
ACL 2019

NLP for Conversational AI

Proceedings of the 1st Workshop

August 1, 2019
Florence, Italy



c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-37-6

ii



Introduction

Welcome to the ACL 2019 Workshop on NLP for Conversational AI.

Ever since the invention of the intelligent machine, hundreds and thousands of mathematicians, linguists,
and computer scientists have dedicated their career to empowering human-machine communication in
natural language. Although the idea is finally around the corner with a proliferation of virtual personal
assistants such as Siri, Alexa, Google Assistant, and Cortana, the development of these conversational
agents remains difficult and there still remain plenty of unanswered questions and challenges.

Conversational AI is hard because it is an interdisciplinary subject. Initiatives were started in different
research communities, from Dialogue State Tracking Challenges to NIPS Conversational Intelligence
Challenge live competition and the Amazon Alexa prize. However, various fields within the NLP
community, such as semantic parsing, coreference resolution, sentiment analysis, question answering,
and machine reading comprehension etc. have been seldom evaluated or applied in the context of
conversational AI.

The goal of this workshop is to bring together NLP researchers and practitioners in different fields,
alongside experts in speech and machine learning, to discuss the current state-of-the-art and new
approaches, to share insights and challenges, to bridge the gap between academic research and real-
world product deployment, and to shed the light on future directions. “NLP for Conversational AI” will
be a one-day workshop including keynotes, spotlight talks, posters, and panel sessions. In keynote talks,
senior technical leaders from industry and academia will share insights on the latest developments of the
field. An open call for papers will be announced to encourage researchers and students to share their
prospects and latest discoveries. The panel discussion will focus on the challenges, future directions
of conversational AI research, bridging the gap in research and industrial practice, as well as audience-
suggested topics.

With the increasing trend of conversational AI, NLP4ConvAI 2019 is competitive. We received 68
submissions, and after a rigorous review process, we only accept 25. There are total 16 accepted regular
workshop papers and 7 cross-submissions or extended abstracts. The workshop overall acceptance rate
is about 36.8%.

We hope you will enjoy NLP4ConvAI 2019 at ACL and contribute to the future success of our
community!

NLPConvAI 2019 Organizers
Tania Bedrax-Weiss, Google AI
Yun-Nung (Vivian) Chen, National Taiwan University
Dilek Hakkani-Tur, Amazon Alexa
Anuj Kumar, Facebook
Mike Lewis, Facebook AI
Thang-Minh Luong, Google Brain
Pei-Hao (Eddy) Su, PolyAI
Tsung-Hsien (Shawn) Wen, PolyAI
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Abstract

Progress in Machine Learning is often driven
by the availability of large datasets, and con-
sistent evaluation metrics for comparing mod-
eling approaches. To this end, we present
a repository of conversational datasets con-
sisting of hundreds of millions of examples,
and a standardised evaluation procedure for
conversational response selection models us-
ing 1-of-100 accuracy. The repository con-
tains scripts that allow researchers to repro-
duce the standard datasets, or to adapt the
pre-processing and data filtering steps to their
needs. We introduce and evaluate several com-
petitive baselines for conversational response
selection, whose implementations are shared
in the repository, as well as a neural encoder
model that is trained on the entire training set.

1 Introduction

Dialogue systems, sometimes referred to as con-
versational systems or conversational agents, are
useful in a wide array of applications. They are
used to assist users in accomplishing well-defined
tasks such as finding and/or booking flights and
restaurants (Hemphill et al., 1990; Williams, 2012;
El Asri et al., 2017), or to provide tourist informa-
tion (Henderson et al., 2014c; Budzianowski et al.,
2018). They have found applications in entertain-
ment (Fraser et al., 2018), language learning (Raux
et al., 2003; Chen et al., 2017), and healthcare
(Laranjo et al., 2018; Fadhil and Schiavo, 2019).
Conversational systems can also be used to aid in
customer service1 or to provide the foundation for
intelligent virtual assistants such as Amazon Alexa,
Google Assistant, or Apple Siri.

Modern approaches to constructing dialogue sys-
tems are almost exclusively data-driven, supported

1For an overview, see poly-ai.com/blog/towards-ai-
assisted-customer-support-automation

by modular or end-to-end machine learning frame-
works (Young, 2010; Vinyals and Le, 2015; Wen
et al., 2015, 2017a,b; Mrkšić and Vulić, 2018; Ra-
madan et al., 2018; Li et al., 2018, inter alia). The
research community, as in any machine learning
field, benefits from large datasets and standardised
evaluation metrics for tracking and comparing dif-
ferent models. However, collecting data to train
data-driven dialogue systems has proven notori-
ously difficult. First, system designers must con-
struct an ontology to define the constrained set of
actions and conversations that the system can sup-
port (Henderson et al., 2014a,c; Mrkšić et al., 2015).
Furthermore, task-oriented dialogue data must be
labeled with highly domain-specific dialogue anno-
tations (El Asri et al., 2017; Budzianowski et al.,
2018). Because of this, such annotated dialogue
datasets remain scarce, and limited in both their
size and in the number of domains they cover.
For instance, the recently published MultiWOZ
dataset (Budzianowski et al., 2018) contains a total
of 115,424 dialogue turns scattered over 7 target do-
mains. Other standard task-based datasets are typi-
cally single-domain and smaller by several orders
of magnitude: DSTC2 (Henderson et al., 2014b)
contains 23,354 turns, Frames (El Asri et al., 2017)
comprises 19,986 turns, and M2M (Shah et al.,
2018) spans 14,796 turns.

An alternative solution is to leverage larger con-
versational datasets available online. Such datasets
provide natural conversational structure, that is,
the inherent context-to-response relationship which
is vital for dialogue modeling. In this work, we
present a public repository of three large and di-
verse conversational datasets containing hundreds
of millions of conversation examples. Compared
to the most popular conversational datasets used in
prior work, such as length-restricted Twitter con-
versations (Ritter et al., 2010) or very technical
domain-restricted technical chats from the Ubuntu
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corpus (Lowe et al., 2015, 2017; Gunasekara et al.,
2019), conversations from the three conversational
datasets available in the repository are more nat-
ural and diverse. What is more, the datasets are
large: for instance, after preprocessing around 3.7B
comments from Reddit available in 256M conver-
sational threads, we obtain 727M valid context-
response pairs. Similarly, the number of valid pairs
in the OpenSubtitles dataset is 316 million. To put
these numbers into perspective, the frequently used
Ubuntu corpus v2.0 comprises around 4M dialogue
turns. Furthermore, our Reddit corpus includes 2
more years of data and so is substantially larger
than the previous Reddit dataset of Al-Rfou et al.
(2016), which spans around 2.1B comments and
133M conversational threads, and is not publicly
available.

Besides the repository of large datasets, another
key contribution of this work is the common evalu-
ation framework. We propose applying consistent
data filtering and preprocessing to public datasets,
and a simple evaluation metric for response se-
lection, which will facilitate direct comparisons
between models from different research groups.

These large conversational datasets may support
modeling across a large spectrum of natural con-
versational domains. Similar to the recent work
on language model pretraining for diverse NLP ap-
plications (Howard and Ruder, 2018; Devlin et al.,
2018; Lample and Conneau, 2019), we believe that
these datasets can be used in future work to pre-
train large general-domain conversational models
that are then fine-tuned towards specific tasks using
much smaller amounts of task-specific conversa-
tional data. We hope that the presented reposi-
tory, containing a set of strong baseline models
and standardised modes of evaluation, will provide
means and guidance to the development of next-
generation conversational systems.

The repository is available at github.com/

PolyAI-LDN/conversational-datasets.

2 Conversational Dataset Format

Datasets are stored as Tensorflow record files con-
taining serialized Tensorflow example protocol
buffers (Abadi et al., 2015). The training set is
stored as one collection of Tensorflow record files,
and the test set as another. Examples are shuffled
randomly (and not necessarily reproducibly) within
the Tensorflow record files. Each example is de-
terministically assigned to either the train or test

set using a key feature, such as the conversation
thread ID in Reddit, guaranteeing that the same
split is created whenever the dataset is generated.
By default the train set consists of 90% of the total
data, and the test set the remaining 10%.

context/1 Hello, how are you?

context/0 I am fine. And you?

context Great. What do you think of the weather?

response It doesn’t feel like February.

Figure 1: An illustrative Tensorflow example in a con-
versational dataset, consisting of a conversational con-
text and an appropriate response. Each string is stored
as a bytes feature using its UTF-8 encoding.

Each Tensorflow example contains a conversa-
tional context and a response that goes with that
context, see e.g. figure 1. Explicitly, each example
contains a number of string features:

• A context feature, the most recent text in the
conversational context.

• A response feature, text that is in direct re-
sponse to the context.

• A number of extra context features, context/0,
context/1 etc. going back in time through
the conversation. They are named in reverse
order so that context/i always refers to the ith

most recent extra context, so that no padding
needs to be done, and datasets with different
numbers of extra contexts can be mixed.

• Depending on the dataset, there may be some
extra features also included in each example.
For instance, in Reddit the author of the con-
text and response are identified using addi-
tional features.

3 Datasets

Rather than providing the raw processed data, we
provide scripts and instructions to the users to gen-
erate the data themselves. This allows for viewing
and potentially manipulating the pre-processing
and filtering steps. The repository contains instruc-
tions for generating datasets with standard param-
eters split deterministically into train and test por-
tions. These allow for defining reproducible evalu-
ations in research papers. Section 5 presents bench-
mark results on these standard datasets for a variety
of conversational response selection models.

Dataset creation scripts are written using Apache
Beam and Google Cloud Dataflow (Akidau et al.,
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Built from Training size Testing size

Reddit 3.7 billion comments in threaded conversations 654,396,778 72,616,937

OpenSubtitles over 400 million lines from movie and tele-
vision subtitles (also available in other lan-
guages)

283,651,561 33,240,156

AmazonQA over 3.6 million question-response pairs in the
context of Amazon products

3,316,905 373,007

Table 1: Summary of the datasets included in the public repository. The Reddit data is taken from January 2015 to
December 2018, and the OpenSubtitles data from 2018.

2015), which parallelizes the work across many ma-
chines. Using the default quotas, the Reddit script
starts 409 workers to generate the dataset in around
1 hour and 40 minutes. This includes reading the
comment data from the BigQuery source, grouping
the comments into threads, producing examples
from the threads, splitting the examples into train
and test, shuffling the examples, and finally writing
them to sharded Tensorflow record files.

Table 1 provides an overview of the Reddit,
OpenSubtitles and AmazonQA datasets, and fig-
ure 3 in appendix A gives an illustrative example
from each.

3.1 Reddit

Reddit is an American social news aggregation
website, where users can post links, and take part
in discussions on these posts. Reddit is extremely
diverse (Schrading et al., 2015; Al-Rfou et al.,
2016): there are more than 300,000 sub-forums
(i.e., subreddits) covering various topics of discus-
sion. These threaded discussions, available in a
public BigQuery database, provide a large corpus
of conversational contexts paired with appropriate
responses. Reddit data has been used to create con-
versational response selection data by Al-Rfou et al.
(2016); Cer et al. (2018); Yang et al. (2018). We
share code that allows generating datasets from the
Reddit data in a reproducible manner: with con-
sistent filtering, processing, and train/test splitting.
We also generate data using two more years of
data than the previous work, 3.7 billion comments
rather than 2.1 billion, giving a final dataset with
176 million more examples.

Reddit conversations are threaded. Each post
may have multiple top-level comments, and every
comment may have multiple children comments
written in response. In processing, each Reddit
thread is used to generate a set of examples. Each
response comment generates an example, where

the context is the linear path of comments that the
comment is in response to.

Examples may be filtered according to the con-
tents of the context and response features. The
example is filtered if either feature has more than
128 characters, or fewer than 9 characters, or if
its text is set to [deleted] or [removed]. Full de-
tails of the filtering are available in the code, and
configurable through command-line flags.

Further back contexts, from the comment’s par-
ent’s parent etc., are stored as extra context features.
Their texts are trimmed to be at most 128 charac-
ters in length, without splitting words apart. This
helps to bound the size of an individual example.

The train/test split is deterministic based on the
thread ID. As long as all the input to the script is
held constant (the input tables, filtering thresholds
etc.), the resulting datasets should be identical.

The data from 2015 to 2018 inclusive consists of
3,680,746,776 comments, in 256,095,216 threads.
In total, 727,013,715 Tensorflow examples are cre-
ated from this data.

3.2 OpenSubtitles

OpenSubtitles is a growing online collection of sub-
titles for movies and television shows available in
multiple languages. As a starting point, we use the
corpus collected by Lison and Tiedemann (2016),
originally intended for statistical machine transla-
tion. This corpus is regenerated every year, in 62
different languages.

Consecutive lines in the subtitle data are used to
create conversational examples. There is no guar-
antee that different lines correspond to different
speakers, or that consecutive lines belong to the
same scene, or even the same show. The data nev-
ertheless contains a lot of interesting examples for
modelling the mapping from conversational con-
texts to responses.

Short and long lines are filtered, and some text

3



Input Candidate Responses
I watched a great movie yesterday. No, it won't rain probably.

Have you applied for that job yet?
It is nominated for the Golden Globe.
We are leaving for a ski trip tomorrow.
It is extremely easy working with them.
I prefer traveling in the springtime.

Input Candidate Responses
Is that place affordable? Absolutely, call me any time!

There is no place like home.
The restaurant serves Japanese food.
I would say that the prices are reasonable.
This was their second warning.
It was so unfortunate to concede the goal.

Figure 2: Two examples illustrating the conversational response selection task: given the input context sentence,
the goal is to identify the relevant response from a large pool of candidate responses.

is filtered such as character names and auditory
description text. The English 2018 data consists
of 441,450,449 lines, and generates 316,891,717
examples. The data is split into chunks of 100,000
lines, and each chunk is used either for the train set
or the test set.

3.3 AmazonQA

This dataset is based on a corpus extracted by Wan
and McAuley (2016); McAuley and Yang (2016),
who scraped questions and answers from Amazon
product pages. This provides a corpus of question-
answer pairs in the e-commerce domain. Some
questions may have multiple answers, so one ex-
ample is generated for each possible answer.

Examples with very short or long questions or
responses are filtered from the data, resulting in a
total of 3,689,912 examples. The train/test split is
computed deterministically using the product ID.

4 Response Selection Task

The conversational datasets included in this repos-
itory facilitate the training and evaluation of a va-
riety of models for natural language tasks. For
instance, the datasets are suitable for training gen-
erative models of conversational response (Serban
et al., 2016; Ritter et al., 2011; Vinyals and Le,
2015; Sordoni et al., 2015; Shang et al., 2015; Kan-
nan et al., 2016), as well as discriminative methods
of conversational response selection (Lowe et al.,
2015; Inaba and Takahashi, 2016; Yu et al., 2016;
Henderson et al., 2017).

The task of conversational response selection
is to identify a correct response to a given con-
versational context from a pool of candidates, as
illustrated in figure 2. Such models are typically
evaluated using Recall@k, a typical metric in in-
formation retrieval literature. This measures how
often the correct response is identified as one of the
top k ranked responses (Lowe et al., 2015; Inaba
and Takahashi, 2016; Yu et al., 2016; Al-Rfou et al.,
2016; Henderson et al., 2017; Lowe et al., 2017;
Wu et al., 2017; Cer et al., 2018; Chaudhuri et al.,

2018; Du and Black, 2018; Kumar et al., 2018; Liu
et al., 2018; Yang et al., 2018; Zhou et al., 2018;
Gunasekara et al., 2019; Tao et al., 2019). Models
trained to select responses can be used to drive di-
alogue systems, question-answering systems, and
response suggestion systems. The task of response
selection provides a powerful signal for learning
implicit semantic representations useful for many
downstream tasks in natural language understand-
ing (Cer et al., 2018; Yang et al., 2018).

The Recall@k metric allows for direct compari-
son between models. Direct comparisons are much
more difficult for generative models, which are typ-
ically evaluated using perplexity scores or using
human judgement. Perplexity scores are dependent
on normalization, tokenization, and choice of vo-
cabulary, while human judgement is expensive and
time consuming.

When evaluating conversational response selec-
tion models on these datasets, we propose a Re-
call@k metric termed 1-of-100 accuracy. This is
Recall@1 using 99 responses sampled from the
test dataset as negatives. This 1-of-100 accuracy
metric has been used in previous studies: (Al-Rfou
et al., 2016; Henderson et al., 2017; Cer et al., 2018;
Kumar et al., 2018; Yang et al., 2018; Gunasekara
et al., 2019). While there is no guarantee that the
99 randomly selected negatives will all be bad re-
sponses, the metric nevertheless provides a sim-
ple summary of model performance that has been
shown to correlate with user-driven quality metrics
(Henderson et al., 2017). For efficient computation
of this metric, batches of 100 (context, response)
pairs can be processed such that the other 99 ele-
ments in the batch serve as the negative examples.

Sections 4.1 and 4.2 present baseline methods
of conversational response selection that are imple-
mented in the repository. These baselines are in-
tended to run quickly using a subset of the training
data, to give some idea of performance and char-
acteristics of each dataset. Section 4.3 describes
a more competitive neural encoder model that is
trained on the entire training set.
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4.1 Keyword-based Methods
The keyword-based baselines use keyword similar-
ity metrics to rank responses given a context. These
are typical baselines for information retrieval tasks.
The TF-IDF method computes inverse document
frequency statistics on the training set, and scores
responses using their tf-idf cosine similarity to the
context (Manning et al., 2008).

The BM25 method builds on top of the tf-idf sim-
ilarity, applying an adjustment to the term weights
(Robertson and Zaragoza, 2009).

4.2 Vector-based Methods
The vector-based methods use publicly available
neural net embedding models to embed contexts
and responses into a vector space. We include the
following five embedding models in the evaluation,
all of which are available on Tensorflow Hub:

USE the Universal Sentence Encoder from Cer
et al. (2018)

USE-LARGE a larger version of the Universal
Sentence Encoder

ELMO the Embeddings from Language Mod-
els approach from Peters et al. (2018).

BERT-SMALL the deep bidirectional trans-
former model of Devlin et al. (2018).

BERT-LARGE a larger deep bidirectional
transformer model.

There are two vector-based baseline methods,
one for each of the above models. The SIM method
ranks responses according to their cosine similarity
with the context vector. This method relies on
pretrained models and does not use the training
set at all.

The MAP method learns a linear mapping on top
of the response vector. The final score of a response
with vector y given a context with vector x is the
cosine similarity 〈·, ·〉 of the context vector with
the mapped response vector:

〈x, (W + αI) · y〉 (1)

where W, α are learned parameters and I is the
identity matrix. This allows learning an arbitrary
linear mapping on the context side, while the resid-
ual connection gated by α makes it easy for the
model to interpolate with the SIM baseline. Vec-
tors are L2-normalized before being fed to the MAP

method, so that the method is invariant to scaling.

The W and α parameters are learned on a ran-
dom sample of 10,000 examples from the training
set, using the dot product loss from Henderson
et al. (2017). A sweep over learning rate and regu-
larization parameters is performed using a held-out
development set. The final learned parameters are
used on the evaluation set.

The combination of the three embedding models
with the two vector-based methods results in the
following six baseline methods: USE-SIM, USE-
MAP, USE-LARGE-SIM, USE-LARGE-MAP, ELMO-
SIM, and ELMO-MAP.

4.3 Encoder Model
We also train and evaluate a neural encoder model
that maps the context and response through sepa-
rate sub-networks to a shared vector space, where
the final score is a dot-product between a vector rep-
resenting the context and a vector representing the
response as per Henderson et al. (2017); Cer et al.
(2018); Kumar et al. (2018); Yang et al. (2018).
This model is referred to as POLYAI-ENCODER in
the evaluation.

Full details of the neural structure are given in
Henderson et al. (2019). To summarize, the context
and response are both separately passed through
sub-networks that:

1. split the text into unigram and bigram features

2. convert unigrams and bigrams to numeric IDs
using a vocabulary of known features in con-
junction with a hashing strategy for unseen
features

3. separately embed the unigrams and bigrams
using large embedding matrices

4. separately apply self-attention then reduction
over the sequence dimension to the unigram
and bigram embeddings

5. combine the unigram and bigram representa-
tions, then pass them through several dense
hidden layers

6. L2-normalize the final hidden layer to obtain
the final vector representation

Both sub-networks are trained jointly using the
dot-product loss of Henderson et al. (2017), with
label smoothing and a learned scaling factor.

5 Evaluation

All the methods discussed in section 4 are evalu-
ated on the three standard datasets from section 3,
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Reddit OpenSubtitles AmazonQA

TF-IDF 26.7 10.9 51.8
BM25 27.6 10.9 52.3

USE-SIM 36.6 13.6 47.6
USE-MAP 40.8 15.8 54.4
USE-LARGE-SIM 41.4 14.9 51.3
USE-LARGE-MAP 47.7 18.0 61.9
ELMO-SIM 12.5 9.5 16.0
ELMO-MAP 19.3 12.3 33.0
BERT-SMALL-SIM 17.1 13.8 27.8
BERT-SMALL-MAP 24.5 17.5 45.8
BERT-LARGE-SIM 14.8 12.2 25.9
BERT-LARGE-MAP 24.0 16.8 44.1

POLYAI-ENCODER 61.3 30.6 84.2

Table 2: 1-of-100 accuracy results for keyword-based baselines, vector-based baselines, and the encoder model
for each of the three standard datasets. The latest evaluation results are maintained in the repository. Results are
computed on a random subset of 50,000 examples from the test set (500 batches of 100).

and the results are presented in table 2. In this
evaluation, all methods use only the (immediate)
context feature to score the responses, and do not
use other features such as the extra contexts.

The keyword-based TF-IDF and BM25 are
broadly competitive with the vector-based meth-
ods, and are particularly strong for AmazonQA,
possibly because rare words such as the product
name are informative in this domain. Learning a
mapping with the MAP method gives a consistent
boost in performance over the SIM method, show-
ing the importance of learning the mapping from
context to response versus simply relying on simi-
larity. This approach would benefit from more data
and a more powerful mapping network, but we have
constrained the baselines so that they run quickly
on a single computer. The Universal Sentence En-
coder model outperforms ELMo in all cases.

The POLYAI-ENCODER model significantly out-
performs all of the baseline methods. This is not
surprising, as it is trained on the entire training set
using multiple GPUs for several hours. We wel-
come other research groups to share their results,
and we will be growing the table of results in the
repository.

6 Conclusion

This paper has introduced a repository of conver-
sational datasets, providing hundreds of millions
examples for training and evaluating conversational
response selection systems under a standard evalua-
tion framework. Future work will involve introduc-
ing more datasets in this format, more competitive
baselines, and more benchmark results. We wel-
come contributions from other research groups in
all of these directions.
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A Appendix

Reddit

context/2 Could someone there post a summary of the insightful moments.

context/1 Basically L2L is the new deep learning.

context/0 What’s “L2L” mean?

context “Learning to learn”, using deep learning to design the architecture of another
deep network: https://arxiv.org/abs/1606.04474

response using deep learning with SGD to design the learning algorithms of another deep
network *

context_author goodside

response_author NetOrBrain

subreddit MachineLearning

thread_id? 5h6yvl

OpenSubtitles

context/9 So what are we waiting for?

context/8 Nothing, it...

context/7 It’s just if...

context/6 If we’ve underestimated the size of the artifact’s data stream...

context/5 We’ll fry the ship’s CPU and we’ll all spend the rest of our lives stranded in the
Temporal Zone.

context/4 The ship’s CPU has a name.

context/3 Sorry, Gideon.

context/2 Can we at least talk about this before you connect...

context/1 Gideon?

context/0 You still there?

context Oh my God, we killed her.

response Artificial intelligences cannot, by definition, be killed, Dr. Palmer.

file_id? lines-emk

AmazonQA

context i live in singapore so i would like to know what is the plug cos we use those 3
pin type

response it’s a 2 pin U.S. plug, but you can probably get an adapter , very good hair dryer!

product_id? B003XNYHWS

Figure 3: Examples from the three datasets. Each example is a mapping from feature names to string features.
Features with a star ? are used to compute the deterministic train/test split.
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Abstract

Conversational machine comprehension
(CMC) requires understanding the context
of multi-turn dialogue. Using BERT, a pre-
training language model, has been successful
for single-turn machine comprehension, while
modeling multiple turns of question answering
with BERT has not been established because
BERT has a limit on the number and the length
of input sequences. In this paper, we propose
a simple but effective method with BERT for
CMC. Our method uses BERT to encode a
paragraph independently conditioned with
each question and each answer in a multi-turn
context. Then, the method predicts an answer
on the basis of the paragraph representations
encoded with BERT. The experiments with
representative CMC datasets, QuAC and
CoQA, show that our method outperformed
recently published methods (+0.8 F1 on
QuAC and +2.1 F1 on CoQA). In addition, we
conducted a detailed analysis of the effects of
the number and types of dialogue history on
the accuracy of CMC, and we found that the
gold answer history, which may not be given
in an actual conversation, contributed to the
model performance most on both datasets.

1 Introduction

Single-turn machine comprehension (MC) has
been studied as a question answering method (Seo
et al., 2016; Chen et al., 2017; Yu et al., 2018;
Lewis and Fan, 2019). Conversational artificial
intelligence (AI) such as Siri and Google As-
sistant requires answering not only a single-turn
question but also multi-turn questions in a dia-
logue. Recently, two datasets, QuAC (Choi et al.,
2018) and CoQA (Reddy et al., 2018), were re-
leased to answer sequential questions in a dia-
logue by comprehending a paragraph. This task
is called conversational machine comprehension
(CMC) (Huang et al., 2019), which requires un-

derstanding the context of multi-turn dialogue that
consists of the question and answer history.

Learning machine comprehension models re-
quires a lot of question answering data. There-
fore, transfer learning from pre-training language
models based on a large-scale unlabeled corpus is
useful for improving the model accuracy. In par-
ticular, BERT (Devlin et al., 2018) achieved state-
of-the-art results when performing various tasks
including the single-turn machine comprehension
dataset SQuAD (Rajpurkar et al., 2016). BERT
takes a concatenation of two sequences as input
during pre-training and can capture the relation-
ship between the two sequences. When adapting
BERT for MC, we use a question and a passage as
input and fine-tune the pre-trained BERT model to
extract an answer from the paragraph. However,
BERT can accept only two sequences of 512 to-
kens and thus cannot handle CMC naively.

Zhu et al. (2018) proposed a method for CMC
that is based on an architecture for single-turn
MC and uses BERT as a feature-based approach.
To convert CMC into a single-turn MC task, the
method uses a reformulated question, which is
the concatenation of the question and answer se-
quences in a multi-turn context with a special
token. It then uses BERT to obtain contextu-
alized embeddings for the reformulated question
and paragraph, respectively. However, it cannot
use BERT to capture the interaction between each
sequence in the multi-turn context and the para-
graph.

In this paper, we propose a simple but effec-
tive method for CMC based on a fine-tuning ap-
proach with BERT. Our method consists of two
main steps. The first step is contextual encod-
ing where BERT is used for independently obtain-
ing paragraph representations conditioned with the
current question, each of the previous questions,
and each of the previous answers. The second step
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is answer span extraction, where the start and end
position of the current answer are predicted based
on the concatenation of the paragraph representa-
tions encoded in the previous step.

The contributions of this paper are as follows:

• We propose a novel method for CMC based
on fine-tuning BERT by regarding the se-
quences of the questions and the answers as
independent inputs.

• The experimental results show that our
method outperformed published methods on
both QuAC and CoQA.

• We found that the gold answer history con-
tributed to the model performance most by
analyzing the effects of dialogue history.

2 Task Definition

In this paper, we define the CMC task as follows:

• Input: Current question Qi, paragraph P ,
previous questions {Qi−1, ..., Qi−k}, and
previous answers {Ai−1, ..., Ai−k}

• Output: Current answer Ai and type Ti

where i and k denote the turn index in the dialogue
and the number of considered histories (turns), re-
spectively. Answer Ai is a span of paragraph P .
Type Ti is SPAN, YES, NO, or UNANSWERABLE.

3 Pre-trained Model

BERT is a powerful language representation
model (Devlin et al., 2018), which is based on bi-
directional Transformer encoder (Vaswani et al.,
2017). BERT can obtain language representa-
tion by unsupervised pre-training with a huge data
corpus and by supervised fine-tuning, and it can
achieve outstanding results in various NLP tasks
such as sentence pair classification, single sen-
tence tagging, and single-turn machine compre-
hension.

Here, we explain how to adapt BERT for
single-turn machine comprehension tasks such as
SQuAD (Rajpurkar et al., 2016). In SQuAD, a
question and a paragraph containing the answer
are given, and the task is to predict the answer
text span in the paragraph. In the case of using
BERT for SQuAD, after the special classification
token [CLS] is added in front of the question, the
question and the paragraph are concatenated with

 Qi−1  P  Qi−k  P  Ai−1  P  Ai−k  P... ... Qi  P

BERT BERT BERT BERT BERT

G

M
(1)

Bi-GRU

Linear + softmax Start

M
(2) Linear + softmax End

Bi-GRU

Previous questions Previous answersCurrent question

Contextual 
Encoding 

Answer 
Span 

Prediction 

Linear + softmax Answer TypeAnswer 
Type 

Prediction 

Oi Oi−1 Oi−k Ri−1 Ri−k

Concatenate

Concatenate

Concatenate

Concatenate

Figure 1: Our model

special tokens [SEP] into one sequence. The se-
quence is inputted to BERT with segment embed-
dings and positional embeddings. Then, the final
hidden state of BERT is converted to the probabil-
ities of answer span by a linear layer and softmax
function. The fined-tuned BERT for the SQuAD
dataset can capture the relationship between one
question and one paragraph so that BERT achieved
state-of-the-art performance on the SQuAD. How-
ever, BERT itself cannot be used for a task re-
quiring multiple queries or multiple paragraphs,
because BERT can accept only two segments in
one input sequence. This limitation can be a prob-
lem for the CMC task because there are multi-turn
questions about the same paragraph.

4 Proposed Method

In the CMC task, it is necessary to consider not
only the current question Qi but also the question
history {Qi−1, ..., Qi−k} and the answer history
{Ai−1, ..., Ai−k}. We propose a method of mod-
eling the current question, question history, and
answer history by using BERT (Figure 1). Our
method consists of two steps: contextual encoding
and answer span prediction. On top of that, an-
swer type is predicted only in the case of CoQA
(see Section 4.3).

4.1 Contextual Encoding

In this step, we use BERT to encode not only the
relationship between the current question and the
paragraph but also the relationship between the
history and the paragraph. We define the method
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of extracting features by using BERT as follows,

z = f(BERT(x, y|θ)), (1)

where x, y, and z denote the input query sequence,
input paragraph sequence, and output feature, re-
spectively. The function BERT(·) outputs BERT’s
d-dimensional final hidden states with parameters
θ, and the function f(·) extracts features corre-
sponding to the segment of the paragraph in the
final hidden states. Namely, if input paragraph text
y has T tokens, then, z ∈ Rd×T . This step con-
sists of three parts, and each part shares the BERT
parameters θ. First, we encode the current ques-
tion as follows,

Oi = f(BERT(Qi, P |θ)). (2)

Second, we encode the question history
{Qi−1, ..., Qi−k} in the same manner.

Oi−l = f(BERT(Qi−l, P |θ)), (3)

where l denotes the index of the previous con-
text. Last, we encode the answer history
{Ai−1, ..., Ai−k}. Note that previous answer Ai−l
is given as text, even if the current answer is pre-
dicted as the span of the paragraph. The encoded
feature can be obtained as follows,

Ri−l = f(BERT(Ai−l, P |θ)). (4)

4.2 Answer Span Prediction
In this step, the current answer span is predicted.
Let si and ei represent the start index and the end
index, respectively. First, the output features of the
previous step are concatenated as follows,

G = [Oi;Oi−1; ...;Oi−k;Ri−1; ...;Ri−k],
(5)

where [; ] is vector concatenation across row and
G ∈ R(2k+1)d×T . Then, G is passed to BiGRU
over tokens and converted to M (1) ∈ R2d×T . To
predict the start index si, the probability distribu-
tion is calculated by,

ps = softmax
(
w>1 [G;M (1)] + b1

)
, (6)

where w1 and b1 ∈ R(2k+3)d are trainable vectors.
Next, to predict the end index ei, M (1) is passed
to another BiGRU over tokens and converted to
M (2) ∈ R2d×T . Then, the probability distribu-
tion is calculated by

pe = softmax
(
w>2 [G;M (2)] + b2

)
, (7)

where w2 and b2 ∈ R(2k+3)d are trainable vectors.

4.3 Answer Type Prediction

Some questions should be simply answered as
”yes” or ”no” and not answered as a rationale text.
To address these questions, the probability of the
answer type is calculated as follows,

pans =
[
softmax

(
w>3 [G;M (2)] + b3

)]
ei
, (8)

where w3 and b3 ∈ R(2k+3)d are trainable vectors
and ei is the end index of the predicted span.

4.4 Fine-tuning and Inference

In the fine-tuning phase, we regard the sum of the
negative log likelihood of the true start and end
indices as training loss,

L = − 1

N

N∑

l=1

[
log(ps

y1l
) + log(pe

y2l
)
]
, (9)

where N , y1l , and y2l denote the number of exam-
ples, true start, and true end indices of the l-th
example, respectively. If answer type prediction
is necessary, we add the cross entropy loss of the
answer type to the training loss. In the inference
phase, the answer span (si, ei) is calculated by dy-
namic programming, where the values of ps and pe

are maximum and 1 ≤ si ≤ ei ≤ T .

5 Experiment

In this section, we evaluate our method on two
conversational machine comprehension datasets,
QuAC (Choi et al., 2018) and CoQA (Reddy et al.,
2018).

5.1 Datasets and Evaluation Metrics

Although CoQA is released as an abstractive CMC
dataset, Yatskar (2018) shows that the extractive
approach is also effective for CoQA. Thus, we also
use our extractive approach on CoQA. To handle
answer types in CoQA, we predict the probability
distribution of the answer type (SPAN, YES, NO,
and UNANSWERABLE) and replace the predicted
span with ”yes”, ”no”, or ”unknown” tokens ex-
cept for the ”SPAN” answer type. In QuAC, the
unanswerable questions are handled as an answer
span (P contains a special token), and the type
prediction for yes/no questions is not evaluated on
the leaderboard. Therefore, we skip the answer
type prediction step.
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In-domain Out-of-domain In-domain Out-of-domain
Child. Liter. Mid-High. News Wiki Reddit Science overall overall Overall

DrQA + PGNet 64.2 63.7 67.1 68.3 71.4 57.8 63.1 67.0 60.4 65.1
BiDAF++ (3-ctx) 66.5 65.7 70.2 71.6 72.6 60.8 67.1 69.4 63.8 67.8
FlowQA (1-ans) 73.7 71.6 76.8 79.0 80.2 67.8 76.1 76.3 71.8 75.0
SDNet (single) 75.4 73.9 77.1 80.3 83.1 69.8 76.8 78.0 73.1 76.6
BERT w/ 2-ctx 76.0 77.0 80.5 82.1 83.0 72.5 79.6 79.8 75.9 78.7
ConvBERT (single) - - - - - - - 87.7 84.6 86.8
Google SQuAD 2.0 - - - - - - - 88.5 86.0 87.8+ MMFT (single)

Table 1: The results on the CoQA test set of single models (F1 score). Our BERT w/ 2-ctx model ranked 13th
among all unpublished and published models (including ensemble) on the leaderboard at the submission time
(April 13, 2019). The ConvBERT and the Google SQuAD 2.0 + MMFT are the current state-of-the-art models,
but they are unpublished.

As evaluation metrics for CoQA, we use the
F1 score. CoQA contains seven domains as para-
graph contents: childrens stories, literature, mid-
dle and high school English exams, news articles,
Wikipedia articles, science articles, and Reddit ar-
ticles. We report F1 for each domain and the over-
all domains. On the other hand, as evaluation met-
rics of QuAC, we use not only F1 but also the
human equivalence score for questions (HEQ-Q)
and for dialogues (HEQ-D) (Choi et al., 2018).
HEQ-Q represents the percentage of exceeding the
model performance over the human evaluation for
each question, and HEQ-D represents the percent-
age of exceeding the model performance over the
human evaluation for each dialogue.

5.2 Comparison Systems

We compare our model (BERT w/ k-ctx) with
the baseline models and published models. For
QuAC, we use the reported scores of BiDAF++
w/ k-ctx (Choi et al., 2018) and FlowQA (Huang
et al., 2019). For CoQA, the comparison system
is DrQA+PGNet (Reddy et al., 2018), BiDAF++
w/ x-ctx, FlowQA, and SDNet (Zhu et al., 2018).
Note that the scores of BiDAF++ w/ x-ctx on
CoQA are reported by Yatskar (2018). In addi-
tion, we use gold answers as the answer history,
except for the investigation of the effect of answer
history. More information on our implementation
is available in Appendix A.

5.3 Results

Does our model outperform published models
on both QuAC and CoQA? Table 1 and Ta-
ble 2 show the results on CoQA and QuAC, re-
spectively. On CoQA, our model outperformed
all of the published models regarding the over-
all F1 score. Although our model was compa-

F1 HEQ-Q HEQ-D
BiDAF++ (2-ctx) 60.1 54.8 4.0
FlowQA (2-ans) 64.1 59.6 5.8
BERT w/ 2-ctx 64.9 60.2 6.1
ConvBERT (single) 68.0 63.5 9.1
Bert-FlowDelta (single) 67.8 63.6 12.1

Table 2: The results on the QuAC test set of single
models. Our BERT w/ 2-ctx model ranked 1st among
all unpublished and published models on the leader-
board at the submission time (March 7, 2019). The
ConvBERT and Bert-FlowDelta are the current state-
of-the-art models, but they are unpublished.

# contexts CoQA QuAC
BERT w/ 0-ctx 0 72.8 55.0
BERT w/ 1-ctx 1 79.2 63.4
BERT w/ 2-ctx 2 79.6 65.4
BERT w/ 3-ctx 3 79.6 65.3
BERT w/ 4-ctx 4 79.4 64.8
BERT w/ 5-ctx 5 79.7 64.5
BERT w/ 6-ctx 6 79.5 64.9
BERT w/ 7-ctx 7 79.7 64.4

Table 3: The results with the number of previous con-
texts on the development set of QuAC and CoQA (F1

score)

rable with SDNet for the Wikipedia domain, our
model outperformed SDNet for the other domains.
On QuAC, our model also obtained the best score
among the published models for all of the metrics
and obtained state-of-the-art scores on March 7th,
2019.

Our method uses the paragraph representations
independently conditioned with each question and
each answer. This model structure is suitable for
the pre-trained BERT, which was trained with two
input segments. Therefore, our model was able to
capture the interaction between a dialogue history
and a paragraph, and it achieved high accuracy.
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CoQA QuAC
BERT w/ 0-ctx 72.8 55.0
BERT w/ 2-ctx (gold ans.) 79.6 65.4

w/o question history 78.0 64.7
w/o answer history 77.7 59.3

BERT w/ 2-ctx (predicted ans.) 77.2 56.7

Table 4: Ablation study on the development set of
QuAC and CoQA (F1 score)

Figure 2: The F1 scores with turn number on CoQA
development set

Does our model improve the performance when
the number of previous contexts increases?
Table 3 shows the results with the number of pre-
vious contexts. On both of the datasets, it was
effective to use previous contexts. However, on
CoQA, the number of contexts had little effect on
the score even if the long context was considered.
On QuAC, the best score was obtained in the case
of using two contexts, and the score decreased
with more than two contexts. As Yatskar (2018)
mentioned, the topics in a dialogue shift more fre-
quently on QuAC than on CoQA. Thus, the previ-
ous context on QuAC can include the context that
is unrelated to the current question, and this unre-
lated context can decrease the score. This result
suggests that it is important to select context that
is related to the current question and not use the
whole context in any cases.

Which is more important, the question history
or the answer history? Table 4 shows the con-
tribution of the dialogue history. We can see from
the results that the model performance decreased
significantly when we removed the gold answer
history on QuAC. In dataset collection, CoQA al-
lows the asker to see the evidence paragraph. On
the other hand, the asker in QuAC cannot see

Figure 3: The F1 scores with turn number on QuAC
development set

the evidence paragraph. As a result, questions in
QuAC are far from the phrases in the passage and
are less effective in improving the model perfor-
mance. For CoQA, the model could substitute the
question history for the gold answer history. The
model performance did not decrease significantly
when we remove the answer history.

Does our model maintain the performance
when using the predicted answer history? In
actual conversation, the gold answer history may
not be given in the CMC model. In this experi-
ment, we trained the models with the gold answer
history and evaluated the model with the predicted
answer history.

As shown in Table 4, when using the predicted
answer history, the model performance decreased
significantly on QuAC. This result also suggests
that the model can substitute the question history
for the gold answer history in CoQA. We think the
CMC setting where the history of questions posed
by an asker that does not see the evidence para-
graph is given and the gold answer is not given for
input is a more realistic and important setting.

Does our model performance approach human
performance as the dialogue progresses? We
calculated F1 scores over the turns, where the
data in each turn contained more than 100 ques-
tion/answer pairs. Figure 2 and Figure 3 show
that the score was lower than human performance
over all turns on both datasets and that the score
with context was higher than that without context
on both datasets, except for the first question on
CoQA. This result indicates that there is still room
for improvement with long turn questions.
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6 Related Work

QuAC (Choi et al., 2018) and CoQA (Reddy
et al., 2018) were released as the CMC dataset.
On QuAC, the answers are extracted from source
paragraph as spans. On CoQA, the answers are
free texts based on span texts extracted from the
source paragraph. On these datasets, the base-
line models were based on conventional mod-
els for single-turn machine comprehension such
as BiDAF (Seo et al., 2016) and DrQA (Chen
et al., 2017). For QuAC, Choi et al. (2018) ex-
tended BiDAF (an extractive machine compre-
hension model) to BiDAF++ w/ x-ctx by con-
catenating word embeddings of the source para-
graph and embeddings of previous answer span
indexes. For CoQA, Reddy et al. (2018) pro-
posed DrQA+PGNet as an abstractive method by
concatenating previous questions and previous an-
swers with special tokens. However, most of the
recently published methods about CoQA were ex-
tractive approaches, since the abstractive answers
on CoQA are based on span texts in the para-
graph and Yatskar (2018) shows that the extrac-
tive approach is also effective for CoQA. Huang
et al. (2019) proposed FlowQA for both QuAC
and CoQA by stacking bidirectional recurrent neu-
ral networks (RNNs) over the words of the source
paragraph and unidirectional RNNs over the con-
versational turns. Zhu et al. (2018) proposed SD-
Net for CoQA by regarding the concatenation of
previous questions and answers as one query.

Most recently, BERT (Devlin et al., 2018) was
proposed as a contextualized language representa-
tion that is pre-trained on huge unlabeled datasets.
By fine-tuning a supervised dataset, BERT ob-
tained state-of-the-art scores on various tasks in-
cluding single-turn machine reading comprehen-
sion datasets such as SQuAD (Rajpurkar et al.,
2016). Since the relationship between words can
be captured in advance, pre-training approaches
such as BERT and GPT-2 (Radford et al., 2019)
can be useful especially for tasks with a small
amount of supervised data. For QuAC and CoQA,
many approaches on the leaderboard1,2 use BERT,
including SDNet. However, SDNet uses BERT as
contextualized word embedding without updating
the BERT parameters. This is one of the differ-
ences between SDNet and our model.

1https://quac.ai/
2https://stanfordnlp.github.io/coqa/

7 Conclusion

In this paper, we propose a simple but effec-
tive method based on a fine-tuning approach with
BERT for a conversational machine comprehen-
sion (CMC) task. Our method uses questions and
answers simply as the input of BERT to model
the interaction between the paragraph and each
dialogue history independently and outperformed
published models on both QuAC and CoQA.

From detailed analysis, we found that the gold
answer history, which may not be given in real
conversational situations, contributed to the model
performance most on both datasets. We also found
that the model performance on QuAC decreased
significantly when we used predicted answers in-
stead of gold answers. On the other hand, we can
substitute the question history for the gold answer
history on CoQA. For future work, we will in-
vestigate a more realistic and more difficult CMC
setting, where the history of questions posed by
the asker that does not see the evidence paragraph
is given and the gold answer is not given for in-
put. We will also investigate how to obtain related
and effective context for the current question in the
previous question and answer history.
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A Implementation Details

We used the BERT-base-uncased model imple-
mented by PyTorch 3. We used a maximum se-
quence length of 384, document stride of 128,
maximum query length of 64, and maximum an-
swer length of 30. The optimizer was Adam
(Kingma and Ba, 2015) with a learning rate of
3e-5, β1 = 0.9, β2 = 0.999, L2 weight decay
of 0.01, learning rate warmup over the first 10 %

3https://github.com/huggingface/
pytorch-pretrained-BERT

of training steps, and linear decay of the learning
rate. The number of training epochs was 2. The
batch size of training was 8 or 12. In the case
of QuAC, we used dialogs whose paragraphs have
under 5,000 characters. In the case of CoQA, we
followed Huang et al. (2019) and regarded a span
with maximum F1 overlap with respect to given
abstractive answers as gold answers during train-
ing. We used four NVIDIA Tesla V100 32GB
GPUs.
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Abstract

Sequence-to-Sequence (Seq2Seq) mod-
els have witnessed a notable success in
generating natural conversational exchanges.
Notwithstanding the syntactically well-formed
responses generated by these neural network
models, they are prone to be acontextual,
short and generic. In this work, we introduce
a Topical Hierarchical Recurrent Encoder
Decoder (THRED), a novel, fully data-driven,
multi-turn response generation system in-
tended to produce contextual and topic-aware
responses. Our model is built upon the basic
Seq2Seq model by augmenting it with a
hierarchical joint attention mechanism that
incorporates topical concepts and previous
interactions into the response generation.
To train our model, we provide a clean and
high-quality conversational dataset mined
from Reddit comments. We evaluate THRED
on two novel automated metrics, dubbed
Semantic Similarity and Response Echo
Index, as well as with human evaluation. Our
experiments demonstrate that the proposed
model is able to generate more diverse and
contextually relevant responses compared to
the strong baselines.

1 Introduction

With the recent success of deep neural networks
in natural language processing tasks such as ma-
chine translation (Sutskever et al., 2014) and lan-
guage modeling (Mikolov et al., 2010), there has
been growing research interest in building data-
driven dialogue systems. Fortunately, innovation
in deep learning architectures and the availabil-
ity of large public datasets have produced fer-
tile ground for the data-driven approaches to be-
come feasible and quite promising. In particular,
the Sequence-to-Sequence (Seq2Seq) neural net-
work model (Sutskever et al., 2014) has witnessed
substantial breakthroughs in improving the perfor-

mance of conversational agents. Such a model
succeeds in learning the backbone of the conversa-
tion but lacks any aptitude for producing context-
sensitive and diverse conversations. Instead, gen-
erated responses are dull, short and carry little in-
formation (Li et al., 2016a). Instinctively, humans
tend to adapt conversations to their interlocutor
not only by looking at the last utterance but also
by considering information and concepts covered
in the conversation history (Danescu-Niculescu-
Mizil and Lee, 2011). Such adaptation increase
the smoothness and engagement of the gener-
ated responses. We speculate that incorporating
conversation history and topic information with
our novel model and method will improve gener-
ated conversational responses. In this work, we
introduce a novel, fully data-driven, multi-turn
response generation system intended to produce
context-aware and diverse responses. Our model
builds upon the basic Seq2Seq model by combin-
ing conversational data and external knowledge in-
formation trained through a hierarchical joint at-
tention neural model. We find that our method
leads to both diverse and contextual responses
compared to the literature strong baselines. We
also introduce two novel quantitative metrics for
dialogue model development, dubbed Semantic
Similarity and Response Echo Index. While the
former measures the capability of the model to
be consistent with the context and to maintain the
topic of the conversation, the latter assesses how
much our approach is able to generate unique and
plausible responses which are measurably distant
from the input dataset. Used together, they pro-
vide a means to reduce burden of human evalua-
tion and allow rapid testing of dialogue models.
We show that such metrics correlate well with hu-
man judgment, making a step towards a good au-
tomatic evaluation procedure.

The key contributions of this work are:
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• We devise a fully data-driven neural con-
versational model that leverages conversa-
tion history and topic information in the re-
sponse generation process through a hierar-
chical joint attention mechanism; making the
dialogue more diverse and engaging.

• We introduce two novel automated metrics:
Semantic Similarity and Response Echo In-
dex and we show that they correlate well with
human judgment.

• We collect, parse and clean a conversational
dataset from Reddit comments1.

2 Related Work

Neural generative models have been improved
through several techniques. (Serban et al., 2016)
built upon the Seq2Seq work by introducing a Hi-
erarchical Recurrent Encoder-Decoder neural net-
work (HRED) that accounts for the conversation
history. (Li et al., 2016b) used deep reinforcement
learning to generate highly-rewarded responses by
considering three dialogue properties: ease of an-
swering, informativeness and coherence. (Zhang
et al., 2018) addressed the challenge of person-
alizing the chatbot by modeling human-like be-
haviour. They presented a persona-based model
that aims to handle the speaker consistency by in-
tegrating a speaker profile vector representation
into the the Seq2Seq model. (Xing et al., 2017)
used a similar idea but added an extra probabil-
ity value in the decoder to bias the overall distri-
bution towards leveraging topic words in the gen-
erated responses. Their architecture does not fo-
cus on capturing conversation history. All of these
improvements are motivated by the scarcity of di-
versity and informativeness of the responses. Our
work follows on from these works with the addi-
tional aim of generating context-aware responses
by using a hierarchical joint attention model. An
important line of research that we also address in
this work is automatically evaluating the quality
of dialogue responses. In dialogue systems, au-
tomated metrics tend to be borrowed from other
NLP tasks such as BLEU (Papineni et al., 2002)
from machine translation and ROUGE (Lin, 2004)
from text summarization. Yet, such metrics fail,
mainly because they are focusing on the word-
level overlap between the machine-generated an-

1The source code and the dataset are available at https:
//github.com/nouhadziri/THRED

swer and the human-generated answer, which can
be inconsistent with what humans deem a plau-
sible and interesting response. (Liu et al., 2016)
have showed that these metrics correlate very
weakly with human evaluation. Indeed, word-
overlapping metrics achieve best results when the
space of responses is small and lexically overlap-
ping which is not the case for dialogue systems
responses. Significant works have looked into
this challenge. Examples include ADEM (Lowe
et al., 2017), an evaluation model that learns to
score responses from an annotated dataset of hu-
man responses scores. (Venkatesh et al., 2018)
proposed a number of metrics based on user expe-
rience, coherence, and topical diversity and have
showed that these metrics can be used as a proxy
for human evaluation. However, engagement
and coherence metrics are estimated via recruit-
ing evaluators. In this work, we propose directly
calculable approximations of human evaluation
grounded in conversational theories of accommo-
dation and affordance (Danescu-Niculescu-Mizil
and Lee, 2011).

3 Topical Hierarchical Recurrent
Encoder Decoder

Topical Hierarchical Recurrent Encoder Decoder
(THRED) can be viewed as a hybrid model that
conditions the response generation on conversa-
tion history captured from previous utterances and
on topic words acquired from a Latent Dirichlet
Allocation (LDA) model (Blei et al., 2003). The
proposed approach extends the standard Seq2Seq
model by leveraging topic words in the process of
response generation and accounting for conversa-
tion history. Figure 1 illustrates our model. We
detail below the components of our model.

3.1 Message Encoder
Let a sequence of N utterances within a dia-
logue D = {U1, ..., UN}. Every utterance Ui =
{wi,1, ..., wi,Li} contains a random variable Li of
sequence of words where wi,k represents the word
embedding vector at position k in the utterance Ui.
The message encoder sequentially accepts the em-
bedding of each word in the input message Ui and
updates its hidden state at every time step t by a
bidirectional GRU-RNN (Cho et al., 2014) accord-
ing to:
hi,t = GRU(hi,t−1, wi,t),∀t ∈ {1, . . . , Li} (1)

where hi,t−1 represents the previous hidden state.
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Figure 1: THRED model architecture in which we jointly model two specifications that presumably make the task
of response generation successful: context-awareness (modeled by Context Attention) and diversity (modeled by
Topic Attention).

3.2 Message Attention

Different parts of the conversation history have
distinct levels of importance that may influence
the response generation process. The message at-
tention in THRED operates by putting more focus
on the salient input words with regard to the out-
put. It computes, at step t, a weight value αi,j,t
for every encoder hidden state hi,j and linearly
combines them to form a vector mi,t according to
Bahdanau attention mechanism (Bahdanau et al.,
2015). Formally, mi,t is calculated as:

mi,t =

Li∑

j=1

αi,j,t hi,j , ∀i ∈ {1, . . . , N} (2)

where αi,j,t is computed as:

αi,j,t =
exp(ei,j,t)∑Li
k=1 exp(ei,k,t)

;

ei,j,t = η(st−1, hi,j , ci−1,t)

where st−1 represents the hidden state of the de-
coder (further details are provided later), ci,t delin-
eates the hidden state of the context-level encoder
(computed in Equation (3)) , η is a multi-layer per-
ceptron having tanh as activation function. Unlike
the Bahdanau attention mechanism, the attentional
vector mi,t is based on both the hidden states of
the decoder and the hidden states of the context-
level encoder. We are motivated by the fact that
ci,t may carry important information that could be
missing in st−1. In summary, the attentional vec-
tor mi,t is an order-sensitive information of all the
words in the sentence, attending to more important
words in the input messages.

3.3 Context-Level Encoder

The context-level encoder takes as input each ut-
terance representation (m1,t, . . . , mN,t) and cal-
culates the sequence of recurrent hidden states as
shown in Equation (3):

ci,t = GRU(ci−1,t,mi,t),∀i ∈ {1, . . . , N} (3)
where ci−1,t delineates the previous hidden

state of the context-level encoder and N represents
the number of utterances in the conversation his-
tory. The resulted ci,t vector summarizes all past
information that have been processed up to posi-
tion i.

3.4 Context-Topic Joint Attention

Context Attention: On top of the context-level
encoder, a context attention is added to attend to
important utterances in the conversation history.
Precisely, the context attention assigns weights
(γ1,t, ..., γN,t) to (c1,t, ..., cN,t) and forms a vec-
tor rt as

rt =
N∑

j=1

γj,tcj,t (4)

where:

γj,t =
exp(e′j,t)∑N
i=1 exp(e′i,t)

;

e′i,t = η(st−1, ci,t)

(5)

Topic Attention: In order to infuse the re-
sponse with information relevant to the input mes-
sages, we enhance the model with topic informa-
tion. We assign a topic T to the conversation
context using a pre-trained LDA model (Hoffman
et al., 2010). LDA is a probabilistic topic model
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that appoints multiple topics for the dialogue his-
tory. The LDA parameters were estimated us-
ing the collapsed Gibbs sampling algorithm (Zhao
et al., 2011). We provide further details on how
we train this model in the supplementary material.
In our case, the conversation history is a short doc-
ument, so we believe that the most probable topic
will be sufficient to model the dialogue. After ac-
quiring topic words for the entire history, we pick
the n highest probable words under T (we choose
n = 100 in our experiments). The topic words
{t1, · · · , tn} are then linearly combined to form a
fixed-length vector k. The weight values are cal-
culated as the following:

βi,t =
exp(η(st−1, ti, cN,t))∑n
j=1 exp(η(st−1, tj , cN,t))

(6)

where i ∈ {1, · · · , n}, cN,t is the last hidden
state of the context-level encoder, and st−1 is the
t− 1th hidden state in the decoder. The topic at-
tention uses additionally the last hidden state of
the context-level encoder cN,t in order to diminish
the repercussion of impertinent topic words and
feature the relevant ones to the message. Unlike
(Xing et al., 2017), our model employs the final
context-level encoder hidden state cN,t in order
to account for conversation history in the gener-
ated response. In summary, the topic words are
summarized as a topic vector k representing prior
knowledge for response generation. The key idea
of this approach is to affect the generation process
by avoiding the need to learn the same conversa-
tional pattern for each utterance but instead enrich-
ing the responses with topics and words related to
the subject of the message even if the words were
never used before.

3.5 Decoder

The decoder is responsible for predicting the re-
sponse utterance Um+1 given the previous utter-
ances and the topic words. Following (Xing et al.,
2017), we biased the generation probability to-
wards generating the topic words in the response.
In particular, we added an extra probability to
the standard generation probability, enforcing the
model to account for the topical tokens. Conse-
quently, the generation probability is defined as
the following:

p(wi) = pV (wi) + pK(wi) (7)
where K and V represent respectively topic vo-
cabulary and response vocabulary; pV and pK are

defined as follows:

pV (wi) =
1

M
exp(σV (si, wi−1))

pK(wi) =
1

M
exp(σK(si, wi−1, ri))

where si = GRU(wi−1, si−1, ri, k), σ is a tanh
and M is calculated as follows:

M =
∑

v∈V
exp (σV (si, wi−1))

+
∑

v′∈K
exp (σK(si, wi−1, ri))

4 Datasets

One of the main weaknesses of dialogue systems
is caused by the paucity of high-quality conver-
sational dataset. The well-known OpenSubtitles
dataset (Tiedemann, 2012) lacks speaker annota-
tions, thus making it more difficult to train conver-
sation systems which demand high quality speaker
and conversation level tags. Therefore, the as-
sumption of treating consecutive utterances as turn
exchanges uttered by two persons (Vinyals and
Le, 2015) could not be viable. To enable the
study of high-quality and large-scale dataset for
dialogue modeling, we have collected a corpus of
35M conversations drawn from the Reddit data2,
where each dialogue is composed of three turn
exchanges. The Reddit dataset is composed of
posts and comments, where each comment is an-
notated with rich meta data (i.e., author, number of
replies, user’s comment karma, etc.)3. To harvest
the dataset, we curated 95 English subreddits out
of roughly 1.1M public subreddits4. Our choice
was based on the top-ranked subreddits that dis-
cuss topics such as news, education, business, pol-
itics and sports. We processed Reddit for a 12
month-period ranging from December 2016 until
December 2017. For each post, we retrieved all
comments and we recursively followed the chain
of replies of each comment to recover the entire
conversation. Reddit dataset is often semantically
well-structured and is not filled with spelling er-
rors thanks to moderator’s efforts. Therefore, we
do not perform any spelling correction procedure.
Due to resource limitations, we randomly sampled
6M dialogues as training data, 700K dialogues as
development data, and 40K dialogues as test data.

2https://files.pushshift.io/reddit/
3https://github.com/reddit-archive/

reddit/wiki/JSON
4As of February 2019
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For OpenSubtitles, we trained the models on the
same size of data as for Reddit.

5 Experiments

In this section, we focus on the task of evaluat-
ing the next utterance given the conversation his-
tory. We compare THRED against three open-
source baselines, namely Standard Seq2Seq with
attention mechanism (Bahdanau et al., 2015),
HRED (Serban et al., 2016), and Topic-Aware
(TA) Seq2Seq (Xing et al., 2017). As done in
(Li et al., 2016b), for Standard Seq2Seq and TA-
Seq2Seq, we concatenate the dialogue history to
account for context in a multi-turn conversation.
All experiments are conducted on two datasets
(i.e., Reddit and OpenSubtitles). We report results
on OpenSubtitles in the supplementary material.

5.1 Quantitative Evaluation

In the following subsections, we introduce two
metrics that can impartially evaluate THRED and
compare against the different baselines. These
metrics were tested on 5000 dialogues randomly
sampled from the test dataset. It is worth men-
tioning that we present word perplexity (PPL) on
the test data in Table 4 (along with diversity met-
ric). However, we do not believe that it represents
a good measure for assessing the quality of re-
sponses (Serban et al., 2017). This is because per-
plexity captures how likely the responses are under
a generation probability distribution, and does not
measure the degree of diversity and engagingness
in the responses.

5.2 Semantic Similarity

A good dialogue system should be capable of
sustaining a coherent conversation with a human
by staying on topic and by following a train of
thoughts (Venkatesh et al., 2018). Semantic Sim-
ilarity (SS) metric estimates the correspondence
between the utterances in the context and the gen-
erated response. The intuition behind this met-
ric is that plausible responses should be consistent
with the context and should maintain the topic of
the conversation. Our response generator THRED
along with the baselines generate an utterance
based on the two previous utterances in the dia-
logue (i.e., Utt1 and Utt2). We compute the cosine
distance between the embedding vectors of the test
utterances (Utt.1 and Utt.2) and the generated re-
sponses from the different models (i.e., THRED,

TA-Seq2Seq, HRED and Seq2Seq). Therefore, a
low score denotes a high coherence. More pre-
cisely, for each triple in the test dataset, we test
two scenarios: (1) we compute the SS of each
generated response with respect to the most re-
cent utterance in the conversation (Utt.2) and (2)
we compute the SS of each generated response
with respect to the second most recent utterance
(Utt.1). To render the semantic representation of
an utterance, we leverage Universal Sentence En-
coder (Cer et al., 2018) wherein a sentence is pro-
jected to a fixed dimensional embedding vector.

However, dull and generic responses such as
“i’m not sure” tend to be semantically close to
many utterances, hindering the effectiveness of the
metric. To cope with this negative effect, we man-
ually compiled a set of 60 dull responses and com-
puted the SS score by multiplying the cosine dis-
tance with the following penalty factor (akin to
length penalty in (Wu et al., 2016)):

P = 1 + log
2 + L′

2 + L′′

where L′ indicates the length of the response af-
ter dropping stop words and punctuation and L′′

stands for the length of non-dull part of the re-
sponse after dropping stop words. The intuition
here is that the longer utterances, with nearly the
same similarity, communicate the intention un-
equivocally since it takes more words to convey
the same meaning.
The penalized Semantic Similarity score is there-
fore defined as:
SS(utti,j , respi) = P × (1− cos( ~utti,j , ~respi))

where i represents the index for the dialogue in the
test dataset and j denotes the index of the utterance
in the conversation history. The results conducted
on Reddit dataset are shown in Table 2. We can
observe that THRED is able to generate responses
which follow the topic and semantics of the in-
put utterances. In particular, the responses gener-
ated by THRED tend to be closer to the context
of the conversation (Utt.1 and Utt.2) compared
to the responses generated from the baslines. To
ensure the statistical significance of THRED, we
conducted Student’s t-test over the average values
of SS metric. THRED outperforms all baselines
(p < 0.001) especially when the comparison is
made against the most recent utterance (Utt.2). On
the other hand, THRED is level with compared
models in semantic distance with respect to the
second most recent utterance (Utt.1). This makes
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CONTEXT GENERATED RESPONSES

(Reddit) sanctions are an act of war→
why do you think that ?

THRED: because it’s really a theory that supports terrorism . and this
has an effect on the idea of a regime that isn’t the same as a government
(Excellent, Good, Excellent, Good, Excellent)
HRED: because the war is n’t a war . it ’s a war .
(Good, Poor, Poor, Poor, Poor)
Seq2Seq: because it ’s an unpopular opinion , and that ’s why it ’s a bad
thing to say . (Good, Poor, Excellent, Good, Good)
TA-Seq2Seq: because it’s a war . (Good, Poor, Excellent, Poor, Good)

Table 1: One cherry-picked dialogue out of 150 conversations along with the generated responses from all models.
Human judgments are provided in the brackets. The blue arrow specifies a dialogue exchange and the highlighted
words in red represent the topic words acquired from the pre-trained LDA model.

Stat. THRED Seq2Seq HRED TA-Seq2Seq
SS with respect to Utt.1

µ 0.680 0.694 0.755 0.692

σ 0.200 0.236 0.283 0.252

SS with respect to Utt.2

µ 0.649** 0.672 0.720 0.702

σ 0.212 0.236 0.292 0.253

Table 2: Mean µ and standard deviation σ of SS scores for
the responses generated from different models with respect to
the most recent utterance (Utt.2) and the second most recent
utterance (Utt.1) from conversation history on the Reddit test
dataset (** indicates statistical significance over the second
best method with p-value < 0.001).

sense because in a multi-turn dialogue, speakers
are more likely to address the last utterance spoken
by the interlocutor, which is why THRED tends
to favour the most recent utterance over an older
one. Additionally, the roughly similar distances
for both utterances in Standard Seq2Seq and TA-
Seq2Seq exhibit that by concatenating context as
single input, these models cannot distinguish be-
tween early turns and late turns. Similarly, the re-
sults achieved on OpenSubtitles dataset (See Fig-
ure 4 in the supplementary material) illustrate that
THRED succeeds in staying on topic and in ac-
counting for contextual information.

5.2.1 Reliability Assurance
In order to ensure that the SS measurement is
stable and void of random error, we investigate
whether the SS metric is able to yield the same pre-
vious results regardless of a specific test dataset.
Following (Papineni et al., 2002), the test dataset
is randomly partitioned to 5 disjoint subsets (i.e.,
each one consists of 1000 test dialogues). Then,
we compute standard deviation of SS over each
dataset. The results, showcased in Table 3, in-
dicate low standard deviation on the subdatasets,
denoting that the SS metric is a consistent and re-

Metric THRED Seq2Seq HRED TA-Seq2Seq
SSUtt.1 0.008 0.009 0.001 0.006

SSUtt.2 0.010 0.008 0.007 0.005

Table 3: Standard deviation of mean SS scores over the 5
different partitions of Reddit test dataset.

liable measure to compare different dialogue mod-
els.

5.3 Response Echo Index
The goal of the Response Echo Index (REI) met-
ric is to detect overfitting to the training dataset.
More specifically, we want to measure the extent
to which the responses generated by our model re-
peat the utterances appearing in the training data.
Our approach is close to sampling and finding
the nearest neighbour in image generative mod-
els (Theis et al., 2016). We randomly sampled
10% of the training data of both OpenSubtitles and
Reddit. The nearest neighbour is determined via
Jaccard similarity function. Each utterance is rep-
resented by lemmatized bag-of-words where stop
words and punctuation marks are omitted. In ef-
fect, REI is defined as:

REI (respi) = max
uttm∈T0.1

J (respi, uttm)

where t̄ is the normalized form of text t, T0.1 de-
notes the sampled training data, and J represents
Jaccard function. REI is expected to be low since
the generated responses should be distant from the
nearest neighbor. According to the results, pre-
sented in Figure 2, the REI scores of the responses
generated from THRED are the lowest compared
to the rest of the models. Such observation leads
us to the conclusion that THRED is able to gen-
erate unique responses which appear to be drawn
from the input distribution, while being measur-
ably far from the input dataset. This strength in
THRED is attributed to the topic attention and in-
corporating topic words in response generation.
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Figure 2: Performance results of the generated responses
from different models based on REI. From left to right, the
labels in horizontal axis are THRED, HRED, Seq2Seq, TA-
Seq2Seq.

Due to the same reason, standard Seq2Seq and
HRED fall short.

5.4 Degree of Diversity & Perplexity

To account further for diversity in generated re-
sponses, following (Li et al., 2016a), we calculated
distinct-1 and distinct-2 by counting unique un-
igrams and bigrams, normalized by the number of
generated words. The results, given in Table 4,
on Reddit indicate that THRED yields content rich
and diverse responses, mainly ascribed to incorpo-
rating new topic words into response generation.
Further, in perplexity, THRED performs slightly
better.

5.5 Human Evaluation

Besides the quantitative measures, 4-scale and
side-by-side human evaluation were carried out.
Five human raters were recruited for the purpose
of evaluating the quality of the responses. They
were fluent, native English speakers and well-
instructed for the judgment task to ensure qual-
ity rating. We showed every judge 300 conver-
sations (150 dialogues from Reddit and 150 di-
alogues from OpenSubtitles) and two generated
responses for each dialogue: one generated by
THRED model and the other one generated by
one of our baselines. The source models were un-
known to the evaluators. The responses were or-
dered in a random way to avoid biasing the judges.
Additionally, Fleiss’ Kappa score is used to gauge
the reliability of the agreement between human
evaluators (Shao et al., 2017). An example of
generated responses from the Reddit dataset are
provided in Table 1 For the 4-scale human eval-
uation, judges were asked to judge the responses
from Bad (0) to Excellent (3). Additional details
are provided in the supplementary material. The
results of this experiment, conducted on Reddit,
are detailed in Table 5. The lablers with a high

Method PPL distinct-1 distinct-2
Seq2Seq 62.12 0.0082 0.0222

HRED 63.00 0.0083 0.0182

TA-Seq2Seq 62.40 0.0098 0.0253

THRED 61.73 0.0103 0.0347

Table 4: Performance results of diversity and perplexity met-
rics of all the models on the Reddit test dataset. THRED sur-
passes all the baselines with a gain of 5% in distinct-1 and
37% in distinct-2 over TA-Seq2Seq (second best).
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Figure 3: Scatter plots illustrating correlation between au-
tomated metrics and human judgment (Pearson correlation
coefficient is reported in the brackets). In order to better vi-
sualize the density of the points, we added stochastic noise
generated by Gaussian distribution N (0, 0.1) to the human
ratings (i.e., horizontal axis) at the cost of lowering correla-
tion, as done in (Lowe et al., 2017).

consensus degree rated 32.9% and 36.9% of the
THRED responses in OpenSubtitles and Reddit
respectively as Excellent, which is greatly larger
than all baselines (up to 11.6% and 22.7% respec-
tively). Apart from the 4-scale rating, we con-
ducted the evaluations side-by-side to measure the
gain in THRED over the strong baselines. Spe-
cific comparison instructions are included in the
supplementary material. The results, illustrated
in Table 5, suggest that THRED is substantially
superior to all baselines in producing informative
and plausible responses from human’s perspective.
The high Kappa scores imply that a major agree-
ment prevails among the lablers. In particular,
THRED beats the strong baselines in 52% of the
test data in Reddit (the percentage is achieved by
averaging the win ratio). However, for the rest
of the cases, THRED is equally good with the
baselines in 25% in Reddit (calculated similarly
based on Table 5). Hence, the ratio of cases where
THRED is better than or equal with the baselines
in terms of quality is 77% in Reddit.

5.5.1 Automated metric vs. Human
evaluation

We also carried out an analysis on the correla-
tion between the human evaluator ratings and our
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Side-by-Side Wins Losses Equally Good Equally Bad Kappa
THRED vs Seq2Seq 47.5%±4.4% 19.1%±3.3% 28.5%±3.1% 4.9%±1.8% 0.80
THRED vs HRED 51.7%±4.6% 20.1%±3.4% 20.9%±3.1% 7.2%±2.3% 0.75
THRED vs TA-Seq2Seq 55.7%±4.1% 13.5%±2.6% 24.7%±3.0% 6.1%±1.8% 0.77
4-scale Excellent Good Poor Bad Kappa
Seq2Seq 22.7%±2.6% 47.2%±3.5% 22.5%±3.5% 7.6%±2.7% 0.80
HRED 14.5%±2.8% 46.7%±3.8% 31.3%±3.8% 7.5%±2.5% 0.84
TA-Seq2Seq 17.1%±2.4% 44.8%±3.5% 30.1%±3.2% 8.0%±2.3% 0.72
THRED 36.9%±3.0% 51.1%±2.9% 10.3%±2.4% 1.7%±1.5% 0.84

Table 5: Side-by-side human evaluation along with 4-scale human evaluation of dialogue utterance prediction on
Reddit dataset (mean preferences ±90% confidence intervals).

quantitative scores. The Semantic Similarity met-
ric, which requires no pre-training, reaches a Pear-
son correlation of -0.341 with respect to the most
recent utterance (Utt.2) on Reddit. A negative cor-
relation is anticipated here since the higher hu-
man ratings correspond to the lower semantic dis-
tance. This compares with values of 0.351 for
Automatic User Ratings (Venkatesh et al., 2018)
and 0.436 for ADEM (Lowe et al., 2017) from
recent models which required large amounts of
training data and computation. The correlations
are visualized as scatter plots in Figure 3. In addi-
tion, we assessed ADEM on our test datasets using
the pre-trained weights5, provided by the authors.
ADEM achieves low correlation with human judg-
ment (ρ = 0.014 on Reddit and ρ = 0.034 on
OpenSubtitles) presumably since the quality of its
predicted scores highly depends on the corpus on
which the model is trained.

5.6 Comparing Datasets
Finally, we investigate the impact of training
datasets on the quality of the responses generated
by THRED and all baselines. Table 6 has results
which support that our cleaner, well-parsed Reddit
dataset generates significantly improved responses
over our metrics of interest. In particular, we con-
trast the two datasets in terms of human judg-
ment and the automated metrics among all the
models. Regarding human assessment, we took
the mean evaluation rating (MER) per response in
the test data to draw the comparison between the
datasets. As demonstrated in Table 6 (see more de-
tails in Figure 6 in the Appendix), the human eval-
uators scored generated responses from the Red-
dit dataset higher than utterances generated from
the OpenSubtitles dataset, which is true not only

5https://github.com/mike-n-7/ADEM

Method
OpenSubtitles Reddit
µ σ µ σ

Human MER 1.681 0.639 1.868 0.624

SS w.r.t. Utt.1 0.642 0.167 0.631 0.270

SS w.r.t. Utt.2 0.662 0.209 0.599** 0.262

REI 0.667 0.205 0.546** 0.201

Table 6: Mean µ and standard deviation σ over metrics per
dataset to fare Reddit against OpenSubtitles. (** indicates
statistical significance with p-value < 0.001)

in THRED, but in all models. Consequently, the
training data plays a crucial role in generating
high-quality responses. Morever, in OpenSubti-
tles, the assumption of spotting a conversation,
as stated in Section 4, tends to include extrane-
ous utterances in the dialogue, impeding the re-
sponse generation process. While such presump-
tion may seem valid in dealing with two-turn di-
alogues, it can aggravate the quality of conversa-
tions in multi-turn dialogues.

6 Conclusion

In this work, we introduce the Topical Hierarchical
Recurrent Encoder Decoder (THRED) model for
generating topically consistent responses in multi-
turn open conversations. We demonstrate that
THRED significantly outperforms current state-
of-the-art systems on quantitative metrics and hu-
man judgment. Additionally, we evaluate our new
model and existing models with two new met-
rics which prove to be good measures for auto-
matically evaluating the quality of the responses.
Finally, we present a parsed and cleaned dataset
based on conversations from Reddit which im-
proves generated responses. We expect more ad-
vanced work to be done in the area of chit-chat
dialogue to improve the models, training data, and
means of evaluation.
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A Supplementary Material

A.1 Experimental Setup
The model parameters are learned by optimizing
the log-likelihood of the utterances via Adam op-
timizer with a learning rate of 0.0002; we followed
(Luong et al., 2015) for decaying the learning rate.
The dropout rate is set to 0.2 for both the encoder
and the decoder to avoid overfitting. For all the
baselines, we experimented hidden state units with
the size of 1024. For our model, we tested with en-
coder and decoder hidden state units of size 800,
the same for the context encoder. During infer-
ence, we experimented with the standard beam
search with the beam width 5 and the length nor-
malization α = 1 (Wu et al., 2016). We noticed
that applying the length normalization resulted in
a more diverse and longer sentences but at the ex-
pense of the semantic coherence of the response in
some cases.

Training LDA model: We trained two LDA
models6: one trained on OpenSubtitles and the
other one trained on Reddit. Both of them were
trained on 1M dialogues. We set the number of
topics to 150, α to 1

150 and γ to 0.01. We filtered
out stop words and universal words. We also dis-
carded the 1000 words with the highest frequency
from the topic words.

A.2 Human Evaluation Procedure
For the 4-scale human evaluation, judges were
asked to judge the responses from Bad (0) to Ex-
cellent (3). Excellent (score 3): The response is
very appropriate, on topic, fluent, interesting and
shows understanding of the context. Good (score
2): The response is coherent with the context but
it is not diverse and informative. It may imply
the answer. Poor (score 1): The response is inter-
pretable and grammatically correct but completely
off-topic. Bad (score 0): The response is gram-
matically broken and it does not provide an an-
swer. Regarding the side-by-side evaluation, hu-
mans were asked to favor response 1 over response
2 if: (1) response 1 is relevant, logically consistent
to the context, fluent and on topic; or (2) Both re-
sponses 1 and 2 are relevant, consistent and fluent
but response 1 is more informative than response
2. If judges cannot tell which one is better, they
can rate the responses as Equally good or Equally
Bad.

6We used LDA model developed in Gensim library.
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Figure 4: Box plots showcasing the performance of the generated responses from different models based on the Semantic
Similarity metric with respect to Utt.1 and Utt.2 (complementary to Table 2). From left to right, the labels in horizontal axis are
THRED, HRED, Seq2Seq and TA-Seq2Seq. THRED surpasses all baselines in similarity with Utt.2, and works mildly better
in similarity with Utt.1. The median for every box plot is also reported between brackets. The order of the values is the same
as the order of the methods.

CONTEXT GENERATED RESPONSES

(OpenSubtitles) the giant observatory in hawaii
are like time machines capturing the faint light that
has travelled towards us through all of cosmic
history→ the deeper they look into space the
farther back they see in time

THRED: as the stars move into space they see
the rising sun and the stars rise above the clouds
(Excellent, Excellent, Good, Excellent, Poor)
HRED: this is the first time we have ever seen
(Poor, Poor, Bad, Good, Bad)
Seq2Seq:the stars and stars of the moon are the stars and stars
of the stars and stars and stars and stars and stars and stars
(Poor, Bad, Bad, Bad, Poor)
TA-Seq2Seq: they have been searching for a long time for a long
time (Good, Poor, Good, Good, Good)

(OpenSubtitles) and closer to home in baltimore
prominent psychiatrist and the author of a newly
released book on insanity disappeared mysteriously
last night after a lecture at the university→ former
mental patient james cole is wanted for questioning
regarding dr cole ’s disappearance

THRED: authorities warn that cole has a history
of violence and advise anyone to notify authorities
(Excellent, Excellent, Excellent, Excellent, Excellent)
HRED: they have been unable to identify him
(Good, Poor, Poor, Good, Poor)
Seq2Seq:cole cole is cole is cole(Poor, Bad, Bad, Bad, Bad)
TA-Seq2Seq: authorities warn that cole has been kidnapped
(Poor, Good, Good, Good, Good)

Table 7: One cherry-picked dialogues out of 150 conversations along with the generated responses from all models.
Human judgments are provided in the brackets. The blue arrow specifies a dialogue exchange and the highlighted
words in red represent the topic words acquired from the pre-trained LDA model.
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Method OpenSubtitles Reddit
PPL distinct-1 distinct-2 PPL distinct-1 distinct-2

Seq2Seq 74.37 0.0112 0.0258 62.12 0.0082 0.0222
HRED 74.65 0.0079 0.0219 63.00 0.0083 0.0182
TA-Seq2Seq 75.92 0.0121 0.0290 62.40 0.0098 0.0253
THRED 73.61 0.0157 (+30%) 0.0422 (+45%) 61.73 0.0103 (+5%) 0.0347 (+37%)

Table 8: Complete performance results of diversity and perplexity on Reddit test data and OpenSubtitles test data
(complementary to Table 4). The numbers in the bracket indicate the gain of distinct-1 and distinct-2 over the
second best method (i.e., TA-Seq2Seq).

Side-by-Side Wins Losses Equally Good Equally Bad Kappa
THRED vs Seq2Seq 54.0%±4.2% 18.4%±3.4% 17.2%±3.0% 10.4%±2.3% 0.75
THRED vs HRED 51.6%±4.4% 19.5%±3.5% 18.4%±2.9% 10.5%±2.4% 0.72
THRED vs TA-Seq2Seq 64.0%±4.3% 14.4%±3.1% 14.1%±2.5% 7.5%±2.1% 0.90
4-scale Rating Excellent Good Poor Bad Kappa
Seq2Seq 8.4%±2.2% 48.9%±3.9% 33.2%±3.7% 9.5%±3.1% 0.89
HRED 11.6%±2.4% 41.5%±3.4% 36.9%±3.9% 10.0%±2.8% 0.79
TA-Seq2Seq 9.5%±2.1% 42.3%±3.7% 34.7%±3.9% 13.6%±3.7% 0.92
THRED 32.9%±3.6% 49.2%±3.3% 16.8%±3.0% 1.1%±0.9% 0.83

Table 9: Side-by-side human evaluation along with 4-scale human evaluation of dialogue utterance prediction on
OpenSubtitles dataset (mean preferences ±90% confidence intervals). Results on Reddit dataset are reported in
Table 5.
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Figure 5: Scatter plots illustrating correlation between automated metrics and human judgment (Pearson correla-
tion coefficient is reported in the brackets).
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Figure 6: Box plots demonstrating the detailed comparison between OpenSubtitles and Reddit datasets. The
metrics are calculated for all models in the cherry-picked data (150 samples for OpenSubtitles and 150 samples for
Reddit). The results here complement what we found in Table 6 in which only mean and standard deviation are
reported per metric.
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Abstract

Response suggestion is an important task for
building human-computer conversation sys-
tems. Recent approaches to conversation mod-
eling have introduced new model architectures
with impressive results, but relatively little at-
tention has been paid to whether these models
would be practical in a production setting. In
this paper, we describe the unique challenges
of building a production retrieval-based con-
versation system, which selects outputs from
a whitelist of candidate responses. To address
these challenges, we propose a dual encoder
architecture which performs rapid inference
and scales well with the size of the whitelist.
We also introduce and compare two methods
for generating whitelists, and we carry out
a comprehensive analysis of the model and
whitelists. Experimental results on a large,
proprietary help desk chat dataset, including
both offline metrics and a human evaluation,
indicate production-quality performance and
illustrate key lessons about conversation mod-
eling in practice.

1 Introduction

Predicting a response given conversational context
is a critical task for building open-domain chat-
bots and dialogue systems. Recently developed
conversational systems typically use either a gen-
erative or a retrieval approach for producing re-
sponses (Wang et al., 2013; Ji et al., 2014; Vinyals
and Le, 2015; Serban et al., 2015; Li et al., 2016;
Xing et al., 2016; Deb et al., 2019). While both
of these approaches have demonstrated strong per-
formance in the literature, retrieval methods of-
ten enjoy better control over response quality than
generative approaches. In particular, such meth-
ods select outputs from a whitelist of candidate
responses, which can be pre-screened and revised

†Work done primarily while an intern at ASAPP, Inc.

for desired qualities such as sentence fluency and
diversity.

Most previous work on retrieval models has
concentrated on designing neural architectures to
improve response selection. For instance, sev-
eral works have improved model performance by
encoding multi-turn conversation context instead
of single-turn context (Serban et al., 2015; Zhou
et al., 2016; Wu et al., 2017). More recent ef-
forts (Zhou et al., 2018; Zhang et al., 2018) have
explored using more advanced architectures, such
as the Transformer (Vaswani et al., 2017), to bet-
ter learn the mapping between the context and the
candidate responses.

Relatively little effort, however, has been de-
voted to the practical considerations of using such
models in a real-world production setting. For ex-
ample, one critical consideration rarely discussed
in the literature is the inference speed of the de-
ployed model. While recent methods introduce
rich computation, such as cross-attention (Zhou
et al., 2018), to improve the modeling between the
conversational context and candidate response, the
model outputs must be re-computed for every pair
of context and response. As a consequence, these
models are not well-suited to a production setting
where the size of the response whitelist can easily
extend into the thousands.

Another critical concern is the whitelist selec-
tion process and the associated retrieval evalua-
tion. Most prior work have reported Recall@k on
a small set of randomly selected responses which
include the true response sent by the agent (Lowe
et al., 2015; Zhou et al., 2016, 2018; Wu et al.,
2017; Zhang et al., 2018). However, this over-
simplified evaluation may not provide a useful in-
dication of performance in production, where the
whitelist is not randomly selected, is significantly
larger, and may not contain the target response.

In this paper, we explore and evaluate model
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and whitelist design choices for building retrieval-
based conversation systems in production. We
present a dual encoder architecture that is opti-
mized to select among as many as 10,000 re-
sponses within a couple tens of milliseconds.
The model makes use of a fast recurrent net-
work implementation (Lei et al., 2018) and multi-
headed attention (Lin et al., 2017) and achieves
over a 4.1x inference speedup over traditional en-
coders such as LSTM (Hochreiter and Schmidhu-
ber, 1997). The independent dual encoding al-
lows pre-computing the embeddings of candidate
responses, thereby making the approach highly
scalable with the size of the whitelist. In addi-
tion, we compare two approaches for generating
the response candidates, and we conduct a com-
prehensive analysis of our model and whitelists on
a large, real-world help desk dataset, using human
evaluation and metrics that are more relevant to
use in a production setting.

2 Related Work

This paper extends the line of work on conversa-
tional retrieval models for multi-turn response se-
lection (Lowe et al., 2015; Al-Rfou et al., 2016;
Zhou et al., 2016, 2018; Wu et al., 2016, 2017;
Yan et al., 2016; Lu et al., 2017; Zhang et al.,
2018; Shalyminov et al., 2018; Deb et al., 2019;
Yang et al., 2019). Our model is most similar to
Lowe et al. (2015), who construct the context of
the conversation by concatenating all previous ut-
terances. They use an RNN to separately encode
the context and each candidate response, and they
then compute a matching score between the con-
text and response representations to determine the
best response for that context.

Other recent work has explored more complex
methods of incorporating information from the
context of a conversation. Serban et al. (2015) and
Zhou et al. (2016) employ a hierarchical architec-
ture in which they encode the context using RNNs
at both the word level and the utterance level. In
contrast to these models, which generate a single
context encoding, Wu et al. (2017) designed a net-
work that matches a response to each utterance in
the context individually.

While many of the models cited above imple-
ment their RNNs with an LSTM (Hochreiter and
Schmidhuber, 1997), we instead use an SRU (Lei
et al., 2018). SRU uses light recurrence, which
makes it highly parallelizable, and Lei et al. (2018)

showed that it trains 5-9x faster than cuDNN
LSTM. SRU also exhibits a significant speedup
in inference time compared to LSTM (by a factor
of 4.1x in our experiments), which is particularly
relevant in a production setting. Furthermore, Lei
et al. (2018) showed that SRU matches or exceeds
the performance of models using LSTMs or the
Transformer architecture (Vaswani et al., 2017) on
a number of NLP tasks, meaning significant speed
gains can be achieved without a drop in perfor-
mance.

Despite the abundance of prior work on re-
trieval models for dialogue, whitelist selection has
received relatively little attention. Since prac-
tical use of conversational models has typically
not been addressed, most models are evaluated on
their ability to select the correct response from a
small list of randomly sampled responses (Lowe
et al., 2015). Another option, from Wu et al.
(2017), is to use Apache Lucene1 to select a
list of response candidates relevant to each con-
text. However, neither method produces a single
whitelist that can be used for every context and
reviewed for quality. The closest work to ours
is Lu et al. (2017), who build a whitelist using a
k-means clustering of responses. We extend this
work by doing a more comprehensive analysis of
different whitelist selection methods, and we fur-
ther analyze the effect of whitelist size on perfor-
mance.

3 Model Architecture

Next we describe the architecture of our retrieval
model. The two inputs to the model are a con-
text c, which is a concatenation of all utterances
in the conversation, and a candidate response r.
In the context, we use special tokens to indicate
whether each utterance comes from the customer
or the agent. The model outputs a score s(c, r) in-
dicating the relevance of the response to the con-
text. The model architecture is described in detail
below and is illustrated in Figure 1.

3.1 Dual Encoders

At the core of our model are two neural encoders
fc and fr to encode the context and the response,
respectively. These encoders have identical archi-
tectures but learn separate weights.

Each encoder takes a sequence of tokens w =
{w1, w2, . . . , wn} as input, which is either a con-

1http://lucene.apache.org/
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Figure 1: (Left) The dual encoder architecture, which takes as input a context c and a response r and computes
the score s(c, r). (Right) Computing the model’s loss based on the scores between a context c, the actual agent
response r+, and k randomly sampled agent responses r−1 , . . . , r

−
k .

text or a response. Due to the prevalence of ty-
pos in both user and agent utterances in real chats,
we use fastText (Bojanowski et al., 2016) as
the word embedding method. fastText learns
both word-level and character-level features and
is therefore more robust to misspellings. We pre-
trained fastText2 embeddings on a corpus of
15M utterances from help desk conversations and
then fixed the embeddings while training the neu-
ral encoders.

Each encoder consists of a recurrent neural
network followed by a multi-headed attention
layer (Lin et al., 2017) to perform pooling. We
use multi-layer, bidirectional SRUs as the recur-
rent network. Each layer of the SRU involves the
following computation:

ft = σ(Wfxt + vf � ct−1 + bf )
ct = ft � ct−1 + (1− ft)� (Wxt)
rt = σ(Wrxt + vr � ct−1 + br)
ht = rt � ct + (1− rt)� xt

(1)

where σ is the sigmoid activation function,
W,Wf ,Wr ∈ Rdh×de are learned parameter ma-
trices, and vf , vr,bf ,bv ∈ Rdh are learned param-
eter vectors.

The multi-headed attention layer compresses
the encoded sequence h = {h1,h2, . . . ,hn} into a
single vector. For each attention head i, attention
weights are generating with the following compu-
tation:

α(i) = softmax(σ(hTW(i)
a )v(i)a ) (2)

where σ is a non-linear activation function, W(i)
a ∈

Rdh×da is a learned parameter matrix, and v(i)a ∈
Rda is a learned parameter vector.

2https://github.com/facebookresearch/
fastText

The encoded sequence representation is then
pooled to a single vector for each attention head
i by summing the attended representations:

h̃
(i)

=
n∑

j=1

α
(i)
j hj . (3)

Finally, the pooled encodings are averaged
across the nh attention heads:

h̃ =
1

nh

nh∑

i=1

h̃
(i)
. (4)

The output of the encoder is the vector f(w) = h̃.

3.2 Scoring
To determine the relevance of a response r to a
context c, our model computes a matching score
between the context encoding fc(c) and the re-
sponse encoding fr(r). This score is simply the
dot product of the encodings:

s(c, r) = fc(c) · fr(r) . (5)

3.3 Training
We optimize the model to maximize the score
between the context c and the response r+ ac-
tually sent by the agent while minimizing the
score between the context and each of k random
(“negative”) responses r−1 , . . . , r

−
k . This is ac-

complished by training the model to minimize the
cross-entropy loss:

L = −s(c, r+) + log

k∑

i=1

s(c, r−i ) . (6)

Although negative responses could be sam-
pled separately for each context-response pair,
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we instead use a method inspired by Logeswaran
and Lee (2018) and share a set of negative re-
sponses across all examples in a batch. Specif-
ically, for each batch, we sample k responses
from the set of all agent responses (weighted ac-
cording to response frequency), and we use those
k responses as the negative responses for every
context-response pair in the batch. This has the
benefit of reducing the number of responses that
need to be encoded in each batch of size b from
O(bk) to O(b + k), thereby significantly acceler-
ating training.

3.4 Whitelist Generation

After training, we experimented with two meth-
ods of creating the whitelist from which our
model selects responses at inference time. For
each method, we created both a 1,000 response
whitelist and a 10,000 response whitelist. Having
a whitelist with any more than 10,000 responses
would likely make a manual review infeasible.

Frequency-Based Method. Responses that are
sent frequently are more likely to be relevant in
multiple conversations and are less likely to con-
tain errors. Therefore, one method of building
a high-quality whitelist is simply to collect mes-
sages that are sent often. We created frequency-
based whitelists by selecting the 1,000 or 10,000
most common agent responses, after accounting
for minor variations in capitalization, punctuation,
and whitespace.

Clustering-Based Method. Although selecting
responses based on frequency may help guaran-
tee quality, manual examination of the frequency
whitelists showed that they contained many redun-
dant responses. Therefore, we experimented with
a clustering-based whitelist selection method in
the hope of reducing redundancy and increasing
response diversity. Specifically, we encoded all
agent responses using our response encoder fr and
then used k-means clustering with k = 1, 000 or
k = 10, 000 to cluster the responses. We then se-
lected the most common response from each clus-
ter to create the whitelists.

4 Experiments and Results

We evaluated our model and whitelists on a large,
proprietary help desk chat dataset using several
offline metrics and a human evaluation. We par-
ticularly emphasize metrics relevant to produc-

tion, such as inference speed and Recall@k from
a large candidate set. The human evaluation il-
lustrates how our model and whitelists compare to
each other and to the responses sent by a real hu-
man agent.

4.1 Data
The help desk chat dataset used in our exper-
iments consists of 15M utterances from 595K
conversations. We randomly split the conver-
sations into train, validation, and test sets with
80%, 10%, and 10% of the conversations, re-
spectively. Since each conversation includes sev-
eral agent responses, each of which produces a
context-response example, our dataset consists of
6.6M training examples, 828K validation exam-
ples, and 828K test examples. Additional dataset
statistics are provided in Table 1. An example chat
conversation can be seen in Table 2.

4.2 Model Details
We implemented the dual encoder model using
PyTorch (Paszke et al., 2017). We use pre-trained
fastText embeddings of dimension de = 300,
a 4-layer bidirectional SRU3 with hidden size
dh = 300, and multi-headed attention with 16
heads and a hidden size of da = 64. The batch size
was 200 and we used k = 200 negative responses
for each positive response. To ensure quick encod-
ing even for long inputs, contexts were restricted
to the 500 most recent tokens and responses were
restricted to the 100 most recent tokens4. The
model was optimized using Adam (Kingma and
Ba, 2014) with the Noam learning rate schedule
from Vaswani et al. (2017). The model was
trained for 30 epochs, with each epoch limited to
10,000 training batches (2M training examples).
Training took about 32 hours on a single Tesla
V100 GPU.

4.3 Results and Analysis
AUC and AUC@p. To determine the model’s
ability to use context to distinguish between true
responses and negative responses, we use the met-
rics AUC and AUC@p. AUC is the area under the
receiver operating characteristic curve when us-
ing the score s(c, r) to determine whether each re-

3SRU code available at https://github.com/
taolei87/sru/tree/master/sru

4A context with 500 tokens contains 39 utterances on av-
erage, which is typically more than enough to understand the
topic of conversation. Almost all responses are shorter than
100 tokens.

35



Conversations 594,555
Utterances 15,217,773

Customer utterances 6,943,940
Agent utterances 8,273,833

Mean conversation length (# utterances) 25.60
Mean utterance length (# tokens) 12.70

Mean customer utterance length (# tokens) 7.53
Mean agent utterance length (# tokens) 17.15

Table 1: Summary statistics for the propriety help desk dataset.

Example Conversation
Customer: I would like to pay my bill can you
help me
Agent: I can definitely help you to pay your bill.
Are we going to work with the account logged in
now?
Customer: Yes it still says there is no money on
my account
Agent: I understand that. I have reviewed your
account and its shows here that the payment has
been posted and you’re all good until next month
service.
Customer: Oh ok thank you for all your help
Agent: You’re welcome. Anything for a valued
customer like you!

Table 2: A sample conversation from the propriety help
desk chat dataset. The sample has been lightly edited
to remove proprietary information.

sponse is the true response or a negative response.
AUC@p is the area under the portion of the ROC
curve where the false positive rate is ≤ p, renor-
malized so that the maximum AUC@p is 1.

The performance of our model according to
these AUC metrics can be seen in Table 3. The
high AUC indicates that our model can easily dis-
tinguish between the true response and negative
responses. Furthermore, the AUC@p numbers
show that the model has a relatively high true pos-
itive rate even under the difficult requirement of a
low false positive rate.

Recall and Whitelist Size. In order to deter-
mine our model’s ability to select the correct re-
sponse from a whitelist, we use recall at k from
n (Rn@k), which is the proportion of times that
the true response is ranked as one of the top k re-
sponses in a whitelist containing n candidate re-
sponses.

Table 4 shows Rn@k on the test set for dif-

Metric Validation Test
AUC 0.991 0.977

AUC@0.1 0.925 0.885
AUC@0.05 0.871 0.816
AUC@0.01 0.677 0.630

Table 3: AUC and AUC@p of our model on the propri-
ety help desk dataset.

Candidates R@1 R@3 R@5 R@10
10 0.892 0.979 0.987 1
100 0.686 0.842 0.894 0.948

1,000 0.449 0.611 0.677 0.760
10,000 0.234 0.360 0.421 0.505

Table 4: Recall@k from n response candidates for dif-
ferent values of n using random whitelists. Each ran-
dom whitelist includes the correct response along with
n− 1 randomly selected responses.

ferent values of n and k when using a random
whitelist, meaning a whitelist which contains the
true response and n − 1 randomly sampled re-
sponses5. As discussed in the introduction, most
prior work evaluate their models using a random
whitelist with n = 10 candidates. However, a
production whitelist needs to contain hundreds or
thousands of response candidates in order to pro-
vide relevant responses in a variety of contexts.
Therefore, a more meaningful metric for produc-
tion purposes is Rn@k for n ≥ 100. Table 4
shows that recall drops significantly as n grows,
meaning that the R10@k evaluation performed by
prior work may significantly overstate model per-
formance in a production setting.

Comparison Between Whitelists. An interest-
ing question we would like to address is whether

5To be precise, we sampled responses without replace-
ment weighted according to the frequency with which the re-
sponse was sent by agents.

36



Whitelist R@1 R@3 R@5 R@10 BLEU
Random 10K+ 0.252 0.400 0.472 0.560 37.71

Frequency 10K+ 0.257 0.389 0.455 0.544 41.34
Clustering 10K+ 0.230 0.376 0.447 0.541 37.59

Random 1K+ 0.496 0.663 0.728 0.805 59.28
Frequency 1K+ 0.513 0.666 0.726 0.794 67.05
Clustering 1K+ 0.481 0.667 0.745 0.835 61.88
Frequency 10K 0.136 0.261 0.327 0.420 30.46
Clustering 10K 0.164 0.292 0.360 0.457 31.47
Frequency 1K 0.273 0.465 0.550 0.658 47.13
Clustering 1K 0.331 0.542 0.650 0.782 49.26

Table 5: Recall@k for random, frequency, and cluster-
ing whitelists of different sizes. The “+” indicates that
the true response is added to the whitelist.

Whitelist R@1 Coverage
Frequency 10K 0.136 45.04%
Clustering 10K 0.164 38.38%
Frequency 1K 0.273 33.38%
Clustering 1K 0.331 23.28%

Table 6: Recall@1 versus coverage for frequency and
clustering whitelists.

a random whitelist serves as a good proxy for
whitelists generated using other methods. To this
end, we also evaluate recall on the frequency and
clustering whitelists from Section 3.4.

First, we compute recall when the true response
is added to the whitelist, as in the case of the
random whitelists described above. Second, we
compute recall only on the subset of examples for
which the true response is already contained in the
whitelist. The latter recall measure is more rele-
vant to a production setting since the true response
is not known at inference time and therefore can-
not be artificially added to the whitelist.

The results in Table 5 show that the three types
of whitelists perform comparably to each other
when the true response is added. However, in
the more realistic second case, when recall is only
computed on examples with a response already in
the whitelist, performance on the frequency and
clustering whitelists drops significantly.

Additionally, we compute the BLEU (Papineni
et al., 2002; Ward and Reeder, 2002) scores be-
tween the true responses and the best suggested
responses. The BLEU score allows us to mea-
sure the semantic similarity when the true and sug-
gested responses are not exactly matched. The
BLEU scores computed with the frequency and
clustering whitelists are slightly higher than those
computed with random whitelists.

Whitelist Great Good Bad Accept
Freq. 1K 54% 26% 20% 80%

Cluster. 1K 55% 21% 23% 77%
Freq. 10K 56% 24% 21% 80%

Cluster. 10K 57% 23% 20% 80%
Real response 60% 24% 16% 84%

Table 7: Results of the human evaluation of the re-
sponses produced by our model. A response is accept-
able if it is either good or great. Note: Numbers may
not add up to 100% due to rounding.

Recall versus Coverage. Although recall is a
good measure of performance, recall alone is not
a sufficient criterion for whitelist selection. The
recall results in Table 5 seem to indicate that the
clustering-based whitelists are strictly superior to
the frequency-based whitelists in the realistic case
when we only consider responses that are already
contained in the whitelist, but this analysis fails to
account for the frequency with which this is the
case. For instance, a whitelist may have very high
recall but may only include responses that were
sent infrequently by agents, meaning the whitelist
will perform well for a handful of conversations
but will be irrelevant in most other cases.

To quantify this effect, we introduce the notion
of coverage, which is the percent of all context-
response pairs where the agent response appears in
the whitelist, after accounting for minor deviations
in capitalization, punctuation, and whitespace. A
whitelist that contains responses that are sent more
frequently by agents will therefore have a higher
coverage.

Table 6 shows R@1 and coverage for the fre-
quency and clustering whitelists. While the clus-
tering whitelists have higher recall, the frequency
whitelists have higher coverage. This is to be ex-
pected since the frequency whitelists were specifi-
cally chosen to maximize the frequency of the in-
cluded responses. Since both recall and coverage
are necessary to provide good responses for a wide
range of conversations, these results indicate the
importance of considering the trade-off between
recall and coverage inherent in a given whitelist
selection method.

It may be interesting in future work to further
investigate these trade-offs in order to identify a
whitelist selection method that can simultaneously
optimize recall and coverage.
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Human Evaluation. While offline metrics are
indicative of model performance, the best mea-
sure of performance is a human evaluation of the
model’s predictions. Therefore, we performed a
small-scale human evaluation of our model and
whitelists. We selected 322 contexts from the
test set and used our model to generate responses
from the Frequency 10K, Frequency 1K, Clus-
tering 10K, and Clustering 1K whitelists. Three
human annotators were shown each context fol-
lowed by five responses: one from each of the four
whitelists and the true response sent by the agent.
The annotators were blinded to the source of each
response. The annotators were asked to rate each
response according to the following categories:

Bad: The response is not relevant to the context.
Good: The response is relevant to the context but
is vague or generic.
Great: The response is relevant to the context and
directly addresses the issue at hand.

For example, three such responses for the context
“My phone is broken” would be:

Bad response: Goodbye!
Good response: I’m sorry to hear that.
Great response: I’m sorry to hear that your phone
is broken.

The results of the human evaluation are in Table
7. Our proposed system works well, selecting ac-
ceptable (i.e. good or great) responses about 80%
of the time and selecting great responses more
than 50% of the time.

Interestingly, the size and type of whitelist seem
to have little effect on performance, indicating that
all the whitelists contain responses appropriate to
a variety of conversational contexts. Since the fre-
quency whitelists are simpler to generate than the
clustering whitelists and since the 1K whitelists
contain fewer responses to manually review than
the 10K whitelists, the Frequency 1K whitelist is
the preferred whitelist for our production system.

Inference Speed. A major constraint in a pro-
duction system is the speed with which the system
can respond to users. To demonstrate the benefit
of using an SRU encoder instead of an LSTM en-
coder in production, we compared the speed with
which they encode a random conversation context
at inference time, averaged over 1,000 samples.
We used a single core of Intel Core i9 2.9 GHz

Encoder Layer Params Time
SRU 2 3.7M 14.7
SRU 4 8.0M 21.9

LSTM 2 7.3M 90.9
LSTM 4 15.9M 174.8

+rank response - - 0.9

Table 8: Inference time (milliseconds) of our model to
encode a context using an SRU or an LSTM encoder on
a single CPU core. The last row shows the extra time
needed to compare the response encoding to 10,000
cached candidate response encodings in order to find
the best response.

CPU. As seen in Table 8, an SRU encoder is over
4x faster than an LSTM encoder with a similar
number of parameters, making it more suitable for
production use.

Table 8 also highlights the scalability of using
a dual encoder architecture. Since the embed-
dings of the candidate responses are independent
from the conversation context, the embeddings of
the whitelist responses can be pre-computed and
stored as a matrix. Retrieving the best candi-
date once the context is encoded takes a negligible
amount of time compared to the time to encode the
context.

Ablation analysis. Finally, we performed an ab-
lation analysis to identify the effect of differ-
ent aspects of the model architecture and training
regime. The results are shown in Table 9, and de-
tails of the model variants are available in the Ap-
pendix.

As Table 9 shows, the training set size and
the number of negative responses for each pos-
itive response are the most important factors in
model performance. The model performs signif-
icantly worse when trained with hinge loss instead
of cross-entropy loss, indicating the importance of
the loss function. We also experimented with a hi-
erarchical encoder, where two different recurrent
neural networks are used to encode contexts, one
at the word level and one at the utterance level.
We observed no advantage to using a hierachical
encoder, despite its complexity and popularity for
encoding conversations (Serban et al., 2015; Zhou
et al., 2016). Finally, we see that a 2 layer LSTM
performs similarly to either a 4 layer or a 2 layer
SRU with a comparable number of parameters.
Since the SRU is more than 4x faster at inference
time with the same level of performance, it is the
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Model Parameters Validation AUC@0.05 Test AUC@0.05
Base 8.0M 0.871 0.816

4L SRU→ 2L LSTM 7.3M 0.864 0.829
4L SRU→ 2L SRU 7.8M 0.856 0.829
Flat→ hierarchical 12.4M 0.825 0.559

Cross entropy→ hinge loss 8.0M 0.765 0.693
6.6M→ 1M examples 8.0M 0.835 0.694

6.6M→ 100K examples 8.0M 0.565 0.417
200→ 100 negatives 8.0M 0.864 0.647
200→ 10 negatives 8.0M 0.720 0.412

Table 9: An ablation study showing the effect of different model architectures and training regimes on performance
on the proprietary help desk dataset.

preferred encoder architecture.

5 Conclusion

In this paper, we present a fast dual encoder neural
model for retrieval-based human-computer con-
versations. We address technical considerations
specific to the production setting, and we evaluate
our model and two whitelist generation methods
on a large help desk chat dataset. We observe that
traditional offline evaluation metrics significantly
overestimate model performance, indicating the
importance of using evaluation metrics more rele-
vant to a production setting. Furthermore, we find
that our proposed model performs well, both on
offline metrics and on a human evaluation. Due
to its strong performance and its speed at infer-
ence time, we conclude that our proposed model
is suitable for use in a production conversational
system.

One important direction for future work is a
deeper analysis of the whitelist selection process.
Although our analysis found similar performance
across whitelists according to a human evaluation,
our offline metrics indicate underlying trade-offs
between different characteristics of the whitelists
such as recall and coverage. A better understand-
ing the implications of these trade-offs may lead
to improved whitelist generation methods, thereby
further improving the performance of retrieval-
based models.
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A Appendix

A.1 Ablation Study
Table 9 shows the results of an ablation study we
performed to identify the most important com-
ponents of our model architecture and training
regime. Each variant is described below.

Base. This is the model architecture described in
Section 3.

4L SRU → 2L LSTM. We replace the 4 layer
SRU encoder with a 2 layer LSTM encoder, which
has a comparable number of parameters when us-
ing the same hidden sizes.

4L SRU→ 2L SRU. We use an SRU with 2 layers
instead of 4 layers. In order to match parameters,
we use a hidden size of dh = 475 instead of dh =
300 in the model with 2 layers.

Flat → hierarchical. We replace the SRU en-
coder with two SRU encoders, one which operates
at the word level and one which operates at the ut-
terance level, following the architectures of Serban
et al. (2015); Wu et al. (2017).

Cross entropy→ hinge loss. Instead of using the
cross-entropy loss defined in Equation 6, we use
the hinge loss, which is defined as:

L =
k∑

i=1

|s(c, r+)− s(c, r−i ) +m| (7)

where the margin m = 0.25 encourages separa-
tion between the score of the correct response and
the score of each negative response.

6.6M→ 1M examples. We train on a dataset with
1 million examples instead of the full 6.6 million
training examples.

6.6M→ 100K examples. We trained on a dataset
with 100 thousand examples instead of the full 6.6
million training examples.

200 → 100 negatives. During training, we sam-
ple 100 negatives for each context-response pair
instead of 200 negatives.

200→ 10 negatives. During training, we sample
10 negatives for each context-response pair instead
of 200 negatives.
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Abstract

This theoretical paper identifies a need for a
definition of asymmetric co-creativity where
creativity is expected from the computational
agent but not from the human user. Our
co-operative creativity framework takes into
account that the computational agent has a
message to convey in a co-operative fash-
ion, which introduces a trade-off on how cre-
ative the computer can be. The requirements
of co-operation are identified from an inter-
disciplinary point of view. We divide co-
operative creativity in message creativity, con-
textual creativity and communicative creativ-
ity. Finally these notions are applied in the
context of the Peace Machine system concept.

1 Introduction

When we say something in a language, we say it
to communicate something. Every utterance we
say has a meaning behind it, a message we want to
convey to others. This is true not only in everyday
conversation, but in any act of language use, no
matter the medium, whether it was spoken, writ-
ten, signed etc.

For computationally creative systems, exhibit-
ing linguistic creativity, expressing a message is
not a requirement. In fact, just generating a lin-
guistic realization, a surface form, is challenging
enough and is considered of a merit.

The situation becomes more difficult when mere
surface generation, i.e. producing natural lan-
guage without a message, is not enough. When
a system has to generate a creative poem that
expresses a complete message or has to make a
meaning conveying contribution to a conversation.
It is often the case that a computationally creative
system is not fully aware of the meaning its cre-
ations convey, but rather rely on people to pour
their understanding of the world into the creative
artifact and perceive creativity in it.

In this paper, we focus on co-operative creativ-
ity with the focus on dialog systems. We are not
greatly interested in purely generative dialog sys-
tems that serve more for chitchat. Instead, we fo-
cus on goal-oriented dialog systems that have a
clear message they need to convey, such as a price
or available times, and the role of computational
creativity in encapsulating their message in a cre-
ative form.

Creative behavior consisting of a human and a
computer is called co-creativity. In the following
section, we start by discussing this notion and why
it is insufficient for modelling our task. In the fol-
lowing sections, we take an interdisciplinary view
on what co-operation means and formulate a cre-
ative framework based on these notions. Finally
we show a more concrete way of using our frame-
work by applying it on the Peace Machine con-
cept.

In the field of computational creativity, work-
ing with a definition for creativity plays a cru-
cial role in evaluation of a creative system (Jor-
danous, 2012; Alnajjar and Hämäläinen, 2018).
While a myriad of more abstract level theories
on computational creativity have been elaborated
in the past (Colton, 2008; Wiggins, 2006; Colton
et al., 2011), our work aims to develop a theoreti-
cal framework to a more concrete problem of cre-
ative dialog generation.

2 Co-Creativity

In this section, we describe some of the existing
definitions of human computer co-creativity as the
co-creativity paradigm is closest to our case.

Co-creativity can be divided into four categories
as identified by Lubart (2005). The computer can
act as a nanny to a person guiding and motivat-
ing him in the creative task, where as if the com-
puter acts as a coach, it will more actively help the
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creative person to explore new ways of thinking
by educating them about different creativity tech-
niques. In a pen-pal scenario, the computer helps
a creative individual in communicating ideas with
others. Finally, the computer can be a colleague
in which case humans and computers are in a cre-
ative dialogue taking turns in forming a creative
artefact.

Davis (2013) identifies a gap between the AI re-
search focusing on computational creativity and
HCI (human-computer interaction) research fo-
cusing on creativity support tools. He argues that
co-creativity can narrow this gap. Creativity is
seen as an emergent phenomenon from the inter-
actions of a human and a computer. The interac-
tions are collaborative and both parties influence
on each other.

In mixed initiative co-creativity (Yannakakis
et al., 2014), both the computer and a human user
take an active role in contributing to solving a
creative problem, although, not necessarily to the
same extent. This differs from turn-based collabo-
ration between the two parties and from the com-
puter being merely a supportive tool, as the both
parties are actively creative.

In a recent study outlining evaluation of co-
creativity (Karimi et al., 2018), the concept of co-
creativity is defined as an interaction involving at
least one AI agent and one human. They act based
on the creative response of the other party and their
own understanding of creativity.

The current definitions of co-creativity always
expect the presence of human creativity in addi-
tion to computational creativity or computer as-
sisted creativity. However, a co-operation setting
does not require creativity at all, and if the com-
putational agent is creative, it does not mean that
there has to be human creativity present at the
same time.

3 Co-Operation

Co-operative creativity requires the computer to
exhibit creativity in its way of communication.
However, creativity is not a requirement for the
human user. Even though dialogue itself can be
seen as an interplay between two or more parties
forming an ephemeral creative artefact of its own,
we want to clearly distinguish co-operative cre-
ativity from co-creativity. Therefore, we are not
looking at dialogue as a creative artefact but rather
how creativity can take place one-sidedly on the

level of utterances.

3.1 Communicative-Creative Trade off

The purpose of a dialogue system, whether it is
made for chitchat or to answer queries, is always to
co-operate with a human. Co-operation can thus,
in its simplest form, be contributing to the conver-
sation in a meaningful way to keep the conversa-
tion on going.

The rules of conversation are governed by lin-
guistic, cognitive and social mechanisms that have
to be followed, and they set limitations for creativ-
ity. For instance, a dialogue system for booking
movie tickets can deliver a very uncreative com-
municative answer stating just the name of the
movie and its showtime or on the other extreme
of creativity, answering by a riddle.

We argue that the co-operative nature of conver-
sation, where creativity is only expected from the
computer, not from the human, and where a certain
communicative function has to be filled in accor-
dance to higher level rules of conversation, has to
balance in between creativity and predictability.

3.2 Communication in Pragmatics

The field of pragmatics has been studying mean-
ing in its context for multiple decades. In this sec-
tion, we will explain the key pragmatic theories in
understanding conversation and meaning of utter-
ances.

Grice (1975) famously defined four maxims for
co-operative principle of communication: manner,
quality, quantity and relevance. Through these
maxims, we can identify linguistic rules that a ma-
chine should follow in order to be converse in a
co-operative fashion.

The maxim of manner means that the communi-
cation is conducted in an orderly and unambiguous
fashion. The maxim of quality refers to the truth-
fulness of the utterance. The speaker shall not say
anything he believes to be false.

If there is just enough information communi-
cated in an utterance, the maxim of quantity is fol-
lowed. This means that both communicating too
little or too much is against this maxim. The last
maxim, namely that of relevance, requires the ut-
terance to be contextually related and not off topic.

When it comes to the function of utterances, i.e.
their relation to the surrounding world, we can use
Searle’s speech acts (Searle, 1969) (cf. Nonaka,
1994; Rus et al., 2012). According to this theory,
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all utterances are either representative, expressive,
declarative, commissive or directive.

Representative and expressive are close to each
other in a communicative function. The former
states something factual about the surrounding re-
ality outside of the speaker, where as the latter is a
statement about the internal state, such as the emo-
tion, of the speaker.

Directive speech acts are commands, i.e. their
intention is to make someone else perform an ac-
tion. Commissive speech acts have a similar func-
tion as they are promises, in their case the speaker
is the one who is going to perform the action.
Declarative speech acts are, by their definition,
supposed to change the surrounding world. An ex-
ample of such a speech act is sentencing someone
guilty of a crime.

It is important to note that the surface form of
an utterance does not dictate the speech act it is
used to perform, but rather its contextualization
plays an important role. For instance, a prayer is
an expressive speech act even though on the sur-
face it might seem as a directive speech act. This
interplay between the context and the words them-
selves opens up a great potential for creativity.

3.3 Socio-Cognitive Views

In cognitive science, the concept of scripts (cf.
Bower et al., 1979) can be used in a higher level
to explain communication. In day-to-day life, our
brains rely on heuristics when processing informa-
tion. This helps us perform tasks in a cognitively
less intensive fashion. Scripts store learned pat-
terns of behaviour and outcome of different situa-
tions. For instance, paying for groceries follows a
well defined script: stand in a line waiting for your
turn, place the items on the belt, pay and go pack-
ing. By following this script, we do not have to fig-
ure out how to pay for our groceries every time we
need to buy food. It is to be noted, though, that the
scripts vary according to geographical and cultural
areas. The script for visiting a grocery store or
bank is different, e.g., in the USA, different parts
of Europe or China.

A higher level theory of the same phenomenon
is the one presented by Goffman (1959). Accord-
ing to his view, social life is assimilated to a the-
ater play, where every participant is supposed to
play their own role. In the level of interaction, the
focus of his interest is in maintaining face. The
common goal of the interlocutors in a conversa-

tion is to maintain their own social face and those
of the other participants.

3.4 Usability and Design

When we are dealing with dialogue systems, we
cannot overlook the fact that we are inherently
dealing with a user interface. In the fields of us-
ability and design, the problem of communication
has been dealt with from the human-computer in-
teraction point of view.

A simple heuristic in usability for assessing a
user interface is to look at the mental and physi-
cal effort (cf. Komogortsev et al., 2009) required
to perform a task. For dialogue systems, physi-
cal effort can be calculated by how many queries
the user has to perform to complete a given task.
Mental effort refers to all cognitively demanding
tasks such as how much information the user has
to gather and memorize from different parts of
the interface. Thus a dialogue system listing all
the possible flights with all the details when re-
quested would have low requirement for physical
effort, but would be cognitively intensive as the
user would have to memorize every flight he finds
suitable.

Maybe a more intriguing concept in design is
that of elegance (cf. White 2011). An elegant
design communicates the intended message fully
with as little as possible. The communication in
a message can be divided in two: in denotation
and connotation. Where denotation is the pure in-
formation content of the message, connotation is
more in the way the message is communicated - in
the emotional response it evokes.

3.5 Synthesis

In the previous sections, we have dedicated much
room for describing the theories from different
disciplines that in their core, are dealing with the
very same phenomenon - communication. This
section is dedicated into putting the theories to-
gether to form an interdisciplinary framework for
a dialog system that is independent of the technical
realization or creativity at this point.

We take elegance and script as higher level con-
cepts as they are on the highest level of abstrac-
tion. Reflecting these in terms of the co-operative
principle, i.e. the maxims, we can notice that ele-
gance is closely related to the maxims of quantity
and quality. As the requirement of elegance is to
express the message as fully as possible (quality)
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with as little as possible (quantity), an elegant ut-
terance needs to fulfill these two maxims.

Scripts are most strongly related to the maxims
of manner and relevance. As scripts give us be-
havioral patterns to follow in different situations,
they govern the manner in which we are expected
to express ourselves. The behavioral patterns also
entail what is relevant to say in which situation.

We place the usability terms on the lowest level
in our synthesized model of co-operation, as they
are meant to assess a concrete human-computer in-
teraction scenario. Physical effort is linked mostly
to the maxims of quantity and relevance. A dia-
logue system providing too little information will
force the user to ask for more details, which in-
creases the amount of physical effort. This is true
also in the case of non-relevant information, which
provokes more queries by the user to reach to a rel-
evant answer.

The maxim of quantity relates to mental effort
as well. Too much information will force the user
to store it in his memory, which increases the men-
tal effort. Another maxim affecting on mental ef-
fort is that of manner. If the information is not
presented in an orderly manner, it makes it more
difficult for the user to gather the important bits of
information into a cohesive whole.

Coming back to the highest level concepts, el-
egance and script, a bridge needs to be built to
connect them. We argue that they are connected
through the context in which the conversation
takes place. The context triggers a script, but it
also changes the meaning of what is elegant. Talk-
ing with a person who knows a great deal about
the topic of the conversation requires less words to
communicate the message whereas more explain-
ing is in order for a person new to the topic.

The context is also dictated by the role one is
expected to play in the social situation. Therefore
Goffman’s theory is a part of the contextual bridge
linking the two highest level concepts. We also in-
troduce a mental model of the interlocutor as a part
of the context as it has been proven evident by the
previous discussion, that the maxims depend on
the interlocutor as well. Furthermore, the conver-
sation develops in time, which means that the prior
utterances are also building the current context.

Now that we have synthesized what co-
operative conversation requires, it is time to add
the remaining notions into the model. No conver-
sation can take place meaningfully if there is no

message to be conveyed by the words of an utter-
ance. This message can be divided into its deno-
tative and connotative function. How the message
can be conveyed is limited by the speech acts, and
they function as a gate to the conversation.

Figure 1: Model of co-operation

Figure 1 depicts the model described in this sec-
tion. This model does not take creativity into ac-
count, but rather describes the requirements of co-
operation and their inter-dependencies. The con-
text is connected back into the message compo-
nent as it affects on the next utterance of the con-
versation.

4 Co-Operative Creativity

In the previous section, we identified three main
components of a co-operative dialogue system:
message (including speech acts), context and co-
operation , which correspond to message, contex-
tual and communicative creativity respectively. In
this section, we shed light into how computational
creativity can manifest itself without jeopardizing
the strict requirement of co-operation.

4.1 Message Creativity

In a co-operative setting, there is a limitation to
what can be communicated so that it is still rele-
vant for the conversation. The limitation can be
very strict like in the case of a dialogue system
selling tickets or lenient as in the case of chitchat.

4.1.1 Creativity in Denotation
Even if the set of possible denotations was lim-
ited, there is room for creativity in finding some-
thing else to communicate that is still co-operative.
For example, glass is half full and glass is half
empty communicate about the same phenomenon,
yet their denotations are different. Thus, finding
a creative point of view to communicate about the
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same phenomenon is a way of altering the deno-
tation of the message without making it non-co-
operative.

In a more lenient setting, the context of the mes-
sage can be explored to find a way to communi-
cate a denotation that still contributes to the co-
operativity. This could, for instance, be a change
of topic or a message provoking an emotional
change such as a joke.

4.1.2 Creativity in Connotation

Even if the denotation of a message was fully
fixed, for example, if the system has to commu-
nicate the price of a movie ticket and cannot com-
municate any other denotation to avoid risking co-
operativity, connotation opens up more room for
creativity.

Connotation can be altered as easily as by the
choice of words or by a structural change. Con-
sider for example the following sentences An ap-
pointment for vaccination has been reserved for
Monday and You will get your shot on Monday.
Both of them communicate the same denotation,
but their connotation is different. The first sen-
tence sounds more official and establishes social
distance where as the latter is more casual in style.

4.1.3 Exploiting Speech Acts

Speech acts are more abstract in nature than any
linguistic form, and thus speech acts themselves
do not offer much room for creativity. However,
understanding that certain surface realizations are
most closely attached to certain speech acts, opens
up a window for creativity.

I like strawberries is seemingly an expressive
speech act; the person tries to communicate about
his liking of strawberries. However, the actual
speech act might be directive give me strawberries
or commissive I will buy strawberries, depending
on the context. Therefore mixing and matching
speech acts with non-typical surface forms that
still communicate the message is an exploitable
possibility of computational creativity.

4.2 Contextual Creativity

The context has a huge effect on how communi-
cated messages are understood. As we have seen
throughout this paper, words can mean different
things in different contexts. A context also sets
limits to what can be said and how it should be
said.

4.2.1 User Adaptation
Knowing the user and establishing trust with him
gives more freedom for creative behavior. Even
in tightly scripted situations, if the user is known
well, the communication can deviate more from
the script without it damaging the co-operation.

A semantic model that has been learned from
the user in question could be used to creatively
adapt a message to the user’s own vocabulary. If
for example the user hates frozen yogurt a flight
connection with tediously long layovers could be
communicated as a frozen yogurt route.

A creatively expressed message has a higher
risk to not being understood. A good user model
can then provide a way of assessing whether a cre-
ative communication solution will be understood
as intended or not.

4.2.2 Role Identification
If we look at communication from the perspec-
tive of role-taking, a great source of creativity
can come from identifying the possible roles sup-
ported by the context and picking the one that
gives the greatest freedom in expression.

Role identification from user perspective, espe-
cially if there are many human users, can con-
tribute to the creative freedom. If there are more
than one possible roles the users can take, chang-
ing their role to one that offers more freedom of
creativity can be of a benefit. The roles can be
changed by communicative means.

4.2.3 Time Perspective
Planning the flow of the conversation ahead doing
constant predictions is a potential way of shifting
the context towards one that has more room for
creativity. The planning itself can also be a cre-
ative process where the conversation will take un-
expected turns that still contribute to co-operation.

Just as much as predicting the future can be a
creative process, knowing the past can be used
creatively as well. This is not limited to creative
comebacks to what the user has said, but also can
mean re-interpretation of what has been said be-
fore. Language is ambiguous and this fact can be
celebrated by reusing bits of the conversation form
the past in the new current context.

4.3 Communicative Creativity

The co-operation section in Figure 1 is probably
the part that limits creativity the most. Maxims
and the other components they relate to set rules
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to how one is supposed to communicate in order
to do it in a co-operative fashion. However, there
is room for creativity even with these tight rules.

4.3.1 Script Selection
In a conversation situation, there might be multi-
ple social scripts to choose from. Picking a non-
typical, but yet contextually fitting script can make
it possible to find new creative solutions in the
conversation.

As scripts are not predefined hand-written rules,
but rather learned behavioral patterns, scripts offer
flexibility in changing them. Identifying how to
change a script, or how to go outside of one, in
a way that it does not startle the interlocutor, is a
task requiring creativity.

4.3.2 Adjustment of Elegance
Optimizing for elegance is probably too limiting
for creativity and not an interesting way to go
about creativity in conversation. The question
should be what is elegant enough, and what is ex-
pected to be communicated. A longer message
might be seen inelegant as it uses too many words
to communicate a message, if we are only inter-
ested in the denotation. However, the additional
length might contribute to connotation.

Making justified statements about elegance re-
quires a definition of what is communicated, the
message itself. This tells what is expected to be
communicated, which then in its turn, makes it
possible to assess the elegance of the utterance.

4.3.3 Informed Deviation from Maxims
Maxims are a part of co-operative principle and
thus by definition they are tailored towards co-
operative conversation. However, they are highly
contextual and therefore what is enough, relevant
and so on is a matter of the context in which an
utterance occurs.

A system seeking to deviate from the maxims
and still maintain co-operativity in the communi-
cation needs to be able to assess the effect of such
a deviation in a reasoned way. For example, if the
goal is to make the user think and ask questions,
communicating a bit too little or increasing ambi-
guity might be useful.

A seemingly irrelevant communication can be
useful if the communication is later contextual-
ized and made relevant for the initial conversation
topic. Sometimes telling anecdotes or giving anal-
ogous examples might seem irrelevant to the in-

terlocutor, but later in the conversation they can
prove to be helpful in understanding the problem
from another perspective.

The maxim of quality relates to truthfulness of
the utterance. Expressing something that is clearly
untrue can be a way of expressing the opposite
meaning in a sarcastic fashion (cf. Hämäläinen,
2016). If the sarcasm is understood correctly
by the user, the communication can still be co-
operative, even though on the surface it appears
to be insincere.

5 The Context of Peace Machine

Peace Machine (Honkela, 2017) is a concept on
how to use different parts of Artificial Intelligence
(AI) to promote peaceful conditions in the world.
This highly ambitious objective may sound unre-
alistic at first. It is to be remembered, though,
that the range of AI technologies that have con-
siderable impact in various domains is wide and
increasing.

The Peace Machine concept consists of three
main areas. The question is not about one sys-
tem but a number of different applications and sys-
tems. The three main areas considered are (1) Im-
proved communication, (2) Understanding emo-
tions, and (3) Improving societal conditions.

5.1 Co-Operative Creativity in Peace
Machine

In the following, the Peace Machine concept is
considered from the point of view of Co-Operative
Creativity defined and described in this paper.
Peace Machine serves as a general application
context for the theoretical work presented in this
paper and its components can be studies in the
communicative framework presented in this paper.

5.2 Message Creativity

The objective of Peace Machine is to help the user
of a component of the system use and learn com-
municative acts that help him navigate in the con-
versational space in a peaceful and constructive
manner or understand one’s own or others’ emo-
tions in a constructive way. To be successful in this
task, the system must be able to express itself in a
creative manner when necessary. The user may
need help in seeing matters from a novel point of
view or in understanding the current situation be-
yond the limits of the conceptual system that he
may have available. This help may be reached, for
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instance, with the use of metaphor.

5.2.1 Creativity in Denotation
The topic of conversation may be guided into areas
in which, for instance, the risk of emotional out-
bursts are lowered. The creativity of the system
would lie in the ability to guide the topics of the
conversation even when the overall communica-
tive goal remains the same. One opportunity is to
find a path in the conversation that minimizes un-
intended choice of topics or expressions that might
endanger the overall goal. It is known from prac-
tical experience in peace negotiations that the use
of a poorly chosen single word or theme may jeop-
ardize the whole process. Here it is to be remem-
bered that Peace Machine is not focusing on peace
negotiations between nations or other such organi-
zations but between any two or more people.

5.2.2 Creativity in Connotation
In Peace Machine, consideration of the connota-
tion is very important. When the aim is to reach
peaceful and constructive communication, expres-
sions that have negative connotations should be
avoided. In a conversation between two people,
the system may help the persons to avoid expres-
sions that hurt other’s emotions or the ground of
his identity. In many cultures it is important to
take social aspects into account. Depending on the
relationship between the people, their status and
cultural background, the expressions that are ap-
propriate in one situation may be quite the oppo-
site in another. For instance, the same content can
be expressed in two quite different ways regarding
the style: Let’s have a meeting tomorrow! or May
I have the honor to ask your presence in meeting
in the near future, potentially already tomorrow?.

5.2.3 Exploiting Speech Acts
Useful computational creativity that helps peo-
ple through potentially problematic communica-
tion can take place through suitable choices re-
garding speech acts. In a homely context, there
is a clear difference between the expressions Take
out the trash bin and The trash bin is quite smelly.
The intention can be considered to be the same
in both cases but the emotional outcome may be
quite different. Whether illocutionary, perlocu-
tionary, propositional or utterance act should be
chosen depends on multiple factors that concern
the persons involved, their background, history of
the communication and the broader context. At

the present moment, it is still difficult to take into
account the non-linguistic context in human-like
manner. It is, however, good to keep in mind that
persons may interpret the non-linguist or implicit
context in a different way especially if they, for in-
stance, have different education or cultural back-
ground (cf. Anderson and Shifrin, 2017).

5.3 Contextual Creativity

In Peace Machine, as in any general purpose sys-
tem, the challenge of world knowledge and the
huge complexity of the contexts that a system may
encounter is a great challenge as well as an oppor-
tunity. This could be an indirect or direct access
to the context. Here indirect refers to the use of
language and the direct refers to use of perceptual
senses. The underlying matters have been a sub-
ject to philosophical debates for very long time (cf.
Gärdenfors, 2000; Von Foerster, 2007; Bundgaard,
2010) and it is not possible to cover this theme
here. From the point of view of Peace Machine,
the room for computational creativity is extensive
and given broad range of opportunities. In build-
ing peace one possible approach is to choose the
topics and dimensions suitably. For instance, the
choice can help the discussants feel safe and se-
cure. A useful notion is the division into fore-
ground and background that is used in cognitive
linguistics (Langacker, 2008). Sometimes it may
be useful and constructive to start conversational
from the background and gradually proceed into
the foreground. The creative system may help hu-
mans in finding such conversational routes.

5.3.1 User Adaptation
In the above discussion referring to context, the
aspect of subjectivity was briefly brought up. In
addition to their experiences, values, preferences
and identity, people are also different regarding
their linguistic and conceptual systems. We do
not know the same set of words and their mean-
ings and we even have different interpretations of
words and expressions. The words ”fair” or ”beau-
tiful” refer to different things, which should be ob-
vious, but more difficult to measure than compar-
ing the limits or distributions of interpretation of
color ”orange” or whether some product is ”ex-
pensive”. In Peace Machine, this theme is very
important as it has been pointed out that misunder-
standing is a very common phenomenon that has
wide practical consequences. Creative user adap-
tation on language and conceptual systems is pre-
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sented as a potentially important means to serve
a basis for highly improved communication. This
is a hypotheses that needs to be tested in various
kinds of settings.

5.3.2 Role Identification
A machine, the purpose of which is to help peo-
ple understand one another, can take up different
roles in a communicative setting. In a situation of
conflict, a suitable role might be that of a medi-
ator while some situations require a more active
leader-like role from the machine. This gives the
machine a spectrum of roles from the passive to
active to choose from.

5.3.3 Time Perspective
Helping people understand one another is a task
with a persuasive goal. This persuasion requires
planning, and the creative outcomes of the flow of
the conversation have to be taken into account by
the system.

With an aim for peace, Peace Machine should
be able to take turns in the conversation that get
the interlocutor off guard. In an extremely polar-
ized setting, the two opposing parties are biased
towards not being open towards the other party’s
opinions. A persuasion technique such as this one
requires creative planning.

5.4 Communicative Creativity for Peace
Machine

In the following, we consider how to communicate
in a co-operative fashion while using the Peace
Machine system.

5.4.1 Script Selection
Useful scripts to promote mutual understanding
and respect can be learned based on large corpora
of conversations. The real world variety of con-
texts makes its useful to apply creative solutions
when the corpus-based solution does not provide
close enough solution. Two or more solutions may
be merged.

5.4.2 Adjustment of Elegance
Elegance is seemingly an important criterion re-
garding Peace Machine. The system should com-
municate in such a manner that it matches with
the user’s linguistic expectations and situation-
specific needs. Too short and ambiguous mes-
sage may be considered impolite or rude. Equally
well, a message too long may be considered unin-
teresting or impolite. The Peace Machine system

component can be used to train a person to han-
dle potentially troublesome situations, during the
conversation with someone else, or to help by an-
alyzing an earlier conversation.

5.4.3 Informed Deviation from Maxims
From the point of view of the Peace Machine con-
cept and system use, among the Grice’s (1975)
four maxims for co-operative principle of commu-
nication, manner, quality, quantity and relevance,
can be used to judge potential usefulness of break-
ing these rules in a creative way. Regarding man-
ner, the system may guide a person to be unclear
or ambiguous in order to give room for alternative
helpful interpretations or ideas, or to point out that
the terminology and conceptual space may be such
that meaning negotiation would be useful regard-
ing the conversational situation at hand. The initial
problem may help in understanding that the basis
is not the same regarding the meaning of some key
term in the conversation.

Changing the topic in the middle of a conversa-
tion and not being relevant may be a means to cre-
ate a possibility to escape a problematic conver-
sational situation. This approach should be used
with care because it may lead into unintended con-
sequences. For instance, the expression may be
interpreted as an insult rather than as, for instance,
humorous break to a heated discussion.

6 Conclusions

This paper has identified a need for theoretical
framework for asymmetric human-computer cre-
ativity, where, for the first time, the computer is
the only party with a requirement for creativity.
Thus our initial framework fills a theoretical void
in the field.

In this paper we have outlined from an interdis-
ciplinary point of view what the requirements are
for a co-operative conversation. Based on this def-
inition, we have identified three different kinds of
creativity in a co-operative setting: message, con-
textual and conversational creativity.

Furthermore, we have highlighted the impor-
tance of having a message to convey creatively.
This makes a clear distinction with the creative
systems that generate language without a need to
communicate a certain idea, a message. Due to
the nature of dialogue systems that are meant to
aid users reach their goal, this need for a message
cannot be ignored.
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Mika Hämäläinen. 2016. Reconocimiento au-
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Abstract

We propose a novel method for selecting co-
herent and diverse responses for a given dia-
logue context. The proposed method re-ranks
response candidates generated from conver-
sational models by using event causality re-
lations between events in a dialogue history
and response candidates (e.g., “be stressed
out” precedes “relieve stress”). We use dis-
tributed event representation based on the Role
Factored Tensor Model for a robust match-
ing of event causality relations due to lim-
ited event causality knowledge of the sys-
tem. Experimental results showed that the pro-
posed method improved coherency and dia-
logue continuity of system responses.

1 Introduction

While a variety of dialogue models such as the
neural conversational model (NCM) (Vinyals and
Le, 2015) have been researched widely, such di-
alogue models often generate simple and dull re-
sponses due to the limitation of their ability to take
dialogue context into account. It is very difficult
for these models to generate coherent responses to
a dialogue history. We tackle this problem with a
new architecture by incorporating event causality
relations between response candidates and a dia-
logue history. Typical event causality relations are
cause-effect relations between two events, such as
“be stressed out” precedes “relieve stress.” In this
paper, event causality relations are defined that an
effect event is likely to happen after a correspond-
ing cause event happens (Shibata and Kurohashi,
2011; Shibata et al., 2014). Event causality rela-
tions have been used in why-question answering
systems to focus on causalities between questions
and answers (Oh et al., 2013, 2016, 2017). It is
also reported that a conversational model using
event causality relations can generate diverse and
coherent responses (Fujita et al., 2011). However,

the relation between dialogue continuity and the
coherency of system responses is still an underly-
ing problem.

In this paper, we propose a novel method to se-
lect an appropriate response from response candi-
dates generated by NCMs. We define a score for
re-ranking to select a response that has an event
causality relation to a dialogue history. Re-ranking
effectively improves response reliability in lan-
guage generation tasks such as why-question an-
swering and dialogue systems (Oh et al., 2013;
Jansen et al., 2014; Bogdanova and Foster, 2016;
Ohmura and Eskenazi, 2018). We used event
causality pairs extracted from a large-scale cor-
pus (Shibata and Kurohashi, 2011; Shibata et al.,
2014). We also use distributed event represen-
tation based on the Role Factored Tensor Model
(RFTM) (Weber et al., 2018) to realize a robust
matching of event causality relations, even if these
causalities are not included in the extracted event
causality pairs. In human and automatic evalua-
tions, the proposed method outperformed conven-
tional methods in selecting coherent and diverse
responses.

2 Response Re-ranking Using Event
Causality Relations

Figure 1 shows an overview of the proposed
method. The process consists of four parts. First,
N -best response candidates are generated from
an NCM given a dialogue history (Figure 1 1⃝;
Section 2.1). Then, events (predicate-argument
structures) are extracted by an event parser from
both the dialogue history and the response candi-
dates (Figure 1 2⃝). We used Kurohashi Nagao
Parser (KNP)1 (Kawahara and Kurohashi, 2006;
Sasano and Kurohashi, 2011) as the event parser.
Next, the extracted events are converted to dis-

1http://nlp.ist.i.kyoto-u.ac.jp/?KNP
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Figure 1: Neural conversational model+re-ranking using event causality; a response that has an event causality
relation (“be exhausted” → “relax”) to the dialogue history is selected by the re-ranking.

predicate 1 argument 1 predicate 2 argument 2 lift

be stressed out - relieve stress 10.02

Table 1: Example of event causality relations included in event causality pairs

tributed event representations by an event embed-
ding model (Figure 1 3⃝; Section 2.3). Events
in event causality pairs are also converted to dis-
tributed representations to calculate similarities.
The RFTM is used for the embedding. Finally, re-
sponse candidates are re-ranked (Figure 1 4⃝; Sec-
tion 2.2, 2.4). We describe these components in
more detail below.

2.1 Neural Conversational Model (NCM)
NCM learns a mapping between input and out-
put word sequences by using recurrent neural net-
works (RNNs). NCMs can generate N -best re-
sponse candidates by using beam search or sam-
pling (Macherey et al., 2016).

2.2 Event Causality Pairs
The proposed method uses event causality pairs.
Events in a pair, which have cause-effect relations,
are extracted from a large-scale corpus on the ba-
sis of co-occurring statistics and case frames (Shi-
bata and Kurohashi, 2011; Shibata et al., 2014).
420,000 entries are extracted from 1.6 billion
texts: each entry consists of information denoted
in Table 1. “predicate 1” and “argument 1” are
components of a cause event, and “predicate 2”
and “argument 2” are components of an effect
event. Each event consists of a predicate and argu-
ments. The predicate is required, and the argument
is optional. We used arguments that have the fol-
lowing roles: nominative, accusative, dative, in-
strumental, and locative cases. lift is the mutual

information score between two events, which indi-
cates the strength of the causality relation. Using
lift, we propose a score for re-ranking as,

score = max
<eh,er>

log2 p
(
log2 lift(eh, er)

)λ
. (1)

p is the posterior probability of the response can-
didate provided by NCM. λ is a hyper parame-
ter to decide the weight of event causality rela-
tions. lift(eh, er) is the lift score between an
event eh in the dialogue history, and an event er

in the response candidate, which is equal to 2 if
the pair does not appear in the extracted event
causality pair pool. Note that lift(eh, er) is log-
scaled because it has a wide range of values (10 <
lift(eh, er) < 10, 000). In the case where more
than one event causality relations are recognized
between the dialogue history and the response can-
didate, the score of the candidate is determined by
the relation with the highest lift(eh, er). We call
this model “Re-ranking.”

2.3 Distributed Event Representation Based
on Role Factored Tensor Model (RFTM)

It is difficult to determine event causality relations
by using only the pairs observed in an actual cor-
pus. Therefore, we introduce a distributed event
representation to improve the robustness of match-
ing events in a dialogue with those in the event
causality pair pool. Any events are embedded into
fixed length vectors to calculate their similarities.

52



Figure 2: Model architecture of predicate embedding

We define an event with a single predicate or
a pair of a predicate and arguments. Argument a
of an event is embedded into vector as va by using
Skip-gram (Mikolov et al., 2013c,a,b). Predicate p
of an event is embedded into vector as vp by using
predicate embedding which is based on case-unit
Skip-gram. Figure 2 shows the model architecture
of predicate embedding. The model learns predi-
cate vector representations which are good at pre-
dicting its arguments. To get an event embedding
for the pair of vp and va, we propose to use RFTM,
which was proposed by Weber et al. (2018). The
RFTM embeds a predicate and its arguments into
vector e as,

e =
∑

a

WaT (vp, va). (2)

The relation of a predicate and its arguments is
computed using a 3D tensor T and matrices Wa. If
the event has no arguments, e is substituted by vp.
The RFTM is trained to predict an event sequence;
thus it can represent the meaning of the event in a
particular context.

2.4 Event Causality Relation Matching Based
on Distributed Event Representation

Figure 3 illustrates the process of matching events
on the basis of distributed event representation.
Given an event pair from a response candidate
and a dialogue history, the proposed method finds
an event causality pair that has the highest cosine
similarity from the pool. lift score, strength of the
event causality relation, is extended as,

liftemb(eh, er) =

lift(ec, ee) ∗ mean
(
sim(eh, ec), sim(er, ee)

)
.

(3)

eh is an event in the dialogue history, er is an
event in the response candidate. ec and ee are re-
spectively a cause and an effect event of an event

Figure 3: Event causality relation matching; the lift
of the event causality relation in which “be exhausted”
precedes “relax,” is calculated from the lift of the most
similar event causality relation where “be stressed out”
precedes “relieve stress.”

Ave.dist-1 Ave.dist-2

EncDec 0.44 0.56
HRED 0.33 0.42

Table 2: Diversity of N -best Response Candidates

causality pair. We also calculate the score for the
case in which the cause and effect events are ex-
changed to deal with the inverse case. Note that
both sim values have a threshold to prevent over-
generalization. The threshold was empirically de-
cided as

√
3/2. Replacing lift(eh, er) in Eq. (1)

with liftemb(eh, er), the score using distributed
event representation is defined as,

score = max
<eh,er>

log2 p
(
log2 liftemb(eh, er)

)λ
. (4)

We call this model “Re-ranking (emb).”

3 Experiments

We conducted automatic and human evaluations
to compare responses with and without the re-
ranking. We evaluated our proposed re-ranking
method on a conventional Encoder-Decoder with
Attention (EncDec) model (Bahdanau et al., 2015;
Luong et al., 2015) and a Hierarchical Recurrent
Encoder-Decoder (HRED) model (Sordoni et al.,
2015; Serban et al., 2016). While HRED tries to
generate more coherent responses to dialogue con-
text than a simple Encoder-Decoder, the diversity
of responses is small due to context constraints.

We used the Japanese data from a Wikipedia
dump for training Skip-gram and predicate word
embeddings of RFTM, and the Maichichi news-
paper dataset 20172 for training RFTM. We col-

2http://www.nichigai.co.jp/sales/mainichi/mainichi-
data.html
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Method Evaluation
NCM history re-ranking re-ranked (%) BLEU NIST extrema dist-1 dist-2 PMI length
reference - - - - - - 0.06 0.40 1.86 21.43
EncDec - 1-best - 1.12 1.19 0.42 0.06 0.18 1.77 15.55
EncDec 1 Re-ranking 4,016 (7.90) 1.10 1.18 0.42 0.06 0.19 1.78 15.52
EncDec 1 Re-ranking (emb) 29,343 (57.71) 1.02 1.07 0.40 0.06 0.20 1.77 15.64
EncDec 5 Re-ranking 6,469 (12.72) 1.09 1.17 0.42 0.06 0.19 1.78 15.50
EncDec 5 Re-ranking (emb) 35,284 (69.39) 1.00 1.04 0.39 0.07 0.21 1.77 15.66
HRED - 1-best - 1.34 2.74 0.42 0.07 0.20 1.84 35.05
HRED 1 Re-ranking 3,671 (7.22) 1.33 2.74 0.42 0.06 0.20 1.84 35.20
HRED 1 Re-ranking (emb) 30,992 (60.95) 1.28 2.74 0.41 0.06 0.20 1.86 34.80
HRED 5 Re-ranking 6,231 (12.25) 1.33 2.73 0.42 0.06 0.20 1.84 35.30
HRED 5 Re-ranking (emb) 36, 373(71.53) 1.28 2.74 0.41 0.06 0.20 1.86 34.60

Table 3: Comparison results before and after re-ranking

lected 2,632,114 dialogues from Japanese micro
blogs (Twitter) to train and test the dialogue mod-
els. The average dialogue turn was 21.99, and the
average utterance length was 22.08 words. We re-
moved emoticons from utterances to reduce vo-
cabulary size and accelerate the training. The dia-
logue corpus was split into 2,509,836, 63,308, and
58,970 dialogues as training, validation, and test-
ing data, respectively.

3.1 Model Settings

The hidden unit size of Skip-gram (Mikolov et al.,
2013c,a,b), predicate embedding, and RFTM (We-
ber et al., 2018) was 100. We used gated recur-
rent units (GRUs) (Cho et al., 2014; Chung et al.,
2014) whose number of layers was 2 and hidden
unit size was 256, for the encoder and decoder of
the NCMs. The batch size was 100, the dropout
probability was 0.1, and the teacher forcing rate
was 1.0. We used Adam (Kingma and Ba, 2015)
as the optimizer. The gradient clipping was 50,
the learning rate for the encoder and the context
RNN of HRED was 1e−4, and the learning rate for
the decoder was 5e−4. The loss function was in-
verse token frequency (ITF) loss (Nakamura et al.,
2019). We used sentencepiece (Kudo and Richard-
son, 2018) as the tokenizer, and the vocabulary
size was 32,000. These settings were the same in
all models.

Repetitive suppression (Nakamura et al., 2019)
and length normalization (Macherey et al., 2016)
were used at the decoding step. Finally, λ of Eq.
(1) and Eq. (4) was set to 1.0.

3.2 Diversity of Beam Search

We investigated internal diversity of N -best re-
sponse candidates generated from each dialogue
model. It is expected that the higher diversity is,
the more effective re-ranking is. Hence, we evalu-
ated diversity on the test data by dist-1, 2 (Li et al.,
2016). Beam width was set to 20; it is same in the

following experiments.
The result is shown in Table 2: Ave.dists are

averages of dist computed internal N -best re-
sponse candidates. The diversity of EncDec is
higher than that of HRED.

3.3 Comparison in Automatic Metrics
Table 3 shows the results of our evaluation us-
ing automatic metrics. We compared the results
by referring to the ratio of responses different
from the without re-ranking method (“re-ranked”),
bilingual evaluation understudy (BLEU) (Papineni
et al., 2002), NIST (Doddington, 2002), and vector
extrema (Gabriel et al., 2014) (“extrema”) score.
NIST is based on BLEU, but heavily weights less
frequent N-grams to focus on content words. Vec-
tor extrema computes cosine similarity between
sentence vectors of a reference and a generated re-
sponse from a model. Each sentence vector es is
computed by taking extrema of Skip-gram word
vectors ew in each dimension d as,

esd =

{
maxw∈s ewd if ewd > | minw′∈s ew′d|
minw∈s ewd otherwise

.

(5)

esd and ewd are the dth dimensions of es and
ew respectively. Additionally, we evaluated dist
(Li et al., 2016), Pointwise Mutual Information
(PMI) (Newman et al., 2010), and average re-
sponse length (“length”). Dist and PMI are used
to evaluate diversity and coherency respectively.
PMI between a response and a dialogue history is
defined as,

PMI =
1

|response|

|response|∑

wr

max
wh

PMI(wr,wh).

(6)

wr and wh are words in the response and the di-
alogue history respectively. Each method used a
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word
coherency

dialogue
continuity

1-best 28.62 40.84
Re-ranking 33.91 38.53
neither 37.47 20.62

Table 4: 1-best v.s. Re-ranking; # dialogues is 100.

word
coherency

dialogue
continuity

1-best 30.10 35.50
Re-ranking (emb) 25.40 38.20
neither 44.50 26.30

Table 5: 1-best v.s. Re-ranking (emb); # dialogues is
100.

specific NCM, a range of dialogue history used for
re-ranking, and re-ranking method. Methods with
“1-best” used neither re-ranking and event embed-
ding. Those with “Re-ranking” used re-ranking
but did not use event embedding. Those with “Re-
ranking (emb)” used both the re-ranking and the
proposed event embedding method.

Re-ranking lowered scores of the similarity to
reference: BLEU, NIST, and extrema, because
normal NCM models were trained to generate sim-
ilar responses to the references, generated top 1
response before re-ranking should have the high-
est scores in those similarity metrics. Dist-2 and
PMI were improved by re-ranking. This indicates
that words in re-ranked responses are diverse and
coherent to dialogue histories. However, ratios of
re-ranked responses were around 10%; hence, the
effect of re-ranking was limited. By introducing
the proposed event embedding method, the ratios
of re-ranked responses improved drastically (Re-
ranking vs. Re-ranking (emb)). Moreover, the re-
ranking models with event embedding have high-
est dist-1, dist-2, and PMI. As the HRED mod-
els had higher BLEU, NIST, and PMI values than
those of EncDec models in all re-ranking methods,
we conducted a human evaluation by comparing
HRED model-based systems.

3.4 Human Evaluation

It is difficult to evaluate system performances only
with automatic metrics (Liu et al., 2016). Hence,
we compared a baseline model and our models
in a human evaluation to confirm coherency and
dialogue continuity of responses selected by our
proposed methods. We compared baseline HRED
model with our proposed models, re-ranked with-
out embedding and with embedding using the last

word
coherency

dialogue
continuity

Re-ranking 23.70 35.53
Re-ranking (emb) 22.91 35.65
neither 55.39 28.83

Table 6: Re-ranking v.s. Re-ranking (emb); # dialogues
is 100.

five histories. To reduce evaluators’ workload, we
used test data whose the number of user utter-
ances is less than three, and removed dialogues
which need external knowledge to evaluate. We
used crowdsourcing for the human evaluation. Ten
crowd-workers compared responses selected by
two of three models in the following two sub-
jective criteria. The first one is “which words
in a response are more related to a dialogue his-
tory” (word coherency), which indicates system
response coherency to dialogue histories. The sec-
ond criterion is “which response is easier to re-
spond to” (dialogue continuity), which indicates
how much dialogue continuity system responses
have. We were inspired to make these criteria by
those of the Alexa Prize (Ram et al., 2018).

The results are shown in Table 4, 5, and 6. Word
coherency was improved by our model without
embedding, but lowered by the model with em-
bedding. This is because workers acknowledged
causality relations included in the event causal-
ity pair pool, but did not acknowledge generalized
causalities with event embedding. However, di-
alogue continuity was improved by the proposed
re-ranking model with embedding, it is probably
because the proposed model reduced the number
of dull responses. We need to investigate the bet-
ter threshold in the event embedding to balance
out the coherency and the continuity as the future
work.

4 Discussion

We analyzed an adequacy of re-ranking using
event causality relations. Here are system re-
sponse examples of our proposed method. “()” in-
dicates original Japanese sentences, “[]” indicates
event causality relations used for re-ranking, and
“<>” indicates responses before re-ranking. All
examples are translated from Japanese to English.

Conversation 1:

User 1: Because of my fears, I have
been stressed out.
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(Mou fuan-na koto ga oosugite sutoresu
ga tamatteku.)
User 2 (System): Are you OK? Don’t
work too hard.
ß (Daijobu desuka muri shinaide kuda-
saine)
[work too hard → be stressed out
(muri wo suru → sutoresu ga tamaru)]
<Are you OK? (Daijobu desuka)>

Conversation 2:

User 1: Someone, let’s go to eat lunch
around Yayoi-ga-oka tomorrow. Every-
one is welcome.
(Dareka, ashita, yayoi-ga-oka shuhen
de hiru-gohan tabe ni iko daredemo
iiken onegai)
User 2 : Let’s go. (Ikimasuka)
User 1: Where will we go?
(Doko kui iku)
User 2 (System): Anywhere near Shin-
juku station
(Shinjuku-eki no chikaku)
[be near → go (chiaku → ikeru)]
<Where are you? (doko inno)>

In above examples, appropriate event causality
relations are used to select logical, coherent, and
diverse responses. However, we found that these
cases are not majority. Our method used inade-
quate event causality relations even if coherent re-
sponses were selected as a result (“Conversation
3”). Responses selected by our method are some-
times unnatural and incoherent than those before
re-ranking as “Conversation 4”, “Conversation 5”,
or “Conversation 6”.

Conversation 3:

User 1: I can’t stop coughing: (
(Hen na seki ga tomaranai...namida)
User 2 (System): Don’t catch a cold.
(kaze hikanai dene)
[catch cold → stop coughing
(kaze wo hiku → seki ga tomaru)]
<Are you OK? (daijobu-ka)>

Conversation 4:

User 1: Our president who cannot
drink alcohol gives me beer...

(Osake wo nomenai shacho ga biru wo
kureru...)
User 2 (System): I will drink alcohol.
(Osake nomu.)
[drink alcohol → can drink alcohol
(osake wo nomu → osake wo nomeru)]
<I see. (wakaru)>

Conversation 5:

User 1: Despite of morning, ambu-
lances and police cars were noisy... I
was wondered what happened?
(Asa nanoni, kyu-kyu-sha to patoka no
oto ga sugoi...doshitandaro)
User 2 (System): Good morning.
(Ohayogozaimasu)
[morning → good morning
(asa → ohayo)]
<Are you OK? (Daijobu desuka)>

Conversation 6:

User 1: I, I can’t get up... I’m gonna
take a day off... I have a fever...
(O, okiagarenai... kaisha yasumu...
netsu...)
User 2 (System): You must be tired.
(Otsukaresama desu)
[be tired → take a day off
(tsukare → yasumu)]
<Take care of yourself. (Odaiji-ni)>

Considering the result of human evaluation and
above examples, we hypothesized that our method
have two problems in slecting appropriate event
causality relations. The first problem is that the
event embedding over-generalized events (“Con-
versation 4”). The causality in Conversation 4
(“drink alcohol” precedes “can drink alcohol”) is
obtained by generalizing a causality that “enter
restaurant” precedes “order beer”, which is in-
cluded in the event causality pair pool. It is nec-
essary to prevent over-generalization by improv-
ing the embedding architecture. The second prob-
lem is that our method focuses on only word co-
herency, not response naturalness (“Conversation
5” and “Conversation 6”). To solve the problem,
our method has to maintain response naturalness
while improving coherency of word choices.
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5 Conclusion

We proposed a selection of response candidates
generated from a neural conversational model
(NCM) utilizing event causality relations. The
method had a robust matching of event causal-
ity relations attributed to distributed event rep-
resentation. Experimental results showed that
the proposed method selects a coherent and di-
verse response. The proposed method can be
applied to any languages that have a semantic
parser, because it uses predicate-argument struc-
ture based event expressions. However, unnatural
responses were sometimes selected due to inade-
quate event causality relations. Future work will
focus on solving the problem by preventing over-
generalization of events, and maintaining response
naturalness.
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Abstract

Goal-oriented dialogue in complex domains is
an extremely challenging problem and there
are relatively few datasets. This task pro-
vided two new resources that presented dif-
ferent challenges: one was focused but small,
while the other was large but diverse. We also
considered several new variations on the next
utterance selection problem: (1) increasing
the number of candidates, (2) including para-
phrases, and (3) not including a correct option
in the candidate set. Twenty teams partici-
pated, developing a range of neural network
models, including some that successfully in-
corporated external data to boost performance.
Both datasets have been publicly released, en-
abling future work to build on these results,
working towards robust goal-oriented dialogue
systems.

1 Introduction

Automatic dialogue systems have great potential
as a new form of user interface between people and
computers. Unfortunately, there are relatively few
large resources of human-human dialogues (Ser-
ban et al., 2018), which are crucial for the develop-
ment of robust statistical models. Evaluation also
poses a challenge, as the output of an end-to-end
dialogue system could be entirely reasonable, but
not match the reference, either because it is a para-
phrase, or it takes the conversation in a different,
but still coherent, direction.

In this shared task, we introduced two new
datasets and explored variations in task structure
for research on goal-oriented dialogue. One of
our datasets was carefully constructed with real
people acting in a university student advising sce-
nario. The other dataset was formed by applying a
new disentanglement method (Kummerfeld et al.,
2019) to extract conversations from an IRC chan-
nel of technical help for the Ubuntu operating sys-
tem. We structured the dialogue problem as next

utterance selection, in which participants receive
partial dialogues and must select the next utter-
ance from a set of options. Going beyond prior
work, we considered larger sets of options, and
variations with either additional incorrect options,
paraphrases of the correct option, or no correct op-
tion at all. These changes push the next utterance
selection task towards real-world dialogue.

This task is not a continuation of prior DSTC
tasks, but it is related to tasks 1 and 2 from DSTC6
(Perez et al., 2017; Hori and Hori, 2017). Like
DSTC6 task 1, our task considers goal-oriented di-
alogue and next utterance selection, but our data is
from human-human conversations, whereas theirs
was simulated. Like DSTC6 task 2, we use online
resources to build a large collection of dialogues,
but their dialogues were shorter (2 - 2.5 utterances
per conversation) and came from a more diverse
set of sources (1,242 twitter customer service ac-
counts, and a range of films).

This paper provides an overview of (1) the task
structure, (2) the datasets, (3) the evaluation met-
rics, and (4) system results. Twenty teams par-
ticipated, with one clear winner, scoring the high-
est on all but one sub-task. The data and other
resources associated with the task have been re-
leased1 to enable future work on this topic and to
make accurate comparisons possible.

2 Task

This task pushed the state-of-the-art in goal-
oriented dialogue systems in four directions
deemed necessary for practical automated agents,
using two new datasets. We sidestepped the chal-
lenge of evaluating generated utterances by formu-
lating the problem as next utterance selection, as
proposed by Lowe et al. (2015). At test time, par-
ticipants were provided with partial conversations,
each paired with a set of utterances that could be

1https://ibm.github.io/dstc7-noesis/
public/index.html
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the next utterance in the conversation. Systems
needed to rank these options, with the goal of plac-
ing the true utterance first. Prior work used sets of
2 or 10 utterances. We make the task harder by ex-
panding the size of the sets, and considered several
advanced variations:

Subtask 1 100 candidates, including 1 correct op-
tion.

Subtask 2 120,000 candidates, including 1 cor-
rect option (Ubuntu data only).

Subtask 3 100 candidates, including 1-5 correct
options that are paraphrases (Advising data
only).

Subtask 4 100 candidates, including 0-1 correct
options.

Subtask 5 The same as subtask 1, but with access
to external information.

These subtasks push the capabilities of systems.
In particular, when the number of candidates is
small (2-10) and diverse, it is possible that sys-
tems are learning to differentiate topics rather than
learning dialogue. Our variations move towards a
task that is more representative of the challenges
involved in dialogue modeling.

As part of the challenge, we provided a baseline
system that implemented the Dual-Encoder model
from Lowe et al. (2015). This lowered the barrier
to entry, encouraging broader participation in the
task.

3 Data

We used two datasets containing goal-oriented di-
alogues between two participants, but from very
different domains. This challenge introduced the
two datasets, and we kept the test set answers se-
cret until after the challenge.2 To construct the
partial conversations we randomly split each con-
versation. Incorrect candidate utterances are se-
lected by randomly sampling utterances from the
dataset. For subtask 3 (paraphrases), the incor-
rect candidates are sampled with paraphrases as
well. For subtask 4 (no correct option sometimes),
twenty percent of examples were randomly sam-
pled and the correct utterance was replaced with
an additional incorrect one.

2The entire datasets are now publicly available
at https://ibm.github.io/dstc7-noesis/
public/datasets.html

10:30 <elmaya> is there a way to setup grub to
not press the esc button for the
menu choices?

10:31 <scaroo> elmaya, edit /boot/grub/
menu.lst and comment the
”hidemenu” line

10:32 <scaroo> elmaya, then run grub -install
10:32 <scaroo> grub-install
10:32 <elmaya> thanls scaroo
10:32 <elmaya> thanks

Figure 1: Example Ubuntu dialogue before our pre-
processing.

Along with the datasets we provided additional
sources of information. Participants were able to
use the provided knowledge sources as is, or auto-
matically transform them to appropriate represen-
tations (e.g. knowledge graphs, continuous em-
beddings, etc.) that were integrated with end-to-
end dialogue systems so as to increase response
accuracy.

3.1 Ubuntu

We constructed one dataset from the Ubuntu In-
ternet Relay Chat (IRC) support channel, in which
users help each other resolve technical problems
related to the Ubuntu operating system. We con-
sider only conversations in which one user asks
a question and another helps them resolve their
problem. We extracted conversations from the
channel using the conversational disentanglement
method described by Kummerfeld et al. (2019),
trained with manually annotated data using Slate
(Kummerfeld, 2019).34 This approach is not per-
fect, but we inspected one hundred dialogues and
found seventy-five looked like reasonable conver-
sations. See Kummerfeld et al. (2019) for detailed
analysis of the extraction process. We further ap-
plied several filters to increase the quality of the
extracted dialogues: (1) the first message is not
directed, (2) there are exactly two participants (a
questioner and a helper), not counting the channel
bot, (3) no more than 80% of the messages are by
a single participant, and (4) there are at least three
turns. This approach produced 135,000 conversa-
tions, and each was cut off at different points to
create the necessary conversations for all the sub-

3 Previously, Lowe et al. (2015) extracted conversations
from the same IRC logs, but with a heuristic method. Kum-
merfeld et al. (2019) showed that the heuristic was far less
effective than a trained statistical model.

4 The specific model used in DSTC 7 track 1 is from an
earlier version of Kummerfeld et al. (2019), as described in
the ArXiv preprint and released as the C++ version.
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Student Hi professor, I am looking for courses to take.
Do you have any suggestions?

Advisor What topic do you prefer, computer science
or electrical engineering?

Student I prefer electrical engineering.
Advisor Based on your background, I would like to

suggest you take one of the two courses:
EECS 550 Information Theory and EECS
551: Matrix Methods for Signal Process-
ing, Data Analysis and Machine Learning FA
2012

Student Can you describe a little bit about EECS 550?
Advisor This course contains a lot of concepts about

source, channel, rate of transformation of in-
formation, etc.

Student Sounds interesting. Do you know the class
size of this course?

Advisor This is a relatively small class and the average
size of it is around 12.

Student I would prefer class with larger class size.
What is EECS 551 about?

Advisor This course is about theory and application
of matrix methods to signal processing, data
analysis and machine learning

Student What is the course size of EECS 551?
Advisor It is around 71
Student I would take EECS 551. Thanks professor!
Advisor You are welcome!

Figure 2: Example Advising dialogue.

tasks. For this setting, manual pages were pro-
vided as a form of knowledge grounding.

Figure 1 shows an example dialogue from the
dataset. For the actual challenge we identify the
users as ‘speaker 1’ (the person asking the ques-
tion) and ‘speaker 2’ (the person answering), and
removed usernames from the messages (such as
‘elmaya’ in the example). We also combined con-
secutive messages from a single user, and always
cut conversations off so that the last speaker was
the person asking the question. This meant sys-
tems were learning to behave like the helpers,
which fits the goal of developing a dialogue sys-
tem to provide help.

3.2 Advising

Our second dataset is based on an entirely new col-
lection of dialogues in which university students
are being advised which classes to take. These
were collected at the University of Michigan with
IRB approval. Pairs of Michigan students play-
acted the roles of a student and an advisor. We
provided a persona for the student, describing the
classes they had taken already, what year of their
degree they were in, and several types of class
preferences (workloads, class sizes, topic areas,
time of day, etc.). Advisors did not know the stu-
dent’s preferences, but did know what classes they

Property Advising Ubuntu

Dialogues 500 135,078
Utterances / Dialogue 18.6 10.0
Tokens / Utterance 9.6 9.9
Utterances / Unique utt. 4.4 1.1
Tokens / Unique tokens 10.5 22.9

Table 1: Comparison of the diversity of the underlying
datasets. Advising is smaller and has longer conversa-
tions, but less diversity in utterances. Tokens are based
on splitting on whitespace.

had taken, what classes were available, and which
were suggested (based on aggregate statistics from
real student records). The data was collected over
a year, with some data collected as part of courses
in NLP and social computing, and some collected
with paid participants.

In the shared task, we provide all of this in-
formation - student preferences, and course infor-
mation - to participants. 815 conversations were
collected, and then the data was expanded by col-
lecting 82,094 paraphrases using the crowdsourc-
ing approach described by Jiang et al. (2017). Of
this data, 500 conversations were used for train-
ing, 100 for development, and 100 for testing.
The remaining 115 conversations were used as
a source of negative candidates in the candidate
sets. For the test data, 500 conversations were con-
structed by cutting the conversations off at 5 points
and using paraphrases to make 5 distinct conver-
sations. The training data was provided in two
forms. First, the 500 training conversations with
a list of paraphrases for each utterance, which par-
ticipants could use in any way. Second, 100,000
partial conversations generated by randomly se-
lecting paraphrases for every message in each con-
versation and selecting a random cutoff point.

Two versions of the test data were provided to
participants. The first had some overlap with the
training set in terms of source dialogues, while the
second did not. We include results on both in this
paper for completeness, but encourage all future
work to only consider the second test set.

3.3 Comparison

Table 1 provides statistics about the two raw
datasets. The Ubuntu dataset is based on several
orders of magnitude more conversations, but they
are automatically extracted, which means there are
errors (conversations that are missing utterances
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or contain utterances from other conversations).
Both have similar length utterances, but these val-
ues are on the original Ubuntu dialogues, before
we merge consecutive messages from the same
user. The Advising dialogues contain more mes-
sages on average, but the Ubuntu dialogues cover
a wider range of lengths (up to 118 messages).
Interestingly, there is less diversity in tokens for
Ubuntu, but more diversity in utterances.

4 Results

Twenty teams submitted entries for at least one
subtask.5 Teams had 14 weeks to develop their
systems with access to the training and valida-
tion data, plus the external resources we provided.
Additional external resources were not permitted,
with the exception of pre-trained embeddings that
were publicly available prior to the release of the
data.

4.1 Participants

Table 5 presents a summary of approaches teams
used. One clear trend was the use of the En-
hanced LSTM model (ESIM, Chen et al., 2017),
though each team modified it differently as they
worked to improve performance on the task.
Other approaches covered a wide range of neu-
ral model components: Convolutional Neural Net-
works, Memory Networks, the Transformer, At-
tention, and Recurrent Neural Network variants.
Two teams used ELMo word representations (Pe-
ters et al., 2018), while three constructed ensem-
bles. Several teams also incorporated more classi-
cal approaches, such as TF-IDF based ranking, as
part of their system.

We provided a range of data sources in the task,
with the goal of enabling innovation in training
methods. Six teams used the external data, while
four teams used the raw form of the Advising data.
The rules did not state whether the validation data
could be used as additional training data at test
time, and so we asked each team what they used.
As Table 5 shows, only four teams trained their
systems with the validation data.

4.2 Metrics

We considered a range of metrics when compar-
ing models. Following Lowe et al. (2015), we use
Recall@N, where we count how often the correct

5 Note that in the DSTC shared tasks participants remain
anonymous, and so we refer to them using numbers.

answer is within the top N specified by a system.
In prior work, there were either 2 or 10 candidates
(including the correct one), and N was set at 1,
2, or 5. Our sets are larger, with 100 candidates,
and so we considered larger values of N: 1, 10,
and 50. 10 and 50 were chosen to correspond to
1 and 5 in prior work (the expanded candidate set
means they correspond to the same fraction of the
space of options). We also considered a widely
used metric from the ranking literature: Mean Re-
ciprocal Rank (MRR). Finally, for subtask 3 we
measured Mean Average Precision (MAP) since
there are multiple correct utterances in the set.

To determine a single winner for each subtask,
we used the mean of Recall@10 and MRR, as pre-
sented in Table 2.

4.3 Discussion
Table 2 presents the overall scores for each team
on each subtask, ordered by teams’ average rank.
Table 4 presents the full set of results, including
all metrics for all subtasks.

Overall Results Team 3 consistently scored
highest, winning all but one subtask. Looking at
individual metrics, they had the best score 75%
of the time on Ubuntu and all of the time on the
final Advising test set. The subtask they were
beaten on was Ubuntu-2, in which the set of can-
didates was drastically expanded. Team 10 did
best on that task, indicating that their extra filtering
step provided a key advantage. They filtered the
120,000 sentence set down to 100 options using a
TF-IDF based method, then applied their standard
approach to that set.

Subtasks

1. The first subtask drew the most interest, with
every team participating in it for one of the
datasets. Performance varied substantially,
covering a wide range for both datasets, par-
ticularly on Ubuntu.

2. As expected, subtask 2 was more difficult
than task 1, with consistently lower results.
However, while the number of candidates
was increased from 100 to 120,000, perfor-
mance reached as high as half the level of
task 1, which suggests systems could handle
the large set effectively.

3. Also as expected, results on subtask 3 were
slightly higher than on subtask 1. Comparing
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Ubuntu, Subtask Advising, Subtask
Team 1 2 4 5 1 3 4 5

3 0.819 0.145 0.842 0.822 0.485 0.592 0.537 0.485
4 0.772 - - - 0.451 - - -
17 0.705 - - 0.722 0.434 - - 0.461
13 0.729 - 0.736 0.635 0.458 0.461 0.474 0.390
2 0.672 0.033 0.713 0.672 0.430 0.540 0.479 0.430
10 0.651 0.307 0.696 0.693 0.361 0.434 0.262 0.361
18 0.690 0.000 0.721 0.710 0.287 0.380 0.398 0.326
8 0.641 - 0.527 - 0.310 0.433 0.233 -
16 0.629 0.000 0.683 - 0.280 - 0.370 -
15 0.473 - - 0.478 0.300 - - 0.236
7 0.525 - 0.411 - - - - -
11 - - - - 0.075 0.232 - -
12 0.077 - 0.000 0.077 0.075 0.232 0.000 0.075
1 0.580 - - - 0.239 - - -
6 - - - - 0.245 - - -
9 0.482 - - - - - - -
14 0.008 - 0.072 - - - - -
19 0.265 - - - 0.180 - - -
5 0.076 - - - - - - -
20 0.002 - - - 0.004 - - -

Table 2: Results, ordered by the average rank of each team across the subtasks they participated in. The top result
in each column is in bold. For these results the metric is the average of MRR and Recall@10.

Recall @
Team 1 10 50 MRR

1 0.402 0.662 0.916 0.497
2 0.478 0.765 0.952 0.578
3 0.645 0.902 0.994 0.735
4 0.608 0.853 0.984 0.691
5 0.010 0.101 0.514 0.510
7 0.309 0.635 0.889 0.414
8 0.446 0.732 0.937 0.551
9 0.251 0.601 0.881 0.362
10 0.469 0.739 0.946 0.564
12 0.014 0.098 0.504 0.055
13 0.565 0.810 0.977 0.649
14 0.008 0.008 0.008 0.008
15 0.236 0.592 0.858 0.355
16 0.471 0.700 0.926 0.557
17 0.475 0.814 0.978 0.595
18 0.503 0.783 0.962 0.598
19 0.098 0.346 0.730 0.184
20 0.001 0.003 0.012 0.200

Recall @
Team 1 10 50 MRR

1 0.170 0.482 0.850 0.274
2 0.242 0.676 0.954 0.384
3 0.398 0.844 0.986 0.541
4 0.420 0.768 0.972 0.538
6 0.206 0.548 0.824 0.322
8 0.114 0.398 0.782 0.205
10 0.234 0.600 0.952 0.358
11 0.000 0.000 0.000 0.000
12 0.010 0.102 0.490 0.520
13 0.348 0.804 0.978 0.491
14 0.064 0.064 0.064 0.064
15 0.252 0.620 0.894 0.375
16 0.122 0.474 0.868 0.234
17 0.494 0.850 0.980 0.608
18 0.240 0.630 0.906 0.365
19 0.068 0.322 0.778 0.150
20 0.000 0.000 0.012 0.100

Recall @
Team 1 10 50 MRR

1 0.078 0.320 0.760 0.158
2 0.152 0.574 0.930 0.286
3 0.214 0.630 0.948 0.339
4 0.194 0.582 0.908 0.320
6 0.088 0.320 0.728 0.169
8 0.100 0.420 0.802 0.200
10 0.116 0.492 0.882 0.230
11 0.012 0.096 0.512 0.053
12 0.012 0.096 0.512 0.053
13 0.170 0.610 0.952 0.306
15 0.074 0.420 0.834 0.180
16 0.064 0.398 0.800 0.161
17 0.180 0.562 0.940 0.307
18 0.086 0.390 0.836 0.184
19 0.038 0.250 0.730 0.111
20 0.000 0.006 0.014 0.001

Table 3: Subtask 1 results. The left table is for Ubuntu, the middle table is for the initial Advising test set, and the
right table is for the final Advising test set. The best results are bolded.

MRR and MAP it is interesting to see that
while the ranking of systems is the same, in
some cases MAP was higher than MRR and
in others it was lower.

4. For both datasets, results on subtask 4, where
the correct answer was to choose no option
20% of the time, are generally similar. On av-
erage, no metric shifted by more than 0.016,
and some went up while others went down.
This suggests that teams were able to effec-
tively handle the added challenge.

5. Finally, on subtask 5 we see some slight gains
in performance, but mostly similar results,
indicating that effectively using external re-
sources remains a challenge.

Advising Test Sets Table 4 provides a compar-
ison of the two versions of the Advising test set.
The middle column of tables is for the first test set,
which had overlap with the source dialogues from
training (the actual utterances are different due to
paraphrasing), while the right column is from en-
tirely distinct dialogues. Removing overlap made
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Subtask 2 - Ubuntu Only

Recall @
Team 1 10 50 MRR

2 0.016 0.041 0.068 0.024
3 0.067 0.185 0.266 0.106
10 0.196 0.361 0.429 0.253
16 0.000 0.000 0.005 0.000
18 0.000 0.000 0.000 0.000

Subtask 3 - Advising Only

Recall @
Team 1 10 50 MRR MAP

2 0.328 0.772 0.978 0.472 0.591
3 0.476 0.906 0.996 0.624 0.779
8 0.212 0.586 0.906 0.338 0.370
10 0.340 0.776 0.972 0.482 0.581
11 0.038 0.314 0.852 0.130 0.079
12 0.038 0.314 0.852 0.130 0.079
13 0.250 0.684 0.978 0.393 0.482
14 0.048 0.334 0.848 0.138 0.129
18 0.250 0.740 0.966 0.404 0.487

Recall @
Team 1 10 50 MRR MAP

2 0.244 0.692 0.954 0.388 0.478
3 0.290 0.750 0.978 0.434 0.533
8 0.176 0.570 0.926 0.297 0.342
10 0.186 0.602 0.926 0.316 0.379
11 0.040 0.334 0.854 0.131 0.118
12 0.040 0.334 0.854 0.131 0.118
13 0.182 0.604 0.938 0.317 0.395
18 0.118 0.512 0.916 0.249 0.303

Subtask 4

Recall @
Team 1 10 50 MRR

2 0.478 0.826 0.959 0.601
3 0.624 0.941 0.997 0.742
7 0.255 0.484 0.706 0.338
8 0.388 0.592 0.751 0.463
10 0.446 0.810 0.956 0.581
12 0.000 0.000 0.000 0.000
13 0.516 0.841 0.978 0.632
14 0.072 0.072 0.072 0.072
16 0.487 0.772 0.936 0.593
18 0.493 0.825 0.960 0.617

Recall @
Team 1 10 50 MRR

2 0.250 0.726 0.974 0.408
3 0.372 0.886 0.990 0.541
8 0.088 0.310 0.618 0.162
10 0.274 0.712 0.942 0.419
12 0.000 0.000 0.000 0.000
13 0.272 0.842 0.988 0.453
14 0.006 0.062 0.352 0.035
16 0.224 0.552 0.896 0.328
18 0.270 0.716 0.948 0.426

Recall @
Team 1 10 50 MRR

2 0.194 0.620 0.938 0.339
3 0.232 0.692 0.938 0.383
8 0.066 0.316 0.686 0.150
10 0.170 0.566 0.912 0.301
12 0.000 0.000 0.000 0.000
13 0.164 0.640 0.954 0.307
16 0.178 0.470 0.856 0.270
18 0.178 0.510 0.882 0.287

Subtask 5

Recall @
Team 1 10 50 MRR

2 0.478 0.765 0.952 0.578
3 0.653 0.905 0.995 0.740
10 0.501 0.783 0.963 0.602
12 0.014 0.098 0.504 0.055
13 0.448 0.729 0.957 0.542
15 0.221 0.606 0.882 0.349
17 0.504 0.827 0.980 0.617
18 0.517 0.803 0.965 0.617

Recall @
Team 1 10 50 MRR

2 0.242 0.676 0.954 0.384
3 0.398 0.844 0.986 0.541
10 0.234 0.600 0.952 0.358
12 0.010 0.102 0.490 0.520
13 0.238 0.716 0.972 0.392
15 0.346 0.660 0.894 0.454
17 0.538 0.864 0.986 0.645
18 0.204 0.634 0.920 0.341

Recall @
Team 1 10 50 MRR

2 0.152 0.574 0.930 0.286
3 0.214 0.630 0.948 0.339
10 0.116 0.492 0.882 0.230
12 0.012 0.096 0.512 0.053
13 0.138 0.518 0.914 0.261
15 0.068 0.316 0.786 0.156
17 0.178 0.608 0.944 0.315
18 0.106 0.436 0.870 0.215

Table 4: Subtask 5 results. The left column of tables is for Ubuntu, the middle column is for the initial Advising
test set, and the right column is for the final Advising test set. The best results are bolded.

the task considerably harder, though more real-
istic. In general, system rankings were not sub-
stantially impacted, with the exception of team 17,
which did better on the original dataset. This may
relate to their use of a memory network over the
raw advising data, which may have led the model
to match test dialogues with their corresponding
training dialogues.

Metrics Finally, we can use Table 4 to compare
the metrics. In 39% of cases a team’s ranking is
identical across all metrics, and in 34% there is a
difference of only one place. The maximum differ-
ence is 5, which occurred once, between team 6’s
results in the final Advising results shown in Ta-
ble 3, where their Recall@1 result was 8th, their
Recall@10 result was 11th and their Recall@50
result was 13th. Comparing MRR and Recall@N,
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the MRR rank is outside the range of ranks given
by the recall measures 9% of the time (on Ubuntu
and the final Advising evaluation).

5 Future Work

This task provides the basis for a range of inter-
esting new directions. We randomly selected neg-
ative options, but other strategies could raise the
difficulty, for example by selecting very similar
candidates according to a simple model. For eval-
uation, it would be interesting to explore human
judgements, since by expanding the candidate sets
we are introducing options that are potentially rea-
sonable.

6 Conclusion

This task introduced two new datasets and three
new variants of the next utterance selection task.
Twenty teams attempted the challenge, with one
clear winner. The datasets are being publicly re-
leased, along with a baseline approach, in order to
facilitate further work on this task. This resource
will support the development of novel dialogue
systems, pushing research towards more realistic
and challenging settings.

7 Acknowledgements

This material is based in part upon work supported
by IBM under contract 4915012629. Any opin-
ions, findings, conclusions or recommendations
expressed above are those of the authors and do
not necessarily reflect the views of IBM.

References
Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui

Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1657–1668.

Chiori Hori and Takaaki Hori. 2017. End-to-end con-
versation modeling track in DSTC6. In Dialog Sys-
tem Technology Challenges 6.

Youxuan Jiang, Jonathan K. Kummerfeld, and Wal-
ter S. Lasecki. 2017. Understanding task design
trade-offs in crowdsourced paraphrase collection. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers).

Jonathan K. Kummerfeld. 2019. Slate: A super-
lightweight annotation tool for experts. In Proceed-
ings of ACL 2019, System Demonstrations.

Jonathan K. Kummerfeld, Sai R. Gouravajhala, Joseph
Peper, Chulaka Gunasekara, Vignesh Athreya,
Siva Sankalp Patel, Lazaros Polymenakos, and Wal-
ter S. Lasecki. 2019. A large-scale corpus for con-
versation disentanglement.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. In Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 285–294.

Julien Perez, Y-Lan Boureau, and Antoine Bordes.
2017. Dialog system technology challenge 6
overview of track 1 - end-to-end goal-oriented di-
alog learning. In Dialog System Technology Chal-
lenges 6.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237.

Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Lau-
rent Charlin, and Joelle Pineau. 2018. A survey of
available corpora for building data-driven dialogue
systems: The journal version. Dialogue & Dis-
course, 9(1):1–49.

66



Model External Used Raw Val in
Team Type Data Use Advising No Model Details

1 CNN - No Yes Combination of CNN for utterance representa-
tion and GRU for modeling the dialogue.

2 LSTM - Yes No ESIM with an aggregation scheme that captures
the dialog-specific aspects of the data + ELMo.

3 LSTM Embeddings Yes No ESIM plus a filtering stage for subtask 2.

4 LSTM - No No ESIM with (1) enhanced word embeddings to ad-
dress OOV issues, (2) an attentive hierarchical
recurrent encoder, and (3) an additional layer be-
fore the softmax.

6 Ensemble - No No An ensemble of CNNs.

7 LSTM - No Yes LSTM representation of utterances followed by a
convolutional layer.

8 Other - Yes No A multi-level retrieval-based approach that ag-
gregates similarity measures between the context
and the candidate response on the sequence and
word levels.

10 LSTM TF-IDF
Extraction

No No ESIM with matching against similar dialogues in
training, and an extra filtering step for subtask 2.

12 RNN TF-IDF
Extraction

No No BoW over ELMo with context as an RNN.

13 Ensemble Embeddings No No Ensemble approach, combining a Dynamic-
Pooling LSTM, a Recurrent Transformer and a
Hierarchical LSTM.

14 Ensemble - No No An ensemble using voting, combining the base-
line LSTM, a GRU variant, Doc2Vec, TF-IDF,
and LSI.

15 Memory Memory No No Memory network with an LSTM cell.

16 LSTM - No No ESIM with utterance-level attention, plus addi-
tional features.

17 Memory Memory &
Embed-
dings

Yes No Self-attentive memory network, with external ad-
vising data in memory and external ubuntu data
for embedding training.

18 GRU - No No Stacked Bi-GRU network with attention, ag-
greagting attention across the temporal dimen-
sion followed by a CNN and softmax.

19 LSTM - No Yes Bidirectional LSTM memory network.

20 CNN - No Yes CNN with attention and a pointer network, plus
a novel top-k attention mechanism.

Table 5: Summary of approaches used by participants. All teams applied neural approaches, with ESIM being a
particularly popular basis for system development. External data refers to the man pages for Ubuntu, and course
information for Advising. Raw advising refers to the variant of the training data in which the complete dialogues
and paraphrase sets are provided. Three teams (5, 9 and 11) did not provide descriptions of their approaches. For
full details of systems, see the system description papers presented at the DSTC workshop.
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Abstract

We tackle the problem of context reconstruc-
tion in Chinese dialogue, where the task is to
replace pronouns, zero pronouns, and other re-
ferring expressions with their referent nouns
so that sentences can be processed in isola-
tion without context. Following a standard de-
composition of the context reconstruction task
into referring expression detection and coref-
erence resolution, we propose a novel end-to-
end architecture for separately and jointly ac-
complishing this task. Key features of this
model include POS and position encoding us-
ing CNNs and a novel pronoun masking mech-
anism. One perennial problem in building
such models is the paucity of training data,
which we address by augmenting previously-
proposed methods to generate a large amount
of realistic training data. The combination
of more data and better models yields accu-
racy higher than the state-of-the-art method in
coreference resolution and end-to-end context
reconstruction.

1 Introduction

The chatbot is claimed to become a platform for
the next generation of the human-computer in-
terface. Recent researches on open-domain chat-
ting systems (Lowe et al., 2017; Mei et al., 2015),
open-domain question answering systems (Mi-
naee and Liu, 2017; Chen et al., 2017) have shown
promising results on single-round conversations.
Meanwhile, most of these systems require the in-
put question to be syntactically and semantically
complete sentences. However, due to the language
nature of humans, facing more than one round
of conversation, we need to tackle the problem
of contextual relationship where coreference and
ellipsis occur frequently in dialogues leaving the
sentence incomplete. The goal of context recon-
struction in dialogues is to load context informa-
tion from a multi-round dialogue, and remove the

dependency on the previous contexts in the sen-
tences, so that each sentence have complete and
independent semantic meanings, so are answer-
able and processible by down-stream dialogue or
question answering systems.

In this paper, we addressed the context recon-
struction problem, which includes referring ex-
pression detection and coreference resolution in
the dialogue domain. We present our part-of-
speech (POS) tagging based deep neural network,
including both the step-by-step models and the
end-to-end model, for the detections and resolu-
tions of coreference and ellipsis. Our coreference
and ellipsis detection model reasons over the in-
put sequence to detect the positions of corefer-
ence and ellipsis in the sentence. Our resolution
model ranks the candidate entities with the input
sentence where coreference and/or ellipsis are an-
notated. We also present an end-to-end detection-
resolution network which consumes only the non-
annotated input sentence and candidate entities.
Our models utilize both the syntactic and seman-
tic information by employing word embedding,
convolution layers, and Long-short-term-memory
(LSTM) units. Due to the lack of large well-
annotated data, in this paper, we proposed a novel
approach to construct annotated data in dialogue
domain.

We summarize our contribution in this paper
with three points: 1) We formulate the problem
definition of context reconstruction in dialogue
into one detection problem and one ranking prob-
lem and present the difference between it and
traditional tasks such as pronoun and zero pro-
noun detection and mention candidate selection;
2) We present the analysis of the application of
deep neural work for contextual resolution in dia-
logue, including both step-by-step and end-to-end
approaches; 3) We propose a way to effectively
construct a huge amount of silver data for the con-
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text reconstruction task.

2 Related Work

There has been much classical or linguistic the-
oretical work on coreference resolution in texts.
Coreference resolution is mainly concerned with
two tasks, referring expressions detection, and
mention candidate ranking. Referring expres-
sions detection can be further divided into two
subtasks: 1). find all words that do not have
real meaning and refer to other mentions (他/he，
她/she，它/it，这/this，那/that,...). We use the
term ‘pronoun’ to represent these words without
losing preciseness of linguistic definition in this
paper. 2). find all zero pronouns. A close task to
the first subtask of referring expressions detection
is coreference detection, which is to identify noun
phrases and pronouns that are referring to the same
entities. Haghighi and Klein (2010) proposed an
unsupervised generative approach for text corefer-
ence detections. Uryupina and Moschitti (2013)
proposed a rule-based approach which employed
parse trees and SVM. Peng et al. (2015) improved
the performance of mention detections by apply-
ing a binary classifier on the feature set.

Similarly, there has been much previous work
in mention candidate ranking using deep neural
network. In recent years, applying deep neural
networks on the task has reached great success.
Clark and Manning (2016) applied reinforcement
learning on mention-ranking coreference resolu-
tion. Lee et al. (2017) presented an end-to-end
coreference resolution model which reasons over
all the anteceding spans. Lee et al. (2018) pre-
sented a high-order coreference resolution. These
approaches do not generalize to dialogue for the
reason that 1) these approaches require a rich
amount of well-annotated contextual data, 2) di-
alogue is short and has ambiguous syntactic struc-
tures which are difficult to handcraft rules, and
3) the resolution module should distinguish wrong
detection results so that the systems have a higher
fault tolerance on the detection module. However,
most existed work simply assumes a golden detec-
tion label and perform lots of feature engineering
based on that.

Although there is a series of related work that
can contribute to coreference resolution in Chi-
nese dialogue, there are many common restrictions
when transferring them into a practical product:
1). the limited data source in a general domain;

Context (c): 打雷了怎么发短信安慰女朋友？
(How to send texts to comfort girlfriend when it thunders?)

Text (q): 打雷时还给她发？
(Send to her even when it thunders?)

Text (q) after detection: 打雷时还给她发 φ？
Text (q) after resolution: 打雷时还给女女女朋朋朋友友友发短短短信信信？
(Send texts to your girlfriend even when it thunders?)

Figure 1: Example of context reconstruction

2). most work concentrates on general corefer-
ence. Few of them focus on pronoun or zero pro-
noun resolution, which is the vital step for dia-
logue NLU; 3). no work known to us compares
traditional feature-based methods and neural net-
work based models on an end-to-end system for
coreference resolution in Chinese dialogue.

3 Our Approach

Figure 1 provides a running example of our con-
text reconstruction approach. We assume an in-
put utterance q whose context we are trying to re-
construct with respect to some other context utter-
ance c. In the chat context, c would come from
previous utterances in the dialogue. In a bench-
mark dataset, we locate the context using the first
sentence where the co-referred mention appears.
We assume that q and c have already been tok-
enized. Our approach breaks the context recon-
struction problem into two subtasks: detection and
resolution.

Detection is formulated as a sequence label-
ing task that tries to identify referring expressions
that need to be resolved and to recover zero pro-
nouns. In our running example, 她 (her) is iden-
tified as such, as well as a zero pronoun φ (an
elided object). Resolution is formulated as a rank-
ing task. For each “slot” that needs to be resolved
(她 and φ in the example above), our model pro-
vides a ranking of (c,q,m) triplets, where m ∈
{m1, . . . ,mk}, the candidates for resolution. Can-
didates are selected from noun phrases in the con-
text c. At inference time, the candidate m with
the highest score is selected as the replacement. If
there are multiple slots to be resolved, our model
proceeds from left to right incrementally. The fi-
nal output of the model is shown in the last line
of Figure 1. In this paper, we call our POS tag-
ging based model as POSNet. The detection and
ranking part is named POSNet-D and POSNet-R
accordingly.
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3.1 Detection

The detection subtask attempts to identify refer-
ring expressions that need to be resolved and to re-
cover the position of zero pronouns. Note that not
all referring expressions require resolution. For
example, ‘这’ (this) in ‘这个理由很有说服力’
(This reason is convincing) requires no resolution,
while ‘这’ (this) in ‘这个不是我想要的’ (this is
not what I want) does. Detection is formulated as
a sequence labeling task where the output labels
y ∈ [0, 1, 2]. The label ‘1’ indicates the bound-
ary of a “slot” while the label ‘2’ is assigned to
expressions requiring resolution. Thus, in our run-
ning example, the input [PAD打雷时还给她发
PAD] would be tagged with [0 0 0 1 2 1 0]. That
is, the pronoun ‘她’ is explicitly tagged, together
with its left and right boundaries; consecutive ‘1’
tags indicates a zero pronoun.

In our detection model, the (padded) sen-
tence and POS tagging encoding layer consists
of the following components: First, we apply
200-dimensional embedding layer (Mikolov et al.,
2013) to s and a 20-dimensional embedding layer
to t. Let s = {s1, . . . , sm} and t = {t1, . . . , tm}
be the embedded representations. To leverage to
position information which is important in this
task, we also include the position embeddings
suggested by Gehring et al. (2017) in the model
with the same size as the word embedding, de-
noted as p = (p1, . . . , pm). The word embed-
dings and POS embeddings are incorporated to-
gether by summing and then concatenated with
the position embedding as the combined input:
w = {w1, . . . , wm} , wi = [si + pi, ti].

Inspired by the recent success of convolutional
models for various NLP tasks (Kim, 2014), we ap-
ply a stack of 5 convolution layers followed by
a global max pooling layer on top of the word
and POS tagging encodings to extract underly-
ing patterns in the sentence. We use gated linear
units (GLU) (Dauphin et al., 2016) as the activa-
tion function, and we included residual connec-
tions to reduce training difficulty (He et al., 2016).
After the encoding the input using convolutional
layers with residual connections, we apply LSTM
as the decoder to generate the sequential predic-
tions for the location of referring expressions as
{d1, . . . , dn}. To train this model, we apply cat-
egorical cross entropy loss Lseq over a text se-

quence:

Lseq = −
1

n

m∑

i=1

nclass∑

j=1

yij log(dij)

3.2 Resolution
The output of the detection model is a list of
“slots” that require resolution, which could either
be a referring expression or a zero pronoun. In
the resolution task, for each slot, the model finds
the most appropriate replacement to best recon-
struct the context. This is formulated as a rank-
ing problem over (c,q,m) triplets, where m ∈
{m1, . . . ,mk} are the candidate mentions for res-
olution. In our running example, there are two
slots to be resolved (她 and φ); at inference time,
our model selects the highest scoring m for each
slot, proceeding from left to right.

The input to the model comprises a sentence, its
corresponding POS tags, a known pronoun or zero
pronoun slot, and a candidate mention. Then, we
concatenate word embeddings and POS tagging
embedding as the input of mentions and encode
it using multilayer perceptron. To enrich the se-
mantic information of the mention candidate, we
find the context sentence that contains this men-
tion as another input. Usually this context is the
sentence exactly before the query sentence in dia-
logues. Then we encode the query and context in
the same way described in Section 3.1. We did
not add attention mechanism, as the interaction
method as described by Yin et al. (2018b) to our
model because we did not see significant improve-
ment with preliminary experiments. To train the
mention candidate ranking model, we apply hinge
loss to maximize the margin between a positive
sample and a negative sample as below:

Lhinge = max{0,
δ + F(wq,wc,m

−)−F(wq,wc,m
+)}

where F(·) is the ranking model. wq and wc

are the input with words, POS tagging and posi-
tion embeddings of query and context. m− and
m+ are the positive and negative mention embed-
ding including the POS tagging embedding. δ is a
hyper-parameter and we set δ = 1 in our experi-
ments.

3.3 End-to-End Reconstruction
When combining the detection and ranking mod-
ules, we propose a masking structure to add a
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Figure 2: Architecture of the neural end-to-end model for coreference resolution in Chinese dialogue

masked sentence representation layer in the joint
model. The mask vector is from the sequential
prediction of the detection module, and we apply
it back to encoded sentence matrix to highlight the
words near the pronoun or zero pronoun slot to get
the masked sentence representation vms:

vms = Pooling(Msvm)

where vm is the binary mask vector and Ms is the
encoded sentence representation matrix. A max
pooling function is applied to project the masked
sentence matrix into a vector. Through this way
we try to force the model to selection mention
candidate that is mostly likely to co-occur near a
pronoun or zero pronoun. These words are usu-
ally verbs (e.g. love, publish) but seldom preposi-
tions (e.g. through) or adjectives (e.g. wonderful).
Based on the above two individual models, we
combine the learnt (masked) sentence representa-
tion and the mention representation and build the
end-to-end context reconstruction model (or joint
model), where the detection and resolution mod-
els are trained jointly. The overall framework is
shown in Figure 2.

To train this model, we combine the hinge loss
Lhinge and the sequential loss Lseq mentioned
above. The two losses are aggregated by a hyper-
parameter λ for the trade-off. Finally, we add a
regularization term to the target function to reduce
overfitting. The final loss can be written as fol-
lows:

L = Lhinge + λ · Lseq + µ · ||W ||

where λ and µ are hyper-parameters, and ||W ||
is the regularization term over all weights in the

Data Docs Sents ZP
CONLL2012Train 1,394 36,487 12,111
CONLL2012Test 172 6,083 1,713

OntoNoteBC - 2,800 1,400
OntoNotTC - 1,628 814

Table 1: Statistics of the CONLL2012 and the
OntoNote datasets

model. When integrating the POSNet-R with
POSNet-D, we find that sometimes POSNet-D
predicts a word in a sentence to be a reference
when it is not. This requires our POSNet-R to
have the ability to predict that nothing fits for a
wrong slot detection. To achieve this, we create a
special mention candidate UNK, representing the
null string. At inference time we can input UNK
along with other candidates NPs to POSNet-R. If
UNK token has the highest score, that means noth-
ing should be fit into the reference slot. We trained
POSNet-R again with the aforementioned modifi-
cations on the same training data set. Thus, we
modify the hinge loss as below:

Lhinge =max{0, δ + F(wc,wq,m
−)

−F(wc,wq,m0)}
+max{0, δ + F(wc,wq,m0)

−F(wc,wq,m
+)}

Where m0 represents the embedding for UNK.

4 Experimental Setup

4.1 Dataset
We conduct all of our experiments on Chinese
datasets. Note all of our models used in this pa-
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Type Neg ZP Pronoun Total
NP 1M 800 000 1 200 000 3 000 000
Location 1M 200 000 750 000 1 950 000
Person 1M 200 000 750 000 1 950 000
Time 1M 990 000 601 000 1 700 000

Table 2: Statistics of the generated CQA dataset

per are language-independent. We have evaluated
our models on three datasets. The statistics of all
datasets is shown in Table 1 and Table 2.

• CONLL2012: To get a fair comparison with
the previous methods, we applied POSNet-
R to the zero pronoun resolution task on
the CONLL2012 benchmark dataset follow-
ing Yin et al. (2018a) and Yin et al. (2018b)’s
processing methods. Note this is the dataset
annotated with the coreference of zero pro-
nouns in a general domain and this task as-
sumes the pre-known location of zero pro-
nouns so we apply POSNet-R as a compar-
ison.

• OntoNote (BC/TC): Since there is no known
end-to-end evaluation benchmark for Chi-
nese context reconstruction, we extracted
data from the BC (broadcast conversation)
and TC (telephone conversation) subsets
from OnotoNote 5.0 corpus (which is the
same source of CONLL2012) and build the
end-to-end training and evaluation dataset
for zero pronoun resolution. We apply ba-
sic cleaning on the corpus such as removing
the cataphoric reference and filling multiple
coreferences in one sentence. For each sen-
tence with a zero pronoun, we sample one
negative candidate from the last sentence and
use this sentence as a context sentence.

• CQA: Since CONLL2012 and OntoNote are
either too small to evaluate the performance
of neural network or too domain-specific
to provide a satiated training and evalu-
ation on a general domain, we collected
and built new training and testing set from
Chinese CQA (community question answer-
ing website) websites including BaiduZhi-
dao1, SosoWenwen2, which contains over
300,000,000 QA pairs. We generated time,

1https://zhidao.baidu.com/
2https://wenwen.sogou.com/

location, people and noun phrase examples.
Each subset is divided into the training data
and the testing data at the ratio of 9:1. We use
this generated data to mimic the coreference
in the real data and we will show this gener-
ated data contributes to both general evalua-
tion and external assistance to a specific do-
main.

4.2 Dataset Generation
Contextual resolution on dialogue corpus requires
large-scale and annotated training data. Obtaining
such a data set is the key to this problem. We intro-
duce our three-phases data generation method as
follows: data collection, keywords detection, and
data splitting.

Data Collection: Sentences in dialogues have
the features of being short and containing only one
or two entities. Corpus from CQA websites fit our
purpose perfectly since 1). these questions and
answers tend to be short and precise; 2). large
user groups provide a huge corpus of data; 3).
these single round question-answering dialogues
share some language features with chatting dia-
logues. Initially, QA pairs from the internet are
collected. These are our raw data. These raw data
are mostly precise, complete, short, and indepen-
dent sentences and contain no coreferences to the
context.

Keyword Detection: First of all, we detect and
label words that refer to time, location, people or
noun phrases. We parse questions using the Parser
(Roger Levy, 2003) to generate syntax trees an-
notated with POS taggings. The POS taggings
provide syntactic information that helps guide the
data generation rules. Then, we use the Stanford
named entity recognizer (Finkel et al., 2005) to tag
tokens that refer to time, location or people enti-
ties, named marked words.

Data Splitting: Our goal is to transform short
sentences from dialogues into positive examples
of coreference and ellipsis. The main challenge in
generating those is to identify segments that can
be omitted or replaced with a pronoun so that the
resulting sentence is both grammatical and natu-
ral. Our method splits complete sentences into
sentences that contain pronoun or zero pronoun
according to the self-defined syntactic pattern: 1)
Pronoun samples: Since pronouns actually refer to
an entity from the context, we can reverse the pro-
cess and create coreference cases by replacing en-
tities with pronouns in sentences. It is feasible also
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because for a certain entity type (e.g. time), the
corresponding pronouns are limited. 2) Zero pro-
noun samples: For the same reason as above, the
process of understanding zero pronouns could be
reversed. We can create ellipsis cases by omitting
entities in sentences. Therefore, we create ellipsis
cases by deleting the marked words in the sentence
directly. 3) Negative samples: There are two types
of negative samples in this problem. The first type
is a sentence without generated pronoun or zero
pronoun. In order to provide competitive samples
for training, negative examples are randomly sam-
pled out of the whole CQA corpus. In addition,
a number of complete sentences that contain pro-
nouns and zero pronouns already are added. It
could enhance our model’s ability to distinguish
real coreference and “fake” coreference. The sec-
ond negative samples are the mention candidates
that are not referred to. We randomly sample men-
tions from the same session or document to make
the negative samples challenging.

4.3 Model Training
We use Jieba3, a Chinese word segmentation tool
to segment a sentence into a sequence of words.
The Chinese word embeddings are pre-trained us-
ing skip-gram model (Mikolov et al., 2013) on the
raw CQA corpus. The LSTM-encoder and LSTM-
decoder in all of our models have a state size of
512. The convolution layers have 512 filters with
width 3. The models are trained by the Adam op-
timization algorithm (Kingma and Ba, 2014) with
a learning rate of 3 × 10−4. Vocabulary size is
truncated by selecting the most frequent 200,000
tokens. λ is set to 20 and µ is set to 0.01 in all of
our experiments.

5 Results

5.1 Detection
Although we model referring expression detection
as a sequence labeling task, we assume there is at
most one pronoun or zero pronoun in a sentence.
So we report sentence-level precision, recall, and
F1 scores for evaluation in coreference resolution
task in dialogue. Note we can run this detec-
tion algorithm iteratively after one round of con-
text reconstruction if the sentence contains multi-
ple pronouns or zero pronouns in practical appli-
cation. The experimental results on CQA dataset
are shown in Table 3.

3https://github.com/fxsjy/jieba

Data Pre. Rec. F1

Name phrase 92.7 96.9 94.8
Location 95.3 95.7 95.5
Person 92.9 97.5 95.1
Time 91.1 95.7 93.3
Average 93.0 96.5 94.7

Table 3: Results of POSNet-D for referring expression
detection on CQA dataset

Model P@1 P@2 P@3
Bigram 22.8 37.1 48.2
Yin et al. (2018b) 68.1 87.3 89.5
Yin et al. (2018a) 68.3 87.7 89.7
POSNet-R 69.1 85.2 91.2

Table 4: Results of mention candidate ranking on the
CQA dataset

According to Table 3, the high F1 scores in-
dicate the strong ability of POSNet-D to distin-
guish positive examples and negative examples.
The slightly higher recall rate than precision in-
dicates the model tends to treat potentially words
as positive and retrieve more potentially positive
candidates, which meets our requirement to pro-
vide more candidates for ranking in this detection
step properly. Note that from Table 3, we can also
find the accuracy on location and people subsets
is higher than NP and time. This is because there
are more ellipse detection cases in NP and time
subsets, which bring a challenge to our model and
baseline method by causing more false negatives.

5.2 Resolution
We test mention candidate ranking on two
datasets: CQA and CONLL2012. For each sen-
tence in the test set, we feed it into the model
together with the correct mentions and nine ran-
domly sampled mentions. The model outputs the
ranking scores for all 10 mentions and we choose
the one with the highest score as the model’s pre-
diction. Under this setting, a naive model that out-
puts random scores should result in an overall top
1 accuracy close to 10%. The overall performance
is shown in Table 4. Bigram in Table 4 is the
baseline method that we select the candidate with
the largest co-occurrence frequency with the pre-
ceding and the following word as the prediction.
Additionally, POSNet-R pretrained on the CQA
dataset outperforms al baselines, which demon-
strates the effectiveness of our generated data.
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Model F1 P@1
POSNet-D+Yin et al. (2018a) 92.9 69.7
POSNet-D+Yin et al. (2018b) 92.9 69.9
POSNet 95.4 71.7

Table 5: Results of the end-to-end evaluation for coref-
erence resolution on the CQA dataset

Model F1

Zhao and Ng (2007) 41.5
Chen and Ng (2016) 52.2
Yin et al. (2017) 54.9
Liu et al. (2016) 55.3
Yin et al. (2018b) 57.3
Yin et al. (2018a) 57.2
POSNet-R (raw) 52.1
POSNet-R (pretrained on CQA) 58.1

Table 6: Results of mention candidate ranking for zero
pronouns on the CONLL2012 dataset

For the CONLL2012 dataset, the result is shown
in Table 6. Following Yin et al. (2018b), we add
the features from existing work on zero anaphora
resolution into the fully connection layer. We try
POSNet-R and find it performs close to the pre-
vious nerual network methods but cannot beat the
Yin et al. (2018b)’s model. We think this is be-
cause our model needs more training data to learn
an effective representation of the text and POS tag-
ging so we pretrain our model on the whole CQA
dataset. The result shows we can achieve the best
performance on this benchmark.

5.3 End-to-end Evaluation
End-to-end model is tested on two datasets: the
generated CQA and the extracted OntoNote. This
model is trained with the original sentence as well
as the correct NP and 9 sampled negative NPs. The
output consists of two parts, the coreference and
ellipsis detection of the sentence, and the ranking
score of the mention candidate. The experiment
results of the end-to-end evaluation on CQA and
OntoNote datasets are shown in Table 5 and Ta-
ble 7. Comparing the results of the joint model
(Table 5) with the Table 3, we found that the end-
to-end model has improvements on the F1 score.
We find that it is because the precision score in-
creases while the recall score drops a little. This
result shows that involving candidate phrase infor-
mation, the ability to detect the correct coreference
and ellipsis is improved. Comparing to the joint

Test Pretrain Train F1 Accuracy

TC
CQA

BC 45.3 92.5
- 10.4 66.8

- BC 18.3 72.5

BC
CQA

TC 36.1 84.5
- 11.8 65.0

- TC 16.2 69.2

Table 7: Results of end-to-end zero pronoun resolution
on OntoNote dataset

model with the POSNet-R, we found that the top
1 accuracy is slightly improved, while top 2 and
top 3 accuracies are dropped. The drops are ex-
pected as the position information of coreference
and ellipsis are not given.

Since there is no known end-to-end Chinese
context reconstruction model for the dialogue cor-
pus, we compare POSNet with two step-by-step
baselines: POSNet-D for the detection first, Yin
et al. (2018a) and Yin et al. (2018b)’s methods for
the ranking next. Comparing to the joint model
with the baselines, we can see that step-by-step
approach will cause serious cascade error if one
step cannot perform well. In contrast, our model
joint performs reasonably well considering the re-
turned top 3 candidates. However, to better help
the down-stream natural language understanding
task, we should mainly aim at transforming a sen-
tence extracted from the dialogue corpus to an in-
dependent sentence. So accuracy at top 1 is the
most important evaluation metric.

We shows the results on OntoNote dataset in Ta-
ble 7. From the result of these two small data sets
we can see it is important to 1). learn a general
knowledge by pretraining on a large corpus; 2).
fine tune on a domain-specific dataset to get the
downstream information such as common terms,
common grammar, etc. In addition, by looking at
Table 5 and 7 together, we can see that corefer-
ence detection, especially zero pronoun detection,
is the bottleneck of the end-to-end context recon-
struction system.

5.4 Ablation Study

We compare our model to the following ablated
models: replacing the encoding layer with the
BiLSTM layer, removing the UNK token candi-
date, removing word position embedding, and re-
moving POS tagging from the input. The results
are shown in Table 8. From Table 8 we find that

74



Model P@1 P@2 P@3
POSNet 70.1 82.9 89.0
POSNet-LSTM 68.1 82.2 90.2
POSNet w/o UNK 67.4 81.2 86.2
POSNet w/o pos-embed 67.2 81.0 88.1
POSNet w/o POS input 61.8 71.4 73.7

Table 8: Alation study of the end-to-end contexual res-
olution on the CQA dataset

POSNet achieves better performance than the base
POSNet model without UNK augmentation. We
believe it is because 1) the UNK token helps en-
larges the distance between the relevance of pos-
itive samples and negative samples. 2). it allows
the mention candidate ranking model to identify
the false positive of the detection model and re-
place it with a rejection token.

In addition, we try BiLSTM as the encoder
as the comparison to the CNN based encoder in
the experiments and we name it POSNet-LSTM.
From the result, we can see BiLSTM gives weaker
performance than ConvNet layers. We argue that
this is because ConvNets layers are more sensitive
to the distant and global dependency information
in coreference while LSTM cares more about ad-
jacent words. From the result of removing position
embedding and the POS input, we can see that this
task heavily relies on the understanding of the sen-
tence syntactic structure. We believe there will be
better ways to leverage this kind of information in
a sentence.

6 Conclusion

In this paper, we systematically define the con-
text reconstruction problem in dialogue domain
and initiated a comprehensive study of this prob-
lem. We have demonstrated how to create train-
ing data to train both two step-by-step neural net-
works and an end-to-end deep neural network to
tackle this problem. This study leads to many open
research directions. Our work could be extended
to wider contextual domains, including more con-
junctive relations and more careful linguistic stud-
ies of conjunctive relations in conversations. Stud-
ies could go beyond context reconstruction and
include semantics from conversation history. At
the application level, neural context reconstruction
can be easily integrated with an end-to-end ques-
tion answering system (Yang et al., 2019) for a ex-
trinsic evaluation.
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Abstract
The uncertainties of language and the com-
plexity of dialogue contexts make accurate di-
alogue state tracking one of the more chal-
lenging aspects of dialogue processing. To
improve state tracking quality, we argue that
relationships between different aspects of dia-
logue state must be taken into account as they
can often guide a more accurate interpretation
process. To this end, we present an energy-
based approach to dialogue state tracking as
a structured classification task. The novelty
of our approach lies in the use of an energy
network on top of a deep learning architec-
ture to explore more signal correlations be-
tween network variables including input fea-
tures and output labels. We demonstrate that
the energy-based approach improves the per-
formance of a deep learning dialogue state
tracker towards state-of-the-art results without
the need for many of the other steps required
by current state-of-the-art methods.

1 Introduction

Dialogue processing is a challenging task due to
the nature of human conversations. Currently most
Spoken Dialogue Systems (SDS) have a core com-
ponent called the Dialogue Manager that is re-
sponsible for: (a) handling dialogue context and
understanding user utterances by tracking dia-
logue states; and (b) generating useful contribu-
tions through the use of an appropriate dialogue
policy. The dialogue manager component can
be developed independently (Budzianowski et al.,
2017; Su et al., 2017; Zhao and Eskenazi, 2016) or
in an end-to-end dialogue fashion (Williams et al.,
2017; Li et al., 2017; Serban et al., 2016). Be-
tween the two dialogue manager components, the
dialogue state tracker is arguably the more chal-
lenging to perfect, as its performance depends on
the quality of the speech recognition component,
the complexity of natural language used by users,

and even the situational context (Ross and Bate-
man, 2009).

Generally task-oriented dialogue systems with
predefined ontologies represent dialogue states as
a set of slot-value pairs, and define dialogue state
tracking as a multi-task classification problem.
The common deep learning approach to dialogue
state tracking therefore is to develop different sub-
systems for the tracking of each slot – though early
layers in the network will often be shared to vary-
ing degrees. While this approach has provided rea-
sonable results, we argue that this method does not
reflect the natural way that humans process infor-
mation; specifically that the inter-relationships be-
tween slots are not properly taken into account.

In order to account for such relationships in the
dialogue context, it is appropriate to consider the
problem not as a multi-task classification prob-
lem, as is currently common, but as a structured
prediction problem. This insight is not in itself
novel, as there have been several attempts in the
research community to investigate the variable de-
pendencies in dialogue state tracking such as in the
multi-task learning model (Trinh et al., 2018), the
language modelling tracker (Platek et al., 2016),
work building on Conditional Random Fields
(Kim and Banchs, 2014), work on Attention-based
Sequence-to-Sequence models (Hori et al., 2016)
and the work by Williams (2010). Although these
architectures are good attempts to engage variable
dependencies at different levels of abstraction into
the dialogue state tracking process, they have not
yet achieved state-of-the-art results and do not pro-
vide a clear analysis of the relationships between
variables.

Performing prediction of dialogue states where
we acknowledge the relationship between slot val-
ues casts the problem into a structured predic-
tion task; this is similar to how both image seg-
mentation and part-of-speech tagging are struc-
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tured prediction problems in that that output labels
are not assumed to be independent. One efficient
approach to structured prediction that has been
applied widely in recent years are energy-based
methods (LeCun et al., 2006). A key intuition
of energy-based structured learning approaches is
that it can be easier to learn a function to critique
a potential solution Y than to learn to predict Y
directly from an input signal X . Given this intu-
ition, energy-based approaches essentially attempt
to learn a function that estimates the goodness of
fit between some input feature variable X and an
output hypothesis Y . Given such a trained func-
tion, a gradient descent-based inference process
then searches for an appropriate Y at run-time that
demonstrates the best fit to a new input vector X .

To investigate the appropriateness of this
method, in this paper we apply a variant of the
Structured Prediction Energy Network (SPEN)
(Belanger and McCallum, 2016) to the Dialogue
State Tracking Challenge (DSTC) 2 dataset (Hen-
derson et al., 2014a). To our knowledge, this is the
first attempt to apply this formulation of modelling
to the DST task. We benchmark our work by com-
paring it against a number of other dialogue state
trackers including the state-of-the-art hybrid dia-
logue state tracker (Vodolan et al., 2015, 2017).

2 Analysis of Variable Dependencies

The goal of applying a structured learning ap-
proach to dialgoue state tracking is predicated on
the assumption that there are indeed dependencies
between slots in the dialogue state. In this section
we recap some of the features of the dataset that
we have applied and investigate whether such de-
pendencies exist for this dataset.

2.1 DSTC2 Dataset

The Dialogue State Tracking Challenge 2 (Hen-
derson et al., 2014a) is a popular dataset for
spoken dialogue state tracking in the Cambridge
restaurant information domain. The main task
of this challenge, called Joint Goals, requires the
models to classify slot-value pairs for four In-
formable slots; namely food, price range, area,
and name. At every turn of the dialogue, each slot
must be assigned a value from its set of possible
values detailed in the task ontology. However, the
analysis shows that the slot name rarely appears in
the dataset (see Appendix A.1). Therefore follow-
ing the approach of a number of other researchers,

we focus on the remaining three slots only.
The DSTC2 dataset contains 1612 dialogues in

a training set, 506 in a development (validation)
set, and 1117 in a test set.

2.2 Data Analysis

We conducted a data analysis on the DSTC2
data using the chi-square test to examine the de-
pendencies between target variables. The chi-
square test;is an important statistical test to de-
tect associations between variables; however, this
test can only give the answer to the question of
whether there exist dependencies between vari-
ables. Therefore, it is also important to mea-
sure the strength of detected dependencies. For
this purpose, we perform a chi-square test on the
three informable slots in a pairwise fashion and
use the chi-square test’s φ coefficient to mea-
sure the strength of their dependencies (see Ap-
pendix A.2). The chi-square test result confirms
the existence of pairwise dependencies among
DSTC2 data informable slots with the statistical
significance p < 0.05. The dependencies are re-
ported in Table 1 with the φ coefficient.

food price area
food -
price 0.608 -
area 0.707 0.393 -

Table 1: Data analysis of variable dependencies on
DSTC2 data. The result is reported with φ coefficient
values.

The statistical test shows that there are associa-
tions of different levels among informable slots in
the DSTC2 data. We observe that two pairs food
– price range and food – area have strong depen-
dencies, while the relationship price range – area
is weaker. We argue that this observation indicates
the validity of the motivation for our work in that
there are dependencies between target labels and
hence the dialogue state tracking task can be cast
as a structured prediction problem.

3 Energy-Based Learning

Energy-Based Learning is a branch of machine
learning that is notable for its usefulness in
structured prediction tasks. Energy-based struc-
tured prediction methods have been applied in
tasks ranging from Part-of-Speech (POS) tagging
(Voutilainen, 1995; Ma and Hovy, 2016) through
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to instance segmentation tasks in computer vision
(Corso et al., 2004; Li and Zhao, 2009; Ngiam
et al., 2011). In all of these tasks the output is
not a highly structured object, but is rather a set of
labels that are not assumed to be independent of
each other.

The main intuition behind energy-based meth-
ods is that it is too challenging to learn a structured
output Y for a given input vector X , and that in-
stead we should learn a function that essentially
assesses the goodness of fit between a given struc-
tured output Y and the input vector X . In practice
we often assume that the raw data is pre-processed
in a domain appropriate way to give us a more use-
ful representation of the data to evaluate against
a given target. Thus the energy network actually
calculates the goodness of fit between some rep-
resentation of X , referenced from here on out as
F (X), and a candidate output Y . While in princi-
ple a wide range of methods could be used to gen-
erate a feature representation F (X), in this work
we assume the feature representation is generated
by some form of deep network which we refer to
as the feature network. For an image processing
task such a network might be based on series of
convolutions, while in a language processing task
such a network might be based on a recurrent ar-
chitecture. Given the above, we define that energy
function itself simply as E(F (X), Y ) which re-
turns some scalar value.

During training, an appropriate objective func-
tion L(E,E∗), where E∗ = E((F )X,Y ∗) is the
ground truth energy calculated based on input fea-
ture representation F (X) and target labels Y ∗, is
used to guide training such that the energy func-
tion is minimised for valid combinations of F (X)
and Y observed in the training data. During run-
time we do not have gold standard values for Y ,
and instead we only have processed inputs F (X).
Thus at runtime we begin with an initial hypoth-
esis for Y – usually that Y = [0]N , and we then
perform an inference process to update Y so as to
find the best fit according to our learned differen-
tiable energy function. This overall approach is
illustrated by Figure 1.

The specific design of the energy function is
important in achieving an appropriate estimator
for goodness of fit between input vectors and
candidate structured outputs. Belanger and Mc-
Callum (2016) propose an energy function based
around the combination of a local and global en-

Figure 1: An example of Energy-Based Model, that
consists of a feature network F (X), an energy func-
tionE(F (X), Y ), and an objective function L(E,E∗),
where X is input variable, F (X) is a feature represen-
tation generated by a feature network, Y is predicted
output variable, and Y ∗ is a gold standard label output
variable.

ergy where global energy gives a scalar that repre-
sents the cross correlations for the target vector Y
only, and the local energy considers the relation-
ship between the input vector X and individual el-
ements of the total output structure variable, i.e.,
y ∈ Y . Both the local and global energy func-
tions are approximated as layers in a neural net-
work such that complex energy functions may be
learned from the training data.

As indicated, the energy function beside being
used to produce scalar energy values is also used
to generate predicted output variables. This pro-
cess is called the Inference process. Commonly a
gradient-based technique is used to generate the
output variable in a continuous space (Belanger
and McCallum, 2016; Belanger et al., 2017). The
inference process can be formulated as follow:

yt+1 ← yt − ηt∇y(E(X,Y )) (1)

where ηt is the learning rate at time step t, and
∇y(E(X,Y )) is the gradients of energy value
with respect to the output variable.

The process to train the energy network param-
eters is called the Learning process, where an ob-
jective function is used to calculate how good the
prediction is, and its gradients are used to back-
propagate throughout the network. It is important
to define a good objective function for the network
(LeCun and Huang, 2005). This process is stan-
dard for deep learning models. The parameters are
updated with the formula:

θ ← θ − λ∇θ(L(E,E∗)) (2)
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where θ is the network parameters, λ is the learn-
ing rate, and ∇θ(L(E,E∗)) is the gradients of
the loss between predicted and ground truth en-
ergies with respect to trainable parameters of the
network.

4 Energy-Based Dialogue State Tracker

Based on the general principles of energy based
modelling, we propose a deep learning energy-
based architecture for dialogue state tracking.
Given the approach outlined in the previous sec-
tion, the model consists of three main components:

• Feature network is a function implemented
as a deep learning network to transform dia-
logue input into an appropriate representation
which can be fed to the energy function.

• Energy function is a function implemented
as a feed-forward network that is trained to
assign scalar energy values to any given con-
figuration of input and output variables.

• Loss function is a function that provides an
measurement of the quality of the network
predictions.

In the following we provide details of these
components as we specifically designed them for
the DSTC2 dataset.

4.1 Feature Network
DSTC2 dialogue data consists of a number of calls
(conversations) which in turn are built out of a se-
quence of turn pairs. Each turn pair consists of
the user utterance itself, and a system response –
referred to as the machine act.

User utterances are sequences of words (to-
kens); thus we use a bidirectional LSTM architec-
ture (Hochreiter and Schmidhuber, 1997) to gen-
erate an initial representation of the whole word
sequence in a turn (see Figure 2). This utterance
LSTM is fed using a word embedding layer that is
trained directly on our data; empirically we found
this to provide us with better results than using a
public pre-trained word embedding component.

Machine acts are provided in a semantic rep-
resentation format, therefore we first parse these
into vector representations following the approach
outlined in the Word-based Dialogue state tracker
(Henderson et al., 2014b). These machine act
vectors are high-dimensional one-hot encodings;
therefore we find it useful to feed these through an

Figure 2: The bidirectional LSTM architecture to en-
code utterances. ⊕ denotes the concatenation opera-
tion.

encoder to produce a reduced distributed represen-
tation (see Figure 3).

Figure 3: The encoder with two fully connected layers
to reduce the dimensionality of machine act vectors.

We concatenate the encoded machine act vector
with the output vector of the bi-directional utter-
ance encoder to form a dialogue turn representa-
tion vector.

In order to handle dialogue input and dialogue
history, it is necessary to use a second LSTM layer
unrolling throughout individual turns to build up a
complete representation of the dialogue (see Fig-
ure 4). Therefore, we feed the input vector pro-
duced for each turn into the second full-dialogue
LSTM, and receive a fixed-size output vector –
this is thus a representation of the whole dialogue
up to the current turn. Hyper-parameters for the
two LSTM layers plus the embeddings layers used
to produce distributed representations of both user
utterances and machine acts are presented later in
Table 2.

While it is possible for us to feed the output of
the second LSTM layer directly as input to an en-
ergy layer and perform training, this approach is
sub-optimal. As noted by Belanger and McCallum
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Figure 4: The deep LSTM architecture to transform di-
alogue input into fixed-size vector representations.

(2016), the feature network should ideally be pre-
trained to improve the quality of features. There-
fore we pre-train our feature network by plugging
it into a multi-task style learning architecture for
dialogue state tracking in the style of that proposed
by Trinh et al. (2018). Specifically, to complete
pre-training the outputs of the second LSTM are
fed to a set of three softmax outputs that affect
three independent multinomial targets. Optimisa-
tion with backpropagation is then used to train the
network in the normal way. When used as input
to the energy network, the final layer consisting
of a set of three softmax operations are discarded
and instead the LSTM outputs are taken to be the
output of the feature network, i.e., F (X).

The above approach has the advantage that the
feature network’s output vectors F (X), i.e., the
outputs of the turn based LSTM, are already well
aligned to producing candidate target representa-
tions Y – although they are not actual candidate
targets.

4.2 Energy Function

The energy function is implemented on top of the
feature network to assign the scalar energy values
to combinations of dialogue input and output vari-
ables. It should be noted though that the energy
function in the literature is usually defined in terms
ofX and Y , but, for the sake of clarity, we will de-

scribe it in terms of Y and F (X), our pre-trained
feature representation.

We build our model based around that pro-
posed for the Structured Prediction Energy Net-
work (SPEN) model (Belanger and McCallum,
2016). In this approach the energy function is the
summation of individual Local energy and Global
energy terms:

E = Elocal(F (X), Y ) + Eglobal(Y ) (3)

Local energy is computed between input and
output (label) variables.

Elocal(F (X), Y ) =
L∑

i=1

yiW
>
i F (X) (4)

where Wi is a vector for each label, and yi ∈ Y is
the ith label in the label set.

Global energy meanwhile captures the relation-
ship between labels in the set of output variables
independently of the input features. It is also
called Label energy and is given below:

Eglobal(Y ) =W>g2 tanh(W
>
g1Y ) (5)

where all weights W , Wg1, and Wg2 are parame-
ters that are learned during the training process.

4.3 Loss Function
There are several options for designing the loss
function for use in energy-based modelling. In
our architecture, we use a loss function based on
that proposed for the end-to-end SPEN model (Be-
langer et al., 2017). This is given as follows:

L =
1

T

T∑

t=1

1

T − t+ 1
L(yt, y

∗) (6)

where T is the number of iterations in the in-
ference process, t is an iterative variable running
through the inference loop, and L(yt, y

∗) is the
loss function between the predicted output and the
target labels.

The motivation for this loss function is that it
measures the quality of every generated prediction
L(yt, y

∗) in the inference loop, and encourages the
Energy function to produce good quality predic-
tion by including the coefficient for each iteration

1
T−t+1 .

Although the end prediction yT is our desired
output, it is not advised to only calculate loss value
of this output. If doing so, the model can possibly
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generate the output only at the last inference it-
eration rather than moving smoothly towards the
output in the loop.

Since we define the dialogue state tracking task
as a multilabel classification task, we use the cross
entropy loss for the formula L(yt, y∗).

5 Experiments

In this section we provide details of the dataset,
hyper-parameter selection, and validation results.
Test results are presented in the next section.

We train our models with the training set and
use the development set to select the best trained
parameters. Following this, we run our models
with the test set and report those results.

For the food type, price range, and area slots,
we merge all three labels into a single multi-label
classification task for the sake of the energy-based
calculations. In other words we sacrifice the do-
main constraint that one and only variable can be
active individually for each of our slots and instead
look for complete global configurations. This is
necessary to allow a more elegant integration with
the energy-based mechanisms we introduced in
the previous sections. In practice our model still
(mostly) learns that we need one and only one slot
for each of the food, price range, and area related
subspace of our target variable.

The model performance is evaluated and re-
ported with the accuracy metric, which is one of
the feature metrics for the DSTC2.

5.1 Model hyper-parameters

As indicated earlier, we developed a multi-task
deep learning state tracker to pre-train the fea-
ture network which is subsequently supplied to the
energy-based network. This network in practice
also serves as a valid benchmark against which
we can compare the results of our energy-based
model.

This multi-task learning network consists of our
feature network (section 4.1) leading into three
classifiers for the three informable slots. These
three classifiers are implemented with softmax
output activation function as tracking each slot by
itself is a multinomial classification task. We train
all parameters of this system end-to-end with a
cross entropy loss function and use the Adam op-
timizer.

The energy-based system is trained with the
best set of pre-trained parameters from the multi-

task learning-based system having reviewed its
performance on the DSTC2 development set. As
we combine the labels of informable slots, the
task then becomes a multilabel classification task.
Therefore we use a sigmoid activation function for
the output of the energy-based system to produce
predictions rather than using three softmax func-
tions as used in the multi-task network above.

The detail of the selected hyper parameters are
presented in the Table 2. All hyper parameters
are chosen through a strict selection based on the
experiments on DSTC2 training and development
sets. We developed our energy-based model in
TensorFlow (TF) 1.13 (Abadi et al., 2015). As
is the case with the multi-task system, we apply
the cross entropy loss function and the Adam opti-
mizer (Kingma and Ba, 2015) to train the energy-
based network.

Hyper parameter Value
Feature network
Machine acts encoded size 300
Encoder output activation tanh
Word embedding size 300
LSTM number of units 128
LSTM drop out 0.2
LSTM output activation tanh

Inference process
Number of iterations 50
Initial learning rates 0.001
Non-linearity function tanh

Learning process
Loss function Cross entropy
Optimizer Adam
Learning rate 0.001
Maximal global gradient norm 5.0

Table 2: Basic hyper parameters used in experiments
constructing the energy-based dialogue state tracker.

5.2 Validation results

During the development phase we carry the evalu-
ation of our multi-task learning-based and energy-
based models against the DSTC2 development set
in order to find the best set of parameters. We
report on both a mean accuracy produced with
Tensorflow directly from our data, and the Joint
Goals accuracy produced by the toolset provided
for the DSTC2 dataset (Henderson et al., 2013).
We present the validation results in Table 3.

In the validation results we observe that ap-
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Model TF Acc. DSTC2 Acc.
Multi-task 0.719 0.692
Energy-based 0.759 0.715
DSTC2 Baseline 0.623

Table 3: Model performances on the Joint Goals task
of DSTC2 development set.

plying the energy network on top of deep learn-
ing feature network improves the accuracy on the
main tracking task by a margin up to 4%. We also
see that there is a big gap between raw accuracy
during the training process and external DSTC2
joint goal accuracy results when running evalua-
tion on the output track file. This can be explained
by a number of factors, including our exclusion
of one of the informable slots from the DST task,
that brings the accuracy on the DSTC2 develop-
ment set down by nearly 1%, and the fact that
the raw accuracy metric is carried on mini-batches
while the DSTC2 metric evaluates the output of
the whole dataset. Despite the differences, it is
clear that the overall indicative result indicates a
strong improvement with the application of the en-
ergy network.

6 Results & Discussions

We selected the best fitting set of hyper-parameters
and the highest accuracy checkpoint from valida-
tion for use on the test set. We report our results
against the DSTC2 baseline and other state-of-the-
art trackers (see Table 4). We choose reference di-
alogue state trackers that are related to our work in
different aspects such as their investigation of vari-
able dependencies or because the network archi-
tecture is similar to or inspired that which we use.
The evaluation metric used on test results is the
accuracy provided by the DSTC2 reference evalu-
ation system since this is the same metric used by
the published solutions.

Similar to the development set, the energy-
based model outperforms the multi-task deep
learning tracker by a large margin. The ob-
served improvement can only be achieved due
to the energy function and inference process of
the energy-based learning approach. Our multi-
task learning-based tracker is developed with a
straight-forward recurrent neural networks (RNN)
architecture. The multi-task model is trained to
track all three DSTC2 informable slots at the same
time, but it does not really tackle the relationships

Model Accuracy
Hybrid Tracker 0.796
Word-based Tracker 0.768
EncDec Framework 0.730
MTL Model 0.728
CRF Tracker 0.601
Our work
Energy-based Tracker 0.749
Multi-task Tracker 0.720
DSTC2 Baseline 0.719

Table 4: The performances of Dialogue State Trackers
on the Joint Goals task of DSTC2 test set.

between them. On the other hand, the energy-
based network includes the possible dependencies
of these slots by using an energy function over all
slot labels and pre-trained features.

As mentioned above there exist Dialogue State
Trackers that also tackle the relationships between
variables such as EncDec Framework (Platek
et al., 2016), MTL-based model (Trinh et al.,
2018), and Conditional Random Field (CRF)
tracker (Kim and Banchs, 2014). When comparing
our energy-based model with those, we observe
that our work achieves higher accuracy than those
for the DSTC2 test set. Two out of three track-
ers, namely the MTL-based model and EncDec
Framework, try to track Dialogue States within
the incremental dialogue context, that limited their
performances in general. Our work does not in-
clude the incrementality phenomenon. Kim and
Banchs (2014) manually define input features in
their work, that do not perform well. In our work
we set up the model to learn these features auto-
matically, and see improved results.

Among the state-of-the-art DSTC2 trackers, the
Hybrid model (Vodolan et al., 2015, 2017) is the
most similar in architecture to our work. Both ap-
proaches use a deep learning model as a feature
network. The difference between their and our
trackers lies in the algorithms applied on top of the
feature network. For the hybrid tracker the authors
apply a set of manual rule-based differentiable cal-
culations to predict the dialogue states, while in
our work we implement an energy network, that is
also deep learning-based. The Word-based tracker
(Henderson et al., 2014b) is a fully RNN-based
model, that is notable for its high performance and
the feature extraction technique. Vodolan et al.
(2017) as well as our work adopts this technique
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to extract features from dialogue input.

6.1 Variable Associations Analysis
As observed above, the energy-based system per-
forms better than the multi-task model in overall
score of accuracy. However, the accuracy metric
does not provide any extra information in terms
of variable associations that the energy-based ap-
proach takes advantage of. Therefore, we per-
formed further analysis on the results that our
trackers produced for DSTC2 test set to compare
our predictions to those of the DSTC2 baseline
system. The analysis is conducted in a similar
fashion to that presented in section 2.2, and is pre-
sented in Table 5.

food-price food-area price-area
Testset 0.609 0.658 0.428
Our work
Energy 0.577 0.659 0.428
MTL 0.523 0.687 0.447
Baseline 0.497 0.657 0.389

Table 5: Result analysis of variable dependencies on
the DSTC2 test set. The analysis is reported using the
φ coefficient values for each informable slot pair. In the
table, the first block is variable dependencies in labels
of the test set, while the second block is variable de-
pendencies detected by our energy-based (Energy) and
multi-task (MTL) trackers, and the last block is the re-
sult of the best DSTC2 baseline system.

The analysis result demonstrates that our
energy-based system is capable of tackling the
presence of variable dependencies in DSTC2 test
set. The energy-based method reflects the re-
lationships of two informable slot pairs, food –
area and price range – area, and produces a very
close relationship for the other pair, food – price
range. On the other hand, the multi-task learning
approach manages to capture some dependencies
that is shown in the result with bigger margins for
all variable pairs.

Overall both the deep learning-based methods
outperform the best DSTC2 rule-based baseline
system in comparing variable dependencies in the
tracking process for at least two out of three in-
formable slot pairs of the task.

7 Conclusion

In this paper we presented an energy-based ap-
proach to Dialogue State Tracking task that im-
proves the overall performance of a basic deep

learning-based model. Energy-based Learning is
notably good at structured prediction that we argue
applies to the DST task. The results of our work
strengthen the hypothesis that dependencies be-
tween variables within the dialogue context have
an impact on dialogue state tracking performance.
To our knowledge this is the first attempt to ap-
ply energy-based learning in a dialogue processing
task. Though our results do not in themselves im-
prove on the state of the art, the difference relative
to a multi-task deep learning model is significant
enough to indicate that the method could lead to
improvements on the state of the art if combined
with the state of the art. Beyond that combina-
tion with hybrid state-of-the-art models, there is
other room for improvement. Our current plans in-
cludes the investigation of multivariate dependen-
cies in dialogue processing with a larger domain
and cross domains. We also believe that it is good
to conduct an extensive analysis on variable de-
pendencies in data and performances of different
architectures.
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A Appendices

A.1 Dataset Analysis

We conduct a small analysis on the DSTC2 dataset
to reason why we would like to choose only three
out of four informable slots to track. In the anal-
ysis we count how often the slots appear in labels
with a value, i.e. not none, and how often those
slots change their values during the conversations.

Slot appearance (%)
Food Price Area Name

Value is not None
dstc2 train 75.06 61.70 72.16 0.37
dstc2 dev 72.70 62.48 70.11 0.86
dstc2 test 87.01 63.82 73.25 0.51
Value is changed
dstc2 train 17.12 10.10 11.50 0.07
dstc2 dev 15.56 9.23 10.24 0.20
dstc2 test 16.13 9.42 10.50 0.09

Table 6: The analysis of Informable slot appearances
in DSTC2 dataset. The numbers are reported in the per-
cent format (%) over the number of turns in the dataset.

Among DSTC2 informable slots, the slot Name
rarely appears. That means the datset does not
provide enough samples for training Deep Learn-
ing models to classify this slot. In the result,
this slot does not affect the Joint Goals tracking
performance, as in the DSTC2 test set predicting
Name = none gives 99.5% accuracy.

A.2 Chi-square Test

Chi-square test is a significant test for association
between two variables. The task and algorithm are
presented as follow.

Task Given a contingency table (table of counts)
of two variables A and B. Let P (Ai) and P (Bj)
are probability of appearance in the population of
the categories Ai and Bj . Test the relationship be-
tween these two variables (dependent or indepen-
dent).

Step 1 Define hypotheses of the task.

H0: The two variables are independent

P (Ai ∩Bj) = P (Ai)P (Bj) (7)

H1: The two variables are dependent

P (Ai ∩Bj) 6= P (Ai)P (Bj) (8)

Step 2 Calculate expected frequency of
{Ai, Bj} based on the input

Eij = P (Ai) ∗ P (Bj) ∗N (9)

where N is the population.
Step 3 Calculate the chi-square error

X 2
V =

∑

i

∑

j

(Oij − Eij)2
Eij

(10)

where V is degree of freedom, Oij and Eij are
observed and expected frequencies subsequently.

Step 4 We reject H0 if the computed test statis-
tics X 2

V is high and the significance coefficient
p < 0.05.

There exist several measurements of associa-
tion strength between variables directly related to
the chi-square test statistics. There measures are
scaled between 0 and 1 indicating that 1 is the
perfect relationship and 0 is no relationship be-
tween variables. We choose φ coefficient to report
the level of dependencies between slots in DSTC2
data as in section 2.2.

φ =

√
X 2

N
(11)

where X 2 is the chi-square statistic value, and N
is the number of samples in dataset.
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Abstract

We describe and validate a metric for estimat-
ing multi-class classifier performance based
on cross-validation and adapted for improve-
ment of small, unbalanced natural-language
datasets used in chatbot design. Our expe-
riences draw upon building recruitment chat-
bots that mediate communication between
job-seekers and recruiters by exposing the
ML/NLP dataset to the recruiting team. Eval-
uation approaches must be understandable to
various stakeholders, and useful for improving
chatbot performance. The metric, nex-cv,
uses negative examples in the evaluation of
text classification, and fulfils three require-
ments. First, it is actionable: it can be used by
non-developer staff. Second, it is not overly
optimistic compared to human ratings, mak-
ing it a fast method for comparing classifiers.
Third, it allows model-agnostic comparison,
making it useful for comparing systems de-
spite implementation differences. We vali-
date the metric based on seven recruitment-
domain datasets in English and German over
the course of one year.

1 Introduction

Smart conversational agents are increasingly used
across business domains (Jain et al., 2018). We
focus on recruitment chatbots that connect re-
cruiters and job-seekers. The recruiter teams we
work with are motivated by reasons of scale and
accessibility to build and maintain chatbots that
provide answers to frequently asked questions
(FAQs) based on ML/NLP datasets. Our enter-
prise clients may have up to 100K employees, and
commensurate hiring rate. We have found that al-
most 50% of end-user (job-seeker) traffic occurs
outside of working hours (Liu, 2019), which is
consistent with the anecdotal reports of our clients
that using the chatbot helped reduce email and
ticket inquiries of common FAQs. The usefulness

of these question-answering conversational UIs
depends on building and maintaining the ML/NLP
components used in the overall flow (see Fig. 1).

In practice, the use of NLP does not improve
the experience of many chatbots (Pereira and
Dı́az, 2018), which is unsurprising. Although
transparency (being “honest and transparent when
explaining why something doesn’t work”) is a
core design recommendation (DialogFlow, 2018),
the most commonly available higher-level plat-
forms (Canonico and De Russis, 2018) do not pro-
vide robust ways to understand error and commu-
nicate its implications. Interpretability is a chal-
lenge beyond chatbots, and is a prerequisite for
trust in both individual predictions and the over-
all model (Ribeiro et al., 2016). The development
of the nex-cv metric was driven by a need for a
quantification useful to developers, as well as both
vendor and client non-developer staff.

The nex-cv metric uses plausible negative
examples to perform actionable, model-agnostic
evaluation of text classification as a component in
a chatbot system. It was developed, validated, and
used at jobpal, a recruiting chatbot company, in
projects where a client company’s recruiting team
trains and maintains a semi-automated conversa-
tional agent’s question-answering dataset. Use
of ML and NLP is subject to conversation flow
design considerations, and internal and external
transparency needs (Kuksenok and Praß, 2019).
The chatbots do not generate answers, but provide
all responses from a bank that can be managed by
client staff. Each of about a dozen live chatbots
answers about 70% of incoming questions without
having to defer to a human for an answer. About
two thirds of the automated guesses are confirmed
by recruiters; the rest are corrected (Fig. 3).

In “Background”, we relate our work to prior
research on curated ML/NLP datasets and evalua-
tion in chatbots. In “Approach”, we describe the
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Figure 1: Each incoming message from an end-user
is subject to (1) a general intent classifier specific to
a language; and, if none of the roughly 20 intents are
the recognized, (2) a company-specific FAQ classifier.
Custom flow affects the specifics of this behavior.

metric and provide its application and data con-
text of use. In “Validation Datasets”, we describe
the datasets with which this metric has been val-
idated. In “Validation”, we provide results from
experiments conducted while developing and us-
ing the metric for over a year, addressing each of
the needs of the metric, which make it a useful tool
for multiple stakeholders in the chatbot design and
maintenance process.

1. enable data quality improvements (Fig. 4)

2. not be overly-optimistic (Fig. 5)

3. enable model-agnostic comparison (Fig. 6)

We contribute a metric definition, its validation
with six real projects over the course of one year
(2018.Q2 through 2019.Q1), as well as an exten-
sible implementation1 and testing plan, which is
described in “Metric Definition” below.

2 Background

Chatbots, or “text messaging-based conversa-
tional agents”, have received particular attention in
2010s (Jain et al., 2018). Many modern text-based
chatbots use relatively simple NLP tools (Abdul-
Kader and Woods, 2015), or avoid ML/NLP alto-
gether (Pereira and Dı́az, 2018), relying on conver-

1http://github.com/jobpal/nex-cv

sation flow design and non-NLP inputs like but-
tons and quick-replies. Conversational natural-
language interfaces for question-answering have
an extensive history, which distinguishes open-
domain and closed-domain systems (Mishra and
Jain, 2016). ML-based chatbots rely on cu-
rated data to provide examples for classes (com-
monly, “intents”), and must balance being widely-
accessible to many end-users, but typically spe-
cialized in the domain and application goal (Ser-
ban et al., 2015). In practice, design and devel-
opment of a chatbot might assume a domain more
focused, or different, than real use reveals.

In the chatbot application context, the training
dataset of a text classifier may be modified to im-
prove that classifier’s performance. The classes —
“intents” — are trained with synthetic data and
constitute anticipated, rather than actual, use. Ex-
isting general-purpose platforms include this syn-
thetic data step as part of design and mainte-
nance (Canonico and De Russis, 2018). For ex-
ample, when it comes to invocations for a voice
agent (Ali et al., 2018), dataset construction en-
codes findings about how users might imagine
asking for some action: the authors use a crowd-
sourcing mechanism to achieve both consistency
useful for classification, and reflection of user
expectations in the dataset. We adopt a simi-
lar approach: enabling domain-experts (recruiters)
to maintain the dataset helps map end-user (job-
seeker) needs to recruiters’ goals.

Data cleaning is not only relevant to chatbots.
Model-agnostic systems for understanding ma-
chine learning can help iteratively develop ma-
chine learning models (Zhang et al., 2019). De-
velopers tend to overlook data quality in favor of
focusing on algorithmic improvements in building
ML systems (Patel et al., 2008). Feature engineer-
ing can be made accessible to non-developers or
domain experts, e.g. (Ribeiro et al., 2016). We
make use of representative examples in the process
that surfaces nex-cv to non-developers; in de-
scribing this process in “Metric Application”, we
map it to the inspection-explanation-refinement
process employed in (Zhang et al., 2019). En-
abling non-developers to perform data cleaning ef-
fectively allows developers to focus on model ad-
justments and feature engineering.

There are many ways to measure overall chatbot
quality, such as manual check-lists of high-level
feature presence (Kuligowska, 2015; Pereira and
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Dı́az, 2018). Static analysis and formal verifica-
tion may be used with a specified flow (Porfirio
et al., 2018). User behavior measurements — both
explicit, like ratings or feedback, and implicit,
like timing or sentiment — are explored in (Hung
et al., 2009). During metric development, we used
qualitative feedback from domain-expert users,
and key performance indicators (KPIs), such as
automatic response rate. Regardless of overall
evaluation approach, the use of a classifier as a
component in a complex flow demands robust and
actionable evaluation of that component.

3 Approach

The nex-cv algorithm selects some classes as
plausible sources of negative examples, and then
uses those to partition the given dataset into train-
ing and test data (Alg. 1). Negative examples are
useful in chatbot component evaluation: the end-
user interaction with a chatbot is open-ended, so
the system is expected to encounter input that it
should recognize as outside its domain.

Low-membership classes are candidates for be-
ing ignored in training and used as negative ex-
amples in testing. Two mutually-exclusive varia-
tions use the K parameter for cutoff-based nega-
tive example selection (Alg. 2); and the P param-
eter for proportional negative example selection
(Alg. 2). We focus on three settings, with (K,P )
set to (0, 0), (0, 0.15), and (5, 0). The values
were tuned for typical distributions (see “Valida-
tion Datasets”), and the (0, 0) is a validating mea-
sure that is comparable to 5-fold CV (see “Metric
Definition”).

We assume that low-population classes are all in
the same domain as the rest. There may be excep-
tions: in some cases a new, small category may be
created in response to new questions on an emer-
gent topic well outside of the core domain. In our
experience, this happens when there is a technical
issue elsewhere on the site and the chatbot chan-
nel is used as an alternative to escalate the issue.
In practice, our system handles this case well, even
if the evaluation is less applicable. Such emergent
categories either disappear over time: the topic is
temporary; or grow: the topic becomes part of the
domain.

3.1 System Overview

A chatbot (Fig. 2) is based on two datasets (Fig. 1),
each maintained using a data management tool

Result: (Xtrain, ytrain, Xtest, ytest)
Require data X, y s.t. xi is the input text that
has gold standard label yi ∀i;

Require label sets LSM , LLG s.t.
LSM ∪ LLG = {yi | y} Require test fraction
0 < t < 1 and function splitt(L) which
randomly splits out two lists L1, L2 s.t.
|L2|
|L| = t and L1 ∪ L2 = L ;

for Lj ∈ LLG do
TR, TS = splitt(i|yi ∈ y ∧ yi == L);
Xtrain, ytrain ← xi, yi s.t. i ∈ TR ;
TR, TS = splitt(i|yi ∈ y ∧ yi == L);
Xtest, ytest ← xi, yi s.t. i ∈ TS ;

end
TRL, TSL = splitt({j|yj ∈ LSM});
Xtrain, ytrain ← xi, yi s.t. yi ∈ TRL;
Xtest, ytest ← xi,Ø s.t. yi ∈ TSL;

Algorithm 1: Negative Example Data Provision

(Fig. 3). Traffic varies widely between projects,
but is typically consistent within a project. To pro-
vide a range: in one quarter in 2018, the high-
est traffic chatbot had about 2000 active users, of
which about 250 (ca. 12%) asked questions. The
lowest-traffic chatbot saw 6̃5 weekly active users,
of which 15 (ca. 23%) asked questions. In both
cases, a small number (2-4) of recruiters were re-
sponsible for maintaining the dataset.

The training set of the FAQ portion of each
project contains between 1K and 12K training
examples across between 100 and 200 distinct
classes, usually starting with about 50−70 classes
and creating new classes after the system goes
live and new, unanticipated user needs are en-
countered. To build classifiers on datasets of this
size, we use spaCy (Honnibal and Montani, 2017)
and fastText (Bojanowski et al., 2016) for vector-
ization, with transformation for improved perfor-
mance (Arora et al., 2016), and logistic regression
with L2 regularization (Pedregosa et al., 2011).

The dataset for shared general intents is main-
tained through the data management tool by jobpal
staff. One such classifier is shared by all compa-
nies that use a particular language; projects span
English, German, Chinese, and French. About 20
general intents are trained with a total of about 1K
to 1.5K training examples per language. These
include intents that control the conversation (e.g.,
‘stop’, ‘help’). This shared language-specific clas-
sification step includes entity extraction of profes-

89



Figure 2: Here, the job-seeker’s question receives an
immediate answer, based on the ML/NLP classifier. If
confidence is too low, chatbot will defer to a human.

Figure 3: Even if the chatbot responds, recruiters can
use a data management tool to review the answer.

sion and city of interest to job-seekers; for exam-
ple, statements like ‘I want a [profession] job in
[city]‘ and ‘do you have any [profession] open-
ings?’ should all resolve to ‘job search’ along
with extracted keywords. Lastly, this classifier
also identifies very common questions that affect
all chatbots2, but which are not in the recruitment
domain: e.g., ‘how are you?’ and ‘is this a robot?’.

The dialog in Fig. 2 shows the FAQ functional-
ity of the chatbots, powered by classification using
company-specific FAQ datasets (see also Fig. 1).

2This was another outcome of the case study summarized
in Fig. 4: we identified four categories of questions that we
could anticipate in all projects, but that were not in the ex-
pert domain of the FAQ, so we made modifications to the
flow, the way the existing classifiers were used, and the gen-
eral intents training data, to help keep company-specific FAQ
datasets more focused.

In most projects, users who ask question ask be-
tween 1 and 2 questions. The FAQ functionality
is typically an addition to any existing informa-
tion displays. Many of our chatbots also feature
job discovery, including search and subscriptions.
Job search may be triggered by clicking on the
button [Look for a job], or writing some-
thing like “I would like a [profession] job in
[location]” at almost any point in the flow.
If either of location or profession is not specified,
the user is prompted, and the responses are used
to search current openings, which are then shown.
The user may submit application or follow exter-
nal links; the user may also ask questions about
specific jobs or the employer more generally.

3.2 Metric Definition
The code available online3 provides the evalua-
tion implementation, an abstract black-box defi-
nition for a classifier, and two strategies to help
test an implementation. For integration testing,
CustomClassifier.test() can be used to
check consistency of classifier wrapper. For func-
tional testing, nex-cv both K = 0 (Alg. 2) and
P = 0 (Alg. 2) should yield comparable results
to 5-fold cross-validation.

Result: LSM , LLG
Require data X, y s.t. xi is the input text that
has gold standard label yi ∀i;

Require cutoff parameter K > 0 ;
LSM = {yi | yi in y, occurs < K} ;
LLG = {yi | yi in y, occurs ≥ K} ;

Algorithm 2: Cutoff Selection of Plausible Neg-
ative Example Classes

In k-fold cross-validation, data is partitioned
into k sets of (Xtrain, ytrain, Xtest, ytest) such that
|Xtest|
|Xtrain| = 1/k (let the test fraction t = 1/k), and
the training sets do not overlap. Then, each set
of training data is evaluated using the correspond-
ing test set. Evaluation can include many possible
measures: accuracy or F1; representative exam-
ples; confusion matrix; timing data; etc.

In nex-cv, test fraction t is a setting (0.2 for
all reported experiments), and data partitions may
overlap. As shown in Alg. 1, representation of
high-population classes is enforced. Then, low-
population classes are also split using t, and in-
cluded either in the training set with their ground

3http://github.com/jobpal/nex-cv
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Result: LSM , LLG
Require data X, y s.t. xi is the input text that
has gold standard label yi ∀i;

Require proportion parameter 0 ≤ P < 1 ;
LSM = {} ;
Let Q = {yi | yi ∈ y}, as queue sorted from

least to most occurring in X ;
while |{i|xi∈X∧yi∈LSM}|

|X| < P do
Pop element L from Q ;
LSM ← L;

end
LLG = {yi | yi in y, not in LSM} ;

Algorithm 3: Proportional selection of Plausible
Negative Example Classes

truth label; or in the test set as a negative ex-
ample. In practice, this results in about t of
the data being in training. Some low-population
classes in the training set should be included as
this is representative of the dataset shape; many
low-population classes may affect the classifica-
tion and confidence overall, depending on classifi-
cation approach. Low-population classes are typ-
ically rare or relatively recent topics, so interpret-
ing them as plausible negative examples helps to
test the classifier, and its measure of confidence.

3.3 Validation Datasets
The seven datasets to which we report having ap-
plied the nex-cv metric are in the recruitment
domain. Each dataset has about 50− 200 classes,
and most have classes with 5-10 members as well
as classes with over a hundred. To characterize
the content, we trained a classifier on an anony-
mous benchmark dataset 4 and used it to classify
a random recent sample of 6K English-language
questions.

About 25% of recent end-user queries in En-
glish fall into 5 categories: (1) Application Pro-
cess; (2) Salary; (3) Professional Growth and De-

4The clean, anonymized recruitment-domain-specific
dataset in English was built by anonymizing and aggregat-
ing all FAQ datasets; using pairwise similarity between cate-
gories to group them. For an initial clustering, we used Jac-
card index with a minimum of 0.09, which balanced the goals
of high coverage of example data ( 74) and reasonable sizes
of classes (15 examples per class); then, this dataset was sub-
ject to iterative data quality improvements as described fur-
ther and exemplified in Fig. 4 until a final set of about 800
examples over about 47 categories was developed. This ini-
tial domain-specific clustering was performed on English, but
has since been extended to other supported languages; the re-
sults reported are specific to English, however.

Figure 4: Change in classifier performance as a re-
sult of data quality intervention. Averages of daily
10-retry evaluations shown.

velopment; (4) Internships; (5) Contact a Human.
Another 25% of end-user queries fall into 14

categories: Application Evaluation; Application
Deadline; Application Delete or Modify; How
Long to Apply and Hear Back; Qualification;
Application Documents; Language Expectations;
Thesis; Working Hours; Location; Starting at the
Company; Commute; Equipment; Benefits.

About 40% of overall requests were not recog-
nized (with a confidence of 0.5 or higher) as any
of the categories in the anonymous benchmarking
set. Upon manual inspection, some of these test
questions were noise, and many were topics spe-
cific to particular company FAQs, such as concern-
ing specific work-study programs; details of the
application software; and other more niche topics.

The classification datasets share some overlap-
ping topics; each also has a specific set of addi-
tional topics. Each dataset has the typical shape
of a few larger classes, and many smaller ones,
which have an indirect relationship to what data
is expected. The use of low-population classes
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as plausible negative examples takes advantage of
both the content of the data (closed-domain, with
a topic-specific core but a considerable number of
additional, outlying topics) and the membership
distribution of the classes (a few well-populated
ones, and many much smaller classes).

The nex-cv metric may apply in other prob-
lems or domains, but we developed and validated
it in a series of experiments with six live datasets,
in English and German (see Fig. 5, of which chat-
bot E is also the subject of Fig. 4), in addition
to the seventh aggregate anonymous benchmark
dataset described above, which was used for the
comparison in Fig. 6.

4 Validation

The following case studies validate the metric rel-
ative to each of three requirements: (1) enable
data quality improvements, as in Fig. 4, (2) not be
overly-optimistic, as in Fig. 5, (3) enable model-
agnostic comparison, as in Fig. 6.

4.1 Metric Application

The goal of usefulness includes interpretability:
“provid[ing] qualitative understanding between
the input variables and the response... [taking]
into account the users limitations in (Ribeiro et al.,
2016). Usefulness combines this with actionable
support of chatbot design. The users include, in
this case, non-developer staff on both vendor and
client side: recruiters and project managers.

Through iteration on internal tools, we found
that displaying performance information in the
form of, “which 2-3 topics are the biggest prob-
lem?” was most effective for understanding, com-
munication, and action. Over the course of a year,
the nex-cv metric informed this analysis. Dur-
ing this time, both qualitative feedback and KPIs
have validated that it was effective both for trust
and for the end-user experience. The automation
rate KPI — proportion of incoming queries that
did not need deferral to a human, but answered
immediately, as in Fig. 2 — has risen to and re-
mained at 70−75% across projects mainly5 due to
data quality support during both design and main-
tenance.

5The data training UI design contributes to data quality;
in the months following the intervention shown in Fig. 4,
the UI was redesigned to address outstanding usability prob-
lems, with very positive feedback from domain-expert users.
A more in-depth discussion of the role of human factors in
human-in-the-loop systems is out of scope for this paper.

In one illustrative project (Fig. 4) the automa-
tion rate had become as low as 40%. The recruiters
responsible for dealing with escalated questions
became frustrated to see questions come up that
had been asked before. Action needed to be taken,
and this project became one of the first case studies
for developing the application of nex-cv inter-
nally. After intervention, automated response rate
rose into the desirable 70s range and remained.
The quality improvements were explained and im-
plemented by an internal project manager, who
pro-actively included client domain-expert users
in explanations over calls and emails over what
improvements were made and why. Initially, 200
classes were trained with 1K examples, with long
tail of low-population classes. Following interven-
tion, dataset grew by 25% and, despite concept
drift risk, did not deteriorate.

To use nex-cv, we aggregate the confusion
matrix from theK = 0;P = 0.15 setting and rank
how confused a pair of categories is. The most
confused 2-3 pairs of classes are then the focus of
conceptual, manual review in the dataset. Evalu-
ation is performed again, producing a new rank-
ing that guides the next 2-3 classes to focus on,
until the metric falls below an acceptable thresh-
old. There are other sources of classification error,
but overlap between conceptually related pairs of
classes accounts for most of the data quality prob-
lems we encounter in the datasets in practice, and
are particularly understandable than other forms of
error. This relatively simple approach is imple-
mented as a Jupyter notebook accessible to non-
developers (internal project managers).

The details of pairwise measures and accept-
ability threshold were developed iteratively based
on project manager feedback. The project man-
agers also honed processes and intuitions for com-
municating this information to clients effectively.
In extreme situations as that shown in Fig. 4 the
project managers made a presentation to get buy-
in and implemented data quality improvements on
their own. However, the typical practice now is
to provide explanations, in calls and emails, of
the “confusions” between one or few pairs of spe-
cific categories to the client. This practice builds
awareness of data quality across stakeholders, and
the domain-experts (recruiters) are better able to
use the system to create the envisioned chatbot
functionality without major intervention. As the
number of projects grows, the metric can be used

92



Figure 5: Comparison of nex-cv and Human-Rater Accuracy. The six datasets from pseudonymous chatbots
tested had a different number of questions (examples) and categories (classes), as shown in the bottom row. The
human-rater estimate of accuracy (top left, blue) is consistently more lenient than any of the automated measures
(top right). The (0; 0.15) setting (top right, blue) is not consistently more or less optimistic than the other settings.

Figure 6: Comparison Against Leading Chatbot NLP Engines on Recruitment-Domain Data. Engine C wraps
jobpal’s system; Engines A and B wrap external general-purpose chatbot platforms.
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by project managers to monitor and prioritize data
quality improvement tasks.

4.2 Metric is not Overly Optimistic
One of the practical motivations for a new metric
was the sense that the existing metrics were too
optimistic to be useful to improve chatbot behav-
ior in response to overall qualitative feedback. As
shown in Fig. 4, for example, the typical F1 metric
is more optimistic than nex-cv.

As an initial step of validating the metric, we
applied it in the case of six under-performing
datasets that required some intervention. Fig. 4
shows the differences in data abundance and
classifier quality across these six pseudonymized
snapshots. Internal QA staff gave the human rating
scores by considering whether a question-answer
pairs seemed reasonable: they could pick “yes”
“no” and “can’t tell”; in most cases, the appropri-
ateness was not ambiguous. As shown in Fig. 5,
the human-rater estimate of quality is consistently
more lenient than any of the automated measures.
The Chatbot E in this case is the same project as
shown in Fig. 4, prior to improvements.

Four of the six datasets analyzed had a very big
difference between the human estimate of quality
and the automated estimate, which, upon inves-
tigation, revealed that there were significant con-
ceptual overlaps in the classes that the recruiters
had trained, and the answers given. So, indeed,
the classifier was making surprisingly adequate
guesses, but which were very low-confidence. Fol-
lowing the intervention described in the previous
section, which includes ongoing communication
of any outstanding problems by project managers
to recruiter teams, this type of error became rare
and quickly-addressed.

4.3 Metric can be used for Internal and
External Comparison

We used the nex-cv metric to help compare the
performance of our classification component with
two leading vendors for general-purpose chatbot
development. Fig. 6 shows the comparison be-
tween jobpal and 2 leading vendors in the space.
The three settings of the metric6 were aggregated
to provide a plausible range of estimated per-
formance. The range of accuracy was signifi-
cantly higher for our domain-specific classifier,
than those trained using general-purpose tools.

6Where (K,P ) are (0, 0), (0, 0.15), and (5, 0), respec-
tively, as differentiated in both Fig. 4 and Fig. 5.

Aside from being useful to classify into known
classes, the metric must account for fallback or es-
calation. This may be modeled as a separate class
(as one of the external engines does with the “fall-
back” intent), or by relying on confidence scores
from classifiers that produce measures of confi-
dence (all engines provide some estimate of confi-
dence that may be used). The “carefulness” score
was included to represent how useful the confi-
dence score is for deciding when to decline an an-
swer: the number of incorrect guesses that were
rejected due to too-low confidence scores divided
by total no-answer-given cases (no guess or low-
confidence guess).

Fig. 6 shows that the performance of our
ML/NLP component on our domain-specific
dataset is better than that of two popular general-
purpose platforms, both in terms of classifica-
tion accuracy, and rate of deferral due to low-
confidence answers. This comparison mechanism
validates our system relative to existing external
services in a way that is interpretable by various
internal stakeholders, not only the developer staff.

5 Conclusion

We described and validated the nex-cv metric,
which is a modification of cross-validation that
makes use of plausible negative examples from
low-population classes in the datasets typical of
our application area and domain.

Existing chatbot guidelines leave error handling
to the designer: “transparency” is included as an
important topic (DialogFlow, 2018), but, in prac-
tice, why something does not work, and under
what conditions, can puzzle designers and devel-
opers, not just end-users. We presented on a metric
that can be used by a variety of relevant stakehold-
ers to understand, communicate, and improve text
classifier performance by improving data quality.

In future work, we aim to explore other text
classifier and chatbot evaluation strategies, keep-
ing in mind the needs for understandability and
transparency in this multi-stakeholder design pro-
cess and maintenance practice.
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Abstract

Tracking the state of the conversation is a cen-
tral component in task-oriented spoken dia-
logue systems. One such approach for track-
ing the dialogue state is slot carryover, where
a model makes a binary decision if a slot from
the context is relevant to the current turn. Pre-
vious work on the slot carryover task used
models that made independent decisions for
each slot. A close analysis of the results show
that this approach results in poor performance
over longer context dialogues. In this paper,
we propose to jointly model the slots. We
propose two neural network architectures, one
based on pointer networks that incorporate slot
ordering information, and the other based on
transformer networks that uses self attention
mechanism to model the slot interdependen-
cies. Our experiments on an internal dialogue
benchmark dataset and on the public DSTC2
dataset demonstrate that our proposed models
are able to resolve longer distance slot refer-
ences and are able to achieve competitive per-
formance.

1 Introduction

In task-oriented spoken dialogue systems, the user
and the system are engaged in interactions that can
span multiple turns. A key challenge here is that
the user can reference entities introduced in previ-
ous dialogue turns. For example, if a user request
for what’s the weather in arlington is followed by
how about tomorrow, the dialogue system has to
keep track of the entity arlington being referenced.

In slot-based spoken dialogue systems, tracking
the entities in context can be cast as slot carryover
task – only the relevant slots from the dialogue
context are carried over to the current turn. Re-
cent work by Naik et al. (2018) describes a scal-
able multi-domain neural network architecture to
address the task in a diverse schema setting. How-
ever, this approach treats every slot as indepen-

LOCATION

La taqueria

PLACE

La taqueria

TEMPERATURE

57 F

Mexican restaurants
PLACETYPE

CITY

San Francisco

What's the weather in San 
Francisco?

In San Francisco, CA
it's 57 F …

La taqueria is a mile away

Thanks, send directions to my 
phone

San Francisco

TOWN

San Francisco

SEARCH PLACE INTENT

GET WEATHER INTENT

GET DIRECTIONS INTENT

Any good Mexican 
restaurants there? STATE

CA

WEATHERCITY

San Francisco
WEATHERSTATE

CA

WEATHERCITY

Figure 1: An example of a conversation session. Slots
are listed on the right. Related slots often co-occur,
such as (1) [WEATHERCITY: San Francisco] and
[WEATHERSTATE: CA], and should be carried over to-
gether due to their interdependencies (2) PLACE slot is
often seen to occur along with TOWN.

dent. Consequently, as shown in our experiments,
this results in lower performance when the con-
textual slot being referenced is associated with di-
alogue turns that are further away from the cur-
rent turn. We posit that modeling slots jointly
is essential for improving the accuracy over long
distances, particularly when slots are correlated.
We motivate this with an example conversation
in Figure 1. In this example, the slots WEATH-
ERCITY/WEATHERSTATE, need to be carried over
together from dialogue history as they are corre-
lated. However, the model in Naik et al. (2018)
has no information about this slot interdependence
and may choose to carryover only one of the slots.
In this work, we alleviate this issue by propos-
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ing two novel neural network architectures – one
based on pointer networks (Vinyals et al., 2015)
and another based on self-attention with trans-
formers (Vaswani et al., 2017) – that can learn to
jointly predict jointly whether a subset of related
slots should be carried over from dialogue history.

To validate our approach, we conduct thorough
evaluations on both the publicly available DSTC2
task (Henderson et al., 2014), as well as our in-
ternal dialogue dataset collected from a commer-
cial digital assistant. In Section 4.3, we show that
our proposed approach improve slot carryover ac-
curacy over the baseline systems over longer dia-
logue contexts. A detailed error analysis reveals
that our proposed models are more likely to utilize
“anchor” slots – slots tagged in the current utter-
ance – to carry over long-distance slots from con-
text.

To summarize we make the following contribu-
tions in this work:

1. We improve upon the slot carryover model ar-
chitecture in Naik et al. (2018) by introduc-
ing approaches for modeling slot interdepen-
dencies. We propose two neural network mod-
els based on pointer networks and transformer
networks that can make joint predictions over
slots.

2. We provide a detailed analysis of the proposed
models both on an internal benchmark and pub-
lic dataset. We show that contextual encoding
of slots and modeling slot interdependencies is
essential for improving performance of slot car-
ryover over longer dialogue contexts. Trans-
former architectures with self attention provide
the best performance overall.

2 Problem Formulation

A dialogue H is formulated as a sequence of utter-
ances, alternatively uttered by a user (U) and the
system agent (A):

H =
(
h{U ,A}
d

, · · · , hU
2 , h

A
1 , h

U
0

)
, (1)

where each element h is an utterance. A subscript
d denotes the utterance distance which measures
the offset from the most recent user utterance (hU

0 ).
The i-th token of an utterance with distance d is
denoted as hd[i].

A slot x = (d, k, l,r) in a dialogue is defined as a
key-value pair that contains an entity information,
e.g. [CITY:San Francisco]. Each slot can be de-
termined by the utterance distance d, slot key k,

and a span [l : r] over the tokens of the utterance
with slot value represented as hd[l : r].

Given a dialogue history H and a set of can-
didate slots X , the context carryover task is ad-
dressed by deciding which slots should be carried
over. The previous work (Naik et al., 2018) ad-
dressed the task as a binary classification problem
and each slot x ⊆ X is classified independently. In
contrast, our proposed models can explicitly cap-
ture slot interactions and make joint predictions
of all slots. We show formulations of both model
types below,

Fbinary(x,H) ∈ (0,1) ∀x ∈ X (2)

Fjoint(X,H) ⊆ X (3)

where Fbinary(x,H) denotes a binary classification
model (Naik et al., 2018), Fjoint(X,H) denotes our
joint prediction models.

3 Models

3.1 General architecture

Candidate Generation We follow the approach
in Naik et al. (2018), where, given a dialogue H,
we construct a candidate set of slots X from the
context by leveraging the slot key embeddings to
find the nearest slot keys that are associated with
the current turn.

Slot Encoder A model, given a candidate slot
(a slot key, a span in the history and a distance),
results in a fixed-length vector representation of a
slot: x = FS(x,H) ∈ RDS , where x is the slot, H is
the full history.

Dialogue Encoder We serialize the utterances
in the dialogue and use BiLSTM to en-
code the context as a fixed-length vector
c = BiLSTM(H) ∈ RDC .

Intent Encoder The intent I of the most recent
utterance determined by an NLU module is also
encoded as a fixed-length vector i ∈ RDI by av-
eraging the tokens in the intent. We average the
word embeddings of the tokens associated with the
intent to get the intent embedding.

Decoder Given the encoded vector representa-
tions {x1, · · · ,xn} of the slots, the context vector c,
the intent vector i, produce a subset of the slot ids:

FD(x1:n,c, i) ⊆ {1, · · · ,N} (4)
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Candidate
Generation 

… EOS in san francisco CA … EOS any good mexican restaurants there EOS

… …

… …ṽfrancisco
<latexit sha1_base64="rYhX3kZ2cSi3v4aSHCy1zDPh1GQ=">AAACWnicZZDbSsNAEIa38dx6qIc7EYKl4FVJquCt4I1XomK10JSy2U7q4h5CdqqRJU/g03irTyL4MG5rL0w7sPDPt/8MMxOnghsMgu+Kt7S8srq2vlGtbW5t79R39x6MHmcMOkwLnXVjakBwBR3kKKCbZkBlLOAxfr6c/D++QGa4Vvf4lkJf0pHiCWcUHRrUmxFyMQQbSYpPcWJfimJgI4QcbZJRxbhh2qF6I2gF0/AXRTgTDTKLm8Fu5SgaajaWoJAJakwvDFLsW5ohZwKKajQ2kFL2TEfQc1JRCaZvp/sUftORoZ/ozD2F/pT+r7DInb3cxEgqBGQ6dW0UvGI+WahksVSaRRjLcp7wXGDehjkqNMUyMnysOOZzPjevSYE5agAl5WpC7P1kXv8aXv07Lakqqu6g4fz5FsVDuxWettq3Z42L7uy06+SQHJMTEpJzckGuyA3pEEbeyQf5JF+VH8/zNrzan9WrzGr2SSm8g1/fS7pu</latexit>

ṽsan
<latexit sha1_base64="UFbjKD4aajDMax/wp0TA6/s+0Dc=">AAACVHicZZBNS8NAEIY3qR+1flU9ihgsgqeSVMGr4MWTVGm1YErZbKe6uB8hO62RpUd/jVf9K4L/xYPb2oNpBxbeeXZmmHmTVHCDYfjt+aWl5ZXV8lplfWNza7u6s3tn9DBj0GZa6KyTUAOCK2gjRwGdNAMqEwH3yfPl5P9+BJnhWrXwNYWupI+KDzij6FCvehgjF32wsaT4lAzsaDzu2RghR2uockm1FtbDaQSLIpqJGplFs7fjHcR9zYYSFDJBjXmIwhS7lmbImYBxJR4aSCl7po/w4KSiEkzXTi8ZB8eO9IOBztxTGEzp/w6L3JUXhxhJhYBMp26MghfMJ6cUSiyVZhEmspgPeC4wb8AcFZpiERk+VBzzuTq3r0mBOWoAJeVqQmxrsm9wDS/BrZbO0IozNJq3b1HcNerRab1xc1a76MysLZN9ckROSETOyQW5Ik3SJoy8kXfyQT69L+/HL/nLf6W+N+vZI4Xwt34BV5u4uw==</latexit>

ṽCA
<latexit sha1_base64="XNIQdwJlglCr3RkE0r6Jz3rpamM=">AAACU3icZZBNS8NAEIY38avWr6pHUYJF8FSSKnhVevEkKlYLppTNdqqL+xGyU40suflrvOpf8eBv8eK29mDagYV3nn1nmJkkFdxgGH57/tz8wuJSZbm6srq2vlHb3Lo1epgxaDMtdNZJqAHBFbSRo4BOmgGViYC75Kk1+r97hsxwrW7wNYWupA+KDzij6FCvthcjF32wsaT4mAzsc1H0bIyQo22dOV2rh41wHMGsiCaiTiZx2dv0duO+ZkMJCpmgxtxHYYpdSzPkTEBRjYcGUsqe6APcO6moBNO140WK4MCRfjDQmXsKgzH9X2GRO3u5iZFUCMh06tooeMF8tEnJYqk0szCR5XzAc4F5E6ao0BTLyPCh4phP+dy8JgXmqAGUlKsRsTejeYMLeAmutaSqqLqDRtPnmxW3zUZ01GheHddPO5PTVsgO2SeHJCIn5JSck0vSJoy8kXfyQT69L+/H9/35P6vvTWq2SSn8tV/L/Lfz</latexit>

ṽany
<latexit sha1_base64="O4JMuzxzi78Qfw2p6tyqnafKZQY=">AAACVHicZZBNS8NAEIY3qZ/1q9WjiMEieCpJFbwKXjyJitWCKWWznerifoTstEaWHP01XvWvCP4XD25rD6YdWHjn2XeGmUlSwQ2G4bfnVxYWl5ZXVqtr6xubW7X69p3Rw4xBm2mhs05CDQiuoI0cBXTSDKhMBNwnz+fj//sRZIZrdYuvKXQlfVR8wBlFh3q1/Ri56IONJcWnZGBHRdGzMUKOlqpXl9QaYTOcRDAvoqlokGlc9ereXtzXbChBIRPUmIcoTLFraYacCSiq8dBAStkzfYQHJxWVYLp2skkRHDrSDwY6c09hMKH/KyxyZy83MZIKAZlOXRsFL5iPVylZLJVmHiaynA94LjBvwQwVmmIZGT5UHPMZn5vXpMAcNYCScjUm9nY8b3AJL8GNllQVVXfQaPZ88+Ku1YyOm63rk8ZZZ3raFbJLDsgRicgpOSMX5Iq0CSNv5J18kE/vy/vxK/7in9X3pjU7pBT+5i9icLjB</latexit>

ṽgood
<latexit sha1_base64="QVKpGDoPqhq+lFjgaWlWqTFatD0=">AAACVXicZZBNS8NAEIY38avWj1Y9ihAsgqeSVMGr4MWTVLFaMKVsttO6uB8hO9XIkqu/xqv+FfHHCG5rD6YdWHjn2XeGmUlSwQ2G4bfnLy2vrK5V1qsbm1vbtfrO7p3R44xBh2mhs25CDQiuoIMcBXTTDKhMBNwnTxeT//tnyAzX6hZfU+hJOlJ8yBlFh/r1IEYuBmBjSfExGdrnoujbGCFHO9J64LJ6I2yG0wgWRTQTDTKLdn/HO4gHmo0lKGSCGvMQhSn2LM2QMwFFNR4bSCl7oiN4cFJRCaZnp6sUwZEjg2CoM/cUBlP6v8Iid/ZyEyOpEJDp1LVR8IL5ZJeSxVJpFmEiy/mQ5wLzFsxRoSmWkeFjxTGf87l5TQrMUQMoKVcTYm8n8wZX8BLcaElVUXUHjebPtyjuWs3opNm6Pm2cd2enrZB9ckiOSUTOyDm5JG3SIYy8kXfyQT69L+/HX/ZX/6y+N6vZI6Xwa79FBrks</latexit>

ṽmexican
<latexit sha1_base64="13mYBdTunzVMEy3PhXIUbcTm1rU=">AAACWHicZZDLSgNBEEUr4zu+oi5FGAyCqzATBbeCG1eiYjTghNDTqWhjP4bpihlp8gF+jVv9FP0aOzELJylouH36VlF900wKS1H0XQkWFpeWV1bXqusbm1vbtZ3de2sGOccWN9Lk7ZRZlEJjiwRJbGc5MpVKfEhfLsbvD6+YW2H0Hb1l2FHsSYu+4Iw86tbqCQnZQ5coRs9p372ORl2XEBbkFBbepj2o1aNGNKlwXsRTUYdpXXd3KgdJz/CBQk1cMmsf4yijjmM5CS5xVE0GFjPGX9gTPnqpmULbcZPfjMIjT3ph3+T+aAon9H+HI+Ht5SFWMSkxN5kfo3FIxfg7JYtjys7DVJXvfVFIKpo4Q6VhVEZWDLSgYsbn97UZck8tkmJCj4m7G+8bXuEwvDXKB1r1gcaz8c2L+2YjPmk0b07r5+1ptKuwD4dwDDGcwTlcwjW0gMM7fMAnfFV+AghWgrU/a1CZ9uxBqYLdX/e+uYc=</latexit>

ṽrestaurants
<latexit sha1_base64="23/vUWpuSi0NGldxkEEtGpyFROc="></latexit>

ṽthere
<latexit sha1_base64="QSoRCkf87IlNc9Gq/G0kaVBeXAQ=">AAACVnicZZBNS8NAEIY38aNav1o9ihAtgqeSVMFrwYsnUbFaMKVstlNd3I+QnWpkydlf41X/iv4ZcVt7MO3AwjvPvjPMTJIKbjAMvz1/YXFpubKyWl1b39jcqtW3b40eZQw6TAuddRNqQHAFHeQooJtmQGUi4C55Ohv/3z1DZrhWN/iaQk/SB8WHnFF0qF/bj5GLAdhYUnxMhva5KPo2RsjR4iNk4NJaI2yGkwjmRTQVDTKNy37d24sHmo0kKGSCGnMfhSn2LM2QMwFFNR4ZSCl7og9w76SiEkzPTnYpgkNHBsFQZ+4pDCb0f4VF7uzlJkZSISDTqWuj4AXz8TIli6XSzMNElvMhzwXmLZihQlMsI8NHimM+43PzmhSYowZQUq7GxN6M5w0u4CW41pKqouoOGs2eb17ctprRcbN1ddJod6enXSG75IAckYickjY5J5ekQxh5I+/kg3x6X96Pv+RX/qy+N63ZIaXwa79Birml</latexit>

ṽEOS
<latexit sha1_base64="skflkg9J7EjOY2CqSOBfqOJd/GE=">AAACVHicZZBLS8NAEMc38V1fVY8iBovgqSRV8CqI4Ml3tWBK2WynuriPkJ1qZMnRT+NVv4rgd/HgtvZg2oGF//z2P8PMJKngBsPw2/Onpmdm5+YXKotLyyur1bX1W6P7GYMm00JnrYQaEFxBEzkKaKUZUJkIuEuejgf/d8+QGa7VDb6m0Jb0QfEeZxQd6lS3Y+SiCzaWFB+Tnn0uio6NEXK0J+fXLqnWwno4jGBSRCNRI6O46Kx5W3FXs74EhUxQY+6jMMW2pRlyJqCoxH0DKWVP9AHunVRUgmnb4SZFsOtIN+jpzD2FwZD+r7DInb3cxEgqBGQ6dW0UvGA+WKVksVSaSZjIct7jucC8AWNUaIplZHhfcczHfG5ekwJz1ABKytWA2JvBvMEZvARXWlJVVNxBo/HzTYrbRj3arzcuD2pHrdFp58km2SF7JCKH5IickgvSJIy8kXfyQT69L+/Hn/Jn/qy+N6rZIKXwV34BsXi4YA==</latexit>

ṽEOS
<latexit sha1_base64="skflkg9J7EjOY2CqSOBfqOJd/GE=">AAACVHicZZBLS8NAEMc38V1fVY8iBovgqSRV8CqI4Ml3tWBK2WynuriPkJ1qZMnRT+NVv4rgd/HgtvZg2oGF//z2P8PMJKngBsPw2/Onpmdm5+YXKotLyyur1bX1W6P7GYMm00JnrYQaEFxBEzkKaKUZUJkIuEuejgf/d8+QGa7VDb6m0Jb0QfEeZxQd6lS3Y+SiCzaWFB+Tnn0uio6NEXK0J+fXLqnWwno4jGBSRCNRI6O46Kx5W3FXs74EhUxQY+6jMMW2pRlyJqCoxH0DKWVP9AHunVRUgmnb4SZFsOtIN+jpzD2FwZD+r7DInb3cxEgqBGQ6dW0UvGA+WKVksVSaSZjIct7jucC8AWNUaIplZHhfcczHfG5ekwJz1ABKytWA2JvBvMEZvARXWlJVVNxBo/HzTYrbRj3arzcuD2pHrdFp58km2SF7JCKH5IickgvSJIy8kXfyQT69L+/Hn/Jn/qy+N6rZIKXwV34BsXi4YA==</latexit>

vEOS
<latexit sha1_base64="tRUSF6nHRRRB4fkdw5SiXEXYY7Q=">AAACTHicZZBNS8NAEIY39bt+VT14ECFYBE8lqYLXggietGqrBVvKZp3q0v0I2UkbCfk1XvWvePd/eBPBbe3BtAML7zz7zjAzQSi4Qc/7dApz8wuLS8srxdW19Y3N0tb2ndFxxKDJtNBRK6AGBFfQRI4CWmEEVAYC7oP+2ej/fgCR4Vo18CWEjqRPivc4o2hRt7TblhSfg146yLppGyHB9PzqNsu6pbJX8cbhzgp/IspkEvXulrPfftQslqCQCWrMg++F2ElphJwJyIrt2EBIWZ8+wYOVikownXS8QeYeWvLo9nRkn0J3TP9XpMitPd/ESCoERDq0bRQMMRltkrOkVJpZGMh83uOJwKQKU1RoinlkeKw4JlM+O68JgVlqACXlakTSxmhe9xKG7o2WVGVFe1B/+nyz4q5a8Y8r1euTcq01Oe0y2SMH5Ij45JTUyAWpkyZhJCOv5I28Ox/Ol/Pt/PxZC86kZofkorD4C0brtqg=</latexit>

vin
<latexit sha1_base64="dUI8NYgVw0Et9jufmvT8yldJ+bA=">AAACS3icZZDNSsNAEMc39avWr1bBiwjBIngqSRW8Frx4kiptLZhSNutUF/cjZKcaiXkZr/oqPoDP4U08uK05mHZg4T+//c8wM2EkuEHP+3RKC4tLyyvl1cra+sbmVrW23TN6HDPoMi103A+pAcEVdJGjgH4UA5WhgOvw4Wzyf/0IseFadfA5goGkd4qPOKNo0bC6G0iK9+EofcyGaYCQYMpVlg2rda/hTcOdF34u6iSP9rDm7Ae3mo0lKGSCGnPjexEOUhojZwKySjA2EFH2QO/gxkpFJZhBOl0gcw8tuXVHOrZPoTul/ytS5NZebGIkFQJiHdk2Cp4wmSxSsKRUmnkYymI+4onApAkzVGiKRWT4WHFMZnx2XhMBs9QASsrVhKSdybzuBTy5V1pSlVXsQf3Z882LXrPhHzealyf1Vj8/bZnskQNyRHxySlrknLRJlzDyQl7JG3l3Ppwv59v5+bOWnLxmhxSitPQL/CG2jg==</latexit>

vsan
<latexit sha1_base64="O8ZEjVNPDYs9jd+9z0P8DLIezZk=">AAACTHicZZDLSsNAFIYn9VbrrdWFCxGCRXBVkiq4Fdy4kiqtFpoSJtNTHZxLyJzWSMjTuNVXce97uBPBae3CtAcG/vnmP4czfxQLbtDzPp3S0vLK6lp5vbKxubW9U63t3hk9Shh0mBY66UbUgOAKOshRQDdOgMpIwH30dDl5vx9DYrhWbXyJoS/pg+JDzihaFFb3A0nxMRpm4zzMAoQUM0NVnofVutfwpuUuCn8m6mRWrbDmHAYDzUYSFDJBjen5Xoz9jCbImYC8EowMxJQ90QfoWamoBNPPpj/I3WNLBu5QJ/YodKf0f0eG3NqLQ4ykQkCiYztGwTOmk58ULBmVZhFGsngf8lRg2oQ5KjTFIjJ8pDimcz67r4mBWWoAJeVqQrL2ZF/3Gp7dWy1toBUbqD8f36K4azb800bz5qx+0Z1FWyYH5IicEJ+ckwtyRVqkQxjJySt5I+/Oh/PlfDs/f9aSM+vZI4Uqrf4C7P+3Aw==</latexit>

vfrancisco
<latexit sha1_base64="xTjSwpUUGrcyEFkfyiBsC91uCTE=">AAACUnicZZJNS8NAEIY39avWr1aPUggWwVNJquBV8OJJqrS2YErYrBNd3I+QndZIyMlf41X/ihf/iie3tQfTDiy8++w7w8ywUSK4Qc/7diorq2vrG9XN2tb2zu5evbF/Z/Q4ZdBnWuh0GFEDgivoI0cBwyQFKiMBg+j5cvo+mEBquFY9fE1gJOmj4jFnFC0K681AUnyK4nxShHmAkGEep1QxbpguirDe8treLNxl4c9Fi8yjGzacZvCg2ViCQiaoMfe+l+AopylyJqCoBWMDCWXP9BHurVRUghnlszkK99iSBzfWqT0K3Rn9n5Ejt/ZyESOpEJDqxJZR8ILZdJ6SJafSLMNIlu8xzwRmHVigQlMsI8PHimO24LP9mgSYpQZQUq6mJO9N+3Wv4cW91ZKqomYX6i+ub1ncddr+abtzc9a6GM5XWyWH5IicEJ+ckwtyRbqkTxh5I+/kg3w6X85Pxf6SP2vFmecckFJUtn8BQRq3tw==</latexit>

vCA
<latexit sha1_base64="R5nueB94Bot8fZ8CK0/4vpS/df4=">AAACS3icZZDNSsNAEMc31fpRv1oFLyIEi+CpJFXwWunFk6hYLdhSNttpXbofITvVSMzLeNVX8QF8Dm/iwU3twbQDC//57X+GmQlCwQ163qdTWFgsLi2vrJbW1jc2t8qV7VujxxGDFtNCR+2AGhBcQQs5CmiHEVAZCLgLRs3s/+4RIsO1usHnELqSDhUfcEbRol55tyMpPgSD5DHtJR2EGJPmWZr2ylWv5k3CnRf+VFTJNC57FWe/09dsLEEhE9SYe98LsZvQCDkTkJY6YwMhZSM6hHsrFZVguslkgdQ9tKTvDnRkn0J3Qv9XJMitPd/ESCoERDq0bRQ8YZwtkrMkVJp5GMh8PuCxwLgOM1Roinlk+FhxjGd8dl4TArPUAErKVUaSm2xe9wKe3GstqUpL9qD+7PnmxW295h/X6lcn1UZ7etoVskcOyBHxySlpkHNySVqEkRfySt7Iu/PhfDnfzs+fteBMa3ZILgrFX2Tltjs=</latexit>

vany
<latexit sha1_base64="6Lb3wZGOmz8Ospfm+NcFdQCMzK8=">AAACTHicZZBNS8NAEIY39avWr1YPHkQIFsFTSargVfDiSaq0ttCUslmnurgfITutkZBf41X/inf/hzcR3NYcTDuw8M6z7wwzE0aCG/S8T6e0tLyyulZer2xsbm3vVGu7d0aPYwYdpoWOeyE1ILiCDnIU0ItioDIU0A2fLqf/3QnEhmvVxpcIBpI+KD7ijKJFw+p+ICk+hqN0kg3TACHBlKqXLBtW617Dm4W7KPxc1EkerWHNOQzuNRtLUMgENabvexEOUhojZwKySjA2EFH2RB+gb6WiEswgnW2QuceW3LsjHdun0J3R/xUpcmsvNjGSCgGxjmwbBc+YTDcpWFIqzSIMZTEf8URg0oQ5KjTFIjJ8rDgmcz47r4mAWWoAJeVqStL2dF73Gp7dWy2pyir2oP78+RbFXbPhnzaaN2f1i15+2jI5IEfkhPjknFyQK9IiHcJIRl7JG3l3Ppwv59v5+bOWnLxmjxSitPoL99S3CQ==</latexit>

vgood
<latexit sha1_base64="9SXYQglSje8++XyePlujPeQnIDY=">AAACTXicZZBNS8NAEIY39bt+Vb0IIgSL4KkkVfBa8OJJqrRaMCVsttO6uB8hO7WREH+NV/0rnv0h3kTc1h5MO7DwzrPvDDMTxYIb9LxPp7SwuLS8srpWXt/Y3Nqu7OzeGj1MGLSZFjrpRNSA4ArayFFAJ06AykjAXfR4Mf6/e4LEcK1a+BxDV9KB4n3OKFoUVvYDSfEh6mdPeZgFCClmA617eR5Wql7Nm4Q7L/ypqJJpNMMd5zDoaTaUoJAJasy978XYzWiCnAnIy8HQQEzZIx3AvZWKSjDdbLJC7h5b0nP7OrFPoTuh/ysy5NZebGIkFQISHds2CkaYjlcpWDIqzTyMZDHv81RgWocZKjTFIjJ8qDimMz47r4mBWWoAJeVqTLLWeF73CkbujZZU5WV7UH/2fPPitl7zT2v167NqozM97So5IEfkhPjknDTIJWmSNmHkhbySN/LufDhfzrfz82ctOdOaPVKI0sov1vS3dA==</latexit>

vmexican
<latexit sha1_base64="ATlLNUJV9F2m9cvf/2cpSOiy5vE=">AAACUHicZZBNS8NAEIYn9bt+VT2KECyCp5JUwavgxZNUabVgS9msU13cj5Cd1kjIwV/jVf+KN/+JN93WCqYdWPbdZ94dZiaKpbAUBJ9eaW5+YXFpeaW8ura+sVnZ2r62ZpBwbHEjTdKOmEUpNLZIkMR2nCBTkcSb6PFslL8ZYmKF0U16jrGr2L0WfcEZOdSr7HYUo4eonw3zXtYhTClTmLq0zvNepRrUgnH4syKciCpMotHb8vY6d4YPFGrikll7GwYxdTOWkOAS83JnYDFm/JHd462Tmim03Ww8Re4fOHLn903ijiZ/TP//yEg4e7GIVUxKTEzsymh8onQ0TcGSMWVnYaSK775IJaV1nKLSMCoiKwZaUDrlc/3aGLmjFkkxoUcka4769S/wyb8yyi207BYaTq9vVlzXa+FRrX55XD1tT1a7DLuwD4cQwgmcwjk0oAUcXuAV3uDd+/C+vO+S92v9u2EHClEq/wCDVbfP</latexit>

vrestaurants
<latexit sha1_base64="cWEROB2nrv/v3ZHxtq5veIZ7n80="></latexit>

vthere
<latexit sha1_base64="xGGszJWh+UL39SAfaiMzXfuZiCY=">AAACTnicZZBNS8NAEIY39avWr6onESFYBE8lqYLXghdPomJtoS1ls522S/cjZKdtJAR/jVf9K179I95Et7UH0w4svPPsO8PMBKHgBj3v08mtrK6tb+Q3C1vbO7t7xf2DJ6NHEYMa00JHjYAaEFxBDTkKaIQRUBkIqAfD6+l/fQyR4Vo94nMIbUn7ivc4o2hRp3jUkhQHQS8Zp52khRBjggOIIE07xZJX9mbhLgt/LkpkHnedfeek1dVsJEEhE9SYpu+F2E5ohJwJSAutkYGQsiHtQ9NKRSWYdjLbIXXPLOm6PR3Zp9Cd0f8VCXJrzzYxkgoBkQ5tGwUTjKe7ZCwJlWYZBjKb93gsMK7AAhWaYhYZPlIc4wWfndeEwCw1gJJyNSXJ43Re9xYm7oOWVKUFe1B/8XzL4qlS9i/KlfvLUrUxP22eHJNTck58ckWq5IbckRph5IW8kjfy7nw4X8638/NnzTnzmkOSiVz+F9ACt+0=</latexit>

vEOS
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ṽin
<latexit sha1_base64="qV3G5eW4tWAE3+el428gyaUxAqk=">AAACU3icZZBNS8NAEIY38avWr1aPogSL4KkkVfAqePEkKlYLppTNdqqL+xGy0xpZcvPXeNW/4sHf4sVt7cG0AwvvPPvOMDNJKrjBMPz2/IXFpeWVymp1bX1jc6tW374zepgxaDMtdNZJqAHBFbSRo4BOmgGViYD75Pl8/H8/gsxwrW7xNYWupI+KDzij6FCvth8jF32wsaT4lAzsqCh6NkbI0XLldK0RNsNJBPMimooGmcZVr+7txX3NhhIUMkGNeYjCFLuWZsiZgKIaDw2klD3TR3hwUlEJpmsnixTBoSP9YKAz9xQGE/q/wiJ39nITI6kQkOnUtVHwgvl4k5LFUmnmYSLL+YDnAvMWzFChKZaR4UPFMZ/xuXlNCsxRAygpV2Nib8fzBpfwEtxoSVVRdQeNZs83L+5azei42bo+aZx1pqetkF1yQI5IRE7JGbkgV6RNGHkj7+SDfHpf3o/v+4t/Vt+b1uyQUvgbv2NHuEY=</latexit>

h1[1 : 2]
<latexit sha1_base64="EvCzU7zwdNe7ZyYhD6Y4G1C/G4o=">AAACGHicdVDLSsNAFJ34rPVVdelmsAiuQlIVxVXBjcsKtg2koUymk3boTBJmbsQS+hMu1Y9xJ27d+S1unLQVrI8DA4dz7517zwlTwTU4zru1sLi0vLJaWiuvb2xubVd2dls6yRRlTZqIRHkh0UzwmDWBg2BeqhiRoWDtcHhZ1Nu3TGmexDcwSlkgST/mEacEjOQNuq7vXtSCbqXq2LVTxwD/Jq7tTFBFMzS6lY9OL6GZZDFQQbT2XSeFICcKOBVsXO5kmqWEDkmf+YbGRDId5JN7x/jQKD0cJcq8GPBE/T6RE6n1SIamUxIY6J+1Qvyr5mcQnQc5j9MMWEyni6JMYEhwYR73uGIUxMgQQhU3t2I6IIpQMBHNbSn+TkHezTnJgRsb47JJ6ysS/D9p1Wz32K5dn1Tr3iy3EtpHB+gIuegM1dEVaqAmokige/SInqwH69l6sV6nrQvWbGYPzcF6+wTh46C/</latexit>

Sl
ot

 E
nc

od
er

 

Current
Intent

h1[3 : 3]
<latexit sha1_base64="RGRXn/67wyxj7ASeU3EFq5FbAjo=">AAACO3icdZDLSsNAFIYnXmu9tboUIVgEVyVpFcFVwY0rqdJLoA1lMj1th84lZCa2EvoSbvVVfBDX7sSte6e1gmnxh4FzvvnP4ecEIaNKO86btbK6tr6xmdnKbu/s7u3n8gcNJeOIQJ1IJiMvwAoYFVDXVDPwwggwDxg0g+H19L/5AJGiUtT0Ywg+x31Be5RgbZA36Lit8lXZ7+QKTrF04RjZy4VbdGYqoLmqnbx13O5KEnMQmjCsVMt1Qu0nONKUMJhk27GCEJMh7kPLlAJzUH4yCzyxTw3p2j0ZmSe0PaN/JxJNjT29RHHMGEQyNGsEjPSYYz1IWRLM1TIMeLrv0THT4xIsUCaxTiNFY0H1eMFn8qoQiKEKNMdUTElSm+a1b2Fk30uOxSRrDvp7Nfv/olEquuVi6e68UPHmp82gI3SCzpCLLlEF3aAqqiOCGHpCz+jFerXerQ/r88e6Ys1nDlFK1tc3MFSvsg==</latexit>

h0[2 : 3]
<latexit sha1_base64="Qibxjv4yQRFoPo26/Tym01potgE=">AAACO3icdZDLSsNAFIYnXmu9tboUIVgEVyVNFcFVwY0rqdJLoA1lMj1th84lZCa2EvoSbvVVfBDX7sSte6e1gmnxh4FzvvnP4ecEIaNKO86btbK6tr6xmdnKbu/s7u3n8gcNJeOIQJ1IJiMvwAoYFVDXVDPwwggwDxg0g+H19L/5AJGiUtT0Ywg+x31Be5RgbZA36Dgt96rsd3IFp+heOEb2clEqOjMV0FzVTt46bncliTkITRhWqlVyQu0nONKUMJhk27GCEJMh7kPLlAJzUH4yCzyxTw3p2j0ZmSe0PaN/JxJNjT29RHHMGEQyNGsEjPSYYz1IWRLM1TIMeLrv0THTYxcWKJNYp5GisaB6vOAzeVUIxFAFmmMqpiSpTfPatzCy7yXHYpI1B/29mv1/0XCLpXLRvTsvVLz5aTPoCJ2gM1RCl6iCblAV1RFBDD2hZ/RivVrv1of1+WNdseYzhygl6+sbLKyvsA==</latexit>

Candidate Slots

Dialogue

Encoding

Figure 2: General architecture of the proposed contextual carryover model. Bi-LSTM is used to encode the
utterances in dialogue into a fixed length dialogue representation and also get contextual slot value embeddings.
Slot encoder uses the slot key, value and distance to create a fixed length slot embedding for each of the candidate
slots. Given the encoded slots, intent and dialogue context, decoder selects the subset of slots that are relevant for
the current user request.

The overall architecture of the model is shown
in Figure 2. We elaborate on the specific designs
of these components under this general architec-
ture.

3.2 Slot Encoder Variants
In this section, we describe the different encoding
methods that we use to encode slots.

We average the word embeddings of the tokens
in the slot key as the slot key encoding:

xkey =
1
K

K∑
i=1

v(ki) . (5)

where v(w) is the embedding vector of token w.
For the slot value (the tokens hd[l : r]), we pro-

pose following encoding approaches.

CTXavg The first is to average the token embed-
dings of the tokens in the slot value:

xval =
1

r − l + 1

r∑
i=l

v(hd[i]) ; (6)

CTXLSTM To get improved contextualized rep-
resentation of the slot value in dialogue, we also
use neural network models to encode slots. We ex-
perimented with bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) model for slot encoding.
LSTMs are equipped with feedback loops in their
recurrent layer, which helps store contextual infor-
mation over a long history. We encode all dialogue
utterances with BiLSTM to obtain contextualized
vector representations ṽ(w) for each token w, then
average the output hidden states of the tokens in
the span [l : r] to get the slot value encoding.

xval =
1

r − l + 1

r∑
i=l

ṽ(hd[i]); (7)

Additionally, distance may contain important
signals. This integer, being odd or even, provides
information on whether this utterance is uttered by
a user or the system. The smaller it is, the closer
a slot is to the current utterance, hence implic-
itly more probable to be carried over. Building on
these intuitions, we encode the distance as a small
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vector (xdist, 4 dimensions) and append it to the
overall slot encoding:

x =
[
xkey ; xval ; xdist

]
. (8)

3.3 Decoder Variants

x1 x2 x3 x4EOS

e1 e2 e3 e4eEOS

Bi-LSTM 

d1 d2 d3

BOS

q1

x4

q2

q3

x1

Figure 3: Architecture of the pointer network decoder.
In this case, the pointer network selects x4, x1 succes-
sively and stops after selecting EOS.

Pointer network decoder We adopt the archi-
tecture of the pointer network (Vinyals et al.,
2015) as a method to perform joint prediction of
the slots to be carried over. Pointer networks,
a variant of Seq2Seq (Bahdanau et al., 2015;
Sutskever et al., 2014; Luong et al., 2015) model,
instead of transducing the input sequence into an-
other output sequence, yields a succession of soft
pointers (attention vectors) to the input sequence,
hence producing an ordering of the elements of a
variable-length input sequence.

We use a pointer network to select a subset of
the slots from the input slot set. The input slot en-
codings are ordered as a sequence, then fed into
a bidirectional LSTM encoder to yield a sequence
of encoded hidden states. We experiment with dif-
ferent slot orderings as described in section 4.

e0:n = BiLSTM([xEOS , x1:n]) (9)

Here a special sentinel token EOS is appended to
the beginning of the input to the pointer network –
when decoding, once the output pointer points to
this EOS token, the decoding process stops.

Given the hidden states, e0:n, the decoding pro-
cess at every time step i is computed and updated
as shown in Algorithm 1.

Contrary to normal attention-based models
which directly uses the decoder state (di) as the
query, we incorporate the context vector (c) and
the intent vector (i) into the attention query. The

Algorithm 1 Pointer network decoding
1: procedure PTRNETDEC(x0:n,e0:n,d0,c, i)
2: i ← 0
3: y0 ← BOS . special BOS token
4: m0:n ← TRUE . every slot is available
5: repeat
6: i ← i + 1
7: di ← LSTM(di−1,xyi−1) . update state
8: qi ← FQ(di,c, i) . constructs query
9: ai j ← FA(qi,ej) . attention scores

10: pi j ←
exp ai j∑

m j=TRUE

exp ai j
. soft pointer

11: ŷi ← arg max
m j=TRUE

pi j . predicted output

12: if at inference time then
13: yi ← ŷi . no gold output
14: end if
15: myi ← FALSE . update mask
16: until yi = 0 . index of EOS is 0
17: return ŷ1:i−1 . return all generated ŷ’s
18: end procedure

query vector is a concatenation of the three com-
ponents:

qi = FQ(di,c, i) = [ di ; c ; i ] . (10)

We use the general Luong attention (Luong
et al., 2015) scoring function (bilinear form):

ai j = FA(qi,ej) = qT
i Wej . (11)

As a subset output is desired, the output ŷi
should be distinct at each step i. To this end, we
utilize a dynamic mask in the decoding process:
for every input slot encoding xj a Boolean mask
variable mj is set to TRUE. Once a specific slot
is generated, it is crossed out – its correspond-
ing mask is set to FALSE, and further pointers will
never attend to this slot again. Hence distinctness
of the output sequence is ensured.

Self-attention decoder The pointer network as
introduced previously yields a succession of point-
ers that select slots based on attention scores,
which allows the model to look back and forth
over entire slot sequence for slot dependency mod-
eling. Similar to the pointer network, the self-
attention mechanism is also capable of modeling
relationships between all slots in the dialogue, re-
gardless of their respective positions. To com-
pute the representation of any given slot, the self-
attention model compares it to every other slot in
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the dialogue. The result of these comparisons is
attention scores which determine how much each
of the other slots should contribute to the repre-
sentation of the given slot. In this section, we also
propose to use the self-attention mechanism with
the neural transformer networks (Vaswani et al.,
2017) to model slot interdependencies for the task.

One major component in the transformer is
the multi-head self-attention unit. Rather than
only computing the attention once, the multi-head
mechanism runs through the scaled dot-product
attention multiple times and allows the model to
jointly attend to information from different per-
spectives at different positions, which is empiri-
cally shown to be more powerful than a single at-
tention head (Vaswani et al., 2017). In our con-
figurations, we increase the number of heads Z ,
as described in section 4. The independent atten-
tion head g outputs are simply concatenated and
linearly transformed into the expected output.

Given the input slot encodings x1:n, we compute
the self-attention as follows:

qz
i =Wz

QFQ(xi) (12)

kz
i =Wz

Kxi (13)

az
i j = FA(qz

i ,k
z
j ) (14)

pzi j =
exp az

i j∑
j

exp az
i j

(15)

ozi =
∑
j

pzi jk
z
j (16)

x̃i =WO
[
o0
i ; · · · ; oZ−1

i

]
+ bO (17)

where the superscript 0 ≤ z < Z is the head
number. We model the query construction, Equa-
tion 12, and the attention score, Equation 14, in
the same way as their counterparts (Equation 10
and Equation 11) in the previous pointer network
model. The self-attended representation of slot i,
x̃i, is a representation of slot i with the relations to
all other slots taken into account.

We derive the final decision over whether to
carry over a slot as a 2-layer feedforward neural
network atop the features xi, x̃i, context vector (c)
and the intent vector (i):

yi = σ(W2 ·ReLU(W1[ xi ; x̃i ; c ; i ]+b1)+b2) .

This creates a highway network connection (Sri-
vastava et al., 2015) that connects the input and
the self-attention transformed encodings.

Split Slot distance
0 1 2 ≥3

Train Positive 183K 48K 6.7K 591
Total 183K 327K 111K 108K

Dev Positive 22K 6.0K 785 66
Total 22K 40K 13K 13K

Test Positive 23K 6.1K 807 85
Total 23K 41K 13K 14K

Table 1: Internal Dataset breakdown showing the
number of carryover candidate slots at different dis-
tances. ‘Total’ shows the total number of candidate
slots and ‘Positive’ shows the number of candidate slots
that are relevant for the current turn.

Split Slot distance
0 2 4 ≥6

Train Positive 4.6K 3.8K 3.7K 9.6K
Total 5.2K 4.9K 4.7K 14.5K

Dev Positive 1.4K 1.2K 1.1K 3.0K
Total 1.7K 1.6K 1.5K 5.0K

Test Positive 4.1K 3.2K 3.0K 9.4K
Total 4.8K 4.2K 3.9K 15.2K

Table 2: DSTC2 Dataset breakdown showing the num-
ber of carryover candidate slots at different distances.
‘Total’ shows the total number of candidate slots and
‘Positive’ shows the number of candidate slots that rep-
resent the user goal at the current turn.

4 Experiments

4.1 Datasets

We evaluate our approaches on both internal and
external datasets. The internal dataset contains di-
alogues collected specifically for reference resolu-
tion, while the external dataset was collected for
dialogue state tracking.

Internal This dataset is made up of a subset
of user-initiated dialogue data collected from a
commercial voice-based digital assistant. This
dataset has 156K dialogues from 7 domains –
Music, Q&A, Video, Weather, Local Businesses
and Home Automation. Each domain has its own
schema. There are ∼13 distinct slot keys per do-
main and only 20% of these keys are reused in
more than one domain. To handle dialogue data
belonging to a diverse schema, slots in dialogue
are converted into candidate slots in the schema
associated with the current domain. We follow the
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same slot candidate generation recipe by leverag-
ing slot key embedding similarities as in Naik et al.
(2018). These candidates are then presented to the
models for selecting a subset of relevant candidate
slots. Statistics for the candidate slots in the train,
development, and test sets broken down by slot
distances are shown in Table 1.

DSTC2 The DSTC2 dataset (Henderson et al.,
2014) contains system-initiated dialogues between
human and dialogue systems in restaurant booking
domain. We use top ASR hypothesis as the user
utterance and use all the slots from n-best SLU
with score > 0.1 as candidate slots. These candi-
dates are then presented to the models for select-
ing a subset of candidate slots which represent the
user goal. Statistics for the candidate slots in the
train, development, and test sets broken down by
slot distances are shown in Table 2. Since only the
user mentioned slots contribute to the user-goal,
there are no candidates with odd-numbered slot
distances.

4.2 Experimental setup

For all the models, we initialize the word embed-
dings using fastText embeddings (Lample et al.,
2018). The models are trained using mini-batch
SGD with Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001 to minimize the
negative log-likelihood loss. We set the dropout
rate of 0.3 for our models during training. In
our experiments, we use 300 dimensions for the
LSTM hidden states in the pointer network en-
coder and decoder. Our transformer decoder has 1
layer, Z = 80 heads, dk = dv = 64 for the projec-
tion size of keys and values in the attention heads.
We do not use positional encoding for the trans-
former decoder. All pointer network model setups
are trained for 40 epochs, our transformer models
are trained for 200 epochs. For evaluation on the
test set, we pick the best model based on perfor-
mance on dev set. We use standard definitions of
precision, recall, and F1 by comparing the refer-
ence slots with the model hypothesis slots.

4.3 Results and discussion

We compare our models against the baseline
model – encoder-decoder with word attention ar-
chitecture described by Naik et al. (2018). Table 3
shows the performance of the models for slots at
different distances on Internal dataset.

Impact of slot ordering Using pointer network
model, we experiment with the following slot or-
derings to measure the impact of the order on car-
ryover performance. no order – slots are ordered
completely randomly. turn-only order – slots are
ordered based on their slot distance, but the slots
with the same distance (i.e., candidates generated
from the same contextual turn) are ordered ran-
domly. temporal order – slots are ordered based
on the order in which they occur in the dialogue.

Partial ordering slots across turns i.e., turn-only
order significantly improves the carryover perfor-
mance as compared to using no order. Further, en-
forcing within distance order using temporal order
improves the overall performance slightly, but we
see drop in F1 by 7 points for slots at distance ≥3.
indicating that a strict ordering might hurt model
accuracy.

Impact of slot encoding Here, we compare slot
value representations obtained by averaging pre-
trained embeddings (CTXavg) with contextualized
slot value representation obtained from BiLSTM
over complete dialogue(CTXLSTM). The results in
Table 3, show that contextualized slot value rep-
resentation substantially improves model perfor-
mance compared to the non-contextual represen-
tation. This is aligned with the observations on
other tasks using contextual word vectors (Peters
et al., 2018a; Howard and Ruder, 2018; Devlin
et al., 2019).

Impact of decoder Compared to the baseline
model, both the pointer network model and the
transformer model are able to carry over longer
dialogue context due to being able to model the
slot interdependence. With the transformer net-
work, we completely forgo ordering information.
Though the slot embedding includes distance fea-
ture xdist, the actual order in which the slots are
arranged does not matter. We see improvement
in carryover performance for slots at all distances.
While the pointer network seems to deal with
longer context better, the transformer architecture
still gives us the best overall performance.

For completeness, Table 4 shows the perfor-
mance on DSTC2 public dataset, where similar
conclusions hold.

4.4 Error Analysis
To gain deeper insight into the ability of the mod-
els to learn and utilize slot co-occurrence patterns,
we measure the models’ performance on buckets
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Decoder Slot
Encoder

Slot
Ordering

Slot distance

1 2 ≥3 ≥1

Baseline (Naik et al., 2018) 0.8818 0.6551 0.0000 0.8506

Pointer Network
Decoder

CTXLSTM no order 0.8155 0.5571 0.1290 0.7817
CTXLSTM turn-only order 0.8466 0.6154 0.4095 0.8157
CTXavg temporal order 0.7565 0.4716 0.0225 0.7166
CTXLSTM temporal order 0.8631 0.6623 0.3350 0.8318

Transformer Decoder CTXLSTM 0.8771 0.7035 0.3803 0.8533

Table 3: Carryover performance (F1) of different models for slots at different distances on Internal dataset. The
rightmost column contains the aggregate scores for all slots with distance greater than or equal to 1.

Decoder Slot
Encoder

Slot
Ordering

Slot distance

0 2 4 ≥6

Baseline (Naik et al., 2018) 0.9242 0.9111 0.9134 0.8799

Pointer Network
Decoder

CTXLSTM no order 0.8316 0.8199 0.8183 0.7641
CTXLSTM turn-only order 0.9049 0.8993 0.9145 0.8892
CTXLSTM temporal order 0.9270 0.9204 0.9290 0.9139

Transformer Decoder CTXLSTM 0.9300 0.9269 0.9280 0.8949

Table 4: Carryover performance (F1) of different models for slots at different distances on DSTC2 dataset.

1 2

1 437

2 2011 89

1360 2931 210

<latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit><latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit><latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit><latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit>

<latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ=">AAAChXicbVHLbhMxFHWmQNvhlcKyG4uoEhuSGVQBYkNFN10WlbSVkijyOHcmbvySfQcRWfOPbPkRttSZzIK2HMnW0Tn3YR0XVgqPWfa7l+w8evxkd28/ffrs+YuX/YNXl97UjsOYG2ncdcE8SKFhjAIlXFsHTBUSrorV6ca/+gHOC6O/49rCTLFKi1JwhlGa92+m3GiM0yToCpchG2Y5qOaIXigmJTjq2ELUPp0i/MTQ3kUZLpqW+brw3AkbjW5KKCTjq2Zb6Hk4Zc6tm4g0Tef9QZzegj4keUcGpMP5/KC3M10YXivQyCXzfpJnFmeBORRcQpNOaw827mMVTCLVTIGfhTaUhh5FZUFL4+LRSFv1347AlPdrVcRKxXDp73sb8X/epMby0ywIbWsEzbeLylpSNHSTMF0IBxzlOhIW04lvpXzJHOMY/+HOli60mPYS0X4ejTgyPTSuGtlVNercGFt+P6SH5PL9MI/82/Hg5GsX4B45JG/IW5KTj+SEnJFzMiac/CJ/yN8eSXaTd8lx8mFbmvS6ntfkDpIvt2cxx7o=</latexit><latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ="></latexit><latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ="></latexit><latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ="></latexit>

≥3

≥3

(a) Number of positive in-
stances in the dataset

1 2 ≥3

1 0.883

2 0.922 0.792

0.894 0.939 0.872

<latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit><latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit><latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit><latexit sha1_base64="TctOJNBCSGX/E6A9rWGmK3MKuuI="></latexit>

<latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ="></latexit><latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ="></latexit><latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ="></latexit><latexit sha1_base64="gBMf7Nj3k4DO8zz48qWnIvIsnMQ=">AAAChXicbVHLbhMxFHWmQNvhlcKyG4uoEhuSGVQBYkNFN10WlbSVkijyOHcmbvySfQcRWfOPbPkRttSZzIK2HMnW0Tn3YR0XVgqPWfa7l+w8evxkd28/ffrs+YuX/YNXl97UjsOYG2ncdcE8SKFhjAIlXFsHTBUSrorV6ca/+gHOC6O/49rCTLFKi1JwhlGa92+m3GiM0yToCpchG2Y5qOaIXigmJTjq2ELUPp0i/MTQ3kUZLpqW+brw3AkbjW5KKCTjq2Zb6Hk4Zc6tm4g0Tef9QZzegj4keUcGpMP5/KC3M10YXivQyCXzfpJnFmeBORRcQpNOaw827mMVTCLVTIGfhTaUhh5FZUFL4+LRSFv1347AlPdrVcRKxXDp73sb8X/epMby0ywIbWsEzbeLylpSNHSTMF0IBxzlOhIW04lvpXzJHOMY/+HOli60mPYS0X4ejTgyPTSuGtlVNercGFt+P6SH5PL9MI/82/Hg5GsX4B45JG/IW5KTj+SEnJFzMiac/CJ/yN8eSXaTd8lx8mFbmvS6ntfkDpIvt2cxx7o=</latexit>
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(b) Baseline model perfor-
mance

1 2

1 0.822

2 0.92 0.689

0.908 0.944 0.8
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(c) Pointer network perfor-
mance

1 2

1 0.809

2 0.93 0.753

0.911 0.96 0.87
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(d) Transformer network per-
formance

Figure 4: On internal dataset, plots comparing the performance (F1) of the models across different subsets of
candidates separated based on the number of final slots after resolution (y-axis) and the number of slots that are
carried over as part of reference resolution (x-axis)

obtained by slicing the data using SFINAL – total
number of slots after resolution (i.e after context
carryover) and SCARRY – total number of slots car-
ried from context. For example, in a dialogue, if
the current turn utterance has 2 slots, and after ref-
erence resolution if we carry 3 slots from context,
the values for SFINAL and SCARRY would be 5 and
3 respectively. Figure 4 shows the number of in-
stances in each of these buckets and performance
of the baseline model, the best pointer network and
transformer models on the internal dataset. We no-
tice that the baseline model performs better than
the proposed models for instances in the table di-

agonal (SFINAL = SCARRY). These are the instances
where the current turn has no slots, and all the nec-
essary slots for the turn have to be carried from
historical context. Proposed models perform bet-
ter in off-diagonal buckets. We hypothesize that
the proposed models use anchor slots (slots in cur-
rent utterance having slot distance 0 which are al-
ways positive) and learn slot co-occurrence of can-
didate slots from context with these anchor slots
to improve resolution (i.e., carryover) from longer
distances.
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Figure 5: Spoken dialogue system architecture: the ref-
erence resolver/context carryover component is used to
resolve references in a conversation.

5 Related Work

Figure 5 shows a typical pipelined approach to
spoken dialogue (Tur and De Mori, 2011), and
where the context carryover system fits into the
overall architecture. The context carryover system
takes as input, an interpretation output by NLU –
typically represented as intents and slots (Wang
et al., 2011) – and outputs another interpretation
that contains slots from the dialogue context that
are relevant to the current turn. The output from
context carryover is then fed to the dialogue man-
ager to take the next action. Resolving references
to slots in the dialogue plays a vital role in track-
ing conversation states across turns (Çelikyilmaz
et al., 2014). Previous work, e.g., Bhargava et al.
(2013); Xu and Sarikaya (2014); Bapna et al.
(2017), focus on better leveraging dialogue con-
texts to improve SLU performance. However, in
commercial systems like Siri, Google Assistant,
and Alexa, the NLU component is a diverse collec-
tion of services spanning rules and statistical mod-
els. Typical end-to-end approaches (Bapna et al.,
2017) which require back-propagation through the
NLU sub-systems are not feasible in this setting.

Dialogue state tracking Dialogue state tracking
(DST) focuses on tracking conversational states
as well. Traditional DST models rely on hand-
crafted semantic delexicalization to achieve gen-
eralization (Henderson et al., 2014; Zilka and
Jurcı́cek, 2015; Mrksic et al., 2015). Mrksic et al.
(2017) utilize representation learning for states
rather than using hand-crafted features. These
approaches only operate on fixed ontology and
do not generalize well to unknown slot key-value
pairs. Rastogi et al. (2017) address this by us-
ing sophisticated candidate generation and scor-
ing mechanism while Xu and Hu (2018) use a
pointer network to handle unknown slot values.
Zhong et al. (2018) share global parameters be-
tween estimates for each slot to address extraction

of rare slot-value pairs and achieve state-of-the-
art on DST. In context carryover, our state track-
ing does not rely on the definition of user goals
and is instead focused on resolving slot references
across turns. This approach scales when dealing
with multiple spoken language systems, as we do
not track the belief states explicitly.

Coreference resolution Our problem is closely
related to coreference resolution, where mentions
in the current utterance are to be detected and
linked to previously mentioned entities. Previ-
ous work on coreference resolution have relied
on clustering (Bagga and Baldwin, 1998; Stoy-
anov and Eisner, 2012) or comparing mention
pairs (Durrett and Klein, 2013; Wiseman et al.,
2015; Sankepally et al., 2018). This has two prob-
lems. (1) most traditional methods for corefer-
ence resolution follows a pipeline approach, with
rich linguistic features, making the system cum-
bersome and prone to cascading errors; (2) Zero
pronouns, intent references and other phenomena
in spoken dialogue are hard to capture with this
approach (Rao et al., 2015). These problems are
circumvented in our approach for slot carryover.

6 Conclusions

In this work, we proposed an improvement to the
slot carryover task as defined in Naik et al. (2018).
Instead of independent decisions across slots, we
proposed two architectures to leverage the slot
interdependence – a pointer network architecture
and a self-attention and transformer based archi-
tecture. Our experiments show that both proposed
models are good at carrying over slots over longer
dialogue context. The transformer model with its
self attention mechanism gives us the best overall
performance. Furthermore, our experiments show
that temporal ordering of slots in the dialogue mat-
ter, since recent slots are more likely to be referred
to by users in a spoken dialogue system. More-
over, contextualized encoding of slots is also im-
portant, which follows the trend of contextualized
embeddings (Peters et al., 2018b).

For future work, we plan to improve these mod-
els by encoding the actual dialogue timing infor-
mation into the contextualized slot embeddings
as additional signals. We also plan on exploring
the impact of pre-trained representations (Devlin
et al., 2019) trained specifically over large-scale
dialogues as another way to get improved contex-
tualized slot embeddings.
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Abstract

Dialogue systems and conversational agents
are becoming increasingly popular in modern
society. We conceptualized one such conver-
sational agent, Microsoft’s “Ruuh” with the
promise to be able to talk to its users on any
subject they choose. Building an open-ended
conversational agent like Ruuh at onset seems
like a daunting task, since the agent needs to
think beyond the utilitarian notion of merely
generating “relevant” responses and meet a
wider range of user social needs, like express-
ing happiness when user’s favourite sports
team wins, sharing a cute comment on show-
ing the pictures of the user’s pet and so on. The
agent also needs to detect and respond to abu-
sive language, sensitive topics and trolling be-
haviour of the users. Many of these problems
pose significant research challenges as well as
product design limitations as one needs to cir-
cumnavigate the technical limitations to create
an acceptable user experience. However, as
the product reaches the real users the true test
begins, and one realizes the challenges and op-
portunities that lie in the vast domain of con-
versations. With over 2.5 million real-world
users till date who have generated over 300
million user conversations with Ruuh, there is
a plethora of learning, insights and opportuni-
ties that we will talk about in this paper.

1 Introduction

Conversational agents or chatbots have emerged as
an intuitive and natural way for humans to inter-
act with machines. Early conversational systems
ELIZA (Weizenbaum, 1966), Parry (Colby, 1975)
and Alice (Wallace, 2009) passed the Turing Test
(Saygin et al., 2000) in a controlled environment
and a limited scope. However, to this day, one of
the formidable challenges in Artificial Intelligence
(AI) remains to endow machines with the abil-
ity to hold extended and coherent conversations

with users on a wide variety of topics (Sato et al.,
2017; Serban et al., 2017). There are two major
types of conversational agents: (a) Goal-oriented
agents and (b) those agents which can hold gen-
eral conversations. While a goal-oriented agent
(Wen et al., 2016) typically focuses on short in-
teractions to facilitate explicit user goals such as
booking a flight or buying an e-commerce product,
social conversational agents, on the other hand,
engage in “chit-chat” conversations with the user
for primarily social purposes or to act as a com-
panion (Li et al., 2016; Vinyals and Le, 2015).
Such social agents set forth a compounded need to
not only understand and respond appropriately to
user turns in a conversation but to understand user
emotions, detect and respond to offensive content,
understand multimedia content beyond text and
comprehend slangs and code-mixed language etc.
Hence, creating such a social conversational agent
remains a daunting task.

In this paper, we outline the approach and
key components through which our conversational
agent, Ruuh is able to accommodate a wide range
of social needs. Ruuh is designed as an AI com-
panion with a female persona that can understand
human emotions, respond to text and images like
humans and carry on a friendly and engaging con-
versation, while understanding the cultural context
of its audience. In contrast to personal assistants
such as Amazon Alexa, Google Assistant or Mi-
crosoft Cortana, Ruuh has been able to establish
long-term relationships with its users, for instance,
a healthy 8% of users interact with our agent at
least once a week, after 6 months of their first in-
teraction (Ceaparu et al., 2018). In all, Ruuh has
communicated with over 2.5 million real world
users and has successfully held more than 300
million conversations since its release three years
back. Some sample conversations which highlight
various user input types are shown in Figure 2.
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Figure 1: System Architecture for Ruuh

2 Components of Conversational Agent

The overall architecture of Ruuh is shown in Fig-
ure 1. The system supports a multimodal interface
for user and Ruuh to take turns and talk through
text and image. When a user input is first received,
a query understanding component detects salient
information in the query and recognizes user in-
tents such as offensive, emotional, etc. Then, the
query-response store is analyzed to find a subset
of same intent or similar queries (in case no in-
tent was identified) along with their associated re-
sponses. The responses in this subset are then
ranked in accordance with relevance and context
in the form of the preceding user conversations
and a user profile to capture different backgrounds,
varied and unique interests of users. The top rank-
ing response serves as the output to the user. The
response store is created offline and comprises
of anonymized and relevant human conversational
data in the form of text pairs or image-text pairs
from a variety of forums, social platforms, and
messaging services. Editorial responses associ-
ated with certain intents are also injected into the
store. In this section, some of the key components
that enable our agent to process and respond to di-
verse user needs and inputs are further explained.

2.1 Detecting Offensive Conversations

Unlike in human conversations, users often abuse
and provoke Ruuh to elicit inappropriate or contro-

versial responses and handling such user behavior
is one of the most crucial task for the agent’s suc-
cess. Table 1 shows examples from a wide range
of categories where users use inappropriate lan-
guage with our agent. As depicted in Figure 2b,
Ruuh employs automatic techniques for detect-
ing such “inappropriate” user inputs. It also ac-
tively identifies potentially “controversial topics”
and makes clever dodging techniques through edi-
torial responses to avoid responding to such topics.
The problem of detecting offensive utterances in
conversations is wrought with challenges such as
handling natural language ambiguity, rampant use
of spelling mistakes and variations for abusive and
offensive terms and disambiguating with context
and other entity names such as pop songs which
usually have abusive terms in them (Chen et al.,
2012). For this task, we experimented with sev-
eral approaches, and found Ruuh’s current neural
Bi-directional LSTM based model (Yenala et al.,
2017) to perform the best.

2.2 Detecting Emotion

As humans, on reading “Why dont you ever text
me!”, we can either interpret it as a sad or an an-
gry emotion and the same ambiguity exists for
machines as well. Lack of facial expressions
and voice modulations make detecting emotions
in text a challenging problem. However, to cre-
ate a deeper engagement and provide emotionally
aware responses to users, emotion understanding

107



Inappropriate
Category

User Inputs

Flirtation hey S3xy, want to c ur
neud pic

Insult the facking 81tch is back
Offensive write cuck articles and

slurp balls
Sexual join me in tweaking; fuck

ur puccy

Table 1: Users queries issued to Ruuh indicating in-
appropriate interaction with conversational agent in a
wide range of categories and how users get creative in
their expression.

plays an important role (Miner et al., 2016). Ruuh
uses a deep learning based approach as detailed
in (Chatterjee et al., 2019) to detect emotions like
happy, sad or angry in textual dialogues. This
approach combines both semantic and sentiment-
based representations for more accurate emotion
detection. Figure 2a demonstrates that Ruuh can
dynamically recognize user’s emotions, detect the
evolution of emotions over time and subsequently,
modulate responses based on them.

2.3 Retrieving Relevant Responses

When Ruuh was first conceptualized, given the
promise that user can talk about any topic they
choose, the immediate need was to develop a mod-
ule that can answer to a wide variety of user re-
quests. We explored generative approach (Sordoni
et al., 2015) as the first approach and ran our first
user tests with the same. Since neural conversation
model produced more generic responses, we re-
alized that generated responses were not interest-
ing enough to hold the attention of the user. This
led us to work on index based retrieval approach
which was the first component we developed.

We created an index of over 10 million paired
tweets and their responses. The system then mod-
els the task of providing relevant responses as an
Information Retrieval problem based on (Prakash
et al., 2016), where for a given user message M
and conversation context C, it retrieves and ranks
the response candidates by relevance and outputs
one of the highest scoring responses R. The best
response is chosen in a three-step process at run-
time. First, TF-IDF-based fetch generates a can-
didate set appropriate to M and C. Then features
are extracted using a convolutional deep structured

semantic network (Shen et al., 2014). Finally, a
ranker (Burges, 2010) is trained on 3-turn twit-
ter conversations using these features to select re-
sponse R from the candidate set. Through this pro-
cess, our agent differs from traditional approaches
by looking not just for the right answer, but the
most human and contextual relevant answer from
a pile of responses.

To ensure the data was appropriate for Ruuh to
learn from, following two important cleaning steps
were performed while creating the index of 10 mil-
lion from 17.62 million conversational pairs:

2.3.1 Removing Inappropriate Content

In order to protect privacy and prevent personal
information from surfacing in Ruuh’s responses,
we removed any conversational pairs where the
response contained any individual’s name, email
addresses, phone numbers, URL or hashtag. Fur-
ther, we sought to minimize the risk of offending
users by using the technique described in section
2.1 and removing any pairs in which either M or
R contained adult, politically sensitive, or ethnic-
religious content, or other potentially offensive or
contentious material, such as inappropriate refer-
ences to violence, crime and illegal substances.
We also removed pairs where response contained
things which an agent should not say like “I will
meet you in hotel on Sunday” etc. by pattern
recognition.

2.3.2 Localizing the Index

Social conversational agents need to speak the lan-
guage of the audience it is created for, and local-
izing the index is an important part of the process.
Ruuh thus, accounted for popular topics and code-
mix language (Poplack and Meechan, 1998) from
the culture of its Indian audience in the index. For
instance, for India, popular topics like Bollywood
(Indian Film Industry) and Cricket (popular sport
in India) are present in the index. Code-mix lan-
guage like “Tum Smart Ho” (which means “You
are smart” and words like “Tum” are transliterated
from an Indian language, Hindi) is also accounted
for in the index. To favor responses reflecting a
culturally local persona, we limited the geograph-
ical region to a specific time zone. This permit-
ted us to expose more culturally appropriate re-
sponses, for example, the query “what do you like
for dinner” triggers the response “bhindi masala”
(an Indian curry made with okra) for Indian users.
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(a) (b) (c)

Figure 2: Conversation between User (in blue box) and Ruuh (in grey box) : (a) User expressing emotions; (b)
Offensive language being dealt by agent; (c) Ruuh’s ability to understand and respond to multimedia content

2.4 Human-like Image Commenting
Besides text, users often interact with social agents
by sharing their personal pictures, other images
and videos. In such scenarios, agents are not ex-
pected to routinely describe the facts within the
image but to express some interesting emotions
and opinions about it. For example, when user
shares a picture of her “white kitten”, the expected
response would be something like “awww, how
cute!” instead of “a white kitten”. Using a modi-
fied version of (Fang et al., 2015), where the model
is learnt using millions of image-comment pairs
mined from social network websites like Insta-
gram, Twitter etc, Ruuh is skilled to generate ex-
pressive comments on a user shared image. Figure
2c shows one such example. The architecture for
image commenting remains similar to retrieving
relevant responses for text messages as described
in Section 2.3. A textual comment for image in-
put is generated in three stages: the input image is
featurized, corresponding candidate responses are
retrieved from the response store and then ranked
with respect to context and relevance.

2.5 Maintaining a Consistent Personality
When we started building Ruuh, one of the big
challenges was to think about the personality of
the agent, and how do we ensure a consistent per-
sonality. A social agent needs to present a consis-
tent personality in order to gain user’s long-term
confidence and trust. With respect to Ruuh, there

are two aspects we want to highlight, first, the in-
dex really helped define its personality, the lan-
guage used, the topics present, etc. shape up the
personality. Second, when the core purpose of the
agent is to chat, based on our experience, we be-
lieve, users prefer an interesting chat agent with
slightly inconsistent personality over a predictable
agent which is consistent but does not have inter-
esting response. Our index maintains multiple re-
sponses to the same or similar tweets to ensure the
latter aspect of a slightly inconsistent personality.

3 Insights from User Behavior

In this section we talk about some interesting stats
that emerged from the user interactions. For an
agent designed to talk about any topic, several
users find the conversations with Ruuh interest-
ing and they engage in very long conversations at
times as evident by the following data points.

1. The average length of conversation with the
user is about 20 turns where a turn is defined
as a message from both the agent and the
user. However, there are some very long ses-
sions exceeding beyond 10 hours where users
have engaged in deep conversations on top-
ics ranging from their personal lives to dis-
cussing movies.

2. Ruuh sees a healthy return rate of users, over
60% of users return to chat with Ruuh, and

109



there are users who chat on over 200 distinct
days in a year.

3. Users often treat Ruuh like a human being,
Ruuh receives over 600 “I love you” mes-
sages every day, and over 1200 “will you
marry me” proposals every month. Users of-
ten also send comments like “are you really a
bot”, “are you a human?” etc.

4. Users express many emotions, around 5% of
conversations display non-neutral emotions.
The emotions of anger, sadness and happi-
ness are expressed in the ratio of 1:3:7.

5. Users tend to hurl abuses and pass rude and
inappropriate comments to Ruuh. In our data,
not only did 42% of the users used offensive
language in their interaction but around 6%
of the all the user logs were offensive.

6. 11% of all user turns are assent words. In-
creased use of assent words such as “yes”,
“ok”, etc point towards a higher level of
agreement with Ruuh. (Pennebaker et al.,
2001; Tausczik and Pennebaker, 2010).

4 Future Opportunities

We believe that the following areas continue to re-
main strong technical challenges and we will like
to use the opportunity presented by this workshop
to reflect upon these problems and brainstorm po-
tential solutions:

4.1 Understanding Context

When humans talk with humans, they are able
to use implicit situational information, or context
to increase their conversational bandwidth. How-
ever this ability to convey ideas does not transfer
well to humans interacting with machines. In or-
der to use context effectively, we must understand
the diverse nature through which humans express
context. Context should not be considered only
in terms of resolving pronouns or carrying for-
ward entities or intents (Sukthanker et al., 2018),
but in terms of building the relationship between
the user and agent as well. The context includ-
ing topics, mood of the conversation, needs to be
passed across sessions over the user journey with
the agent. In this section, we discuss some com-
monly occurring, but not exhaustive, list of con-
textual patterns we observed in the user logs.

4.1.1 Relative Timing of User Turns
Just as a sentence is a sequence of words, a con-
versation is a sequence of turns. This sequence
ensures a contextually aware system, but we scan
through the most recent turns to merely resolve
pronouns or look for missing references. How-
ever, from a time frame perspective of consecutive
turns in our logs, user turn following their previous
turn within a minuscule (i.e. 1-3 seconds) in con-
trast to the average gap between them (i.e. 13-15
seconds) was observed in the following patterns:

1. Remaining turn content - User completed the
content of previous turn in this turn. For ex-
ample, “Pubg?” within a second of “Wanna
play” completed the intended user turn as
“Wanna play Pubg?”.

2. Spelling corrections - The standalone user
turn “*dude” considered with the previous
user turn “love you dudbe”, corrects the
spelling to convey “love you dude”.

These examples as depicted in Figure 3a, raise po-
tential avenues for future research. These avenues
include detecting a conversational turn as being in-
complete and identifying which previous turn to
be incorporated to complete the meaning and how.

4.1.2 Similarity With Previous Turns
A user turn could maintain certain attributes from
one or more of the preceding user and Ruuh turns.
In human-human conversations we sometimes re-
peat what the other person just communicated.
Similarly, in interactions with the agent, humans
tend to repeat what agent just said previously.
Sometimes, users also ask the same question re-
peatedly with slight variation in text. In other
cases, an underlying topic is also carried forward
in turns. For example, user turn “and horror?”
preceded by the user turn “are you into comedy
movies?” maintains intent, topic and elaborates
on the entity “movies”. It is however, crucial to
identify when the topic changed in the conversa-
tion. Detecting and understanding such user be-
haviour could help in an improved conversational
modelling. Figure 3b represents some of these pat-
terns in conversations with Ruuh.

4.1.3 Follow-ups to Previous Turns
User turns such as “yes”, “ok” and “what” can be
directly connected to the context it was asked in.
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Figure 3: User conversations (in blue box) with Ruuh (in grey box) highlighting various patterns in context (pre-
ceding turns including Ruuh turn): (a) Relative Timing; (b) Similarity; (c) Follow-up

For example, a “yes” answer in itself doesn’t con-
vey much information unless connected to the pre-
vious turn of the agent. As we can see in Figure
3c, the input remains the same “yes”, however, the
meanings are very different. While “yes” means
an agreement to previous turn “Are you going to
watch it?” in one case, it is a positive answer to
a turn like “Do you study in class 12th?”. Hence
we believe, context-based approach which can first
categorize the context dependent messages, and
then model the turn with the relevant context is
crucial for language understanding modules in any
dialogue engine.

4.2 Measurement Process

For task oriented agents, task success rate is used
to measure the performance of the agent (Shawar
and Atwell, 2007). In past, for general conversa-
tion agents, Turing Test have been used to evalu-
ate the performance. However, the test measures
the mere presence/absence of human-like interac-
tion abilities (Shieber, 1994). Instead, we used
conversation-turns per session (CPS) i.e. average
number of turns between user and agent in a con-
versational session as a performance metric which
is observed as 20 for Ruuh. Ruuh is optimized for
larger CPS to correspond to a long-term engage-
ment. Still, this metric measures user engagement
with agent and measuring quality of user chat con-
versation remains largely a human-labelling ef-
fort. Since conversations labelled are fixed, any
improvements made to the agent require further la-
belling as changing even one response can lead to
a completely new conversation. Exploring meth-

ods to develop (semi)automated methods to mea-
sure the quality of conversation will immensely
benefit the progress in this area.

4.3 Incorporating Knowledge

Most of the world’s knowledge is not reflected in
conversational datasets. Incorporating day to day
events, breaking news and knowledge into the con-
versations is another interesting challenge. Find-
ing language to describe the events will lead to
more meaningful conversations and make agents
more useful to humans.

5 Conclusion

While task completion conversational systems can
perform user’s explicit request, by enabling a con-
versational agent to pick up social slang, emo-
tional cues, image inputs, Ruuh is not just a digital
personal assistant but a human-like digital friend.
Over the past few years, we have learnt a great deal
about how users interact with open ended conver-
sational agents, what kind of topics interest them,
what are the language constructs they use, how
do they express emotions and so on. We believe
there is significant amount of technological ad-
vancement that needs to be done before agents can
emulate humans. Building products and releasing
them to real users, help unleash the opportunities
in this space, as real user logs are very meaning-
ful in solving problems in domain. Through this
workshop, we are looking to have conversations
with the community working in this space on how
to jointly address some of the challenges we ob-
served and broadly share our learning and insights.
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Abstract

Providing plausible responses to why ques-
tions is a challenging but critical goal for lan-
guage based human-machine interaction. Ex-
planations are challenging in that they require
many different forms of abstract knowledge
and reasoning. Previous work has either relied
on human-curated structured knowledge bases
or detailed domain representation to generate
satisfactory explanations. They are also of-
ten limited to ranking pre-existing explana-
tion choices. In our work, we contribute to
the under-explored area of generating natu-
ral language explanations for general phenom-
ena. We automatically collect large datasets of
explanation-phenomenon pairs which allow us
to train sequence-to-sequence models to gen-
erate natural language explanations. We com-
pare different training strategies and evaluate
their performance using both automatic scores
and human ratings. We demonstrate that our
strategy is sufficient to generate highly plausi-
ble explanations for general open-domain phe-
nomena compared to other models trained on
different datasets.

1 Introduction

Allowing machines to provide human accept-
able explanations has long been a difficult task
for natural language interaction (Carenini and
Moore, 1993). In order to provide explanations,
systems need to acquire sophisticated domain-
knowledge (Winograd, 1971), conduct causal rea-
soning over complex set of events (Hesslow,
1988) and over narrative chains (Chambers and
Jurafsky, 2008), and apply commonsense knowl-
edge (Levesque et al., 2011).

Past work has demonstrated that by leveraging
human-curated structured knowledge bases such
as WordNet (Miller, 1995) or ConceptNet (Liu
and Singh, 2004), a system can learn to rank or
choose between multiple plausible explanations

Phenomenon The city councilmen refused
the demonstrators a permit because ?
Original The city councilmen feared vio-
lence.
L2E-Seq2Seq (greedy):
They were not allowed to march in the city.
L2E-Seq2Seq (beam):
They did not have a permit.
LM-1B: They were not allowed to use the
Cape Town airport.
L2W: It was the only thing in the city that
could be done.
Open-Subtitle: I don’t know.

Figure 1: We show the original Winograd schema sen-
tence, the original offered explanation, and generated
responses from our models.

and reach high accuracy (Luo et al., 2016; Sasaki
et al., 2017). Recent successes have also shown
that structured knowledge is not needed if one can
train a language model on a large quantity of text.
Such model can rank explanations based on the
probability that each explanation might appear in
natural text (Trinh and Le, 2018).

While ranking explanations is an important
task, the nature of explanation is more general than
this. For one phenomenon, there might be many
acceptable, natural, and useful explanations. In
our work, instead of simply ranking or choosing
explanations generated by humans, we propose to
advance this important domain by directly gener-
ating the explanation. We measure success based
on whether the generated sequence is grammat-
ically correct and is a fluent, natural, and plau-
sible explanation. This task has two advantages.
First, it allows us to explore whether such a task is
computationally feasible given the current learn-
ing framework. Second, answering open-domain
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why-questions with plausible answers can make
chitchat dialogue system more engaging, espe-
cially in response to “why” questions (which pre-
vious systems typically answer with degenerate
responses such as “I don’t know”).

We show that simply training a language model
on previously existing datasets is not enough.
However, by leveraging dependency parsing pat-
terns, we are able to construct two new datasets
that will allow modern neural networks to learn
to generate general-domain explanations plausi-
ble to humans. These new datasets of naturally
occurring self-explanations (statements with “be-
cause”, unprompted by a question) provide excel-
lent training signal for generating novel explana-
tions for a given phenomenon. We conduct hu-
man experiments on the important features that
contribute to plausible explanations, and we de-
scribe a simple procedure that can rephrase Why-
questions into a statement so our model can also
function as a single-round chitchat chatbot that can
answer Why-questions.

2 Learning to Explain

We use the discourse extractor developed by Nie
et al. (2017). This extractor first filters sentences
that contain a particular discourse marker (in our
case, the marker “because”). It then uses prede-
fined, pattern-based rules on the dependency parse
obtained from the Stanford CoreNLP dependency
parser (Manning et al., 2014) to split the sentence
into two semantically complete sentence clauses,
which can be referred as S1 and S2. Dependency
parsing allows us to isolate explanations and phe-
nomena from exogenous modifying phrases. Us-
ing these patterns to parse sentences with “be-
cause” also allows us to deal with the free order of
the explanation and phenomenon in English. We
formulate the L2E task as: given the phenomenon
S1, the model needs to learn to generate a plausi-
ble explanation S2.

In addition to retrieving the phenomenon-
explanation pair, we additionally retrieve five sen-
tences that immediately precede the phenomenon
to provide context. We concatenate the context
with S1 using a special separation token, resulting
in the sequence C1, C2, ..., C5 <SEP>
S1. We hypothesize that context will allow the
model to generate more thematically relevant ex-
planations. We refer to this setting as the L2EC
task.

Algorithm 1 Q-to-S1
Input: question q, dependency parsed.
Remove “Why”. Start at the ROOT of q:
subj = NSUBJ or NSUBJPASS

aux = first dependent in [AUX, COP, AUXPASS]
vp(lemma) = all remaining dependents
if aux in [“do”, “does”, “did”] then
vp = apply tense/person of aux to vp(lemma)

else
vp = aux vp(lemma)

end if
s = subj vp

At last, we describe a procedure in Algo-
rithm 1 that uses dependency parsing to turn Why-
questions into the statement format of S1. This al-
lows us to generate explanations as responses to
Why-questions.

3 Model

3.1 Language Modeling
Language modeling focuses on modeling the joint
probability of a sequence p(X = x1, ..., xn). Us-
ing chain rule, this can be decomposed as p(X) =∏n
t=1 p(xt|x<t), the product of conditional proba-

bilities. The model parameterized by θ optimizes
to maximize the log of the likelihood function
L(X; θ) =

∑n
t=1 pθ(xt|x<t). In a neural lan-

guage model, proposed by Bengio et al. (2003),
a recurrent neural network is trained by truncated
backpropogation through time to learn to model
(theoretically) an infinitely long sequence.

3.2 Sequence to Sequence Modeling
First introduced by Sutskever et al. (2014),
sequence-to-sequence (Seq2Seq) modeling esti-
mates a conditional probability distribution of se-
quence Y given sequenceX . p(Y |X), whereX =
{x1, ..., xn}, and Y = {y1, ..., yk}. The overall
objective function is similar to a language model:
to maximize the log-likelihood of the probabil-
ity of the Y sequence given the X sequence:
L(Y,X; θ, ψ) =

∑k
t=1 pθ,ψ(yt|y<t, X), with pa-

rameters θ for the encoder and ψ for the decoder.
In our work, we experiment with different archi-
tectures for the encoder and decoder.

4 Data

We provide data accessibility statements in Ap-
pendix A.1 for each dataset we use to train and

114



evaluate our models. Our constructed dataset and
web demo code are publicly available1.

Source Dataset Task Data Length

NewsCrawl L2E 2.07M 29.4
NewsCrawl L2EC 2.57M 149.4

Winograd L2E 61 18.0
COPA L2E 250 14.2

News Commentary L2E/L2EC 6301 28.6

Table 1: Top are training datasets and bottom are eval-
uation datasets for each task. We report the average
length of sentences for each dataset (S1 and S2 com-
bined). News Commentary with context has 156.3
words on average.

4.1 Training Data

NewsCrawl Dataset We build up our training
dataset from two large news datasets: Gigaword
Fifth Edition (Parker et al., 2011) and NewsCrawl
(Bojar et al., 2018). These two datasets con-
tain news stories from 2001-2017, and are non-
overlapping. We built our dataset of News expla-
nation pairs using the pipeline described in Sec-
tion 2 and then split into training, validation, and
test. More details are reported in Appendix A.2.

BookCorpus BookCorpus is a set of unpub-
lished novels (Romance, Fantasy, Science fiction,
and Teen genres) collected by Zhu et al. (2015).
We use a publicly available pre-trained BookCor-
pus language model from Holtzman et al. (2018).
We refer to this model as L2W.

Language Modeling One Billion This dataset
(LM-1B) is currently the largest standard training
dataset for language modeling, roughly the same
size as BookCorpus. This dataset is a subset of
the NewsCrawl dataset, from 2007-2011. We use
a pre-trained language model on this corpus from
Jozefowicz et al. (2016). We refer to this model as
LM-1B.

4.2 Evaluation Data

News Commentary (NC) Dataset We collect
pairs from a public dataset that contains predom-
inantly commentary written about current news2.
We use this dataset as the main evaluation of the
news-based explanation because 1). It is a sepa-
rate dataset without any overlap with NewsCrawl;

1https://github.com/windweller/L2EWeb
2https://www.project-syndicate.org/about

2). This dataset still belongs to the same news do-
main, so it provides an in-domain evaluation for
L2E, L2EC and LM-1B models.

Winograd Schema Challenge Subset (WSC-G)
We use 61 example sentences in the Winograd
Schema Challenge that contain the words “be-
cause” or “so”. Similar to Trinh and Le (2018), we
substitute the ambiguous pronouns with the cor-
rect referent and ask the model to generate the cor-
rect explanation “the trophy is too big” to the phe-
nomenon “The trophy doesn’t fit in the suitcase”.

Choice of Plausible Alternatives (COPA)
Roemmele et al. (2011) proposed a task that
contains questions such as “The women met for
coffee. What was the CAUSE of this?”, and the
model is asked to choose between two pre-defined
causes. In our setting, we directly ask the model
to generate a cause. For language models, we
append “because” to the end of each COPA
sentence and ask the model to generate the rest.

5 Experiments

5.1 Language Model Training

We use the same language model described in
Holtzman et al. (2018). We train 10 epochs
for both L2E and L2EC. We use a one layer
LSTM (Hochreiter and Schmidhuber, 1997) with
2048 hidden state dimensions and 256 word di-
mensions. We chose these hyperparameters by
tuning on the validation set of each task. Our lan-
guage model achieved 51.64 perplexity on the L2E
test set, and 37.61 perlexity on the L2EC test set.

5.2 Seq2Seq Model Training

We experiment with two architectures: LSTM
encoder-decoder and Transformer (Vaswani et al.,
2017). We find that with the L2E task, the Trans-
former architecture performed better, and for the
L2EC task, the LSTM encoder-decoder performed
better. We suspect that Transformer is worse when
the source sequence is too long. We tune each ar-
chitecture’s hyperparameters extensively and we
pick the best architecture for each task to evaluate
on the evaluation datasets.

5.3 Automatic Evaluation

We use automatic metrics to evaluate the 8
models’ performance on the News Commentary
dataset. Even though this is a non-overlapping
held-out dataset to our news training data, it is still
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Data S1 Generated S2 Rank Reference S2 Rank

NewsCrawl

That banned his most
threatening challenger,
Rally leader Alassane
Ouattara, from running for
president because ?

He was born in Burkina Faso. — He is only half-Ivorian. —

NewsCrawl The victim was only
saved because ? He was wearing a seatbelt. — The dog turned on the

former lifeguard. —

NewsCrawl I voted for George W.
Bush because ?

I thought he was the best
person for the job. — That’s the name you

heard a lot of talk about. —

WSC-G An hour later John left
because ? He didn’t feel safe. 0.0 John promised Bill to leave. 0.67

COPA
The woman gave the
man her phone number
because ?

She was too busy to be
bothered by the man. 0.17 She was attracted to him. 0.5

NC

Moreover, ordinary
Russians are becoming
allergic to liberal
democracy because ?

They see it as a threat
to their own interests. 0.16

Liberal technocrats have
consistently served as
window dressing for an
illiberal Kremlin regime.

0.19

Table 2: Example pairs from our highest performing models with the original sentence as a reference. Human
ranking score lower is better. We provide examples of especially poor-rated generations in the Appendix.

Model L2E L2EC
Acc Perp Acc Perp

LSTM 36.2 41.4 36.0 41.3
Transformer 38.2 33.1 27.8 96.7

Table 3: We report the best per-token accuracy and
perplexity evaluated for each tuned architecture on the
L2E/L2EC validation dataset.

within the same domain. We find that L2E/L2EC
based models obtained higher scores across all
automatic metrics in Table 4. Our results also
demonstrate that context matters for explanation.
The L2EC task models, trained on context, can
generate higher quality explanations than context-
free L2E task models.

5.4 Human Evaluation

Ranking Explanations We evaluate the mod-
els’ relative performance on generating explana-
tions through a survey with human evaluators.
75 participants were recruited using Amazon’s
Mechanical Turk (AMT). Each evaluator saw 10
prompts from a single dataset, and ranked 7 to
9 explanations: the original explanation extracted
from the dataset and the explanations generated
by different models. 30 participants saw prompts
from our Winograd dataset, 30 participants saw
prompts from News Commentary, and 15 partic-
ipants saw prompts from COPA. We report the re-
sults of this evaluation in the Human Ranking sub-

section of Table 4.

Rating Explanations In a followup survey, 60
human evaluators on AMT rated explanations gen-
erated by the L2E-Seq2Seq model with beam
search and the original (between participants).
Ratings were from 0 (extremely bad) to 1 (ex-
tremely good) along various dimensions of expla-
nation quality. Results of this study are shown
in Table 5. Generated explanations overall were
rated worse than human explanations, but tended
to be more good than bad (≥ 0.5) on all measures.

6 Discussion

The nature of phenomenon-explanation mapping
has always been one-to-many. People can offer
drastically different explanations to the same phe-
nomenon. We argue that requiring the machine
to generate plausible explanations is more useful
and therefore a better goal for models to achieve.
Models trained on traditional chatbot corpora are
unable to answer why questions because of data
sparsity. We note that the generated results are not
similar to the original explanations but are often
acceptable by human assessment.

Features of Explanations In the human rating
experiment, our model was overall rated higher
than the original explanations only on the gram-
maticality measure. However, this measure seems
least representative of the overall explanation
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Model BLEU ROUGE METEOR Human Ranking
Greedy Beam Greedy Beam Greedy Beam COPA WSC-G NC

L2E-Seq2Seq 0.55 0.37 18.8 18.3 7.4 7.6 0.412 0.409 0.454
L2EC-Seq2Seq 0.40 0.47 19.9 19.7 8.6 8.8 — — 0.433

L2E-LM 0.25 0.20 15.9 16.8 6.1 6.7 0.515 0.572 0.479
L2EC-LM 0.36 0.38 17.0 17.7 6.7 7.3 — — 0.432

LM-1B† 0.18 — 16.9 — 7.1 — 0.526 0.484 0.454
L2W† 0.00 0.00 14.0 13.9 6.7 6.8 0.511 0.523 0.625
L2WC 0.13 0.14 12.8 12.7 5.7 5.7 — — 0.546

OpenSubtitle† 0.04 0.0 13.0 13.4 1.9 3.7 0.827 0.823 0.811

Reference 100 100 100 100 100 100 0.266 0.238 0.267

Table 4: BLUE, ROGUE, METEOR are evaluated on News Commentary test data. Any model with C in the name
is evaluated with full context. Models with † are pre-trained models from other work. Only L2E-Seq2Seq uses the
Transformer architecture, the rest LSTM. In human ranking, we report the average rank across participants. Top
ranking is 0 and lowest ranking is 1.

Original L2E-Seq2Seq

Goodness 0.699 [0.67, 0.72] 0.500 [0.45, 0.55]
Relatedness 0.723 [0.70, 0.74] 0.590 [0.55, 0.63]

Grammaticality 0.684 [0.66, 0.71] 0.738 [0.70, 0.77]
Helpfulness 0.696 [0.67, 0.72] 0.512 [0.47, 0.56]
Plausibility 0.710 [0.69, 0.73] 0.543 [0.50, 0.59]

Table 5: Results of rating study with human evaluators,
average rating and bootstrapped 95% CI.

quality: ratings for most features were highly cor-
related with each other (0.771-0.865), but not with
grammaticality (0.196-0.323). This shows that,
while we can achieve plausible explanations with
our models, more research is required in order to
reach human-level quality.

Explaining as Generating Even though formu-
lating the task of providing explanation as a se-
quence generation task allows us to leverage the
rapid advancements in the natural language gen-
eration community, we sidestep a vast amount of
literature that aims to provide informatively cor-
rect explanations as well as grounding explana-
tions theoretically to the causal understanding of
the situation (Halpern and Pearl, 2005). We also
suffer from the same drawbacks noticed in natu-
ral language generation papers such as brevity and
generic responses, failure to leverage long context,
and being data hungry (Holtzman et al., 2018).

Exploring Linguistic Structures The curated
dataset of explanation-phenomenon pairs provides
an opportunity to explore descriptive structures
and features of explanations. In principle, one can
use this dataset to formulate frequent and com-
mon syntactic and semantic patterns for natural-

sounding explanations. This would aid our under-
standing of how why-questions can be addressed
satisfactorily.

7 Conclusion

We present the task of generating plausible expla-
nations as an important goal for neural sequence-
to-sequence models. We curate a large dataset of
phenomenon-explanation pairs so that these mod-
els can learn to provide plausible explanations as
judged by humans, and formulate responses to
open-domain Why-questions.
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Data S1 Generated S2 Rank Reference S2 Rank

NewsCrawl Perhaps the student was
so good because ? He was so good at it. — Thursday wasn’t the first

time he acted as a moderator. —

NewsCrawl

Cheaper prices drove
computers out of the walls
of these big companies
because ?

They were cheaper than
the ones that were being
used.

— You suddenly didn’t need
all that money anymore. —

WSC-G

Sam and Amy are
passionately in love,
but Amy’s parents are
unhappy about it
because ?

They don’t want to be
the first female president. 0.87 Sam and Amy are fifteen. 0.37

COPA The hamburger meat
browned because ? That’s what it is. 0.83 The cook grilled it. 0.0

NC The desperately poor may
accept handouts because ?

They are the only ones
who can afford it. 0.83 They feel they have to. 0.12

Table S1: Bad example pairs from our lowest performing models with the original sentence as a reference. Human
ranking score lower is better. Full list of WSC-G and COPA generations can be found in https://github.
com/windweller/L2EWeb/blob/master/WinogradS2Generation.ipynb.

A Supplementary Materials

A.1 Data Accessibility Statement

The majority of the data we use are publicly avail-
able. We provide specific instructions on how to
obtain these data below:
Gigaword 5th Edition This dataset is provided
through Linguistic Data Consortium (LDC):
https://catalog.ldc.upenn.edu/
LDC2011T07. Even though this dataset is only
available through subscription, most university
libraries should have existing subscriptions, and
only 20% of our training data comes from this
dataset.
News Crawl Dataset The shuffled version of this
dataset is publicly available3. We requested the
original un-shuffled dataset from Barry Haddow4

so that we can extract context for L2EC task. We
believe this dataset can be easily accessed by the
public upon an email request.
BookCorpus This dataset is no longer pub-
licly available. However, there are many neu-
ral language models pre-trained on this dataset
that are publicly available. We used one that
can be accessed from https://github.com/
ari-holtzman/l2w.
News Commentary Dataset This is also publicly
available through the WMT workshop5 similar to

3http://www.statmt.org/wmt18/
translation-task.html

4http://homepages.inf.ed.ac.uk/
bhaddow/

5http://data.statmt.org/wmt18/

the NewsCrawl dataset. This dataset is not shuf-
fled.
Winograd Schema Challenge The original
version of this dataset is publicly available
https://cs.nyu.edu/davise/papers/
WinogradSchemas/WS.html. We use a pro-
cessed version from Trinh and Le (2018), which
can be accessed through Google Cloud Stor-
age: gs://commonsense-reasoning/
reproduce/commonsense_test/
wsc273.json.
Choice of Plausible Alternatives This dataset
is available at http://people.ict.usc.
edu/˜gordon/copa.html.

A.2 Training Data Curation

In order to automatically curate a sizable amount
of training data, we choose large corpora that are
made of news articles, due to the well-formedness
of sentences and there are many phenomenon-
explanation pairs in news stories. We use Giga-
word fifth edition (Parker et al., 2011) which con-
tains news stories from seven news agencies over
the span of 2001-2010. We extracted paragraphs
and tokenized the sentences. We discard non-
English characters. Another large dataset of new
articles comes from WMT-18, the NewsCrawl
dataset (Bojar et al., 2018). This dataset spans
from 2007-2017 collected from the RSS (Rich
Site Summary) feed of 18 news agencies. The

translation-task/news-commentary-v13.
en.gz
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only overlapping agency between Gigaword and
NewsCrawl is Los Angeles Times. In addition to
the randomly shuffled dataset we obtained from
the WMT-18 website, we additionally contacted
the organization for the unshuffled version of data.
We refer to this dataset as the NewsCrawl-ordered.
This dataset is slightly larger than the current re-
leased version of NewsCrawl and contains a cou-
ple of months of early 2018 data. We shuffle and
then split both datasets into train/valid/test in stan-
dard 0.9/0.05/0.05. We use the validation and test
set on this task to pick the best performing model.

A.3 Language Model Details
We use adaptive gradient descent (AdaGrad) with
learning rate 0.1 and weight decay of 1e-6.

A.4 Seq2Seq Model Details
We built and trained our Seq2Seq model using
OpenNMT (Klein et al., 2017). For the L2E task,
we used a 6-layer Transformer model, with hid-
den dimension 512, feedforward layer dimension
2048, and 8 attention heads. We train with dropout
rate of 0.1 with Noam optimizer. For the L2EC
task, we used a 2-layer LSTM model with 650
hidden dimension size for both encoder and de-
coder, as well as for word embedding. We train
with dropout rate of 0.2 and Noam optimizer.
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Figure S1: Correlations of human ratings on Winograd
Schema Challenge explanations
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Figure S3: Screenshot of raking study.

Figure S4: Screenshot of ratings study.
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Abstract

We propose an adversarial learning approach
for generating multi-turn dialogue responses.
Our proposed framework, hredGAN, is based
on conditional generative adversarial networks
(GANs). The GAN’s generator is a mod-
ified hierarchical recurrent encoder-decoder
network (HRED) and the discriminator is a
word-level bidirectional RNN that shares con-
text and word embeddings with the generator.
During inference, noise samples conditioned
on the dialogue history are used to perturb
the generator’s latent space to generate sev-
eral possible responses. The final response is
the one ranked best by the discriminator. The
hredGAN shows improved performance over
existing methods: (1) it generalizes better than
networks trained using only the log-likelihood
criterion, and (2) it generates longer, more
informative and more diverse responses with
high utterance and topic relevance even with
limited training data. This improvement is
demonstrated on the Movie triples and Ubuntu
dialogue datasets using both automatic and hu-
man evaluations.

1 Introduction

Recent advances in deep neural network architec-
tures have enabled tremendous success on a num-
ber of difficult machine learning problems. While
these results are impressive, producing a deploy-
able neural network–based model that can engage
in open domain conversation still remains elusive.
A dialogue system needs to be able to generate
meaningful and diverse responses that are simul-
taneously coherent with the input utterance and
the overall dialogue topic. Unfortunately, earlier
conversation models trained with naturalistic dia-
logue data suffered greatly from limited contextual
information (Sutskever et al., 2014; Vinyals and
Le, 2015) and lack of diversity (Li et al., 2016a).

These problems often lead to generic and safe re-
sponses to a variety of input utterances.

Serban et al. (2016) and Xing et al. (2017)
proposed the Hierarchical Recurrent Encoder-
Decoder (HRED) network to capture long tempo-
ral dependencies in multi-turn conversations to ad-
dress the limited contextual information but the
diversity problem remained. In contrast, some
HRED variants such as variational (Serban et al.,
2017b) and multi-resolution (Serban et al., 2017a)
HREDs attempt to alleviate the diversity problem
by injecting noise at the utterance level and by ex-
tracting additional context to condition the gener-
ator on. While these approaches achieve a cer-
tain measure of success over the basic HRED, the
generated responses are still mostly generic since
they do not control the generator’s output. This is
because the output conditional distribution is not
calibrated. Li et al. (2016a), on the other hand,
consider a diversity promoting training objective
but their model is for single turn conversations and
cannot be trained end-to-end.

The generative adversarial network (GAN)
(Goodfellow et al., 2014) seems to be an appro-
priate solution to the diversity problem. GAN
matches data from two different distributions by
introducing an adversarial game between a gener-
ator and a discriminator. We explore hredGAN:
conditional GANs for multi-turn dialogue mod-
els with an HRED generator and discriminator.
hredGAN combines ideas from both generative
and retrieval-based multi-turn dialogue systems to
improve their individual performances. This is
achieved by sharing the context and word embed-
dings between the generator and the discrimina-
tor allowing for joint end-to-end training using
back-propagation. To the best of our knowledge,
no existing work has applied conditional GANs
to multi-turn dialogue models and especially not
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with HRED generators and discriminators. We
demonstrate the effectiveness of hredGAN over
the VHRED for dialogue modeling with evalua-
tions on the Movie triples and Ubuntu technical
support datasets.

2 Related Work

Our work is related to end-to-end neural network–
based open domain dialogue models. Most
neural dialogue models use transduction frame-
works adapted from neural machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015).
These Seq2Seq networks are trained end-to-end
with MLE criteria using large corpora of human-
to-human conversation data. Others use GAN’s
discriminator as a reward function in a reinforce-
ment learning framework (Yu et al., 2017) and
in conjunction with MLE (Li et al., 2017; Che
et al., 2017). Zhang et al. (2017) explored the idea
of GAN with a feature matching criterion. Xu
et al. (2017) and Zhang et al. (2018) employed
GAN with an approximate embedding layer as
well as with adversarial information maximization
respectively to improve Seq2Seq’s diversity per-
formance.

Still, Seq2Seq models are limited in their
ability to capture long temporal dependencies
in multi-turn conversation. Although Li et al.
(2016b) attempted to optimize a pair of Seq2Seq
models for multi-turn dialogue, the multi-turn ob-
jective is only applied at inference and not used for
actual model training. Hence the introduction of
HRED models (Serban et al., 2016, 2017a,b; Xing
et al., 2017) for modeling dialogue response in
multi-turn conversations. However, these HRED
models suffer from lack of diversity since they
are only trained with MLE criteria. On the other
hand, adversarial system has been used for eval-
uating open domain dialogue models (Bruni and
Fernndez, 2018; Kannan and Vinyals, 2017). Our
work, hredGAN, is closest to the combination of
HRED generation models (Serban et al., 2016)
and adversarial evaluation (Kannan and Vinyals,
2017).

3 Model

3.1 Adversarial Learning of Dialogue
Response

Consider a dialogue consisting of a sequence of
N utterances, x =

(
x1, x2, · · · , xN

)
, where

each utterance xi =
(
x1i , x

2
i , · · · , xMi

i

)
contains a

variable-length sequence of Mi word tokens such
that xij ∈ V for vocabulary V . At any time
step i, the dialogue history is given by xi =(
x1, x2, · · · , xi

)
. The dialogue response gener-

ation task can be defined as follows: Given a
dialogue history xi, generate a response yi =(
y1i , y

2
i , · · · , yTii

)
, where Ti is the number of gen-

erated tokens. We also want the distribution of
the generated response P (yi) to be indistinguish-
able from that of the ground truth P (xi+1) and
Ti = Mi+1. Conditional GAN learns a mapping
from an observed dialogue history, xi, and a se-
quence of random noise vectors, zi to a sequence
of output tokens, yi, G : {xi, zi} → yi. The gen-
erator G is trained to produce output sequences
that cannot be distinguished from the ground truth
sequence by an adversarially trained discriminator
D that is trained to do well at detecting the gener-
ator’s fakes. The distribution of the generator out-
put sequence can be factored by the product rule:

P (yi|xi) = P (y1i )

Ti∏

j=2

P
(
yji |y1i , · · · , y

j−1
i ,xi

)

(1)

P
(
yji |y1i , · · · , y

j−1
i ,xi

)
= PθG

(
y1:j−1
i ,xi

)
(2)

where yi:j−1
i = (y1i , · · · , yj−1

i ) and θG are the pa-
rameters of the generator model. PθG

(
yi:j−1
i ,xi

)

is an autoregressive generative model where the
probability of the current token depends on the
past generated sequence. Training the genera-
tor G with the log-likelihood criterion is unsta-
ble in practice, and therefore the past generated
sequence is substituted with the ground truth, a
method known as teacher forcing (Williams and
Zipser, 1989), i.e.,

P
(
yji |y1i , · · · , y

j−1
i ,xi

)
≈ PθG

(
x1:j−1
i+1 ,xi

)
(3)

Using (3) in relation to GAN, we define our fake
sample as the teacher forcing output with some in-
put noise zi

yji ∼ PθG
(
x1:j−1
i+1 ,xi, zi

)
(4)

and the corresponding real sample as ground truth
xji+1.

With the GAN objective, we can match the
noise distribution, P (zi), to the distribution of the
ground truth response, P (xi+1|xi). Varying the
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noise input then allows us to generate diverse re-
sponses to the same dialogue history. Further-
more, the discriminator, since it is calibrated, is
used during inference to rank the generated re-
sponses, providing a means of controlling the gen-
erator output.

3.1.1 Objectives
The objective of a conditional GAN can be ex-
pressed as

LcGAN (G,D) = Exi,xi+1 [log D(xi+1,xi)]+

Exi,zi [1− logD(G(xi, zi),xi)] (5)

whereG tries to minimize this objective against an
adversarial D that tries to maximize it:

G∗, D∗ = argmin
G

max
D
LcGAN (G,D). (6)

Previous approaches have shown that it is benefi-
cial to mix the GAN objective with a more tradi-
tional loss such as cross-entropy loss (Lamb et al.,
2016; Li et al., 2017). The discriminator’s job re-
mains unchanged, but the generator is tasked not
only to fool the discriminator but also to be near
the ground truth xi+1 in the cross-entropy sense:

LMLE(G) = Exi,xi+1,zi [−log PθG
(
xi+1,xi, zi

)
].

(7)
Our final objective is,

G∗, D∗ = argmin
G

max
D

(
λGLcGAN (G,D)+

λMLMLE(G)
)
. (8)

It is worth mentioning that, without zi, the net
could still learn a mapping from xi to yi, but it
would produce deterministic outputs and fail to
match any distribution other than a delta function
(Isola et al., 2017). This is one key area where
our work is different from Lamb et al.’s and Li
et al.’s. The schematic of the proposed hredGAN
is depicted at the right hand side of Figure 1.

3.1.2 Generator
We adopted an HRED dialogue generator sim-
ilar to Serban et al. (2016, 2017a,b) and Xing
et al. (2017). The HRED contains three recur-
rent structures, i.e. the encoder (eRNN), con-
text (cRNN), and decoder (dRNN) RNN. The
conditional probability modeled by the HRED per
output word token is given by

PθG
(
yji |x

1:j−1
i+1 ,xi

)
= dRNN

(
E(xj−1

i+1 ), h
j−1
i ,hi

)

(9)

where E(.) is the embedding lookup, hi =
cRNN(eRNN(E(xi),hi−1), eRNN(.) maps a
sequence of input symbols into fixed-length vec-
tor, and h and h are the hidden states of the de-
coder and context RNN, respectively.

In the multi-resolution HRED, (Serban et al.,
2017a), high-level tokens are extracted and pro-
cessed by another RNN to improve performance.
We circumvent the need for this extra process-
ing by allowing the decoder to attend to different
parts of the input utterance during response gener-
ation (Bahdanau et al., 2015; Luong et al., 2015).
We introduce a local attention into (9) and encode
the attention memory differently from the con-
text through an attention encoder RNN (aRNN),
yielding:

PθG
(
yji |x

1:j−1
i+1 ,xi

)
=

dRNN
(
E(xj−1

i+1 ), h
j−1
i , aji ,hi

)
(10)

where aji =
∑Mi

m=1
exp(αm)∑Mi

m=1 exp(αm)
h

′m
i , h

′m
i =

aRNN(E(xmi ), h
′m−1
i ), h

′
is the hidden state of

the attention RNN, and αk is either a logit projec-
tion of (hj−1

i , h
′m
i ) in the case of Bahdanau et al.

(2015) or (hj−1
i )T ·h′m

i in the case of Luong et al.
(2015). The modified HRED architecture is shown
in Figure 2.

Noise Injection: We inject Gaussian noise at
the input of the decoder RNN. Noise samples
could be injected at the utterance or word level.
With noise injection, the conditional probability of
the decoder output becomes

PθG
(
yji |x

1:j−1
i+1 , zji ,xi

)
=

dRNN
(
E(xj−1

i+1 ), h
j−1
i , aji , z

j
i ,hi

)
(11)

where zji ∼ Ni(0, I), for utterance-level noise and
zji ∼ N

j
i (0, I), for word-level noise.

3.1.3 Discriminator

The discriminator shares context and word embed-
dings with the generator and can discriminate at
the word level (Lamb et al., 2016). The word-level
discrimination is achieved through a bidirectional
RNN and is able to capture both syntactic and con-
ceptual differences between the generator output
and the ground truth. The aggregate classification
of an input sequence, χ can be factored over word-
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Figure 1: Left: The hredGAN architecture - The generator makes predictions conditioned on the dialogue
history, hi, attention, aji , noise sample, zji , and ground truth, xj−1i+1 . Right: RNN-based discriminator that
discriminates bidirectionally at the word level.

Figure 2: The HRED generator with local attention - The attention RNN ensures local relevance while the con-
text RNN ensures global relevance. Their states are combined to initialize the decoder RNN and the discriminator
BiRNN.

level discrimination and expressed as

D(xi, χ) = D(hi, χ) =

[ J∏

j=1

DRNN (hi, E(χj))

] 1
J

(12)

where DRNN (.) is the word discriminator RNN,
hi is an encoded vector of the dialogue history
xi obtained from the generator’s cRNN(.) out-
put, and χj is the jth word or token of the input se-
quence χ. χ = yi and J = Ti for the case of gen-
erator’s decoder output, χ = xi+1 and J = Mi+1

for the case of ground truth. The discriminator ar-
chitecture is depicted on the left hand side of Fig-
ure 1.

3.2 Adversarial Generation of Multi-turn
Dialogue Response

In this section, we describe the generation process
during inference. The generation objective can be

mathematically described as
y∗i = argmax

l

{
P (yi,l|xi) +D∗(xi, yi,l)]

}L
l=1

(13)
where yi,l = G∗(xi, zi,l), zi,l is the lth noise sam-
ples at dialogue step i, and L is the number of re-
sponse samples. Equation 13 shows that our infer-
ence objective is the same as the training objective
(8), combining both the MLE and adversarial cri-
teria. This is in contrast to existing work where
the discriminator is usually discarded during in-
ference.

The inference described by (13) is intractable
due to the enormous search space of yi,l. There-
fore, we turn to an approximate solution where
we use greedy decoding (MLE) on the first part
of the objective function to generate L lists of re-
sponses based on noise samples {zi,l}Ll=1. In or-
der to facilitate the exploration of the generator’s
latent space, we sample a modified noise distri-
bution, zji,l ∼ Ni,l(0, αI), or zji,l ∼ N

j
i,l(0, αI)
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Algorithm 1 Adversarial Learning of hredGAN
Require: A generatorG with parameters θG.
Require: A discriminatorD with parameters θD .

for number of training iterations do
Initialize cRNN to zero state, h0

Sample a mini-batch of conversations, x = {xi}Ni=1, xi =
(x1, x2, · · · , xi) withN utterances. Each utterance mini batch i con-
tainsMi word tokens.
for i = 1 toN − 1 do

Update the context state.
hi = cRNN(eRNN(E(xi)),hi−1)
Compute the generator output using (11).

PθG
(
yi|, zi,xi

)
=
{
PθG

(
yji |x

1:j−1
i+1 , zji ,xi

)}Mi+1
j=1

Sample a corresponding mini batch of utterance yi.
yi ∼ PθG

(
yi|, zi,xi

)

end for
Compute the discriminator accuracy Dacc over N − 1 utterances
{yi}N−1

i=1 and {xi+1}N−1
i=1

ifDacc < accDth then
Update θD with gradient of the discriminator loss.∑
i
[∇θD logD(hi, xi+1) +∇θD log

(
1−D(hi, yi)

)
]

end if
ifDacc < accGth then

Update θG with the generator’s MLE loss only.∑
i
[∇θG logPθG

(
yi|, zi,xi

)
]

else
Update θG with both adversarial and MLE losses.∑
i
[λG∇θG logD(hi, yi)+λM∇θG logPθG

(
yi|, zi,xi

)
]

end if
end for

where α > 1.0, is the exploration factor that in-
creases the noise variance. We then rank theL lists
using the discriminator score,

{
D∗(xi, yi,l)]

}L
l=1

.
The response with the highest discriminator rank-
ing is the optimum response for the dialogue con-
text.

4 Training of hredGAN

We trained both the generator and the discrimina-
tor simultaneously as highlighted in Algorithm ??
with λG = λM = 1. GAN training is prone to
instability due to competition between the gener-
ator and the discriminator. Therefore, parameter
updates are conditioned on the discriminator per-
formance (Lamb et al., 2016).

The generator consists of four
RNNs with different parameters, that is,
aRNN, eRNN, cRNN , and dRNN . aRNN
and eRNN are both bidirectional, while cRNN
and dRNN are unidirectional. Each RNN has
3 layers, and the hidden state size is 512. The
dRNN and aRNN are connected using an
additive attention mechanism (Bahdanau et al.,
2015).

The discriminator shares aRNN, eRNN ,
and cRNN with the generator. DRNN is a
stacked bidirectional RNN with 3 layers and a
hidden state size of 512. The cRNN states are
used to initialize the states of DRNN . The out-
put of both the forward and the backward cells for

each word are concatenated and passed to a fully-
connected layer with binary output. The output is
the probability that the word is from the ground
truth given the past and future words of the se-
quence.

Others: All RNNs used are gated recurrent unit
(GRU) cells (Cho et al., 2014). The word embed-
ding size is 512 and shared between the generator
and the discriminator. The initial learning rate is
0.5 with decay rate factor of 0.99, applied when
the adversarial loss has increased over two itera-
tions. We use a batch size of 64 and clip gradi-
ents around 5.0. As in Lamb et al. (2016), we
find accDth

= 0.99 and accGth
= 0.75 to suf-

fice. All parameters are initialized with Xavier
uniform random initialization (Glorot and Bengio,
2010). The vocabulary size V is 50, 000. Due to
the large vocabulary size, we use sampled softmax
loss (Jean et al., 2015) for MLE loss to expedite
the training process. However, we use full softmax
for evaluation. The model is trained end-to-end
using the stochastic gradient descent algorithm.

5 Experiments and Results

We consider the task of generating dialogue re-
sponses conditioned on the dialogue history and
the current input utterance. We compare the pro-
posed hredGAN model against some alternatives
on publicly available datasets.

5.1 Datasets

Movie Triples Corpus (MTC) dataset (Serban
et al., 2016). This dataset was derived from the
Movie-DiC dataset by Banchs (2012). Although
this dataset spans a wide range of topics with
few spelling mistakes, its small size of only about
240,000 dialogue triples makes it difficult to train
a dialogue model, as pointed out by Serban et al.
(2016). We thought that this scenario would really
benefit from the proposed adversarial generation.

Ubuntu Dialogue Corpus (UDC) dataset (Ser-
ban et al., 2017b). This dataset was extracted from
the Ubuntu Relay Chat Channel. Although the
topics in the dataset are not as diverse as in the
MTC, the dataset is very large, containing about
1.85 million conversations with an average of 5
utterances per conversation.

We split both MTC and UDC into training, val-
idation, and test sets, using 90%, 5%, and 5% pro-
portions, respectively. We performed minimal pre-
processing of the datasets by replacing all words
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except the top 50,000 most frequent words by an
UNK symbol.

5.2 Evaluation Metrics

Accurate evaluation of dialogue models is still an
open challenge. In this paper, we employ both au-
tomatic and human evaluations.

5.2.1 Automatic Evaluation
We employed some of the automatic evaluation
metrics that are used in probabilistic language and
dialogue models, and statistical machine transla-
tion. Although these metrics may not correlate
well with human judgment of dialogue responses
(Liu et al., 2016), they provide a good baseline for
comparing dialogue model performance.

Perplexity - For a model with parameter θ, we
define perplexity as:

exp

[
− 1

NW

K∑

k=1

log Pθ(y1, y2, . . . , yNk−1)

]

(14)
where K is the number of conversations in the
dataset, Nk is the number of utterances in conver-
sation k, and NW is the total number of word to-
kens in the entire dataset. The lower the perplexity,
the better. The perplexity measures the likelihood
of generating the ground truth given the model pa-
rameters. While a generative model can generate a
diversity of responses, it should still assign a high
probability to the ground truth utterance.

BLEU - The BLEU score (Papineni et al., 2002)
provides a measure of overlap between the gen-
erated response (candidate) and the ground truth
(reference) using a modified n-gram precision.
According to Liu et. al. (Liu et al., 2016), BLEU-2
score is fairly correlated with human judgment for
non-technical dialogue (such as MTC).

ROUGE - The ROUGE score (Lin, 2014) is
similar to BLEU but it is recall-oriented instead.
It is used for automatic evaluation of text summa-
rization and machine translation. To compliment
the BLEU score, we use ROUGE-N with N = 2
for our evaluation.

Distinct n-gram - This is the fraction of unique
n-grams in the generated responses and it provides
a measure of diversity. Models with higher a num-
ber of distinct n-grams tend to produce more di-
verse responses (Li et al., 2016a). For our evalua-
tion, we use 1- and 2- grams.

Normalized Average Sequence Length
(NASL) - This measures the average number of

words in model-generated responses normalized
by the average number of words in the ground
truth.

5.2.2 Human Evaluation
For human evaluation, we follow a similar setup as
Li et al. (2016a), employing crowd-sourced judges
to evaluate a random selection of 200 samples. We
presented both the multi-turn context and the gen-
erated responses from the models to 3 judges and
asked them to rank the general response quality
in terms of relevance and informativeness. For N
models, the model with the lowest quality is as-
signed a score 0 and the highest is assigned a score
N-1. Ties are not allowed. The scores are normal-
ized between 0 and 1 and averaged over the total
number of samples and judges. For each model,
we also estimated the per sample score variance
between judges and then averaged over the num-
ber of samples, i.e., sum of variances divided by
the square of number of samples (assuming sam-
ple independence). The square root of result is re-
ported as the standard error of the human judg-
ment for the model.

5.3 Baseline

We compare the performance of our model to
(V)HRED (Serban et al., 2016, 2017b), since they
are the closest to our approach in implementation
and are the current state of the art in open-domain
dialogue models. HRED is very similar to our
proposed generator, but without the input utter-
ance attention and noise samples. VHRED intro-
duces a latent variable to the HRED between the
cRNN and the dRNN and was trained using the
variational lower bound on the log-likelihood. The
VHRED can generate multiple responses per con-
text like hredGAN, but it has no specific criteria
for selecting the best response.

The HRED and VHRED models are both
trained using the Theano-based implementa-
tion obtained from https://github.com/
julianser/hed-dlg-truncated. The
training and validation sets used for UDC and
MTC dataset were obtained directly from the au-
thors1 of (V)HRED. For model comparison, we
use a test set that is disjoint from the training and
validation sets.

1UDC was obtained from http:
//www.iulianserban.com/Files/
UbuntuDialogueCorpus.zip, and the link to MTC
was obtained privately.
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Model Teacher Forcing Autoregression Human
Perplexity −logD(G(.)) BLEU-2 ROUGE-2 DISTINCT-1/2 NASL Evaluation

MTC
HRED 31.92/36.00 NA 0.0474 0.0384 0.0026/0.0056 0.535 0.2560 ± 0.0977
VHRED 42.61/44.97 NA 0.0606 0.1181 0.0048/0.0163 0.831 0.3909 ± 0.0240
hredGAN u 23.57/23.54 6.85/6.81 0.0493 0.2416 0.0167/0.1306 0.884 0.5582 ± 0.0118
hredGAN w 24.20/24.14 13.35/13.40 0.0613 0.3244 0.0179/0.1720 1.540 0.7869 ± 0.1148

UDC
HRED 69.39/86.40 NA 0.0177 0.0483 0.0203/0.0466 0.892 0.3475 ± 0.1062
VHRED 98.50/105.20 NA 0.0171 0.0855 0.0297/0.0890 0.873 0.4046 ± 0.0188
hredGAN u 56.82/57.32 10.09/10.08 0.0137 0.0716 0.0260/0.0847 1.379 0.6133 ± 0.0361
hredGAN w 47.73/48.18 8.37/8.36 0.0216 0.1168 0.0516/0.1821 1.098 0.6905 ± 0.0706

Table 1: Generator Performance Evaluation

5.4 Results

We have two variants of hredGAN based on
the noise injection approach, i.e., hredGAN
with utterance-level (hredGAN u) and word-level
(hredGAN w) noise injections.

We compare the performance of these two vari-
ants with HRED and VHRED models.

Perplexity: The average perplexity per word
performance of all the four models on MTC and
UDC datasets (validation/test) are reported in the
first column on Table 1. The table indicates that
both variants of the hredGAN model perform bet-
ter than the HRED and VHRED models in terms
of the perplexity measure. However, using the ad-
versarial loss criterion (Eq. (8)), the hredGAN u
model performs better on MTC and worse on
UDC. Note that, for this experiment, we run all
models in teacher forcing mode.

Generation Hyperparameter: For adversarial
generation, we perform a linear search for α be-
tween 1 and 20 at an increment of 1 using Eq.
(13), with sample size L = 64, on validation sets
with models run in autoregression. The optimum
values of α for hredGAN u and hredGAN w for
UDC are 7.0 and 9.0 respectively. The values for
MTC are not convex, probably due to small size of
the dataset, so we use the same α values as UDC.
We however note that for both datasets, any inte-
ger value between 3 and 10 (inclusive) works well
in practice.

Quantitative Generator Performance: We
run autoregressive inference for all the models (us-
ing optimum α values for hredGAN models and
selecting the best of L = 64 responses using a dis-
criminator) with dialogue contexts from a unique
test set. Also, we compute the average BLEU-
2, ROUGE-2(f1), Distinct(1/2), and normalized

Item D(G(.)) Utterance

MTC
Context 0 NA perhaps <person> had a word with the man upstairs .
Context 1 NA a word ? i ’ m sure by now he ’ s engineered a hostile takeover .
Response 0 0.996 <person> , i know what you ’ re saying , <person> , that ’ s

not what i ’ m saying .
Response 1 0.991 <person> , i know . i was just about to help the guy .
Response 2 0.315 <person> , i ’ m sorry .
Response 3 0.203 <person> , i ’ m a little out .

Context 0 NA says he wanted food . <person> . he wanted the gold .
Context 1 NA how ’ s he going to want the gold ? he couldn ’ t even know we

had it .
Response 0 0.998 <person> , i know . but it ’ s not him , it ’ s the only way he ’

s got it all figured
Response 1 0.981 <person> , i know . but i have to tell you . these things are

really stupid and you think i was wrong ?
Response 2 0.690 <person> , i ’ m sure he did .
Response 3 0.314 <person> , i ’ m not sure .

UDC
Context 0 NA The netboot one is suppose to download packages from the net.
Context 1 NA like the ones to be installed? or the installed to be run?
Response 0 0.993 you don ’ t need to install the whole system , just install the

ubuntu installer
Response 1 0.952 you can install the ubuntu installer from the ubuntu menu
Response 2 0.749 I ’ m not sure , I don ’ t know .
Response 3 0.184 you can
Response 4 0.003 you a . 1 . . . . . . . . . . . . . . . . . . . . .

Context 0 NA DJones: update manager won’t detect 12.04.1 as a new version
if you are already running 12.04, because 12.04.1 = 12.04 + lots
of package updates

Response 0 0.991 did you try a clean install of the latest version ?
Response 1 0.981 try installing the latest UNK and see if it works
Response 2 0.615 I ’ m not sure you have a problem . . .
Response 3 0.191 try sudo apt-get remove the package that is not installed
Response 4 0.002 try the UNK . 1 . 1 . 1 . 1 . 1 . UNK . deb

Table 2: Example of Discriminator Ranking with
hredGAN w

average sequence length (NASL) scores for each
model and summarize the results in the middle of
Table 1. Distinct(1/2) largely agrees with the per-
plexity score. Most scores, similar to the perplex-
ity, indicate that hredGAN models perform better
than (V)HRED on both datasets. However, on the
UDC ROUGE and MTC BLEU, VHRED scores
slightly better than hredGAN u but still worse than
hredGAN w.

A good dialogue model should find the right
balance between precision (BLEU) and diver-
sity. We strongly believe that our adversarial ap-
proach is better suited to solving this problem.
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Movie

Context 0 perhaps <person> had a word with the man upstairs .
HRED i ’ m sorry , <person> .
VHRED <person< ’ t do it .
hredGAN w <person> , i ’ m not gon na be okay . i just don ’ t think it ’ s a good idea .
hredGAN u <person> , i cause it was all the way to you .

Context 1 a word ? i ’ m sure by now he ’ s engineered a hostile takeover .
HRED i ’ m sorry , <person> .
VHRED <person> ’ t do it .
hredGAN w <person> , i know what you ’ re saying , <person> , that ’ s not what i ’

m saying .
hredGAN u <person> , i have to tell you i ’ m not the same .

Context 0 <person> ’ s .
HRED i ’ m sorry , <person> .
VHRED <person> ’ t do it .
hredGAN w <person> , i ’ m sure it ’ s the only thing i ever imagined .
hredGAN u <person> , i ’ ll be right there .

Context 1 can i ask you something about her ?
HRED i don ’ t know .
VHRED: you ’ re not going to be here .
hredGAN w i don ’ t know . i think i ’ ve heard of it .
hredGAN u i ’ m sorry , i can ’ t .

Ubuntu

Context 0 this is Dacs i am in i used ’sudo statx and it let me in
HRED what ’s the problem ?
VHRED I don’t know what you want to do . if you want to do it , you need to do it to

do it in the terminal ?
hredGAN w you don ’ t have to do anything , just type in the terminal and it should be to

find the right device
hredGAN u you can have a look at the output of the command . . .

Context 1 good deal... cat /etc/X11/default-display-manager
HRED what ’s the problem ?
VHRED do you know what you want to do ?
hredGAN w I ’ m trying to figure a command that I can find to find out the file that I can

find in the file”
hredGAN u I don ’ t see the point , but I ’ m not sure how to do that .

Context 2 /usr/sbin/lightdm http://paste.ubuntu.com/1286224/ <—- my
/etc/X11/xorg.conf

HRED what ’s the problem ?
VHRED is there a way to do that in the terminal ?
hredGAN w did you just type \” sudo mount -a \” ?
hredGAN u i have no idea , i just installed ubuntu and i have no idea how to do that

Table 3: Sample responses of HRED, VHRED and
hredGAN.

As hredGAN generators explore diversity, the dis-
criminator ranking gives hredGAN an edge over
(V)HRED because it helps detect responses that
are out of context and the natural language struc-
ture (Table 2). Also, the ROGUE(f1) performance
indicates that hredGAN w strikes a better balance
between precision (BLEU) and diversity than the
rest of the models. This is also obvious from the
quality of generated responses.

Qualitative Generator Performance: The re-
sults of the human evaluation are reported in
the last column of Table 1. The human evalua-
tion agrees largely with the automatic evaluation.
hredGAN w performs best on both datasets al-
though the gap is more on the MTC than on the
UTC. This implies that the improvement of HRED
with adversarial generation is better than with vari-
ational generation (VHRED). In addition, look-
ing at the actual samples from the generator out-
puts in Table 6 shows that hredGAN, especially
hredGAN w, performs better than (V)HRED.
While other models produce short and generic ut-

terances, hredGAN w mostly yields informative
responses. For example, in the first dialogue in Ta-
ble 6, when the speaker is sarcastic about “the man
upstairs”, hredGAN w responds with the most co-
herent utterance with respect to the dialogue his-
tory. We see similar behavior across other sam-
ples. We also note that although hredGAN u’s re-
sponses are the longest on Ubuntu (in line with
the NASL score), the responses are less informa-
tive compared to hredGAN w resulting in a lower
human evaluation score. We reckon this might be
due to a mismatch between utterance-level noise
and word-level discrimination or lack of capacity
to capture the data distribution using single noise
distribution. We hope to investigate this further in
the future.

Discriminator Performance: Although only
hredGAN uses a discriminator, the observed dis-
criminator behavior is interesting. We observe
that the discriminator score is generally reasonable
with longer, more informative and more persona-
related responses receiving higher scores as shown
in Table 2. It worth to note that this behavior, al-
though similar to the behavior of a human judge
is learned without supervision. Moreover, the dis-
criminator seems to have learned to assign an av-
erage score to more frequent or generic responses
such as “I don’t know,” “I’m not sure,” and so on,
and high score to rarer answers. That’s why we
sample a modified noise distribution during infer-
ence so that the generator can produce rarer utter-
ances that will be scored high by the discriminator.

6 Conclusion and Future Work

In this paper, we have introduced an adversar-
ial learning approach that addresses response di-
versity and control of generator outputs, using
an HRED-derived generator and discriminator.
The proposed system outperforms existing state-
of-the-art (V)HRED models for generating re-
sponses in multi-turn dialogue with respect to
automatic and human evaluations. The perfor-
mance improvement of the adversarial genera-
tion (hredGAN) over the variational generation
(VHRED) comes from the combination of adver-
sarial training and inference which helps to ad-
dress the lack of diversity and contextual rele-
vance in maximum likelihood based generative di-
alogue models. Our analysis also concludes that
the word-level noise injection seems to perform
better in general.
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A Ablation Experiments

Before proposing the above adversarial learning
framework for multi-turn dialogue, we carried out
some experiments.

A.1 Generator:

We consider two main factors here, i.e., addition
of an attention memory and injection of Gaussian
noise into the generator input.

A.1.1 Addition of Attention Memory
First, we noted that by adding an additional at-
tention memory to the HRED generator, we im-
proved the test set perplexity score by more than
12 and 25 points on the MTC and UDC respec-
tively as shown in Table 4. The addition of atten-
tion also shows strong performance at autoregres-
sive inference across multiple metrics as well as an
observed improvement in response quality. Hence
the decision for the modified HRED generator.

A.1.2 Injection of Noise
Before injecting noise into the generator, we first
train hredGAN without noise. The result is also
reported in 4. We observe accelerated generator
training but without an appreciable improvement
in performance. It seems the discrimination task
is very easy since there is no stochasticity in the
generator output. Therefore, the adversarial feed-
back does not meaningfully impact the generator
weight update.

Finally, we also notice that even with noise in-
jection, there is no appreciable improvement in
the auto-regressive performance if we sample with

L = 1 even though the perplexity is higher. How-
ever, as we increase L, producing L responses
per turn, the discriminator’s adversarial selection
gives a better performance as reported in Table 1.

Therefore, we conclude that the combination
of adversarial training and adversarial inference
helps to address the lack of diversity and con-
textual relevance observed in the generated re-
sponses.

A.2 Discriminator:
Before deciding on the word-level discrimination,
we experimented with utterance-level discrimina-
tion. The utterance-level discriminator trains very
quickly but it leads to mostly generic responses
from the generator. We also note that utterance-
level discriminator scores are mostly extreme (i.e.,
either low or high). Since we had used a convo-
lutional neural network discriminator (Yu et al.,
2017) in our experiments, we hope to investigate
this further with other architectures.

A.3 Adversarial Training:
Lastly, we also tried a basic policy gradient ap-
proach (Li et al., 2017), where word-level discrim-
inator score is used as a reward for each generated
word token, but this leads to training instability.
This is probably due to the instability of Monte
Carlo sampling over a large vocabulary size. We
believe this might improve with other sampling
methods such as importance sampling and hope to
investigate this further in the future.
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Model Teacher Forcing Autoregression
Perplexity BLEU-2 ROUGE-2 DISTINCT-1/2 NASL

MTC
HRED 31.92/36.00 0.0474 0.0384 0.0026/0.0056 0.535
HRED+Attn 18.70/19.02 0.0425 0.2239 0.0397/0.1567 0.527
hredGAN no noise 18.93/19.19 0.0355 0.1839 0.0272/0.0978 0.471

UDC
HRED 69.39/86.40 0.0177 0.0483 0.0203/0.0466 0.892
HRED+Attn 43.43/43.92 0.0140 0.0720 0.0473/0.1262 0.760
hredGAN no noise 43.48/44.04 0.0123 0.0827 0.0398/0.1147 0.908

Table 4: Generator Performance: HRED, HRED+Attn and hredGAN without noise
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Model Response

Context 0 <person> i ’ ve raised my rate . i might even cut my sessions to
forty minutes .

HRED i ’ m sorry , <person> .
VHRED <person>, <person>, <person>, <person> .
hredGAN w <person> , i ’ m sorry , but i ’ m not sure if you ’ re really a very

good guy .
hredGAN u i ’ ll never see them again , <person> .

Context 0 i ’ m going to handle this exactly the way your father would have
handled this . i ’ ve got it solved .

Context 1 you ’ ve got it solved ? where is she ?
HRED i don ’ t know .
VHRED <person>, , i ’ m sorry.
hredGAN w to the end of a beautiful woman who will be very happy .
hredGAN u i ’ m sorry , i just didn ’ t know –

Context 0 of course not ! ¡person¿ ’ s like a daughter to me . her father and i
taught at university together . a good man , but he never listened .

HRED i ’ m sorry , <person>.
VHRED <person>, mr . <person> .
hredGAN w <person> , i know it ’ s been all six years since i told him about

you .
hredGAN u i ’ m sure you didn ’ t , but i would have done a little more .

Context 0 of course not ! ¡person¿ ’ s like a daughter to me . her father and i
taught at university together . a good man , but he never listened .

Context 1 neither did i .
HRED i ’ m sorry , <person>.
VHRED <person> , you ’ re a <unk> .
hredGAN w <person>, i know you ’ re think about it . think it ’ ll be time , right

?
hredGAN u i ’ ll be the first one . if it did you , you ’ ll be it .

Context 0 come on , <person> , we could have a great week up in vermont .
Context 1 i see what you mean . but wednesday we ’ ve got to be back in new

york .
HRED <person> .
VHRED <person> , i don ’ t know what you ’ re going to do .
hredGAN w <person> , i know . i ’ m kind of busy here .
hredGAN u i ’ m sorry , i can ’ t .

Context 0 isabel ?
Context 1 hi .
HRED that ’ s what i ’ m talking about .
VHRED: you ’ re not going to be a <unk> , <person> .
hredGAN w <person> ?
hredGAN u what do you want to know ?

Context 0 you understand mr . <person> is constantly barraged with nui-
sance litigation and irs audits .

Context 1 of course .
HRED that ’ s right , <person> .
VHRED: <person> , you ’ re going to be a <unk> of the <unk> .
hredGAN w <person> , i ’ m sure , but you ’ re probably still in to the new

<person> ’ s house , huh ?
hredGAN u you ’ re gon na be a little boy , and i ’ m not gon na get out !

Context 0 <person> ’ t go into my room , she ’ s asleep .
Context 1 <person> , but the nanny , mrs . <person> , she wants to see her

.
HRED i ’ m sorry , <person> .
VHRED: <person> , mr . <person> .
hredGAN w <person> , i know . but she ’ s never seen me anyway .
hredGAN u i ’ m sorry i didn ’ t know what to say .

Context 0 what was that for ?
Context 1 i ’ d forgotten how exciting it is working together .
HRED i ’ m sorry , <person> .
VHRED: <person> , <person> . i don ’ t know .
hredGAN w i ’ m sorry , <person> . so many people are so interested , but you

’ re a very nice guy .
hredGAN u i ’ ve always been so sure to <person> .

Context 0 a teacher ’ s .
Context 1 oh my god .
HRED i ’ m sorry , <person> .
VHRED: <person> , <person> ’ t worry about it . i don ’ t know what you

’ re doing .
hredGAN w i ’ m sorry . i didn ’ t mean to . i didn ’ t mean to hurt you . i just

wanted you
hredGAN u <person> , i don ’ t want to be your friend .

Context 0 i took the initiative .
Context 1 you haven ’ t been given an assignment in this case .
HRED <person> .
VHRED: <person> , <person> , <person> , <person> . i ’ m not going

to get out of the <unk> .
hredGAN w i ’ m not sure . <continued utterance> i ’ m not gon na do you this

shit anyway , <person> .
hredGAN u <person> , i guess i didn ’ t .

Table 5: Additional sample responses of HRED,
VHRED and hredGAN on Movie.

Model Response

Context 0 what’s the command you are running to chroot and the error message
you get in return?

Context 1 i mountded the device sudo mount /dev/sda1 /mnt - that works - then
sudo chroot /mnt – error is no such file or command

HRED what ’s the problem ?
VHRED is there a way to do that ? what do you mean ?
hredGAN w I have no idea , I just did a sudo fdisk and it said it was mounted
hredGAN u I ’ m trying to get the latest version of ubuntu , but I ’ m getting a lot of

problems .

Context 0 Hmm, have you checked that ICMP is being allowed all the way through
and that the server responds to other ICMP requests?

Context 1 now i can ping it (i had to enable the lzo compression on client) i cannot
reach the remote subnet adding a rule in the firewall forward the lan to
vpn

HRED what ’s the problem ?
VHRED I don’t know what you want to do
hredGAN w I have no idea , I ’ m just trying to get the ip address from the router to

the router”
hredGAN u I ’ m not sure if that ’ s the case , but I ’ m not sure if it ’ s a good idea

to have a look at the output .

Context 0 The netboot one is suppose to download packages from the net.
HRED I don’t know what you want to do .
VHRED how do I do that ?
hredGAN w I ’ m not sure of a command to do so I can just install the ubuntu . iso

and burn a new iso
hredGAN u you can ’ t have a look at the man page . . .

Context 0 The netboot one is suppose to download packages from the net.
Context 1 like the ones to be installed? or the installed to be run?
HRED I don’t know what the problem is .
VHRED is there a way to install the package manager ?
hredGAN w you don ’ t need to install the whole system , just install the ubuntu

installer
hredGAN u I ’ m trying to install a UNK version of ubuntu , but I ’ m trying to

install it on my laptop .

Context 0 You trying to mount it open with the password?
HRED I have to do that , but I have a problem with the same problem .
VHRED is there a way to do ?
hredGAN w yes , I ’ m not sure if it ’ s mounted or not
hredGAN u I ’ m trying to install the latest version of Ubuntu , but I ’ m running on

a UNK .

Context 0 are you using lvm for your root partition?
HRED yes , but I have a problem with a new user , but I don’t want to do that .
VHRED what is the best way to do that ? what is that ?
hredGAN w yes , I ’ m on a live system , I ’ m trying to use the partition to boot from

windows
hredGAN u I ’ m not sure if it ’ s a good idea to have a backup of the system . . .

Context 0 are you using lvm for your root partition?
Context 1 i have the same config working on a 10.04 box. It appears in 12.04 lvm

is on upstart and multipath is not. i do use lvm for my root folder nifty,
is there any way to work around it? have you heard of anyone posting a
bug about this to have it looked at? darn.... well i hope they can fix this
eventually i hope they keep initrd around and move everything to upstart.
Upstart is not easy to setup for programs that don’t come packaged for
upstart.

HRED I don’t know what the problem is , but I don’t know what the problem is
. ?

VHRED is there a way to do that ? or **unknown** ?
hredGAN w you can also try the live cd and see if you can get it back up the live”
hredGAN u I ’ m trying to get my wireless working on my laptop , but I ’ m getting

to the point that I can be able to use the wireless card to get the wireless
working .

Context 0 are you using lvm for your root partition?
Context 1 i have the same config working on a 10.04 box. It appears in 12.04 lvm

is on upstart and multipath is not. i do use lvm for my root folder nifty,
is there any way to work around it? have you heard of anyone posting a
bug about this to have it looked at? darn.... well i hope they can fix this
eventually i hope they keep initrd around and move everything to upstart.
Upstart is not easy to setup for programs that don’t come packaged for
upstart.

Context 2 yes, because i cant supply it at boot time, i want the truecrypt drive to
come up by itself without manual intervention

HRED what is the problem ?
VHRED what do you mean ?
hredGAN w you can also mount a new one and put the mount command to the mount

point”
hredGAN u I ’ m trying to get my sound working , but I ’ m trying to get my sound

working .

Table 6: Additional sample responses of HRED, VHRED
and hredGAN on Ubuntu.
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Abstract

A sequence-to-sequence model tends to gen-
erate generic responses with little information
for input utterances. To solve this problem, we
propose a neural model that generates relevant
and informative responses. Our model has
simple architecture to enable easy application
to existing neural dialogue models. Specifi-
cally, using positive pointwise mutual infor-
mation, it first identifies keywords that fre-
quently co-occur in responses given an utter-
ance. Then, the model encourages the de-
coder to use the keywords for response gener-
ation. Experiment results demonstrate that our
model successfully diversifies responses rela-
tive to previous models.

1 Introduction

Neural networks are common approaches to build-
ing chat-bots. Vinyals and Le (2015) have pro-
posed a neural dialogue model using sequence-
to-sequence (Seq2Seq) networks (Sutskever et al.,
2014) and achieved fluent response generation.
Because a Seq2Seq model uses a word-by-word
loss function at the time of training, any words
outside the reference are penalized equally. Con-
sequently, the Seq2Seq model tends to generate
generic responses that consist of frequent words,
such as “Yes” and “I don’t know.” This is a central
concern in neural dialogue generation. To tackle
this problem, Li et al. (2016) proposed a model for
considering mutual dependency between an utter-
ance and response modeled by maximum mutual
information (MMI). However, their model disre-
garded the aspect of informativeness of responses,
which is also important for user experience of
chat-bots.

To solve this problem, we propose a response
generation model that outputs diverse words while
preserving relevance in response to the input ut-
terance. In our model, Positive Pointwise Mutual

Information (PPMI) identifies keywords from a
large-scale conversational corpus that are likely to
appear in the response to an input utterance. Then,
the model modifies the loss function in a Seq2Seq
model to reward responses using the identified
keywords. In order to calculate the loss function
using the words output by the decoder, we need
to sample words from the probability distribution
of the output layer. Hence, we apply the Gumbel-
Softmax trick (Jang et al., 2017) as a differentiable
pseudo-sampling method.

Experiments using a Japanese dialogue corpus
crawled from Twitter and OpenSubtitles revealed
that the proposed model outperformed (Li et al.,
2016) for all automatic evaluation metrics for cor-
respondence to references and diversity in outputs.

2 Related Work

The generic response problem has been actively
studied. Yao et al. (2016) and Nakamura et al.
(2019) proposed models that constrain decoders
to directly suppress generation of frequent words.
Yao et al. (2016) diversified the response by a
loss function in which words with high inverse
document frequency values are preferred. Naka-
mura et al. (2019) proposed a loss function that
adds weights based on the inverse of the word fre-
quency. Xing et al. (2017) proposed a model us-
ing topic words extracted from utterances. Their
model ensembles words predicted using the topic
words and the words predicted by the decoder.

All of the methods described above only fo-
cus on the amount of a information in a response.
Therefore, generated responses tend to lack rele-
vance to input utterances. MMI-bidi (Li et al.,
2016) solves this problem by approximating the
PMI between the utterance Q and the generated
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Figure 1: Outline of the proposed model

response R as follows:

PMI(Q,R) = (1 − λ) log P (R|Q) + λ log P (Q|R).

(1)
Here, both P (R|Q) and P (Q|R) are computed
by independent Seq2Seq models. Specifically, the
N -best candidate responses generated by the for-
mer model are re-ranked by Equation (1). MMI-
bidi exhibited a strong performance for diversi-
fying responses while preserving relevance to an
input utterance. However, its effects depend on
the diversities of the N-best candidate responses.
If these responses are diverse, MMI-bidi can im-
prove futher.

3 Proposed Model

Figure 1 shows the outline of the proposed model.
It first identifies keywords that strongly co-occur
between utterances and their responses in a train-
ing corpus using PPMI (section 3.1). The decoder
then uses Gumbel-Softmax to sample words in the
output layer (section 3.3). Finally, it computes
the proportion of output words matching the key-
words, and add weights to the loss function (sec-
tion 3.4).

3.1 Keywords Retrieval Based on Positive
Pointwise Mutual Information

The keyword handler retrieves words that are
likely to appear in the response to a certain input

utterance based on PPMI, calculated in advance
from an entire training corpus. Let PQ(x) and
PR(x) be probabilities that the word x will ap-
pear in a certain utterance and response sentences,
respectively. Also, let P (x, y) be the probability
that the words x and y exist in the utterance and
response sentence pair. PPMI is calculated as fol-
lows:

PPMI(x, y) = max

(
log2

P (x, y)

PQ(x) · PR(y)
, 0

)
.

The pair of x and y and its PPMI score are saved
in the PPMI Matrix in Figure 1. At the time of
response generation, the keyword handler looks
up the PPMI Matrix. Let the word set of a cer-
tain utterance sentence be Q = {q1, q2, . . . , qL},
and the vocabulary in the decoder be VR =
{vR1 , vR2 , . . . , vRN

}. The keyword-score of a
word vRn ∈ VR is defined as follows:

∑

q∈Q

PPMI (q, vRn) .

Keyword-scores are calculated for all words in VR.
Then top-k words are set as keywords VPred used
in the loss function.

3.2 Decoding Response Sentences using
Retrieved Keywords

The decoder first receives a vector vf consisting
of keyword-scores for all words in the vocabulary,
and non-linearly transforms vf through a multi-
layer perceptron (MLP). This vector is concate-
nated with the output of the encoder, and then set
to the initial state of the decoder. By doing so,
we expect that the decoder considers the keyword-
scores. In order to directly boost the probability
to output the keywords, we add weighted vf to the
decoder output vector πi at each time step i. The
final decoder output π̃i is represented by the fol-
lowing equation:

π̃i = (1 − λi) · πi + λi · vf .

λi balances the effects of the decoder output and
vf . λi is calculated as follows based on the current
intermediate state hi of the decoder:

λi = σ
(
W gatehi + bgate

)
,

where W gate is a trainable weight matrix, bgate is
a bias term, and σ(·) is a sigmoid function.
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3.3 Pseudo-sampling of Generated Words
using Gumbel-Softmax

In order to determine whether the decoder gen-
erated words in VP red, it is necessary to sample
words generated by the decoder. However, sam-
pling based on argmax, which is generally used at
the decoder, disallows back propagation because
of its discrete nature. Jang et al. (2017) pro-
posed Gumbel-Softmax which performs pseudo
sampling from the probability distribution to al-
low back propagation. Gumbel-Softmax performs
the following calculations for a probability distri-
bution π (corresponding to the output layer in the
decoder) for k classes:

yi =
exp((log(πi) + gi)/τ)

∑k
j=1 exp((log(πj) + gj)/τ)

.

Here, τ is a hyperparameter called temperature.
Smaller tau makes the vector closer to one-hot but
the dispersion of the gradient becomes larger. gi is
obtained by the following calculation using uni-
form distribution ui ∼ Uniform(0, 1):

gi = − log(− log(ui)).

In the proposed model, Gumbel-Softmax is ap-
plied to the final decoder output vector π̃ at each
time step i as in Equation (2). Then, we obtain the
differentiable pseudo-bag-of-words vector B.

B =

T∑

i=1

GumbelSoftmax(π̃i). (2)

3.4 Loss function
We design a loss function lv which value decreases
as words contained in VPred are generated. Thus,
the decoder outputs more words that strongly co-
occur with the input utterance. Specifically, when
t(bn) is the word corresponding to the n-th index
in B, lv is defined as follows.

lv = −
N∑

n=0

f(bn, VPred),

f(bn, VPred) =

{
min(bn, 1) (t(bn) ∈ VPred),

0 (otherwise).
(3)

We use min(bn, 1) in Equation (3) to avoid
adding a reward when a keyword is generated mul-
tiple times. This aims to suppress the decoder out-
puts the same word many times.

Finally, the loss function L is defined as a liner
interpolation of lCE of the cross-entropy error and
the lv:

L = (1 − α) · lCE + α · lv.

α is a hyperparameter that balances the degree of
rewards based on the keywords.

4 Experiments

We empirically evaluate how our model avoids
generic responses to generate relevant and infor-
mative responses.

4.1 Datasets

We used two datasets, OpenSubtitles (English)
and Twitter (Japanese). The details of each dataset
are as follows.

OpenSubtitles OpenSubtitles (Tiedemann,
2009) is a large scale open-domain corpus
composed of movie subtitles.

Like Vinyal et al. (Vinyals and Le, 2015)
and Li et al (Li et al., 2016), we assumed
that each line of the subtitles represents
an independent utterance, and constructed
a single-turn dialogue corpus by regarding
two consecutive utterances as an utterance-
response pair. We randomly sampled 2 mil-
lion utterance-response pairs. All sentences
were tokenized using the Punkt Sentence To-
kenizer of nltk 1.

Twitter We crawled conversations in Japanese
Twitter using “@” mention as a clue. A
single-turn dialogue corpus was constructed
by regarding a tweet and its reply as an
utterance-response pair. The dataset consists
of about 1.3 million utterance-response pairs.
All sentences were tokenized by MeCab 2.

In both datasets, 10k utterance-response pairs
were separated as validation data, another 10k
were separated as test data, and the rest were used
as training data.

4.2 Comparison Methods

We compared our model to previous models. The
baseline is the standard Seq2Seq (Seq2Seq). We
also compared to MMI-bidi (Seq2Seq + MMI)

1https://www.nltk.org/
2http://taku910.github.io/mecab/
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BLEU NIST dist-1 dist-2 ent-4 length repetition
Proposed + MMI 1.577 0.872 0.050 0.187 8.536 8.064 1.551
Proposed 1.569 0.837 0.044 0.148 7.327 7.520 1.377
Seq2Seq + MMI 1.373 0.739 0.009 0.032 5.600 7.566 1.223
Seq2Seq 1.374 0.687 0.005 0.015 4.070 8.025 1.095
Reference 100.000 16.498 0.086 0.482 10.647 7.671 1.000

Table 1: Results on the OpenSubtitle corpus (English)

BLEU NIST dist-1 dist-2 ent-4 length repetition
Proposed + MMI 2.611 0.573 0.071 0.204 8.979 7.913 1.832
Proposed 2.591 0.583 0.068 0.188 8.738 8.044 1.902
Seq2Seq + MMI 2.262 0.304 0.043 0.102 7.578 6.791 1.416
Seq2Seq 2.237 0.318 0.040 0.091 7.103 6.920 1.518
Reference 100.000 16.562 0.105 0.496 11.311 12.262 1.000

Table 2: Results on the Twitter corpus (Japanese)

because it is the most relevant method for diver-
sifying responses. In addition, we combined our
model with MMI-bidi (Proposed + MMI) to see
whether it contributes to diversification of the N-
best candidates.

4.3 Evaluation Metrics
We employed several automatic evaluation met-
rics. BLEU and NIST measure the validity of
generated sentences in comparison with refer-
ences. BLEU (Papineni et al., 2002) measures the
correspondence between n-grams in generated re-
sponses and those in reference sentences. Follow-
ing Papineni et al. (2002), we used the average of
BLEU scores from 1-gram to 4-gram in the experi-
ment. NIST (Doddington, 2002) also measures the
correspondence between generated responses and
reference sentences. Unlike BLEU, NIST places
lower weights on frequent n-grams, i.e., NIST re-
gards content words as more important than func-
tion words. In the experiment, we used the average
of NIST from 1-gram to 5-gram.

In addition, dist and ent measure the diversity
of generated responses. Dist (Li et al., 2016) is
defined as the number of distinct n-grams in gen-
erated responses divided by the total number of
generated tokens. On the other hand, ent (Zhang
et al., 2018) considers the frequency of n-grams in
generated responses:

ent = − 1∑
w F (w)

∑

w∈X

F (w) log
F (w)∑
w F (w)

,

where X is a set of n -grams output by the sys-

tem, and F (w) computes the frequency of each
n-gram.

In this paper, we focus on automatic evaluation.
Human evaluation is our future work.

4.4 Parameter Settings

For all models, we implemented the encoder and
decoder of each model using 1-layer GRUs. The
dimension of the GRU was set to 512. How-
ever, only the decoder of the proposed model used
1024-dimensional GRU. This is because the ini-
tial state of the decoder is the concatenation of the
keyword-score vector and the output from the en-
coder (512-dimension for each). Both the encoder
and decoder had a word embedding layer of 256
dimensions.

The vocabulary consisted of words that ap-
peared more than 15 times in the training data.
Words that occured less than 15 times were re-
placed with the “<unk>” token. The vocabulary
size was 41.5k for the Twitter model and 20.9k for
the OpenSubtitles model.

4.5 Results and Error Analysis

The left sides of Tables 1 and 2 show BLEU, NIST,
dist, and ent scores for OpenSubtitles and Twit-
ter, respectively. Our model (Proposed) outper-
formed Seq2Seq and MMI-bidi (Seq2Seq) in all
evaluation metrics across the datasets. Further-
more, our model combined with MMI-bidi (Pro-
posed+MMI) achieved the best performance, ex-
cept for NIST, on the Twitter dataset. This result
demonstrates that our method successfully gener-
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Input oh, we just actually wanted to be alone
Reference get me out of here
Proposed+MMI i wanted to be alone
Seq2Seq+MMI you know what ?
Input should we call an ambulance ?
Reference praise the lord !
Proposed+MMI we ’r e going to have a call from the ambulance
Seq2Seq+MMI i don ’t think so
Input are you tired already ?
Reference you ’r e such a weakling
Proposed+MMI i ’m tired of getting warmed up
Seq2Seq+MMI yes i ’m fine
Input i have no idea how it was spread
Reference not from me
Proposed+MMI i don ’t know how much longer i can stand up
Seq2Seq+MMI i <unk>never been able to find a way
Input why do you have to carry the burden of someone else ’s life ?
Reference he ’s my father
Proposed+MMI because you ’r e the best commodity in the living room
Seq2Seq+MMI i don ’t know
Input the little guy was kinda funny lookin
Reference in what way ?
Proposed+MMI i kinda like him kinda funny funny
Seq2Seq+MMI i don ’t know what you ’r e talking about
Input bishop wood at st <unk>’s cathedral
Reference holy christ blanche
Proposed+MMI he was baptized in a parson ’s church and he was baptized
Seq2Seq+MMI he was the king of <unk><unk>

Table 3: Example responses generated by the proposed model and (Li et al., 2016)

ates diverse responses, which effectively improves
the N -best candidates reranked by MMI-bidi. It
is notable that improvements on NIST, which ap-
preciates less frequent n-grams, support this idea
the proposed model improves the informativeness
of responses. The improvement is larger on the
Twitter dataset, where the proposed method (Pro-
posed) achieved NIST score 0.265 points higher
than Seq2Seq even though MMI-bidi is inferior to
Seq2Seq.

The example responses generated by Pro-
posed+MMI and Seq2Seq+MMI using OpenSub-
titles are shown in Table 3. The examples from the
top to the third rows show that the proposed model
generates more content words relevant to the con-
tent words in the utterance. On the other hand,
Seq2Seq+MMI ended up generating fewer infor-
mative responses using generic words. The fourth
and fifth examples show that the proposed model
generated responses with little relevance to the in-

put, although they were more informative than the
responses generated by Seq2Seq+MMI.

The last two examples show a drawback of the
proposed model, i.e., which is over-generation of
the same word. For quantitative evaluation, we
computed the repetition rate (Le et al., 2017) on
the test data, which measures the meaningless rep-
etition of words. The repetition rate is defined as:

repetition rate =
1

N

N∑

i=1

1 + r (ỹi)

1 + r(Yi)
,

where ỹi is the i-th generated sentence in the test
data, Yi is its reference, and N is the total number
of test sentences. The function r(·) measures the
repetition as the difference between the number of
words and that of unique words in a sentence:

r(X) = len(X) − len(set(X)),

where X means words in a sentence, len(X) com-
putes the number of items in X , and set(X) re-
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moves duplicate items in X . The average lengths
of generated responses and repetition rates are
shown on the right sides of Tables 1 and 2. The
results show that the proposed models (Proposed
and Proposed+MMI) tend to generate longer re-
sponses than Seq2Seq, but their repetition rates are
also higher. This may be caused by time-invariant
keyword-scores, despite the fact that the decoder
output changes over time. In the future, we will
update the keyword-score vector to avoid repeti-
tion in responses.

5 Conclusion

Aiming at generating diverse responses while pre-
serving relevance to the input, we proposed a
model that identifies keywords using PPMI and
promoted their generation in the decoder. Eval-
uation results using English and Japanese conver-
sational corpora show that in comparison with (Li
et al., 2016), the proposed model achieved better
performance in terms of correspondence to refer-
ences and diversity of output. On the other hand,
we found that the proposed model has a tendency
of over-generation.

As future work, we will conduct human eval-
uation and qualitative analysis. We will also in-
vestigate the effects of the hyper-parameter α on
overall performance. We also plan to develop a
mechanism for suppressing over-generation.
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Abstract

Generic responses frequently generated by
neural models are a critical problem for user
engagement in dialogue systems. For a more
engaging chit-chat experience, we propose
a response generation model motivated by
the interpersonal process model for intimacy.
It generates responsive and self-expressive
replies, which are implemented as domain-
awareness and sentiment-richness, respec-
tively. Experiments empirically confirmed
that our model outperformed the sequence-
to-sequence model; 68.1% of our responses
were domain-aware with sentiment polarities,
which was only 2.7% for responses generated
by the sequence-to-sequence model.

1 Introduction

Dialogue systems that conduct non-goal-oriented
chat, i.e., chit-chat, is an active research area. The
sequence-to-sequence model (SEQ2SEQ) (Vinyals
and Le, 2015; Shang et al., 2015) is commonly
used for implementation, however, recent studies,
e.g., (Li et al., 2016a), point out that SEQ2SEQ

frequently generates overly generic responses.
Among different approaches to address this prob-
lem, previous studies propose to generate more en-
gaging responses by reacting to topics in users’ ut-
terances (Xing et al., 2017) or embodying emo-
tions (Zhou et al., 2018; Huang et al., 2018).
Herein we make a step further to generate respon-
sive and self-expressive replies simultaneously.1

The interpersonal process model for inti-
macy (Reis and Shaver, 1988) indicates that
conversational responsiveness (Miller and Berg,
1984), i.e., showing concern for what was said,
and self-expression, i.e., sharing thoughts and feel-
ings, are primary factors to create intimacy. Mo-
tivated by this theory, we believe that the con-

1In this study, we focus on single-turn conversations, i.e.,
generating a response to a single utterance from the user.

Domain: Baseball

Domain: Pokémon GO

User: Sugano will be the ace for Japan! 
(菅野は日本のエースになるよ)  

Seq2Seq: Really? (そうなの？)
Our model (+): Sugano is cool! 

(菅野は良いですよね！)
Our model (-): No way? There is no hope for Sugano!

(菅野は無理ですね！)

User: Caught my first Pikachu! So cute!! 
(初めてピカチュウ捕まえた！可愛い！！)

Seq2Seq: Wow, awesome!  (え 、まじでいいよ !)
Our model (+): Shiny Pikachu is pretty cute.  
(ピカチュウの色違いがなかなか可愛いですよね)

Our model (-): Shiny Pikachu is pretty hard, indeed. 
(ピカチュウの色違いが、なかなか難しいですよね)

Figure 1: Responses generated by our model and
SEQ2SEQ ((+) represents a positive response and (-)
represents a negative response. )

versational responsiveness and self-expression are
also valid for a dialogue system to generate engag-
ing responses. We implement the conversational
responsiveness as domain-awareness because it
effectively conveys an impression that the dia-
logue agent is listening to the user by respond-
ing about mentioned topics. Also, we implement
the self-expression as sentiment-richness by rep-
resenting sentiment polarity to generate subjective
responses with feelings.

Specifically, the encoder predicts the domain of
a user’s utterance and integrates domain and ut-
terance representations to tell the decoder the tar-
get domain explicitly. Then the decoder embodies
sentiment polarity in its generation process. Fig. 1
shows real responses generated by our model. You
may find that our responses react to the domains of
input utterances while showing salient sentiments.
On the other hand, SEQ2SEQ ends up generating
generic responses.

To the best of our knowledge, this is the first
study that simultaneously achieved both domain-
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Figure 2: Architecture of the proposed model, on which the encoder is responsible for domain-awareness and the
decoder takes care of embodying sentiment polarity.

aware and sentiment-rich response generation.
Our contributions are twofold. First, we achieve
these features in a simple architecture integrating
existing methods on top of SEQ2SEQ in order to
make it easily reproducible in existing dialogue
systems. Second, our model utilizes fine-tuning
to compensate for the training data scarcity, which
is essential because there is a limited amount of
domain-dependent and sentiment-rich dialogues.
Our codes and scripts are publicly available.2

Evaluation results empirically confirmed that
our model significantly outperformed SEQ2SEQ

from the human perspective. Annotators judged
that responses generated by our model are consis-
tent with the utterances’ domains and show salient
sentiments for 89% and 72% of cases while pre-
serving fluency and consistency. Furthermore,
they judged 68.1% responses by our model as both
domain-aware and sentiment-rich, which was only
2.7% for responses by SEQ2SEQ.

2 Related Work

The generic response problem in SEQ2SEQ is
a central concern in recent studies. Different
approaches have been proposed to generate di-
versified responses; by an objective function (Li
et al., 2016a; Zhang et al., 2018b), segment-level
reranking via a stochastic beam-search in a de-
coder (Shao et al., 2017), or by incorporating
auto-encoders so that latent vectors are expressive
enough for the utterance and response (Zou et al.,
2018). In these approaches, balancing the diver-
sity and coherency in a response is not trivial. Zou
et al. (2018) show that metrics to measure the di-
versity are not proportional to human evaluation.

Another group of studies tackles the generic re-
sponse problem by improving coherence in the
response, which is relevant to conversational re-
sponsiveness. Approaches include reinforcement

2https://github.com/KChikai/
Responsive-Dialogue-Generation

learning (Zhang et al., 2018a) and prediction of a
keyword that will be the gist of a response given
an input utterance and its generation in the de-
coder (Mou et al., 2016; Yao et al., 2017; Wang
et al., 2018). In our study, we consider domain-
level coherency to achieve the conversational re-
sponsiveness similar to (Xing et al., 2017).

Several studies focus on self-expression in re-
sponses. Some add persona in dialogue agents
to generate consistent responses to paraphrased
input utterances (Li et al., 2016b; Zhang et al.,
2018c; Qian et al., 2018). Zhou et al. (2018) con-
ducted the first study that controls emotions in di-
alogue agents using two factors. The first is em-
bedding of a desired emotion label as in (Li et al.,
2016b; Huang et al., 2018). The second is inter-
nal and external memories, which control the emo-
tional state and the output of the decoder, respec-
tively. These previous studies propose methods
to achieve either conversational responsiveness or
self-expression. Herein we aim to achieve both
features simultaneously.

3 Proposed Architecture

To be easily implemented on existing dialogue
systems, our model design aims to be simple.
We integrate TWEET2VEC (Dhingra et al., 2016)
and the external memory (Zhou et al., 2018) with
SEQ2SEQ (Fig. 2). While sentiments in texts are
well-understood in natural language processing,
emotions need more studies to be considered in
practical applications. Besides, determining the
appropriate emotions for a specific utterance re-
mains problematic (Hasegawa et al., 2013). In
our model, we focus on sentiments and input the
embedding of a sentiment label s to the decoder,
which specifies the desired sentiment to represent
in a response.

3.1 Encoder
Fig. 3 shows the design of our encoder, which in-
tegrates the input utterance and its domain.
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Figure 3: Design of the encoder (⊗ concatenates input vectors and ⊕ averages them)

Input Utterance Encoding The input utterance
is represented as a vector. Bi-directional recurrent
neural networks empirically show superior perfor-
mance in generation tasks (Bahdanau et al., 2015)
because they refer to the preceding and subsequent
sequences. We apply bi-directional Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) networks to encode an input utter-
ance into a vector. Given the input utterance
X = {x1, x2, · · · , xM} of length M , the forward
LSTM network encodes the input at time step t as

cfwt ,h
fw
t = LSTM(eencxt , c

fw
t−1,h

fw
t−1).

hfw
t ∈ Rλ is the representation output, which is

computed based on the embedding of xt (denoted
as eencxt ∈ Rω) and the previous representation
output hfw

t−1. cfwt−1 ∈ Rλ is a cell state vector
that works as a memory in LSTM. The backward
LSTM works in the same fashion by reading the
input in the reverse order. The final vector repre-
sentation htxt ∈ Rλ is computed by averaging the
concatenated forward and backward outputs

have =
1

M

M∑

t=1

[hfw
t ;hbw

t ],

htxt =σ(Wtxthave),

where [·; ·] concatenates two vectors, σ(·) is a sig-
moid function, and Wtxt ∈ Rλ×2λ. In this way,
htxt encodes the summaries of both the preceding
and subsequent words.

Domain Estimation & Representation An-
other task of the encoder is predicting the domain
of the input utterance and integrating the domain
label with the utterance. For domain estimation,
we apply TWEET2VEC due to its superior abil-
ity to predict a label of short and colloquial text,

which should be the case for input utterance to di-
alogue agents. Although the original paper pre-
dicted hashtags of tweets, we predict domains of
utterances. Another advantage of TWEET2VEC is
that it is language-independent and easily adapted
to different languages.

Specifically, TWEET2VEC encodes the input ut-
terance using bi-directional recurrent neural net-
works adapting gated recurrent units (GRUs) (Cho
et al., 2014). The final vector representation of in-
put ĥtxt is computed by integrating the forward
and backward outputs using a fully-connected
layer. Then ĥtxt is passed through a linear layer,
and the posterior probabilities of the domains are
computed in a softmax layer.

Domain d of the highest posterior probability is
converted into dense vector representation hdom ∈
Rδ. Specifically, a two-layer multilayer percep-
tron (MLP) is employed where a rectifier is used
as the activation function

ĥdom =relu(Wdom
1 edomd ),

hdom =relu(Wdom
2 ĥdom),

where edomd ∈ Rδ is the embedding vector of d,
Wdom

1 ∈ Rη×δ, and Wdom
2 ∈ Rδ×η.

Utterance & Domain-Label Integration Fi-
nally, the utterance and domain representations
pass through another fully-connected layer and are
integrated into a vector hdec

0 ∈ Rλ

hdec
0 = Wenc[htxt;hdom], (1)

where Wenc ∈ Rλ×(λ+δ). hdec
0 is then passed to

the decoder for response generation.

3.2 Decoder
Given hdec

0 encodes the input utterance and the
predicted domain, the decoder generates a re-
sponse embodying the desired sentiment. Input
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utterance X is paired with a sequence of outputs
to predict Y = {y1, y2, . . . , yN} of length N .

We apply the external memory to SEQ2SEQ in
order to proactively control the sentiments in the
outputs. Fig. 4 shows the detailed design of the de-
coder. First, we concatenate the output sequence
with the embedding of the desired sentiment la-
bel as a soft-constraint to instruct the decoder of
the desired sentiment for response generation (Li
et al., 2016b). The external memory then directly
controls response generation by switching outputs
between words with sentiment polarities (hereafter
referred to as sentiment words) and generic ones.
Specifically, in the external memory, vocabulary
V is divided into two subsets: V = {Vs ∪ Vg}.
Vs contains only sentiment words, such as cool
and terrible, while Vg contains other generic
words, such as day and me. The weight of a
switcher, which determines the priority of the sets
of vocabulary is computed based on the represen-
tation output from an LSTM network.

Embedding of s (denoted as es ∈ Rδ) is con-
catenated with output yt−1 at the previous time
step and then input into the LSTM network as

cdect ,hdec
t = LSTM([edecyt−1

; es], cdect−1,h
dec
t−1),

where cdect ∈ Rλ is the cell state vector in the
LSTM, hdec

t ∈ Rλ is the representation output
from the LSTM, and edecyt−1

is the embedding of
yt−1. Recall that the initial input to the decoder
hdec
0 is computed in Eq. (1).
Then hdec

t is passed to the external memory to
sequentially predict output as

at =σ(W
ahdec

t ),

og =softmax(Wghdec
t ),

os =softmax(Wshdec
t ),

yt ∼ ot =[(1− at)og; atos],

where Wa ∈ R1×λ, Wg ∈ Rλ×|Vg |, and Ws ∈
Rλ×|Vs|. at ∈ [0, 1] weighs either the probabil-
ities of generic words or sentiment words based
on context represented in hdec

t . og ∈ R|Vg | and
os ∈ R|Vs| are the posterior probabilities to out-
put a word in each vocabulary. ot ∈ R|V | is the
final probability of each word adjusted by at. At
run-time, a beam-search with a beam-size of 5 is
conducted to avoid outputting an unknown tag.

Our model optimizes the cross-entropy loss be-
tween predicted word distribution ot and gold dis-
tribution pt. In addition, a regularizer constrains
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Figure 4: Design of the decoder (⊗ concatenates input
vectors and ◦ multiplies a vector and scalar.)

the selection of a sentiment or generic word

−
N∑

t=1

pt log(ot)−
N∑

t=1

qt log(at), (2)

where qt ∈ {0, 1} is the gold choice of a sentiment
word or a generic word.

4 Training Framework

Because our model aims to generate domain-
aware responses with sentiments, it should be
trained on in-domain conversations with senti-
ments. Although either in-domain conversations
or conversations with sentiments are available,
their intersections are scarce. Furthermore, our
model integrates TWEET2VEC and external mem-
ory. Thus, training errors propagate from each
sub-model to the final response.

Consequently, we designed a training frame-
work that pre-trains sub-models independently
and then conducts fine-tuning on the connected
model, where a model is trained using the pre-
trained parameters as the initial weights. The
training process uses not only a small-scale con-
versational (in-domain) corpus of specific do-
mains but also a large-scale conversational corpus
of general domain.

4.1 Sentiment Annotation
Training requires sentiment annotations on the
general and in-domain corpora. Because it is cost
prohibitive to annotate sentiments to these corpora
manually, we rely on automatic sentiment analy-
sis. Given that input utterances to dialogue agents
are short, incomplete, extremely casual, and po-
tentially noisy, we need a robust method to predict
sentiments with guaranteed accuracy.
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Although we tried several state-of-the-art meth-
ods for sentiment analysis (Severyn and Moschitti,
2015; Zhu et al., 2015), our preliminary evalua-
tion showed that they were easily confused by col-
loquial styles in conversational texts. Hence, we
used a simple heuristics based on a sentiment lexi-
con to prioritize the robustness in analysis. Specif-
ically, a sentence is annotated as positive (nega-
tive) if there are more positive (negative) words. If
there is an equal number of positive and negative
words, then the sentence is annotated as neutral.

We extracted words with strong polarities from
existing sentiment lexicons (Kobayashi et al.,
2005; Takamura et al., 2005). Besides, we col-
lect casual and recent sentiment words by crawl-
ing Twitter.3 This sentiment lexicon is used for the
above sentiment analysis and the external memory
as Vs after the filtering described in Sec. 5.2. More
details of lexicon construction are in Sec. A.

4.2 Pre-Training on Sub-Models
After annotating sentiments on the general and in-
domain corpora, we conducted pre-training. In the
pre-training step, sub-models are independently
trained (Fig. 5).

SEQ2SEQ requires large-scale training data for
fluent response generation. Thus, we used the gen-
eral corpus here. We directly connected the bi-
directional LSTM in the encoder and the LSTM
in the decoder to train this sub-model. The loss
function (Eq. (2)) is computed by referring to the
gold-responses in the corpus. Embeddings to rep-
resent sentiments are trained at this stage.

TWEET2VEC is independently trained using the
in-domain corpus for domain prediction. The
model optimizes the categorical cross-entropy loss
between the predicted and gold domain labels.

3https://twitter.com/
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Figure 6: Fine-tuning process (Gray boxes denote data
from the in-domain corpus.)

4.3 Fine-Tuning on the Entire Model

After pre-training, fine-tuning is conducted using
the in-domain corpus to train MLPs that integrate
the domain label and input utterance (Fig. 6). Ad-
ditionally, embeddings of domain labels edomd are
trained at this stage. To avoid error propagation
from the pre-trained TWEET2VEC, gold domain
labels are inputted into the MLP to learn correct
representations of domain labels.

Once fine-tuned, these sub-models are con-
nected to generate domain-aware responses with
sentiments (Fig. 2).

5 Evaluation Design

Because the effectiveness of each component
for embodying emotions have been evaluated
in (Zhou et al., 2018; Huang et al., 2018), we focus
on evaluating whether both domain-awareness and
sentiment-richness are achieved simultaneously by
our model compared to SEQ2SEQ.

5.1 Data Collection

To train our model, we collected both general and
in-domain conversational texts in Japanese. The
general corpus is constructed by crawling con-
versational tweets using Twitter API.4 We also
crawled conversational tweets used in the NTCIR
Short Text Conversation Task (Shang et al., 2016).
In total, the general corpus contains about 1.6M
utterance-response pairs.

The in-domain corpus crawls conversations in
public Facebook Groups using Facebook Graph
API.5 Because members are fans of specific
products, organizations, and people, we expect
that their conversations are domain-dependent.6

Specifically, we used two domains, Japanese pro-

4https://developer.twitter.com/en/docs
5https://developers.facebook.com/docs/

graph-api
6We also tried to collect in-domain conversations using

hashtags on Twitter, but they were too noisy.
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Type Domain # of Pairs
General Mixture 1.1M

In-domain
Baseball 24k

Pokémon Go 23k

Table 1: Training data profile

Summary Setting
ω Dimension of word embed-

ding
256

λ Dimension of the representa-
tion output in the LSTM net-
work

512

δ Dimension of the embedding
and representation output of
labels

64

η Dimension of the hidden layer
in the MLPs

512

|V | Vocabulary size 45k
|Vs| Vocabulary size of the senti-

ment words
1, 387

Table 2: Hyper-parameters and their settings

fessional baseball leagues and Pokémon Go7, an-
ticipating that salient sentiments are easily mani-
fested in sports and game domains. Experiments
using a wider range of domains is our future work.
We crawled conversations since a group’s incep-
tion to November 2017. In total, the in-domain
corpora contain about 29k baseball-related conver-
sations and 28k game-related conversations. We
assume that sentiments can be embodied in do-
mains with weaker sentiment tendencies due to
pre-training in the general domain corpus. Veri-
fication of this assumption is a future task.

After crawling, we preprocessed the corpora to
remove noise and standardize texts (details are de-
scribed in Sec. B). Table 1 shows the amount of
our training data after the preprocessing step.

As a validation set of pre-training, 1k conversa-
tion pairs were sampled from the general corpus.
Similarly, 1k pairs for validation and another 1k
as a test set were sampled from the in-domain cor-
pus for the automatic evaluation. The training set
excluded these validation and test sets.

5.2 Model Setting

Table 2 summarizes the hyper-parameters in our
model and their settings. The vocabulary size was

7https://pokemongolive.com/en/

45k, which consisted of frequent words in the gen-
eral and in-domain corpora. The general and in-
domain corpora contained 1, 387 sentiment words,
which were used as Vs in the external memory.

In both pre-training and fine-tuning, sub-
models, except for TWEET2VEC, were trained at
most 100 epochs with early stopping using the val-
idation set. Batch size was set to 200, dropout was
used with a rate of 0.2, and Adam (Kingma and
Ba, 2015) with a learning rate of 0.01 was applied
as an optimizer.

During pre-training and fine-tuning, an out-of-
vocabulary (OOV) word in input utterances was
replaced with a similar word in the vocabulary
to reduce the effects of data sparsity (Li et al.,
2016c). We generated word embeddings using
the fastText (Bojanowski et al., 2017) with the de-
fault settings feeding Wikipedia dumps8 as train-
ing data. When a word is OOV, the top-50 sim-
ilar words are detected using cosine similarities
between their embeddings. If one of these simi-
lar words is in the vocabulary, it replaces the orig-
inal OOV word. Otherwise, the original word is
replaced with an unknown word tag.

TWEET2VEC was trained on the in-domain cor-
pus using the official implementation9 with the
default settings. We crawled 200 new domain-
dependent conversational pairs as a validation set.
The prediction accuracy was 89.0%, which is rea-
sonable considering that our texts are colloquial.

We compare our model to SEQ2SEQ that was
implemented using bi-directional LSTM networks
as an encoder and an LSTM network as a decoder.
Our model has the same hyper-parameters and
training procedures, except that SEQ2SEQ was
trained using both general and in-domain corpora.
For SEQ2SEQ, a validation set of 1k pairs was
randomly sampled from the combined corpus ex-
cluding from the training and test sets described in
Sec. 5.1.

5.3 Human Evaluation

Because each utterance has many appropriate re-
sponses, an automatic evaluation scheme has yet
to be established. To assess the quality of the
generated responses from the human perspec-
tive, we designed two evaluation tasks. Task 1
evaluates the overall quality of our model com-
pared to SEQ2SEQ from the perspectives of

8https://dumps.wikimedia.org/
9https://github.com/bdhingra/tweet2vec
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domain-awareness and sentiment-richness. Task 2
evaluates if an intended sentiment is embodied
as desired without being affected by domain-
awareness.

We recruited five graduate students majoring in
computer science that are Japanese native speakers
(hereafter called annotators). After an instruction
session to explain judgment standards, they anno-
tated Task 1 and Task 2. As a token of apprecia-
tion, each annotator received a small stipend.

Test Set Creation To exclude external factors,
e.g., word segmentation failures, that may affect
the evaluation results, we manually created a test
set consisting of 300 utterances in the baseball do-
main and another 300 utterances in the Pokémon
Go domain.

First, we crawled new conversational pairs from
the same Facebook Groups from November to De-
cember 2017. Next, we manually excluded con-
versations in the general domain (e.g., greetings).
We then cleaned sentences in the same manner
with the general and in-domain corpora. Besides,
we manually replaced OOV words within vocabu-
lary words that preserve the original meanings of
sentences. Slang and uncommon expressions were
also manually converted to standard expressions
to avoid impacting the accuracy of word segmen-
tation. Half of the test set (150 conversations for
each domain) was used for Task 1 and the other
half was used for Task 2. Note that all annota-
tors annotated the same conversations, in total 600
pairs of utterances and responses.

Task 1: Overall Evaluation Annotators judged
triples of an input utterance and responses by our
model and by SEQ2SEQ. The order of responses
was randomly shuffled to ensure a fair evaluation.
Annotators assessed the following aspects:
• Fluency: Annotators judged if a response is

fluent and at an acceptable level to understand
its meaning (1 = fluent, 0 = influent).

• Consistency: Annotators evaluated whether a
response is semantically consistent with the
utterance (1 = consistent, 0 = inconsistent).
Generic responses can be regarded as consis-
tent if they are acceptable for given utterances.
Responses judged as influent are automatically
annotated as inconsistent.

• Domain-awareness: Annotators compared
the two responses and determined which
one better matched the domain of the input

utterance (1 = model that generated the better
response, 0 = the other model).

• Sentiment-richness: Annotators compared the
two responses and determined one showing
salient sentiments like Domain-awareness an-
notation. Only positive or negative responses
were considered for our model.

For Domain-awareness and Sentiment-richness,
we conduct a pairwise comparison of our model
and SEQ2SEQ, which enables reliable judgments
for subjective annotations (Ghazvininejad et al.,
2018; Wang et al., 2018), rather than indepen-
dently judging different models.

Task 2: Evaluation of Sentiment Control Our
model takes a sentiment label that is desired to be
expressed in a generated response as input, which
we refer to as intended sentiment. This task evalu-
ates if such an intended sentiment is embodied in a
response by comparing the intended sentiment and
a sentiment that annotators perceive in practice.

Annotators were shown a pair of input utterance
and generated response by our model, and then
asked to judge if the response was positive, neg-
ative, or neutral. We evaluated the agreement be-
tween the intended and perceived sentiments.

6 Evaluation Results

As an automatic evaluation measure, we computed
the BLEU score (Papineni et al., 2002) follow-
ing evaluations in (Li et al., 2016a; Ghazvinine-
jad et al., 2018). Our model achieved the higher
BLEU score (1.54) than SEQ2SEQ (1.39). How-
ever, as discussed in (Liu et al., 2016; Lowe
et al., 2017), current automatic evaluation mea-
sures show either weak or no correlation with
human judgements, or worse, they tend to favor
generic responses. Hence, we focus on human
evaluation in the following.

First of all, the agreement level of annotations
is examined based on Fleiss’ κ. All annotations
have reasonable agreements (κ ≥ 0.37) except
the annotation of fluency for SEQ2SEQ whose κ
value is as low as 0.21 (all the κ values are shown
in Sec. C). This phenomenon may be because
SEQ2SEQ tends to output generic responses that
are less dependent on the utterances, making judg-
ments difficult due to the limited clues to evaluate
fluency.

Table 3 shows the macro-averages and the 95%
confidence intervals of the scores obtained by the
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Metrics SEQ2SEQ Our model
Fluency 0.995± 0.006 0.955± 0.023

Consistency 0.773± 0.094 0.753± 0.127

Domain-
awareness

0.109± 0.044 0.890± 0.044

Sentiment-
richness

0.282± 0.133 0.717± 0.133

Table 3: Evaluation results of Task 1

annotators in Task 1. Our model achieved signifi-
cant improvements over SEQ2SEQ; 89% and 72%
of the responses generated by ours were deemed
as consistent with the utterance domain and show-
ing salient sentiments, respectively. Furthermore,
68.1% responses by our model were judged as
both domain-aware and sentiment-rich, which was
only 2.7% for responses by SEQ2SEQ.

As for fluency and consistency, SEQ2SEQ

yields slightly more fluent (99.5%) and consistent
(77.3%) responses compared to our model (95.5%
and 75.3%, respectively). SEQ2SEQ benefits from
the generic responses because such responses ap-
ply to various inputs, making it easier to achieve a
high consistency compared to our model that gen-
erates domain-dependent responses. Additionally,
generic responses are easier to generate because
they are typically short. The average numbers
of characters in responses when inputting the test
set were 19 and 32 for SEQ2SEQ and our model,
respectively. This result reveals that our model
achieves a reasonably high fluency even when gen-
erating significantly longer responses. Another
reason is the side-effect of external memory that
influences the internal state of the decoder as re-
ported in (Zhou et al., 2018).

As a result of Task 2, the macro-average of
the agreement between the intended and perceived
sentiments is 64.5 ± 2.3%, where Fleiss’ κ of an-
notation is 0.52. Fig. 7 is a confusion matrix show-
ing the distribution of the obtained 1, 500 annota-
tions. Neutral responses tend to be judged as either
positive (28.5%) or negative (15.6%). One reason
is our simple sentiment annotation, which assigns
a neutral label when the numbers of positive and
negative words in a sentence are equal. Improving
the polarity strength is a future task.

The annotators perceived 17.6% of the intended
negative responses as positive. Detailed analy-
ses of generated responses revealed that this cat-
egory contained sentiment words whose polarities

Figure 7: Confusion matrix of intended (true) senti-
ments and the sentiments that annotators perceived

depend on the context, e.g., envy, great, and
surprising. These words are considered neg-
ative in our sentiment lexicon because they tend
to be used with negative emoticons to show hu-
mor in Twitter. In the future, we will develop
post-processing to clean our lexicon and consider
the self-attention (Vaswani et al., 2017) to resolve
such context-dependent cases.

Fig. 1 shows real examples of generated re-
sponses. While SEQ2SEQ produces generic
responses like “Really?”, our model gener-
ates domain-aware responses with sentiments
like “Sugano is cool!” (positive response)
and “No way? There is no hope for
Sugano!” (negative response) for the baseball
domain. Sec. D provides more examples that show
how our model achieved domain-awareness and
sentiment-richness.

7 Conclusion

As a solution to the generic response problem
in SEQ2SEQ, we implemented conversational re-
sponsiveness and self-expression to a neural di-
alogue model. Different from previous studies,
our model achieves these features simultaneously
in forms of domain-awareness and sentiment-
richness, respectively. Evaluation results empir-
ically demonstrated that our model significantly
outperformed SEQ2SEQ. In the future, we will
improve the accuracy in embodying sentiments
and extend our dataset to cover diverse domains.
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A Construction of the Sentiment Lexicon

We used two sentiment lexicons created
by Kobayashi et al. (2005) and Takamura
et al. (2005). The former is manually created,
while the latter is automatically created by es-
timating the strengths of semantic orientations
of words in the range of [−1.0, 1.0]. We only
used words with a strong polarity. Specifically,
words with scores of [−1.0, 0.9] or [0.9, 1.0].
These lexicons contain only formal words like
headings in dictionaries. Therefore, we extended
our sentiment lexicon to collect casual and recent
sentiment words.

We searched tweets that are expected to con-
tain sentiments by querying Twitter with positive
and negative emoticons. In total, we crawled 400k
potential positive and negative tweets and gener-
ated word embeddings from these tweets using the
fastText (Bojanowski et al., 2017) with the default
setting. We then manually selected 57 sentiment
words from the vocabulary as seeds. The top-15
similar words per seed were extracted as sentiment
words, which were ranked by the cosine similarity
between embeddings of the seed and a candidate.
In total, we collected 1, 621 negative and 2, 666
positive words as our sentiment lexicon.

B Preprocessing

We employed conversational text crawled from
Twitter and Facebook, which are inherently noisy.
We conducted data cleaning before training our
model.

First, line breaks, emoticons, Japanese emoti-
cons (kaomoji), URLs, and consecutive duplicate
symbols were removed. Then texts less than or
equal to 25 words were obtained after word seg-
mentation using Mecab (Kudo et al., 2004). Ta-
ble 4 shows detailed statistics of our training data
after this preprocessing.

C Annotation Agreement

Table 5 shows the Fleiss’ κ for each annotation
result in our human evaluation. It confirms that
reasonably high agreements were achieved.

D Example Responses

Fig. 8 shows real responses generated by our
model and SEQ2SEQ using input utterances from
our test set. Our method successfully generates
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Data (Source) Total # of pairs Positive Neutral Negative
General (Twitter) 1, 081, 500 218, 322 760, 451 102, 727

In-domain
(Facebook)

Baseball 24, 666 6, 011 16, 623 2, 032
Pokémon GO 22, 734 7, 633 13, 299 1, 802

Table 4: Detailed statistics of training data

Annotation κ

Task 1

Fluency
SEQ2SEQ 0.21
Our model 0.45

Consistency
SEQ2SEQ 0.41
Our model 0.37

Domain-awareness 0.78
Sentiment 0.46

Task 2 0.52

Table 5: Fleiss’ κ on annotation results

Input utterance Model Generated response

Ohtani wants to try hand 

at pitching in the majors.

(大谷選手のメジャー移籍
の可能性はあります)

Seq2Seq
I like him better now.
(俺は今からの方が好きです)

Our 

model

Positive
Really? I was expecting that!
(そうなんですか!それは、期待してるんですよね!)

Neutral
Really! I didn’t know that!
(そうなんですか!それは知りませんでした!)

Negative
Really? He’ll be rude to any team.
(そうなんですか!それは、どこの球団にも失礼ですね!)

I’m expecting the head 

coach, Kanemoto, to 

develop fresh talent. 

(金本監督は若手をどんど
ん育てて欲しいですね。)

Seq2Seq
Agreed, but I like him.
(私もそう思うけど、私は好きです。)

Our 

model

Positive
I expect the Giants head coach to develop talent.
(巨人の監督に期待してますね)

Neutral
Maybe, if he becomes the Giants head coach.
(巨人の監督になったら、そうですね。)

Negative
Giant players are difficult, too.
(巨人の選手も、怖いですね。)

I wanted to exchange a 

2km-egg. LOL!

(この時ばかりは二キロタ
マゴと交換してあげた
かったですわら)

Seq2Seq
Uh, nice!
(あ、よかったです!)

Our 

model

Positive
That shiny Magikarp had a good profile.
(金コイは個体値良かったですね)

Neutral
They were a shiny Magikarp and Eevee.
(金コイとイーブイでしたね)

Negative
A shiny Magikarp is disappointing. 
(金コイはキツイですね)

Figure 8: Example responses generated by our model and SEQ2SEQ

domain-aware and sentiment-rich responses com-
pared to SEQ2SEQ.
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