the input utterance and its domain.

https://github.com/KChikai/Responsive-Dialogue-Generation
https://github.com/KChikai/Responsive-Dialogue-Generation
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Figure 3: Design of the encoder (⊗ concatenates input vectors and ⊕ averages them)

Input Utterance Encoding The input utterance
is represented as a vector. Bi-directional recurrent
neural networks empirically show superior perfor-
mance in generation tasks (Bahdanau et al., 2015)
because they refer to the preceding and subsequent
sequences. We apply bi-directional Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) networks to encode an input utter-
ance into a vector. Given the input utterance
X = {x1, x2, · · · , xM} of length M , the forward
LSTM network encodes the input at time step t as

cfwt ,h
fw
t = LSTM(eencxt , c

fw
t−1,h

fw
t−1).

hfw
t ∈ Rλ is the representation output, which is

computed based on the embedding of xt (denoted
as eencxt ∈ Rω) and the previous representation
output hfw

t−1. cfwt−1 ∈ Rλ is a cell state vector
that works as a memory in LSTM. The backward
LSTM works in the same fashion by reading the
input in the reverse order. The final vector repre-
sentation htxt ∈ Rλ is computed by averaging the
concatenated forward and backward outputs

have =
1

M

M∑
t=1

[hfw
t ;hbw

t ],

htxt =σ(Wtxthave),

where [·; ·] concatenates two vectors, σ(·) is a sig-
moid function, and Wtxt ∈ Rλ×2λ. In this way,
htxt encodes the summaries of both the preceding
and subsequent words.

Domain Estimation & Representation An-
other task of the encoder is predicting the domain
of the input utterance and integrating the domain
label with the utterance. For domain estimation,
we apply TWEET2VEC due to its superior abil-
ity to predict a label of short and colloquial text,

which should be the case for input utterance to di-
alogue agents. Although the original paper pre-
dicted hashtags of tweets, we predict domains of
utterances. Another advantage of TWEET2VEC is
that it is language-independent and easily adapted
to different languages.

Specifically, TWEET2VEC encodes the input ut-
terance using bi-directional recurrent neural net-
works adapting gated recurrent units (GRUs) (Cho
et al., 2014). The final vector representation of in-
put ĥtxt is computed by integrating the forward
and backward outputs using a fully-connected
layer. Then ĥtxt is passed through a linear layer,
and the posterior probabilities of the domains are
computed in a softmax layer.

Domain d of the highest posterior probability is
converted into dense vector representation hdom ∈
Rδ. Specifically, a two-layer multilayer percep-
tron (MLP) is employed where a rectifier is used
as the activation function

ĥdom =relu(Wdom
1 edomd ),

hdom =relu(Wdom
2 ĥdom),

where edomd ∈ Rδ is the embedding vector of d,
Wdom

1 ∈ Rη×δ, and Wdom
2 ∈ Rδ×η.

Utterance & Domain-Label Integration Fi-
nally, the utterance and domain representations
pass through another fully-connected layer and are
integrated into a vector hdec

0 ∈ Rλ

hdec
0 = Wenc[htxt;hdom], (1)

where Wenc ∈ Rλ×(λ+δ). hdec
0 is then passed to

the decoder for response generation.

3.2 Decoder
Given hdec

0 encodes the input utterance and the
predicted domain, the decoder generates a re-
sponse embodying the desired sentiment. Input
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utterance X is paired with a sequence of outputs
to predict Y = {y1, y2, . . . , yN} of length N .

We apply the external memory to SEQ2SEQ in
order to proactively control the sentiments in the
outputs. Fig. 4 shows the detailed design of the de-
coder. First, we concatenate the output sequence
with the embedding of the desired sentiment la-
bel as a soft-constraint to instruct the decoder of
the desired sentiment for response generation (Li
et al., 2016b). The external memory then directly
controls response generation by switching outputs
between words with sentiment polarities (hereafter
referred to as sentiment words) and generic ones.
Specifically, in the external memory, vocabulary
V is divided into two subsets: V = {Vs ∪ Vg}.
Vs contains only sentiment words, such as cool
and terrible, while Vg contains other generic
words, such as day and me. The weight of a
switcher, which determines the priority of the sets
of vocabulary is computed based on the represen-
tation output from an LSTM network.

Embedding of s (denoted as es ∈ Rδ) is con-
catenated with output yt−1 at the previous time
step and then input into the LSTM network as

cdect ,hdec
t = LSTM([edecyt−1

; es], cdect−1,h
dec
t−1),

where cdect ∈ Rλ is the cell state vector in the
LSTM, hdec

t ∈ Rλ is the representation output
from the LSTM, and edecyt−1

is the embedding of
yt−1. Recall that the initial input to the decoder
hdec
0 is computed in Eq. (1).
Then hdec

t is passed to the external memory to
sequentially predict output as

at =σ(W
ahdec

t ),

og =softmax(Wghdec
t ),

os =softmax(Wshdec
t ),

yt ∼ ot =[(1− at)og; atos],

where Wa ∈ R1×λ, Wg ∈ Rλ×|Vg |, and Ws ∈
Rλ×|Vs|. at ∈ [0, 1] weighs either the probabil-
ities of generic words or sentiment words based
on context represented in hdec

t . og ∈ R|Vg | and
os ∈ R|Vs| are the posterior probabilities to out-
put a word in each vocabulary. ot ∈ R|V | is the
final probability of each word adjusted by at. At
run-time, a beam-search with a beam-size of 5 is
conducted to avoid outputting an unknown tag.

Our model optimizes the cross-entropy loss be-
tween predicted word distribution ot and gold dis-
tribution pt. In addition, a regularizer constrains
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Figure 4: Design of the decoder (⊗ concatenates input
vectors and ◦ multiplies a vector and scalar.)

the selection of a sentiment or generic word

−
N∑
t=1

pt log(ot)−
N∑
t=1

qt log(at), (2)

where qt ∈ {0, 1} is the gold choice of a sentiment
word or a generic word.

4 Training Framework

Because our model aims to generate domain-
aware responses with sentiments, it should be
trained on in-domain conversations with senti-
ments. Although either in-domain conversations
or conversations with sentiments are available,
their intersections are scarce. Furthermore, our
model integrates TWEET2VEC and external mem-
ory. Thus, training errors propagate from each
sub-model to the final response.

Consequently, we designed a training frame-
work that pre-trains sub-models independently
and then conducts fine-tuning on the connected
model, where a model is trained using the pre-
trained parameters as the initial weights. The
training process uses not only a small-scale con-
versational (in-domain) corpus of specific do-
mains but also a large-scale conversational corpus
of general domain.

4.1 Sentiment Annotation
Training requires sentiment annotations on the
general and in-domain corpora. Because it is cost
prohibitive to annotate sentiments to these corpora
manually, we rely on automatic sentiment analy-
sis. Given that input utterances to dialogue agents
are short, incomplete, extremely casual, and po-
tentially noisy, we need a robust method to predict
sentiments with guaranteed accuracy.
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Figure 5: Pre-training process (Gray boxes denote data
from the in-domain corpus.)

Although we tried several state-of-the-art meth-
ods for sentiment analysis (Severyn and Moschitti,
2015; Zhu et al., 2015), our preliminary evalua-
tion showed that they were easily confused by col-
loquial styles in conversational texts. Hence, we
used a simple heuristics based on a sentiment lexi-
con to prioritize the robustness in analysis. Specif-
ically, a sentence is annotated as positive (nega-
tive) if there are more positive (negative) words. If
there is an equal number of positive and negative
words, then the sentence is annotated as neutral.

We extracted words with strong polarities from
existing sentiment lexicons (Kobayashi et al.,
2005; Takamura et al., 2005). Besides, we col-
lect casual and recent sentiment words by crawl-
ing Twitter.3 This sentiment lexicon is used for the
above sentiment analysis and the external memory
as Vs after the filtering described in Sec. 5.2. More
details of lexicon construction are in Sec. A.

4.2 Pre-Training on Sub-Models
After annotating sentiments on the general and in-
domain corpora, we conducted pre-training. In the
pre-training step, sub-models are independently
trained (Fig. 5).

SEQ2SEQ requires large-scale training data for
fluent response generation. Thus, we used the gen-
eral corpus here. We directly connected the bi-
directional LSTM in the encoder and the LSTM
in the decoder to train this sub-model. The loss
function (Eq. (2)) is computed by referring to the
gold-responses in the corpus. Embeddings to rep-
resent sentiments are trained at this stage.

TWEET2VEC is independently trained using the
in-domain corpus for domain prediction. The
model optimizes the categorical cross-entropy loss
between the predicted and gold domain labels.

3https://twitter.com/

MLP

MLP

LSTM
Domain-

dependent 
utterance

LSTM

External 
memory

Output: 
response

Encoder DecoderGold 
domain 

label

Sentiment

Domain-
dependent 
response

Loss

Figure 6: Fine-tuning process (Gray boxes denote data
from the in-domain corpus.)

4.3 Fine-Tuning on the Entire Model

After pre-training, fine-tuning is conducted using
the in-domain corpus to train MLPs that integrate
the domain label and input utterance (Fig. 6). Ad-
ditionally, embeddings of domain labels edomd are
trained at this stage. To avoid error propagation
from the pre-trained TWEET2VEC, gold domain
labels are inputted into the MLP to learn correct
representations of domain labels.

Once fine-tuned, these sub-models are con-
nected to generate domain-aware responses with
sentiments (Fig. 2).

5 Evaluation Design

Because the effectiveness of each component
for embodying emotions have been evaluated
in (Zhou et al., 2018; Huang et al., 2018), we focus
on evaluating whether both domain-awareness and
sentiment-richness are achieved simultaneously by
our model compared to SEQ2SEQ.

5.1 Data Collection

To train our model, we collected both general and
in-domain conversational texts in Japanese. The
general corpus is constructed by crawling con-
versational tweets using Twitter API.4 We also
crawled conversational tweets used in the NTCIR
Short Text Conversation Task (Shang et al., 2016).
In total, the general corpus contains about 1.6M
utterance-response pairs.

The in-domain corpus crawls conversations in
public Facebook Groups using Facebook Graph
API.5 Because members are fans of specific
products, organizations, and people, we expect
that their conversations are domain-dependent.6

Specifically, we used two domains, Japanese pro-

4https://developer.twitter.com/en/docs
5https://developers.facebook.com/docs/

graph-api
6We also tried to collect in-domain conversations using

hashtags on Twitter, but they were too noisy.

https://twitter.com/
https://developer.twitter.com/en/docs
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api


144

Type Domain # of Pairs
General Mixture 1.1M

In-domain
Baseball 24k

Pokémon Go 23k

Table 1: Training data profile

Summary Setting
ω Dimension of word embed-

ding
256

λ Dimension of the representa-
tion output in the LSTM net-
work

512

δ Dimension of the embedding
and representation output of
labels

64

η Dimension of the hidden layer
in the MLPs

512

|V | Vocabulary size 45k
|Vs| Vocabulary size of the senti-

ment words
1, 387

Table 2: Hyper-parameters and their settings

fessional baseball leagues and Pokémon Go7, an-
ticipating that salient sentiments are easily mani-
fested in sports and game domains. Experiments
using a wider range of domains is our future work.
We crawled conversations since a group’s incep-
tion to November 2017. In total, the in-domain
corpora contain about 29k baseball-related conver-
sations and 28k game-related conversations. We
assume that sentiments can be embodied in do-
mains with weaker sentiment tendencies due to
pre-training in the general domain corpus. Veri-
fication of this assumption is a future task.

After crawling, we preprocessed the corpora to
remove noise and standardize texts (details are de-
scribed in Sec. B). Table 1 shows the amount of
our training data after the preprocessing step.

As a validation set of pre-training, 1k conversa-
tion pairs were sampled from the general corpus.
Similarly, 1k pairs for validation and another 1k
as a test set were sampled from the in-domain cor-
pus for the automatic evaluation. The training set
excluded these validation and test sets.

5.2 Model Setting

Table 2 summarizes the hyper-parameters in our
model and their settings. The vocabulary size was

7https://pokemongolive.com/en/

45k, which consisted of frequent words in the gen-
eral and in-domain corpora. The general and in-
domain corpora contained 1, 387 sentiment words,
which were used as Vs in the external memory.

In both pre-training and fine-tuning, sub-
models, except for TWEET2VEC, were trained at
most 100 epochs with early stopping using the val-
idation set. Batch size was set to 200, dropout was
used with a rate of 0.2, and Adam (Kingma and
Ba, 2015) with a learning rate of 0.01 was applied
as an optimizer.

During pre-training and fine-tuning, an out-of-
vocabulary (OOV) word in input utterances was
replaced with a similar word in the vocabulary
to reduce the effects of data sparsity (Li et al.,
2016c). We generated word embeddings using
the fastText (Bojanowski et al., 2017) with the de-
fault settings feeding Wikipedia dumps8 as train-
ing data. When a word is OOV, the top-50 sim-
ilar words are detected using cosine similarities
between their embeddings. If one of these simi-
lar words is in the vocabulary, it replaces the orig-
inal OOV word. Otherwise, the original word is
replaced with an unknown word tag.

TWEET2VEC was trained on the in-domain cor-
pus using the official implementation9 with the
default settings. We crawled 200 new domain-
dependent conversational pairs as a validation set.
The prediction accuracy was 89.0%, which is rea-
sonable considering that our texts are colloquial.

We compare our model to SEQ2SEQ that was
implemented using bi-directional LSTM networks
as an encoder and an LSTM network as a decoder.
Our model has the same hyper-parameters and
training procedures, except that SEQ2SEQ was
trained using both general and in-domain corpora.
For SEQ2SEQ, a validation set of 1k pairs was
randomly sampled from the combined corpus ex-
cluding from the training and test sets described in
Sec. 5.1.

5.3 Human Evaluation

Because each utterance has many appropriate re-
sponses, an automatic evaluation scheme has yet
to be established. To assess the quality of the
generated responses from the human perspec-
tive, we designed two evaluation tasks. Task 1
evaluates the overall quality of our model com-
pared to SEQ2SEQ from the perspectives of

8https://dumps.wikimedia.org/
9https://github.com/bdhingra/tweet2vec

https://pokemongolive.com/en/
https://dumps.wikimedia.org/
https://github.com/bdhingra/tweet2vec
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domain-awareness and sentiment-richness. Task 2
evaluates if an intended sentiment is embodied
as desired without being affected by domain-
awareness.

We recruited five graduate students majoring in
computer science that are Japanese native speakers
(hereafter called annotators). After an instruction
session to explain judgment standards, they anno-
tated Task 1 and Task 2. As a token of apprecia-
tion, each annotator received a small stipend.

Test Set Creation To exclude external factors,
e.g., word segmentation failures, that may affect
the evaluation results, we manually created a test
set consisting of 300 utterances in the baseball do-
main and another 300 utterances in the Pokémon
Go domain.

First, we crawled new conversational pairs from
the same Facebook Groups from November to De-
cember 2017. Next, we manually excluded con-
versations in the general domain (e.g., greetings).
We then cleaned sentences in the same manner
with the general and in-domain corpora. Besides,
we manually replaced OOV words within vocabu-
lary words that preserve the original meanings of
sentences. Slang and uncommon expressions were
also manually converted to standard expressions
to avoid impacting the accuracy of word segmen-
tation. Half of the test set (150 conversations for
each domain) was used for Task 1 and the other
half was used for Task 2. Note that all annota-
tors annotated the same conversations, in total 600
pairs of utterances and responses.

Task 1: Overall Evaluation Annotators judged
triples of an input utterance and responses by our
model and by SEQ2SEQ. The order of responses
was randomly shuffled to ensure a fair evaluation.
Annotators assessed the following aspects:
• Fluency: Annotators judged if a response is

fluent and at an acceptable level to understand
its meaning (1 = fluent, 0 = influent).

• Consistency: Annotators evaluated whether a
response is semantically consistent with the
utterance (1 = consistent, 0 = inconsistent).
Generic responses can be regarded as consis-
tent if they are acceptable for given utterances.
Responses judged as influent are automatically
annotated as inconsistent.

• Domain-awareness: Annotators compared
the two responses and determined which
one better matched the domain of the input

utterance (1 = model that generated the better
response, 0 = the other model).

• Sentiment-richness: Annotators compared the
two responses and determined one showing
salient sentiments like Domain-awareness an-
notation. Only positive or negative responses
were considered for our model.

For Domain-awareness and Sentiment-richness,
we conduct a pairwise comparison of our model
and SEQ2SEQ, which enables reliable judgments
for subjective annotations (Ghazvininejad et al.,
2018; Wang et al., 2018), rather than indepen-
dently judging different models.

Task 2: Evaluation of Sentiment Control Our
model takes a sentiment label that is desired to be
expressed in a generated response as input, which
we refer to as intended sentiment. This task evalu-
ates if such an intended sentiment is embodied in a
response by comparing the intended sentiment and
a sentiment that annotators perceive in practice.

Annotators were shown a pair of input utterance
and generated response by our model, and then
asked to judge if the response was positive, neg-
ative, or neutral. We evaluated the agreement be-
tween the intended and perceived sentiments.

6 Evaluation Results

As an automatic evaluation measure, we computed
the BLEU score (Papineni et al., 2002) follow-
ing evaluations in (Li et al., 2016a; Ghazvinine-
jad et al., 2018). Our model achieved the higher
BLEU score (1.54) than SEQ2SEQ (1.39). How-
ever, as discussed in (Liu et al., 2016; Lowe
et al., 2017), current automatic evaluation mea-
sures show either weak or no correlation with
human judgements, or worse, they tend to favor
generic responses. Hence, we focus on human
evaluation in the following.

First of all, the agreement level of annotations
is examined based on Fleiss’ κ. All annotations
have reasonable agreements (κ ≥ 0.37) except
the annotation of fluency for SEQ2SEQ whose κ
value is as low as 0.21 (all the κ values are shown
in Sec. C). This phenomenon may be because
SEQ2SEQ tends to output generic responses that
are less dependent on the utterances, making judg-
ments difficult due to the limited clues to evaluate
fluency.

Table 3 shows the macro-averages and the 95%
confidence intervals of the scores obtained by the
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Metrics SEQ2SEQ Our model
Fluency 0.995± 0.006 0.955± 0.023

Consistency 0.773± 0.094 0.753± 0.127

Domain-
awareness

0.109± 0.044 0.890± 0.044

Sentiment-
richness

0.282± 0.133 0.717± 0.133

Table 3: Evaluation results of Task 1

annotators in Task 1. Our model achieved signifi-
cant improvements over SEQ2SEQ; 89% and 72%
of the responses generated by ours were deemed
as consistent with the utterance domain and show-
ing salient sentiments, respectively. Furthermore,
68.1% responses by our model were judged as
both domain-aware and sentiment-rich, which was
only 2.7% for responses by SEQ2SEQ.

As for fluency and consistency, SEQ2SEQ

yields slightly more fluent (99.5%) and consistent
(77.3%) responses compared to our model (95.5%
and 75.3%, respectively). SEQ2SEQ benefits from
the generic responses because such responses ap-
ply to various inputs, making it easier to achieve a
high consistency compared to our model that gen-
erates domain-dependent responses. Additionally,
generic responses are easier to generate because
they are typically short. The average numbers
of characters in responses when inputting the test
set were 19 and 32 for SEQ2SEQ and our model,
respectively. This result reveals that our model
achieves a reasonably high fluency even when gen-
erating significantly longer responses. Another
reason is the side-effect of external memory that
influences the internal state of the decoder as re-
ported in (Zhou et al., 2018).

As a result of Task 2, the macro-average of
the agreement between the intended and perceived
sentiments is 64.5 ± 2.3%, where Fleiss’ κ of an-
notation is 0.52. Fig. 7 is a confusion matrix show-
ing the distribution of the obtained 1, 500 annota-
tions. Neutral responses tend to be judged as either
positive (28.5%) or negative (15.6%). One reason
is our simple sentiment annotation, which assigns
a neutral label when the numbers of positive and
negative words in a sentence are equal. Improving
the polarity strength is a future task.

The annotators perceived 17.6% of the intended
negative responses as positive. Detailed analy-
ses of generated responses revealed that this cat-
egory contained sentiment words whose polarities

Figure 7: Confusion matrix of intended (true) senti-
ments and the sentiments that annotators perceived

depend on the context, e.g., envy, great, and
surprising. These words are considered neg-
ative in our sentiment lexicon because they tend
to be used with negative emoticons to show hu-
mor in Twitter. In the future, we will develop
post-processing to clean our lexicon and consider
the self-attention (Vaswani et al., 2017) to resolve
such context-dependent cases.

Fig. 1 shows real examples of generated re-
sponses. While SEQ2SEQ produces generic
responses like “Really?”, our model gener-
ates domain-aware responses with sentiments
like “Sugano is cool!” (positive response)
and “No way? There is no hope for
Sugano!” (negative response) for the baseball
domain. Sec. D provides more examples that show
how our model achieved domain-awareness and
sentiment-richness.

7 Conclusion

As a solution to the generic response problem
in SEQ2SEQ, we implemented conversational re-
sponsiveness and self-expression to a neural di-
alogue model. Different from previous studies,
our model achieves these features simultaneously
in forms of domain-awareness and sentiment-
richness, respectively. Evaluation results empir-
ically demonstrated that our model significantly
outperformed SEQ2SEQ. In the future, we will
improve the accuracy in embodying sentiments
and extend our dataset to cover diverse domains.
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A Construction of the Sentiment Lexicon

We used two sentiment lexicons created
by Kobayashi et al. (2005) and Takamura
et al. (2005). The former is manually created,
while the latter is automatically created by es-
timating the strengths of semantic orientations
of words in the range of [−1.0, 1.0]. We only
used words with a strong polarity. Specifically,
words with scores of [−1.0, 0.9] or [0.9, 1.0].
These lexicons contain only formal words like
headings in dictionaries. Therefore, we extended
our sentiment lexicon to collect casual and recent
sentiment words.

We searched tweets that are expected to con-
tain sentiments by querying Twitter with positive
and negative emoticons. In total, we crawled 400k
potential positive and negative tweets and gener-
ated word embeddings from these tweets using the
fastText (Bojanowski et al., 2017) with the default
setting. We then manually selected 57 sentiment
words from the vocabulary as seeds. The top-15
similar words per seed were extracted as sentiment
words, which were ranked by the cosine similarity
between embeddings of the seed and a candidate.
In total, we collected 1, 621 negative and 2, 666
positive words as our sentiment lexicon.

B Preprocessing

We employed conversational text crawled from
Twitter and Facebook, which are inherently noisy.
We conducted data cleaning before training our
model.

First, line breaks, emoticons, Japanese emoti-
cons (kaomoji), URLs, and consecutive duplicate
symbols were removed. Then texts less than or
equal to 25 words were obtained after word seg-
mentation using Mecab (Kudo et al., 2004). Ta-
ble 4 shows detailed statistics of our training data
after this preprocessing.

C Annotation Agreement

Table 5 shows the Fleiss’ κ for each annotation
result in our human evaluation. It confirms that
reasonably high agreements were achieved.

D Example Responses

Fig. 8 shows real responses generated by our
model and SEQ2SEQ using input utterances from
our test set. Our method successfully generates
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Data (Source) Total # of pairs Positive Neutral Negative
General (Twitter) 1, 081, 500 218, 322 760, 451 102, 727

In-domain
(Facebook)

Baseball 24, 666 6, 011 16, 623 2, 032
Pokémon GO 22, 734 7, 633 13, 299 1, 802

Table 4: Detailed statistics of training data

Annotation κ

Task 1

Fluency
SEQ2SEQ 0.21
Our model 0.45

Consistency
SEQ2SEQ 0.41
Our model 0.37

Domain-awareness 0.78
Sentiment 0.46

Task 2 0.52

Table 5: Fleiss’ κ on annotation results

Input utterance Model Generated response

Ohtani wants to try hand 

at pitching in the majors.

(大谷選手のメジャー移籍
の可能性はあります)

Seq2Seq
I like him better now.
(俺は今からの方が好きです)

Our 

model

Positive
Really? I was expecting that!
(そうなんですか!それは、期待してるんですよね!)

Neutral
Really! I didn’t know that!
(そうなんですか!それは知りませんでした!)

Negative
Really? He’ll be rude to any team.
(そうなんですか!それは、どこの球団にも失礼ですね!)

I’m expecting the head 

coach, Kanemoto, to 

develop fresh talent. 

(金本監督は若手をどんど
ん育てて欲しいですね。)

Seq2Seq
Agreed, but I like him.
(私もそう思うけど、私は好きです。)

Our 

model

Positive
I expect the Giants head coach to develop talent.
(巨人の監督に期待してますね)

Neutral
Maybe, if he becomes the Giants head coach.
(巨人の監督になったら、そうですね。)

Negative
Giant players are difficult, too.
(巨人の選手も、怖いですね。)

I wanted to exchange a 

2km-egg. LOL!

(この時ばかりは二キロタ
マゴと交換してあげた
かったですわら)

Seq2Seq
Uh, nice!
(あ、よかったです!)

Our 

model

Positive
That shiny Magikarp had a good profile.
(金コイは個体値良かったですね)

Neutral
They were a shiny Magikarp and Eevee.
(金コイとイーブイでしたね)

Negative
A shiny Magikarp is disappointing. 
(金コイはキツイですね)

Figure 8: Example responses generated by our model and SEQ2SEQ

domain-aware and sentiment-rich responses com-
pared to SEQ2SEQ.


