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Introduction

While deep learning and neural networks have revolutionized the field of natural language processing,
changed the habits of its practitioners and opened up new research directions, many aspects of the inner
workings of deep neural networks remain unknown.

At the same time, we have access to many decades of accumulated knowledge on formal languages,
grammar, and transductions, both weighted and unweighted and for strings as well as trees: closure
properties, computational complexity of various operations, relationships between various classes of
them, and many empirical and theoretical results on their learnability.

The goal of this workshop is to bring researchers together who are interested in how our understanding
of formal languages can contribute to the understanding and design of neural network architectures for
natural language processing.

All 7 accepted papers and non-archival extended abstracts explore those connections. They do this either
by using results from formal languages to improve neural methods or by trying to understand better
neural methods through well-studied characteristics from formal languages. Finding such bridges is also
the main point of the 6 invited talks.

We would like to thank the authors and specially the programme committee for the timely and insightful
reviews. We are looking forward of seeing you in Florence!

The workshop organizers:

Jason Eisner, Matthias Gallé, Jeffrey Heinz, Ariadna Quattoni, Guillaume Rabusseau
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Sequential Neural Networks as Automata

William Merrill∗
Yale University, New Haven, CT, USA

Allen Institute for Artificial Intelligence, Seattle, WA, USA
william.merrill@yale.edu

Abstract

This work attempts to explain the types of
computation that neural networks can perform
by relating them to automata. We first define
what it means for a real-time network with
bounded precision to accept a language. A
measure of network memory follows from this
definition. We then characterize the classes of
languages acceptable by various recurrent net-
works, attention, and convolutional networks.
We find that LSTMs function like counter ma-
chines and relate convolutional networks to the
subregular hierarchy. Overall, this work at-
tempts to increase our understanding and abil-
ity to interpret neural networks through the
lens of theory. These theoretical insights help
explain neural computation, as well as the rela-
tionship between neural networks and natural
language grammar.

1 Introduction

In recent years, neural networks have achieved
tremendous success on a variety of natural lan-
guage processing (NLP) tasks. Neural networks
employ continuous distributed representations of
linguistic data, which contrast with classical dis-
crete methods. While neural methods work well,
one of the downsides of the distributed representa-
tions that they utilize is interpretability. It is hard
to tell what kinds of computation a model is capa-
ble of, and when a model is working, it is hard to
tell what it is doing.

This work aims to address such issues of inter-
pretability by relating sequential neural networks
to forms of computation that are more well un-
derstood. In theoretical computer science, the
computational capacities of many different kinds
of automata formalisms are clearly established.
Moreover, the Chomsky hierarchy links natural

∗ Work completed while the author was at Yale Univer-
sity.

language to such automata-theoretic languages
(Chomsky, 1956). Thus, relating neural networks
to automata both yields insight into what general
forms of computation such models can perform,
as well as how such computation relates to natural
language grammar.

Recent work has begun to investigate what
kinds of automata-theoretic computations various
types of neural networks can simulate. Weiss et al.
(2018) propose a connection between long short-
term memory networks (LSTMs) and counter au-
tomata. They provide a construction by which
the LSTM can simulate a simplified variant of a
counter automaton. They also demonstrate that
LSTMs can learn to increment and decrement their
cell state as counters in practice. Peng et al.
(2018), on the other hand, describe a connec-
tion between the gating mechanisms of several re-
current neural network (RNN) architectures and
weighted finite-state acceptors.

This paper follows Weiss et al. (2018) by an-
alyzing the expressiveness of neural network ac-
ceptors under asymptotic conditions. We formal-
ize asymptotic language acceptance, as well as an
associated notion of network memory. We use
this theory to derive computation upper bounds
and automata-theoretic characterizations for sev-
eral different kinds of recurrent neural networks
(Section 3), as well as other architectural vari-
ants like attention (Section 4) and convolutional
networks (CNNs) (Section 5). This leads to a
fairly complete automata-theoretic characteriza-
tion of sequential neural networks.

In Section 6, we report empirical results in-
vestigating how well these asymptotic predic-
tions describe networks with continuous activa-
tions learned by gradient descent. In some cases,
networks behave according to the theoretical pre-
dictions, but we also find cases where there is gap
between the asymptotic characterization and ac-
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tual network behavior.
Still, discretizing neural networks using an

asymptotic analysis builds intuition about how the
network computes. Thus, this work provides in-
sight about the types of computations that sequen-
tial neural networks can perform through the lens
of formal language theory. In so doing, we can
also compare the notions of grammar expressible
by neural networks to formal models that have
been proposed for natural language grammar.

2 Introducing the Asymptotic Analysis

To investigate the capacities of different neural
network architectures, we need to first define what
it means for a neural network to accept a language.
There are a variety of ways to formalize language
acceptance, and changes to this definition lead to
dramatically different characterizations.

In their analysis of RNN expressiveness, Siegel-
mann and Sontag (1992) allow RNNs to perform
an unbounded number of recurrent steps even af-
ter the input has been consumed. Furthermore,
they assume that the hidden units of the network
can have arbitrarily fine-grained precision. Un-
der this very general definition of language accep-
tance, Siegelmann and Sontag (1992) found that
even a simple recurrent network (SRN) can simu-
late a Turing machine.

We want to impose the following constraints on
neural network computation, which are more real-
istic to how networks are trained in practice (Weiss
et al., 2018):

1. Real-time: The network performs one itera-
tion of computation per input symbol.

2. Bounded precision: The value of each cell in
the network is representable by O(log n) bits
on sequences of length n.

Informally, a neural sequence acceptor is a net-
work which reads a variable-length sequence of
characters and returns the probability that the in-
put sequence is a valid sentence in some formal
language. More precisely, we can write:

Definition 2.1 (Neural sequence acceptor). Let X
be a matrix representation of a sentence where
each row is a one-hot vector over an alphabet Σ.
A neural sequence acceptor 1̂ is a family of func-
tions parameterized by weights θ. For each θ and
X, the function 1̂θ takes the form

1̂
θ : X 7→ p ∈ (0, 1).

Figure 1: With sigmoid activations, the network on the
left accepts a sequence of bits if and only if xt = 1 for
some t. On the right is the discrete computation graph
that the network approaches asymptotically.

In this definition, 1̂ corresponds to a general ar-
chitecture like an LSTM, whereas 1̂θ represents a
specific network, such as an LSTM with weights
that have been learned from data.

In order to get an acceptance decision from
this kind of network, we will consider what hap-
pens as the magnitude of its parameters gets very
large. Under these asymptotic conditions, the in-
ternal connections of the network approach a dis-
crete computation graph, and the probabilistic out-
put approaches the indicator function of some lan-
guage (Figure 1).

Definition 2.2 (Asymptotic acceptance). Let L be
a language with indicator function 1L. A neu-
ral sequence acceptor 1̂ with weights θ asymptot-
ically accepts L if

lim
N→∞

1̂
Nθ = 1L.

Note that the limit of 1̂Nθ represents the function
that 1̂Nθ converges to pointwise.1

Discretizing the network in this way lets us an-
alyze it as an automaton. We can also view this
discretization as a way of bounding the precision
that each unit in the network can encode, since it is
forced to act as a discrete unit instead of a continu-
ous value. This prevents complex fractal represen-
tations that rely on infinite precision. We will see
later that, for every architecture considered, this
definition ensures that the value of every unit in
the network is representable in O(log n) bits on
sequences of length n.

It is important to note that real neural networks
can learn strategies not allowed by the asymptotic
definition. Thus, this way of analyzing neural net-
works is not completely faithful to their practical

1https://en.wikipedia.org/wiki/
Pointwise_convergence
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usage. In Section 6, we discuss empirical studies
investigating how trained networks compare to the
asymptotic predictions. While we find evidence
of networks learning behavior that is not asymp-
totically stable, adding noise to the network dur-
ing training seems to make it more difficult for the
network to learn non-asymptotic strategies.

Consider a neural network that asymptotically
accepts some language. For any given length, we
can pick weights for the network such that it will
correctly decide strings shorter than that length
(Theorem A.1).

Analyzing a network’s asymptotic behavior also
gives us a notion of the network’s memory. Weiss
et al. (2018) illustrate how the LSTM’s additive
cell update gives it more effective memory than
the squashed state of an SRN or GRU for solv-
ing counting tasks. We generalize this concept
of memory capacity as state complexity. Infor-
mally, the state complexity of a node within a net-
work represents the number of values that the node
can achieve asymptotically as a function of the se-
quence length n. For example, the LSTM cell state
will have O(nk) state complexity (Theorem 3.3),
whereas the state of other recurrent networks has
O(1) (Theorem 3.1).

State complexity applies to a hidden state se-
quence, which we can define as follows:
Definition 2.3 (Hidden state). For any sentence
X, let n be the length of X. For 1 ≤ t ≤ n, the k-
length hidden state ht with respect to parameters
θ is a sequence of functions given by

hθ
t : X 7→ vt ∈ Rk.

Often, a sequence acceptor can be written as a
function of an intermediate hidden state. For ex-
ample, the output of the recurrent layer acts as a
hidden state in an LSTM language acceptor. In re-
current architectures, the value of the hidden state
is a function of the preceding prefix of characters,
but with convolution or attention, it can depend on
characters occurring after index t.

The state complexity is defined as the cardinal-
ity of the configuration set of such a hidden state:
Definition 2.4 (Configuration set). For all n, the
configuration set of hidden state hn with respect
to parameters θ is given by

M(hθ
n) =

{
lim

N→∞
hNθ

n (X) | n = |X|
}

.

where |X| is the length, or height, of the sentence
matrix X.

Definition 2.5 (Fixed state complexity). For all n,
the fixed state complexity of hidden state hn with
respect to parameters θ is given by

m(hθ
n) =

∣∣∣M(hθ
n)

∣∣∣.

Definition 2.6 (General state complexity). For all
n, the general state complexity of hidden state hn

is given by

m(hn) = max
θ
m(hθ

n).

To illustrate these definitions, consider a sim-
plified recurrent mechanism based on the LSTM
cell. The architecture is parameterized by a vector
θ ∈ R2. At each time step, the network reads a bit
xt and computes

ft = σ(θ1xt) (1)

it = σ(θ2xt) (2)

ht = ftht−1 + it. (3)

When we set θ+ = ⟨1, 1⟩, ht asymptotically
computes the sum of the preceding inputs. Be-
cause this sum can evaluate to any integer between
0 and n, hθ+

n has a fixed state complexity of

m

(
hθ+

n

)
= O(n). (4)

However, when we use parameters θId = ⟨−1, 1⟩,
we get a reduced network where ht = xt asymp-
totically. Thus,

m

(
hθId

n

)
= O(1). (5)

Finally, the general state complexity is the maxi-
mum fixed complexity, which is O(n).

For any neural network hidden state, the state
complexity is at most 2O(n) (Theorem A.2). This
means that the value of the hidden unit can be
encoded in O(n) bits. Moreover, for every spe-
cific architecture considered, we observe that each
fixed-length state vector has at most O(nk) state
complexity, or, equivalently, can be represented in
O(log n) bits.

Architectures that have exponential state com-
plexity, such as the transformer, do so by using
a variable-length hidden state. State complexity
generalizes naturally to a variable-length hidden
state, with the only difference being that ht (Def-
inition 2.3) becomes a sequence of variably sized
objects rather than a sequence of fixed-length vec-
tors.
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Now, we consider what classes of languages
different neural networks can accept asymptoti-
cally. We also analyze different architectures in
terms of state complexity. The theory that emerges
from these tools enables better understanding of
the computational processes underlying neural se-
quence models.

3 Recurrent Neural Networks

As previously mentioned, RNNs are Turing-
complete under an unconstrained definition of ac-
ceptance (Siegelmann and Sontag, 1992). The
classical reduction of a Turing machine to an RNN
relies on two unrealistic assumptions about RNN
computation (Weiss et al., 2018). First, the num-
ber of recurrent computations must be unbounded
in the length of the input, whereas, in practice,
RNNs are almost always trained in a real-time
fashion. Second, it relies heavily on infinite pre-
cision of the network’s logits. We will see that
the asymptotic analysis, which restricts computa-
tion to be real-time and have bounded precision,
severely narrows the class of formal languages that
an RNN can accept.

3.1 Simple Recurrent Networks

The SRN, or Elman network, is the simplest type
of RNN (Elman, 1990):

Definition 3.1 (SRN layer).

ht = tanh(Wxt + Uht−1 + b). (6)

A well-known problem with SRNs is that they
struggle with long-distance dependencies. One ex-
planation of this is the vanishing gradient problem,
which motivated the development of more sophis-
ticated architectures like the LSTM (Hochreiter
and Schmidhuber, 1997). Another shortcoming of
the SRN is that, in some sense, it has less mem-
ory than the LSTM. This is because, while both
architectures have a fixed number of hidden units,
the SRN units remain between −1 and 1, whereas
the value of each LSTM cell can grow unbound-
edly (Weiss et al., 2018). We can formalize this
intuition by showing that the SRN has finite state
complexity:

Theorem 3.1 (SRN state complexity). For any
length n, the SRN cell state hn ∈ Rk has state
complexity

m(hn) ≤ 2k = O(1).

Proof. For every n, each unit of hn will be the
output of a tanh. In the limit, it can achieve either
−1 or 1. Thus, for the full vector, the number of
configurations is bounded by 2k.

It also follows from Theorem 3.1 that the lan-
guages asymptotically acceptable by an SRN are a
subset of the finite-state (i.e. regular) languages.
Lemma B.1 provides the other direction of this
containment. Thus, SRNs are equivalent to finite-
state automata.

Theorem 3.2 (SRN characterization). Let
L(SRN) denote the languages acceptable by an
SRN, and RL the regular languages. Then,

L(SRN) = RL.

This characterization is quite diminished com-
pared to Turing completeness. It is also more de-
scriptive of what SRNs can express in practice. We
will see that LSTMs, on the other hand, are strictly
more powerful than the regular languages.

3.2 Long Short-Term Memory Networks

An LSTM is a recurrent network with a complex
gating mechanism that determines how informa-
tion from one time step is passed to the next.
Originally, this gating mechanism was designed to
remedy the vanishing gradient problem in SRNs,
or, equivalently, to make it easier for the network
to remember long-term dependencies (Hochreiter
and Schmidhuber, 1997). Due to strong empiri-
cal performance on many language tasks, LSTMs
have become a canonical model for NLP.

Weiss et al. (2018) suggest that another advan-
tage of the LSTM architecture is that it can use
its cell state as counter memory. They point out
that this constitutes a real difference between the
LSTM and the GRU, whose update equations do
not allow it to increment or decrement its memory
units. We will further investigate this connection
between LSTMs and counter machines.

Definition 3.2 (LSTM layer).

ft = σ(Wfxt + Ufht−1 + bf ) (7)

it = σ(Wixt + Uiht−1 + bi) (8)

ot = σ(Woxt + Uoht−1 + bo) (9)

c̃t = tanh(Wcxt + Ucht−1 + bc) (10)

ct = ft ⊙ ct−1 + it ⊙ c̃t (11)

ht = ot ⊙ f(ct). (12)
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In (12), we set f to either the identity or tanh
(Weiss et al., 2018), although tanh is more stan-
dard in practice. The vector ht is the output that is
received by the next layer, and ct is an unexposed
memory vector called the cell state.

Theorem 3.3 (LSTM state complexity). The
LSTM cell state cn ∈ Rk has state complexity

m(cn) = O(nk).

Proof. At each time step t, we know that the con-
figuration sets of ft, it, and ot are each subsets of
{0, 1}k. Similarly, the configuration set of c̃t is a
subset of {−1, 1}k. This allows us to rewrite the
elementwise recurrent update as

lim
N→∞

[ct]i = lim
N→∞

[ft]i[ct−1]i + [it]i[c̃t]i (13)

= lim
N→∞

a[ct−1]i + b (14)

where a ∈ {0, 1} and b ∈ {−1, 0, 1}.
Let St be the configuration set of [ct]i. At each

time step, we have exactly two ways to produce a
new value in St that was not in St−1: either we
decrement the minimum value in St−1 or incre-
ment the maximum value. It follows that

|St| = 2 + |St−1| (15)

=⇒ |Sn| = O(n). (16)

For all k units of the cell state, we get

m(cn) ≤ |Sn|k = O(nk). (17)

The construction in Theorem 3.3 produces a
counter machine whose counter and state update
functions are linearly separable. Thus, we have
an upper bound on the expressive power of the
LSTM:

Theorem 3.4 (LSTM upper bound). Let CL be the
real-time counter languages (Fischer, 1966; Fis-
cher et al., 1968). Then,

L(LSTM) ⊆ CL.

Theorem 3.4 constitutes a very tight upper
bound on the expressiveness of LSTM computa-
tion. Asymptotically, LSTMs are not powerful
enough to model even the deterministic context-
free language w#wR.

Weiss et al. (2018) show how the LSTM can
simulate a simplified variant of the counter ma-
chine. Combining these results, we see that

the asymptotic expressiveness of the LSTM falls
somewhere between the general and simplified
counter languages. This suggests counting is a
good way to understand the behavior of LSTMs.

3.3 Gated Recurrent Units
The GRU is a popular gated recurrent architecture
that is in many ways similar to the LSTM (Cho
et al., 2014). Rather than having separate forget
and input gates, the GRU utilizes a single gate that
controls both functions.

Definition 3.3 (GRU layer).

zt = σ(Wzxt + Uzht−1 + bz) (18)

rt = σ(Wrxt + Urht−1 + br) (19)

ut = tanh
(
Wuxt + Uu(rt ⊙ ht−1) + bu

)

(20)

ht = zt ⊙ ht−1 + (1 − zt) ⊙ ut. (21)

Weiss et al. (2018) observe that GRUs do not
exhibit the same counter behavior as LSTMs on
languages like anbn. As with the SRN, the GRU
state is squashed between −1 and 1 (20). Taken
together, Lemmas C.1 and C.2 show that GRUs,
like SRNs, are finite-state.

Theorem 3.5 (GRU characterization).

L(GRU) = RL.

3.4 RNN Complexity Hierarchy
Synthesizing all of these results, we get the fol-
lowing complexity hierarchy:

RL = L(SRN) = L(GRU) (22)

⊂ SCL ⊆ L(LSTM) ⊆ CL. (23)

Basic recurrent architectures have finite state,
whereas the LSTM is strictly more powerful than
a finite-state machine.

4 Attention

Attention is a popular enhancement to sequence-
to-sequence (seq2seq) neural networks (Bahdanau
et al., 2014; Chorowski et al., 2015; Luong et al.,
2015). Attention allows a network to recall spe-
cific encoder states while trying to produce output.
In the context of machine translation, this mecha-
nism models the alignment between words in the
source and target languages. More recent work
has found that “attention is all you need” (Vaswani
et al., 2017; Radford et al., 2018). In other words,
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networks with only attention and no recurrent con-
nections perform at the state of the art on many
tasks.

An attention function maps a query vector and a
sequence of paired key-value vectors to a weighted
combination of the values. This lookup function is
meant to retrieve the values whose keys resemble
the query.
Definition 4.1 (Dot-product attention). For any n,
define a query vector q ∈ Rl, matrix of key vectors
K ∈ Rnl, and matrix of value vectors V ∈ Rnk.
Dot-product attention is given by

attn(q,K,V) = softmax(qKT )V.

In Definition 4.1, softmax creates a vector of
similarity scores between the query q and the key
vectors in K. The output of attention is thus
a weighted sum of the value vectors where the
weight for each value represents its relevance.

In practice, the dot product qKT is often scaled
by the square root of the length of the query vector
(Vaswani et al., 2017). However, this is only done
to improve optimization and has no effect on ex-
pressiveness. Therefore, we consider the unscaled
version.

In the asymptotic case, attention reduces to a
weighted average of the values whose keys maxi-
mally resemble the query. This can be viewed as
an arg max operation.
Theorem 4.1 (Asymptotic attention). Let t1, .., tm
be the subsequence of time steps that maximize
qkt.2 Asymptotically, attention computes

lim
N→∞

attn (q,K,V) = lim
N→∞

1

m

m∑

i=1

vti .

Corollary 4.1.1 (Asymptotic attention with
unique maximum). If qkt has a unique maximum
over 1 ≤ t ≤ n, then attention asymptotically
computes

lim
N→∞

attn (q,K,V) = lim
N→∞

arg max
vt

qkt.

Now, we analyze the effect of adding attention
to an acceptor network. Because we are concerned
with language acceptance instead of transduction,
we consider a simplified seq2seq attention model
where the output sequence has length 1:

2To be precise, we can define a maximum over the simi-
larity scores according to the order given by

f > g ⇐⇒ lim
N→∞

f(N) − g(N) > 0. (24)

Definition 4.2 (Attention layer). Let the hidden
state v1, ..,vn be the output of an encoder network
where the union of the asymptotic configuration
sets over all vt is finite. We attend over Vt, the
matrix stacking v1, ..,vt, by computing

ht = attn(Wqvt,Vt,Vt).

In this model, ht represents a summary of the
relevant information in the prefix v1, ..,vt. The
query that is used to attend at time t is a simple
linear transformation of vt.

In addition to modeling alignment, attention im-
proves a bounded-state model by providing ad-
ditional memory. By converting the state of the
network to a growing sequence Vt instead of a
fixed length vector vt, attention enables 2Θ(n)

state complexity.

Theorem 4.2 (Encoder state complexity). The full
state of the attention layer has state complexity

m(Vn) = 2Θ(n).

The O(nk) complexity of the LSTM architec-
ture means that it is impossible for LSTMs to
copy or reverse long strings. The exponential state
complexity provided by attention enables copying,
which we can view as a simplified version of ma-
chine translation. Thus, it makes sense that atten-
tion is almost universal in machine translation ar-
chitectures. The additional memory introduced by
attention might also allow more complex hierar-
chical representations.

A natural follow-up question to Theorem 4.2 is
whether this additional complexity is preserved in
the attention summary vector hn. Attending over
Vn does not preserve exponential state complex-
ity. Instead, we get an O(n2) summary of Vn.

Theorem 4.3 (Summary state complexity). The
attention summary vector has state complexity

m(hn) = O(n2).

With minimal additional assumptions, we can
show a more restrictive bound: namely, that the
complexity of the summary vector is finite. Ap-
pendix D discusses this in more detail.

5 Convolutional Networks

While CNNs were originally developed for image
processing (Krizhevsky et al., 2012), they are also
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used to encode sequences. One popular applica-
tion of this is to build character-level representa-
tions of words (Kim et al., 2016). Another ex-
ample is the capsule network architecture of Zhao
et al. (2018), which uses a convolutional layer as
an initial feature extractor over a sentence.

Definition 5.1 (CNN acceptor).

ht = tanh
(
Wh(xt−k∥..∥xt+k) + bh

)
(25)

h+ = maxpool(H) (26)

p = σ(Wah+ + ba). (27)

In this network, the k-convolutional layer (25)
produces a vector-valued sequence of outputs.
This sequence is then collapsed to a fixed length
by taking the maximum value of each filter over
all the time steps (26).

The CNN acceptor is much weaker than the
LSTM. Since the vector ht has finite state, we
see that L(CNN) ⊆ RL. Moreover, simple reg-
ular languages like a∗ba∗ are beyond the CNN
(Lemma E.1). Thus, the subset relation is strict.

Theorem 5.1 (CNN upper bound).

L(CNN) ⊂ RL.

So, to arrive at a characterization of CNNs, we
should move to subregular languages. In par-
ticular, we consider the strictly local languages
(Rogers and Pullum, 2011).

Theorem 5.2 (CNN lower bound). Let SL be the
strictly local languages. Then,

SL ⊆ L(CNN).

Notably, strictly local formalisms have been
proposed as a computational model for phonolog-
ical grammar (Heinz et al., 2011). We might take
this to explain why CNNs have been successful at
modeling character-level information.

However, Heinz et al. (2011) suggest that a gen-
eralization to the tier-based strictly local languages
is necessary to account for the full range of phono-
logical phenomena. Tier-based strictly local gram-
mars can target characters in a specific tier of the
vocabulary (e.g. vowels) instead of applying to
the full string. While a single convolutional layer
cannot utilize tiers, it is conceivable that a more
complex architecture with recurrent connections
could.

6 Empirical Results

In this section, we compare our theoretical charac-
terizations for asymptotic networks to the empiri-
cal performance of trained neural networks with
continuous logits.3

6.1 Counting

The goal of this experiment is to evaluate which
architectures have memory beyond finite state. We
train a language model on anbnc with 5 ≤ n ≤
1000 and test it on longer strings (2000 ≤ n ≤
2200). Predicting the c character correctly while
maintaining good overall accuracy requires O(n)
states. The results reported in Table 1 demonstrate
that all recurrent models, with only two hidden
units, find a solution to this task that generalizes
at least over this range of string lengths.

Weiss et al. (2018) report failures in attempts
to train SRNs and GRUs to accept counter lan-
guages, unlike what we have found. We conjecture
that this stems not from the requisite memory, but
instead from the different objective function we
used. Our language modeling training objective is
a robust and transferable learning target (Radford
et al., 2019), whereas sparse acceptance classifica-
tion might be challenging to learn directly for long
strings.

Weiss et al. (2018) also observe that LSTMs
use their memory as counters in a straightfor-
wardly interpretable manner, whereas SRNs and
GRUs do not do so in any obvious way. De-
spite this, our results show that SRNs and GRUs
are nonetheless able to implement generalizable
counter memory while processing strings of sig-
nificant length. Because the strategies learned by
these architectures are not asymptotically stable,
however, their schemes for encoding counting are
less interpretable.

6.2 Counting with Noise

In order to abstract away from asymptotically un-
stable representations, our next experiment inves-
tigates how adding noise to an RNN’s activations
impacts its ability to count. For the SRN and GRU,
noise is added to ht−1 before computing ht, and
for the LSTM, noise is added to ct−1. In either
case, the noise is sampled from the distribution
N(0, 0.12).

3https://github.com/viking-sudo-rm/
nn-automata
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No Noise Noise
m Acc Acc on c Acc Acc on c

SRN O(1) 100.0 100.0 49.9 100.0
GRU O(1) 99.9 100.0 53.9 100.0

LSTM O(nk) 99.9 100.0 99.9 100.0

Table 1: Generalization performance of language models trained on anbnc. Each model has 2 hidden units.

m Val Acc Gen Acc
LSTM O(nk) 94.0 51.6

LSTM-Attn 2Θ(n) 100.0 51.7
LSTM O(nk) 92.5 73.3

StackNN 2Θ(n) 100.0 100.0

Table 2: Max validation and generalization accuracies
on string reversal over 10 trials. The top section shows
our seq2seq LSTM with and without attention. The
bottom reports the LSTM and StackNN results of Hao
et al. (2018). Each LSTM has 10 hidden units.

The results reported in the right column of Ta-
ble 1 show that the noisy SRN and GRU now fail
to count, whereas the noisy LSTM remains suc-
cessful. Thus, the asymptotic characterization of
each architecture matches the capacity of a trained
network when a small amount of noise is intro-
duced.

From a practical perspective, training neural
networks with Gaussian noise is one way of im-
proving generalization by preventing overfitting
(Bishop, 1995; Noh et al., 2017). From this point
of view, asymptotic characterizations might be
more descriptive of the generalization capacities
of regularized neural networks of the sort neces-
sary to learn the patterns in natural language data
as opposed to the unregularized networks that are
typically used to learn the patterns in carefully cu-
rated formal languages.

6.3 Reversing
Another important formal language task for as-
sessing network memory is string reversal. Re-
versing requires remembering a Θ(n) prefix of
characters, which implies 2Θ(n) state complexity.

We frame reversing as a seq2seq transduction
task, and compare the performance of an LSTM
encoder-decoder architecture to the same architec-
ture augmented with attention. We also report the
results of Hao et al. (2018) for a stack neural net-
work (StackNN), another architecture with 2Θ(n)

state complexity (Lemma F.1).
Following Hao et al. (2018), the models were

trained on 800 random binary strings with length
∼ N(10, 2) and evaluated on strings with length
∼ N(50, 5). As can be seen in Table 2, the LSTM
with attention achieves 100.0% validation accu-
racy, but fails to generalize to longer strings. In
contrast, Hao et al. (2018) report that a stack neu-
ral network can learn and generalize string rever-
sal flawlessly. In both cases, it seems that having
2Θ(n) state complexity enables better performance
on this memory-demanding task. However, our
seq2seq LSTMs appear to be biased against find-
ing a strategy that generalizes to longer strings.

7 Conclusion

We have introduced asymptotic acceptance as a
new way to characterize neural networks as au-
tomata of different sorts. It provides a useful and
generalizable tool for building intuition about how
a network works, as well as for comparing the
formal properties of different architectures. Fur-
ther, by combining asymptotic characterizations
with existing results in mathematical linguistics,
we can better assess the suitability of different ar-
chitectures for the representation of natural lan-
guage grammar.

We observe empirically, however, that this dis-
crete analysis fails to fully characterize the range
of behaviors expressible by neural networks. In
particular, RNNs predicted to be finite-state solve
a task that requires more than finite memory. On
the other hand, introducing a small amount of
noise into a network’s activations seems to pre-
vent it from implementing non-asymptotic strate-
gies. Thus, asymptotic characterizations might be
a good model for the types of generalizable strate-
gies that noise-regularized neural networks trained
on natural language data can learn.
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A Asymptotic Acceptance and State
Complexity

Theorem A.1 (Arbitary approximation). Let 1̂ be
a neural sequence acceptor for L. For all m,
there exist parameters θm such that, for any string
x1, ..,xn with n < m,

[
1̂

θm(X)
]

= 1L(X)

where [·] rounds to the nearest integer.
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Proof. Consider a string X. By the definition of
asymptotic acceptance, there exists some number
MX which is the smallest number such that, for all
N ≥ MX,

∣∣∣1̂Nθ(X) − 1L(X)
∣∣∣ <

1

2
(28)

=⇒
[
1̂

Nθ(X)
]

= 1L(X). (29)

Now, let Xm be the set of sentences X with length
less than m. Since Xm is finite, we pick θm just
by taking

θm = max
X∈Xm

MXθ. (30)

Theorem A.2 (General bound on state complex-
ity). Let ht be a neural network hidden state. For
any length n, it holds that

m(hn) = 2O(n).

Proof. The number of configurations of hn can-
not be more than the number of distinct inputs to
the network. By construction, each xt is a one-hot
vector over the alphabet Σ. Thus, the state com-
plexity is bounded according to

m(hn) ≤ |Σ|n = 2O(n).

B SRN Lemmas

Lemma B.1 (SRN lower bound).

RL ⊆ L(SRN).

Proof. We must show that any language accept-
able by a finite-state machine is SRN-acceptable.
We need to asymptotically compute a representa-
tion of the machine’s state in ht. We do this by
storing all values of the following finite predicate
at each time step:

ðt(i, α) ⇐⇒ qt−1(i) ∧ xt = α (31)

where qt(i) is true if the machine is in state i at
time t.

Let F be the set of accepting states for the ma-
chine, and let δ−1 be the inverse transition relation.
Assuming ht asymptotically computes ðt, we can
decide to accept or reject in the final layer accord-
ing to the linearly separable disjunction

at ⇐⇒
∨

i∈F

∨

⟨j,α⟩∈δ−1(i)

ðt(j, α). (32)

We now show how to recurrently compute ðt at
each time step. By rewriting qt−1 in terms of the
previous ðt−1 values, we get the following recur-
rence:

ðt(i, α) ⇐⇒ xt = α ∧
∨

⟨j,β⟩∈δ−1(i)

ðt(j, β).

(33)
Since this formula is linearly separable, we can
compute it in a single neural network layer from
xt and ht−1.

Finally, we consider the base case. We need to
ensure that transitions out of the initial state work
out correctly at the first time step. We do this by
adding a new memory unit ft to ht which is al-
ways rewritten to have value 1. Thus, if ft−1 = 0,
we can be sure we are in the initial time step.
For each transition out of the initial state, we add
ft−1 = 0 as an additional term to get

ðt(0, α) ⇐⇒ xt = α ∧
(
ft−1 = 0 ∨

∨

⟨j,β⟩∈δ−1(0)

ðt(j, β)
)
. (34)

This equation is still linearly separable and guar-
antees that the initial step will be computed cor-
rectly.

C GRU Lemmas

These results follow similar arguments to those in
Subsection 3.1 and Appendix B.

Lemma C.1 (GRU state complexity). The GRU
hidden state has state complexity

m(hn) = O(1).

Proof. The configuration set of zt is a subset of
{0, 1}k. Thus, we have two possibilities for each
value of [ht]i: either [ht−1]i or [ut]i. Furthermore,
the configuration set of [ut]i is a subset of {−1, 1}.
Let St be the configuration set of [ht]i. We can
describe St according to

S0 = {0} (35)

St ⊆ St−1 ∪ {−1, 1}. (36)

This implies that, at most, there are only three pos-
sible values for each logit: −1, 0, or 1. Thus, the
state complexity of hn is

m(hn) ≤ 3k = O(1). (37)
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Lemma C.2 (GRU lower bound).

RL ⊆ L(GRU).

Proof. We can simulate a finite-state machine us-
ing the ð construction from Theorem 3.2. We
compute values for the following predicate at each
time step:

ðt(i, α) ⇐⇒ xt = α ∧
∨

⟨j,β⟩∈δ−1(i)

ðt−1(j, β).

(38)
Since (38) is linearly separable, we can store ðt

in our hidden state ht and recurrently compute its
update. The base case can be handled similarly to
(34). A final feedforward layer accepts or rejects
according to (32).

D Attention Lemmas

Theorem D.1 (Theorem 4.1 restated). Let
t1, .., tm be the subsequence of time steps that
maximize qkt. Asymptotically, attention computes

lim
N→∞

attn (q,K,V) = lim
N→∞

1

m

m∑

i=1

vti .

Proof. Observe that, asymptotically, softmax(u)
approaches a function

lim
N→∞

softmax(Nu)t =

{
1
m if ut = max(u)

0 otherwise.
(39)

Thus, the output of the attention mechanism re-
duces to the sum

lim
N→∞

m∑

i=1

1

m
vti . (40)

Lemma D.1 (Theorem 4.2 restated). The full state
of the attention layer has state complexity

m(Vn) = 2Θ(n).

Proof. By the general upper bound on state com-
plexity (Theorem A.2), we know that m(Vn) =
2O(n). We now show the lower bound.

We pick weights θ in the encoder such that vt =
xt. Thus, m(vθ

t ) = |Σ| for all t. Since the values
at each time step are independent, we know that

m(Vθ
n) = |Σ|n (41)

∴ m(Vn) = 2Ω(n). (42)

Lemma D.2 (Theorem 4.3 restated). The attention
summary vector has state complexity

m(hn) = O(n2).

Proof. By Theorem 4.1, we know that

lim
N→∞

hn = lim
N→∞

1

m

m∑

i=1

vti . (43)

By construction, there is a finite set S containing
all possible configurations of every vt. We bound
the number of configurations for each vti by |S| to
get

m(hn) ≤
n∑

m=1

|S|m ≤ |S|n2 = O(n2). (44)

Lemma D.3 (Attention state complexity lower
bound). The attention summary vector has state
complexity

m(hn) = Ω(n).

Proof. Consider the case where keys and values
have dimension 1. Further, let the input strings
come from a binary alphabet Σ = {0, 1}. We pick
parameters θ in the encoder such that, for all t,

lim
N→∞

vt =

{
0 if xt = 0

1 otherwise
(45)

and limN→∞ kt = 1. Then, attention returns

lim
N→∞

n∑

t=1

vt =
l

n
(46)

where l is the number of t such that xt = 1. We
can vary the input to produce l from 1 to n. Thus,
we have

m(hθ
n) = n (47)

∴ m(hn) = Ω(n). (48)

Lemma D.4 (Attention state complexity with
unique maximum). If, for all X, there exists a
unique t∗ such that t∗ = maxt qnkt, then

m(hn) = O(1).
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Proof. If qnkt has a unique maximum, then by
Corollary 4.1.1 attention returns

lim
N→∞

arg max
vt

qkt = lim
N→∞

vt∗ . (49)

By construction, there is a finite set S which is a
superset of the configuration set of vt∗ . Thus,

m(hn) ≤ |S| = O(1). (50)

Lemma D.5 (Attention state complexity with
ReLU activations). If limN→∞ vt ∈ {0, ∞}k for
1 ≤ t ≤ n, then

m(hn) = O(1).

Proof. By Theorem 4.1, we know that attention
computes

lim
N→∞

hn = lim
N→∞

1

m

m∑

i=1

vti . (51)

This sum evaluates to a vector in {0, ∞}k, which
means that

m(hn) ≤ 2k = O(1). (52)

Lemma D.5 applies if the sequence v1, ..,vn is
computed as the output of ReLU. A similar re-
sult holds if it is computed as the output of an un-
squashed linear transformation.

E CNN Lemmas

Lemma E.1 (CNN counterexample).

a∗ba∗ /∈ L(CNN).

Proof. By contradiction. Assume we can write
a network with window size k that accepts any
string with exactly one b and reject any other
string. Consider a string with two bs at indices i
and j where |i − j| > 2k + 1. Then, no column
in the network receives both xi and xj as input.
When we replace one b with an a, the value of
h+ remains the same. Since the value of h+ (26)
fully determines acceptance, the network does not
accept this new string. However, the string now
contains exactly one b, so we reach a contradic-
tion.

Definition E.1 (Strictly k-local grammar). A
strictly k-local grammar over an alphabet Σ is a
set of allowable k-grams S. Each s ∈ S takes the
form

s ∈
(
Σ ∪ {#}

)k

where # is a padding symbol for the start and end
of sentences.

Definition E.2 (Strictly local acceptance). A
strictly k-local grammar S accepts a string σ if,
at each index i,

σiσi+1..σi+k−1 ∈ S.

Lemma E.2 (Implies Theorem 5.2). A k-CNN can
asymptotically accept any strictly 2k+1-local lan-
guage.

Proof. We construct a k-CNN to simulate a
strictly 2k+1-local grammar. In the convolutional
layer (25), each filter identifies whether a particu-
lar invalid 2k+1-gram is matched. This condition
is a conjunction of one-hot terms, so we use tanh
to construct a linear transformation that comes out
to 1 if a particular invalid sequence is matched,
and −1 otherwise.

Next, the pooling layer (26) collapses the filter
values at each time step. A pooled filter will be
1 if the invalid sequence it detects was matched
somewhere and −1 otherwise.

Finally, we decide acceptance (27) by verifying
that no invalid pattern was detected. To do this,
we assign each filter a weight of −1 use a thresh-
old of −K + 1

2 where K is the number of invalid
patterns. If any filter has value 1, then this sum
will be negative. Otherwise, it will be 1

2 . Thus,
asymptotic sigmoid will give us a correct accep-
tance decision.

F Neural Stack Lemmas

Refer to Hao et al. (2018) for a definition of the
StackNN architecture. The architecture utilizes a
differentiable data structure called a neural stack.
We show that this data structure has 2Θ(n) state
complexity.

Lemma F.1 (Neural stack state complexity). Let
Sn ∈ Rnk be a neural stack with a feedforward
controller. Then,

m(Sn) = 2Θ(n).
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Proof. By the general state complexity bound
(Theorem A.2), we know thatm(Sn) = 2O(n). We
now show the lower bound.

The stack at time step n is a matrix Sn ∈ Rnk

where the rows correspond to vectors that have
been pushed during the previous time steps. We
set the weights of the controller θ such that, at
each step, we pop with strength 0 and push xt with
strength 1. Then, we have

m(Sθ
n) = |Σ|n (53)

∴ m(Sn) = 2Ω(n). (54)
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Abstract

While sequence-to-sequence (seq2seq) mod-
els achieve state-of-the-art performance in
many natural language processing tasks, they
can be too slow for real-time applications.
One performance bottleneck is predicting the
most likely next token over a large vocabulary;
methods to circumvent this bottleneck are a
current research topic. We focus specifically
on using seq2seq models for semantic parsing,
where we observe that grammars often exist
which specify valid formal representations of
utterance semantics. By developing a generic
approach for restricting the predictions of a
seq2seq model to grammatically permissible
continuations, we arrive at a widely applica-
ble technique for speeding up semantic pars-
ing. The technique leads to a 74% speed-up
on an in-house dataset with a large vocabulary,
compared to the same neural model without
grammatical restrictions.

1 Introduction

Executable semantic parsing is the task of map-
ping an utterance to a logical form (LF) that can
be executed against a data store (such as a SQL
database or a knowledge graph), or interpreted by
a computer program in some other way.1 Vari-
ous authors have tackled this task via sequence-
to-sequence (seq2seq) models, which have already
led to substantial advances in machine transla-
tion. These models learn to directly map the in-
put utterance into a linearised representation of
the corresponding LF, predicting it token by to-
ken. Seq2seq approaches have yielded state-of-
the-art accuracy on both classic (e.g., Geoquery
(Zelle and Mooney, 1996) and Atis (Dahl et al.,
1994)) and more recent semantic parsing datasets
(e.g., WebQuestions, WikiSQL and Spider) (Liang

1From here on we will refer to executable semantic pars-
ing simply as semantic parsing.

et al., 2017; Dong and Lapata, 2016, 2018; Yin and
Neubig, 2018; Yu et al., 2018). The recent datasets
are of much larger scale, which not only enables
the use of more data-hungry models, such as deep
neural networks, but also provides more complex
challenges for semantic parsing.

The material presented in this paper was mo-
tivated by a question-answering dataset for eq-
uity search in a financial data and analytics sys-
tem. We will refer to this dataset as “the EQS
dataset” going forward (and we will refer to “eq-
uity search” as EQS for short). The queries in the
dataset pertain to equity stocks; they are usually
of the form Show me companies that satisfy such-
and-such criteria, or What are the top 10 compa-
nies that · · ·?, and so on. The dataset pairs such
queries with logical forms that capture their se-
mantics. These logical forms are designed to be
readily translatable into an executable query lan-
guage in order to retrieve the corresponding an-
swers from a data store in the back end. Questions
can involve a large number of diverse search cri-
teria, such as price, earnings per share, country of
domicile, membership in indices, trading in spe-
cific exchanges, etc., applied to a large set of equi-
ties for which the system offers information.

The large number of search criteria and entities
is reflected in the LFs, leading to a problem com-
mon with newer, more complex semantic-parsing
datasets: having to deal with a large LF vocabulary
size. In the EQS dataset the LF vocabulary has a
size that exceeds 50,000. Since seq2seq models
apply some operation over the whole vocabulary
– usually the softmax operation – when deciding
what symbol to output next, large LF vocabularies
can slow them down considerably. For example,
we observe in our EQS experiments with seq2seq
models that it takes on average between 250 and
300 milliseconds to parse a query, which is too
slow for one single component in a larger, real-

14



time question-answering pipeline. This is consis-
tent with observations made previously in the neu-
ral language modelling literature; see for example
Bengio et al. (2003); Mikolov et al. (2010), where
the authors show that when the vocabulary size ex-
ceeds a certain threshold, the softmax calculation
becomes the computational bottleneck.

Our proposal for tackling this bottleneck is
based on the fact that there generally exist gram-
mars, which we call LF grammars, specifying
the concrete syntax of valid logical forms (LFs).
This is usually the case because LFs need to be
machine-readable. We further note that, for a
given LF prefix, one can usually use the LF gram-
mar to look up the next grammatically permissible
tokens (i.e., tokens that are part of a grammatically
valid completion of the prefix). For example, if
the language of valid LFs can be expressed by a
context-free grammar (CFG), as is almost always
the case, then look-ups could be performed with an
online version of the Earley parser (Earley, 1970).
If it is possible to efficiently look up the permissi-
ble next tokens for a given prefix, then restricting
the softmax operation to those permissible tokens
should improve efficiency, and because only non-
permissible tokens are ruled out, this will only ever
prevent the system from producing invalid LFs.

If the number of grammatically permissible
tokens at some prediction step is substantially
smaller than the LF’s vocabulary size, the inte-
gration of the LF grammar may reduce prediction
time for that step significantly. In semantic parsing
problems a grammar can naturally lead to predic-
tion steps with few choices. To see why this might
be the case, consider our LFs in Figure 1, which
involve atomic constraints of the form:

(field operator value).

While there are many grammatically permissi-
ble choices for field and value, the choices for
operator are rather limited.2 LFs for many appli-
cations will contain “structural” elements with a
limited number of choices in grammatically pre-
dictable positions, and we can use grammars to
exploit this fact.

In order to make the computation of permissible
next tokens efficient, we propose to use a finite-
state automaton (FSA) approximation of the LF
grammar. Finite-state automata can capture local

2Equality, less than and so on.

Query: return on capital sp500
LF: (AND

(FLD INDEX EQ enumValue(IDX SP500))

(display FLD RETURN ON CAP))

Query: steel western europe not german
LF: (AND

(NOT (FLD DOMICILE EQ enumValue(COU GERMANY)))

(FLD DOMICILE EQ enumValue(COU WESTERN EUROPE))

(FLD EQS SECTOR EQ enumValue(SEC GICS STEEL)))

Figure 1: Two (query, LF) pairs in the EQS dataset.

relations that are often quite predictive of the ad-
missible tokens in a given context, and can there-
fore lead to considerable speed improvements for
our setting, even if we use an approximate gram-
mar. Moreover, approximations can be designed
in such a way that a FSA accepts a superset of the
actual LF language, preserving the guarantee that
only ill-formed LFs will ever be ruled out.

In this paper we therefore work with a grammar
for which the next permissible tokens can be com-
puted efficiently, and show how such a grammar
can be combined with a seq2seq model in order to
substantially improve the efficiency of inference.
While we focus on using FSAs to restrict a re-
current neural network with attention in the EQS
dataset, our approach is generic and could be used
to speed up any sequential prediction model with
any grammar that allows for efficient computation
of next-token sets. Our experiments show that in
our domain of interest we obtain a reduction in
parsing time by up to 74%.

2 Logical Forms and their Grammar

2.1 Equity search

The domain of interest is that of equity search,
or EQS for short, in which queries are intended
to screen for companies3 that satisfy certain crite-
ria, such as being domiciled in a certain country
or region (such as France or North America), be-
ing in a certain sector (such as the automobile or
technology sectors), being members of a certain
index (such as the S&P 500), being traded in cer-
tain exchanges (such as the London or Oslo stock
exchanges), or their fundamental financial indica-
tors (such as market capitalization or earnings per
share) satisfying certain simple numeric criteria.

3Or more precisely, for tradeable equity tickers such as
IBM or FB.
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Some sample queries:

• What are the top five Asian tech companies?

• Show me all auto firms traded in Nysex whose
market cap last quarter was over $1 billion

• Top 10 European non-German tech firms
sorted by p/b ratio

Queries may also be expressed in much more tele-
graphic style, e.g., the second query could also be
phrased as auto nysex last quarter mcap > $1bn.
The two queries in Figure 1 are additional exam-
ples of tersely formulated queries, the first one
asking to display the return-on-capital for all com-
panies in the S&P 500 index, and the second one
asking for all Western European companies in the
steel sector except for German companies.

The LF language we use was designed to ex-
press the search intent of a query in a clear and
non-ambiguous way. In the following section we
describe the abstract grammar and concrete syn-
tax of a subset of this LF (we cannot treat every
construct due to space limitations).

2.2 LF Abstract Grammar and Concrete
Syntax

As with many formal logical languages, the ab-
stract grammar of our LF naturally falls into two
classes: atomic LFs corresponding to individual
logical or operational constraints; and complex
LFs that contain other LFs as proper parts. The
former constitute the basis case of the inductive
definition of the LF grammar, while the latter cor-
respond to the recursive clauses.

Relational Atomic Constraints The main
atomic constraints of interest in this domain are
relational, of the form

(field(t) op value)

where typically field is either a numeric field (such
as price); or a so-called “enum field,” that is, an
enumerated type. An example here would be a
field such as a credit rating (say, long-term Fitch
ratings), which has a a finite number of values
(such as B+, AAA, etc.); or country of domicile,
which also has a a finite number of values (algeria,
belgium, and so on); or an index field, whose val-
ues are the major stock indices (such as the S&P
500). The value is a numeric value if the corre-
sponding field is numeric, though it may be a com-
plex numeric value, e.g., one that has currencies

or denominations attached to it (such as “5 bil-
lion dollars”). The operator op is either equality
(EQ), inequality (NEQ), less-than (LS), greater-
than (GR), less-than-or-equal (LE), etc.4 Note that
all fields, both numeric and enum, are indexed
by a time expression t, representing the value of
that field at that particular time. For example, the
atomic constraint

(price(June 23, 2018) = $100)

states that the (closing) price on June 23, 2018 was
100 USD. We drop the time t when it is either im-
material or the respective field is not time sensi-
tive. We omit the specification of the grammar
and semantics of time expressions, since we will
not be using times in what follows in order to sim-
plify the discussion.

Display Atomic Constraints Some of our
atomic constraints are operational in the sense
that they represent directives about what fields to
display as the query result, possibly along with
auxiliary presentation information such as sort-
ing order. For instance, for the query Show
me the market caps and revenues of asian tech
firms, two of the resulting constraints would be the
display directives (display FLD MKT CAP) and
(display FLD SALES REV TURN).

Complex Constraints Complex constraints are
boolean combinations of other constraints, ob-
tained by applying one of the operations NOT,
OR, AND, resulting in recursively built constraints
of the form (NOT c), (AND c1 c2 · · · cn), and
(OR c1 c2).5

3 Encoding LF grammar in FSAs

For efficient incremental parsing and computation
of the next permissible tokens, we encode our
grammar using finite state automata (FSAs). As
FSAs can only produce regular languages that are
strictly less expressive than context free languages
such as the one recognized by our LF grammar,
our strategy is to use automata to build a super-
set for our LF language. Some of the automata

4If the field is an enum, then comparison operators such
as GR or LE make sense only if the field is ordered. Credit
ratings are naturally ordered, but countries, for example,
are not. Nevertheless, the syntax of constraints allows for
(france GE 2); such a constraint is weeded out by type
judgments, not by the LF grammar.

5We model the OR operation as binary operation and the
AND operation as n-ary to make them close to the natural
language syntax we observe in the dataset.
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Figure 2: Some automata involved in building the supersert of the LF grammar.

involved in building this superset are shown in
Figure 2. Note that, while we defined our FSA
approximation manually, there exist general tech-
niques to construct an automaton whose language
is a superset of a CFG’s language for any given
CFG (Nederhof, 2000). This means that the ap-
proach could easily be used for any LF language
that can be described by a CFG.

For all automata, we take the start states to be
0 and indicate the final states with double circles.
The “|” stands for the union operation over au-
tomata. On each arc, we either specify as labels
LF tokens that the FSA can consume in order to
transition to its next state(s); or else we specify
a previously defined machine (automaton) noted
with “M :machine name”6 where the source state
of the arc coincides with the start state of the au-
tomaton and its target state coincides with the final
state(s) of the automaton.7

Relational Atomic Constraint machines The
automaton RCM (“Relational Constraint Ma-
chine”) in the top part of Figure 2 gener-
ates relational atomic constraints of the form

6In that case the “arc” is just a concise representation of
the entire automaton that goes by machine name.

7In the case of multiple final states, one simply replicates
the target state to coincide with each of the final states.

(field op value); the FPNM ( floating point num-
ber machine) is an automaton recognizing re-
stricted floating point numbers. Note that some
extra-syntactic information about fields is explic-
itly built into the machine. For example, if a con-
straint begins with an unordered enum field that
only admits equality, such as FLD DOMICILE,
then the operator (on the arc from state 2 to state
3) is always EQ, whereas if the field is ordered (as
all numeric fields are, and some enum fields such
as ratings), then any operator may follow (such as
LE, GR, etc.). The automaton constrains what fol-
lows a num field in a similar fashion.

Complex Constraint machines Unlike their
atomic counterparts, logically complex constraints
can be arbitrarily nested, thereby forming a non-
regular context-free language that cannot be char-
acterized by FSAs. We get around this limita-
tion by constructing FSAs for such complex con-
straints that accept a regular language forming a
superset of the proper context-free LF language.
The automaton “OR Machine” in Figure 2 illus-
trates such a construction. This machine recog-
nizes LFs of the form (OR RCM RCM) along the
topmost horizontal path of the automaton (state se-
quence 0-1-2-3-4-5). But if one or two of these re-
lational constraints are replaced by logically com-
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plex constraints, the automaton can recognize the
result by taking one or two of the vertical paths
(state sequences 2-6-7 and 3-8-9, respectively).
These paths can also accept strings that are not
syntactically valid LFs. However, we are only us-
ing these automata to restrict the softmax applica-
tion to a subset of the LF vocabulary, and for that
purpose these automata are conservative approxi-
mations. An alternative approach would be to use
FSAs for logically complex constraints that essen-
tially unroll nested applications of logical opera-
tors up to some fixed depth k, e.g., say k = 2 or 3,
as logically complex constraints with more than 3
nested logical operations are exceedingly uncom-
mon, though possible in principle. But the present
approach is simple and already leads to consider-
able reductions in the number of permissible to-
kens at each prediction step, thereby significantly
accelerating our neural semantic parser.

The final automaton representing the entire LF
language, which we write as MLF, is the union of
atomic machines such as RCM with three “approx-
imation” machines for the three logical operators
(negation, conjunction and disjunction).

4 Combining Grammar and Neural
Model

4.1 Grammatical continuations by Automata

We now show how to use the automaton MLF that
represents the LF grammar in order to (a) com-
pute the set of valid next tokens, and (b) update
the current prefix by appending an RNN-predicted
token. We present very simple algorithms for both
operations, nextTokens and passToken, which can
be used with any grammar that is represented as a
DFA.8

nextTokens: This function returns a list of the
permissible next tokens based on the current au-
tomaton state, which corresponds to the current LF
prefix (note that because the grammar is a DFA,
there is a unique resulting state for any prefix ac-
cepted by the automaton). The function simply
enumerates all the outgoing arcs from the current
state and returns the corresponding labels in a list.
This function is called before the token prediction
model (RNN + softmax), so that its result can be

8For convenience, of course, the grammar could be rep-
resented by non-deterministic automata (NFAs). The algo-
rithms we present here would still be applicable via a simple
preprocessing step that would convert the NFAs to DFAs us-
ing standard algorithms for that purpose (Rabin and Scott,
1959).

used to restrict the application of softmax; the ac-
tual integration model is discussed in detail in sub-
section 4.2.

passToken: For any model that predicts the out-
put in an incremental and sequential manner (e.g.,
RNN), we want to compute the DFA state cor-
responding to a partial output in a similar and
lock-step fashion, so that computations in previous
steps do not need to be repeated. We achieve this
by maintaining a global state, called current state,
which is the state reached after reading the prefix
that has been produced by the neural model up to
this point. To update the global state, the function
passToken is called, which simply searches for the
arc (‘the’ again due to the DFA property) that has
the currently predicted token as a label, and then
transitions to the next state via that arc. Once this
is done, the new global state will represent all the
predictions made so far.

Time Efficiency Concerns The functions next-
Tokens and passToken need to be called on every
step of the output’s generation, and therefore need
to be efficient, so that the reduction of prediction
space for the token-prediction model (e.g., RNN +
softmax) can lead to runtime gains. In our case,
nextTokens returns the labels of all outgoing arcs
and passToken performs a simple label search in
addition to carrying out a state transition. All of
these operations can be performed with O(1) time
complexity.

4.2 Integrating Grammar into Neural
Models

After calculating the permissible next tokens, we
can restrict predictions in order to improve both
prediction time and accuracy. We apply this
general strategy to the prediction layer of our
RNN-based neural network (a linear layer + soft-
max operation, which can be seen as a log-linear
model (Dymetman and Xiao, 2016)), although
it should be applicable to other prediction mod-
els, such as multi-class SVMs (Duan and Keerthi,
2005) or random forests (Ho, 1995).

Figure 3 illustrates a concrete example of inte-
grating the grammar (represented as an automaton
in our case) into the token prediction model at a
particular prediction step. We focus on the predic-
tion layer of the model, which consists of one lin-
ear layer followed by the softmax operation. The
linear layer involves a matrix of size |V |×d, where
V is the LF vocabulary and d is the dimension of
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Figure 3: Integrating grammatical continuations into a log-linear model at one prediction step; rows selected by
nextTokens are shadowed in blue.

the vector passed from the previous layer; the lin-
ear layer predicts scores for each of the V tokens
before they are passed to softmax operation.

To integrate the grammar, first, the function
nextTokens is called to return a list of tokens al-
lowed by the grammar at this prediction step; the
valid tokens are then translated into a list of in-
dices, denoted by lc, which is passed to the log-
linear model. Supposing there are k indices in the
list lc, we can dynamically construct another ma-
trix of size k × d where the ith row in the new
matrix corresponds to the j th row in the original
matrix, for j = lc[i]. Figure 3 illustrates this pro-
cess of choosing rows from the original matrix to
construct the new matrix.

Then the new matrix-vector product will result
in scores only for those k LF tokens that are per-
missible, and will then be passed to the softmax
operation. The decision function (e.g., argmax in
Figure 3) will then be applied based on the soft-
max score, whose results will finally be passed
to passToken function to update the current DFA
state.

Time Efficiency Concerns

We implement nextTokens to directly return a list
of indices to avoid the cost of converting tokens
to indices. We implemented our token prediction
model in PyTorch, which supports slicing oper-
ations so that our on-the-fly matrix construction
does not need to copy the original matrix data, but
can instead just point to it. However, we find in
our experiments that even matrix construction us-
ing slicing tends to be costly (see section 5).

To overcome this, we observe that we can enu-
merate the lists returned by nextTokens for every
DFA state, and then cache the corresponding ma-
trices. For example, consider RCM (the Relational
Constraint Machine) in 2. We can cache the value

of nextTokens for state 1 by precomputing the ma-
trix corresponding to all the enum/num fields. Do-
ing this caching for every DFA state can be ex-
pensive in memory; in practice, one may consider
tradeoffs between memory consumption and pre-
diction time.

5 Model and Experiments

5.1 EQS Dataset

Our experiments are conducted on the EQS
dataset. The dataset consists of queries paired
with their LFs, which were obtained in a semi-
automated manner. The dataset contains 1981
(NL, LF) pairs as training data and 331 (NL, LF)
pairs as test data. The LF vocabulary size is 56209,
most of which consists of enum field names and
values. All the LFs can be accepted by the FSA
discussed in Section 3.

The dataset is too small to effectively learn a
model that can reliably predict rare fields or val-
ues. However, as most of the queries involve only
common fields and entities, we find in our exper-
iments that our neural semantic parser is able to
parse a large number of those queries correctly;
orthogonal research is being conducted on how to
handle more rare fields or entities.

5.2 Baseline Neural Model

We use a seq2seq neural architecture as our base-
line. For our encoder, we initialize the word em-
beddings using Glove vectors (Pennington et al.,
2014); then a Bi-LSTM is run over the question
where the last output is used to represent the mean-
ing of the question. For the decoder, we again use
an LSTM that runs over LF prefixes, where the
LF token embeddings are learned during training.
Our decoder is equipped with an attention mecha-
nism (Luong et al., 2015) used to attend over the
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output of the Bi-LSTM encoder. We use greedy
decoding to predict the LFs.

We choose hyperparameters based on our pre-
vious experience with this dataset. The word and
LF token embeddings have 150 dimensions. The
Bi-LSTM encoder is of dimension 150 for its hid-
den vector in each direction, therefore the decod-
ing LSTM is of dimension 300 for its hidden vec-
tor. We train the model with RMSprop (Tieleman
and Hinton, 2012) for 50 epochs.

Our baseline neural model achieves 80.33% ac-
curacy on the test set. Most of the errors made
by our model are due to unseen fields or values;
we observe that our model also fails on queries
involving compositionality patterns that have not
been seen in training, a problem similar to those
reported by (Lake and Baroni, 2018).

5.3 Experimental Setups
All our experiments were conducted on a server
with 40 Intel Xeon@3.00GHz CPUs and 380 GB
of RAM. We monitor the server state closely while
conducting the experiments.

Our models are implemented in Py-
Torch (Paszke et al., 2017), which is able to
exploit the server’s multi-core architecture. The
peak usage for both CPU load and memory
consumption for all our models is far below the
server’s capacity.

We run all the models over the entire test dataset
(331 sentences) and report the average prediction
time for each sentence. For each model, we con-
duct 5 such runs to calculate the standard devia-
tions of different runs. The standard deviations are
small in absolute and relative value.

5.4 Results
Integrating the LF grammar into prediction at de-
coding time eliminates all grammatical errors and
can therefore improve accuracy. This has been
shown, for example, by Xiao et al. (2016); Yin
and Neubig (2018), and indeed we obtain simi-
lar accuracy improvements. By incorporating the
grammar at decoding time at all decoding steps
(using its superset represented as an automaton),
our parser is able to eliminate some grammatical
errors, achieving 80.67% accuracy on the test set,
which improves our baseline model by 0.30%.

Table 1 shows the main results of our experi-
ments. Our baseline neural semantic parser (NSP)
takes on average 0.260 seconds to predict the LF
for a given query. When we use the model that

Model Avg. time Avg. tokens
NSP 0.260 ±0.002 56209

NSP-G(500) 0.079± 0.000 9643
NSP-G(104) 0.252± 0.000 6981
NSP-G(all) 4.416± 0.029 6336

NSP-GC(500) 0.074± 0.000 9643
NSP-GC(104) 0.069± 0.000 6981
NSP-GC(all) 0.067± 0.000 6336

Table 1: Prediction time (in seconds) and number of
permissible tokens per query on average, for our base-
line neural semantic parser (NSP) and various models
using grammar integration with caching (NSP-GC) or
without (NSP-G).

integrates the LF grammar but constructs the re-
duced matrices on the fly (GSP-G), we find that
despite the reduction of average permissible to-
kens (from 56209 to 6336), the prediction time ac-
tually increases drastically to 4.416 seconds.

To shed some light on this, we integrate the
grammatically permissible next tokens only when
their number is (a) less than 500 and (b) less than
104. We observe that when the number of per-
missible next tokens is small, as in case (a), inte-
grating the grammar can indeed reduce prediction
time, indicating that the slowing is due to the dy-
namic matrix construction that uses the PyTorch
slicing operation, as nextTokens and passToken are
called at every prediction step in all cases.

To avoid this, we cache the reduced matrices
(subsection 4.2, NSP-GC in Table 1) and ob-
serve that prediction time decreases in this case
when more grammar integration is applied. The
best prediction time (0.067 second per query) is
achieved by NSP-GC when the grammar is used at
every step. But similar speed-ups can be achieved
when we are using cached matrices only for states
with a small nextTokens set.

6 Related Work

Speeding up neural models that have a softmax
bottleneck is an ongoing research problem in NLP.
In machine translation, some approaches tackle
the problem by moving from the prediction of
word-level units to sub-word units (Sennrich et al.,
2016) or characters (Chung et al., 2016). This ap-
proach can reduce the dimensionality of the soft-
max significantly, at the price of increasing the
number of output steps and thus requiring the
model to learn more long-distance dependencies
between its outputs. The technique could easily
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be combined with the one described here; the only
adaptation required would be to change the gram-
mar so that it uses smaller units to define its lan-
guage. In a finite-state context, this would mean
replacing transitions corresponding to a single LF
token with a sequence of transitions that construct
the token from characters. This creates potential
for memory savings as well, if states in these ex-
panded transitions can be shared in a trie structure.

Another approach for ameliorating a softmax
bottleneck is the use of a hierarchical softmax
(Morin and Bengio, 2005), which is based on or-
ganizing all possible output values into a hierarchy
or tree of clusters. A token to be emitted is chosen
by starting at the root cluster and then picking a
child cluster until a leaf is reached. A token in this
leaf cluster is then selected. Our approach could
be combined with the hierarchical softmax method
by creating a specific version of the cluster hierar-
chy to be associated with every state. We would
filter all impossible tokens for a state from the leaf
clusters and then prune away empty clusters in a
bottom-up fashion to obtain a specific cluster.

While they have not been used in order to speed
up predictions, grammars describing possible out-
put structures have been combined with neural
models in a number of recent papers on seman-
tic parsing (Yin and Neubig, 2017, 2018; Krish-
namurthy et al., 2017; Xiao et al., 2016, 2017).
These papers use grammars to guide the training
of the neural network model and to restrict the de-
cisions the model can make at training and predic-
tion time in order to obtain more accurate results
with less data. Our approach is focused on speed
improvements and does not require any changes to
the underlying model or training protocols.

Like our approach, the one presented by
L’Hostis et al. (2016) for machine translation tries
to limit the decoding vocabulary. Their approach
relies on limiting the tokens allowed during de-
coding to those that co-occurred frequently with
the tokens in the input. Because this might rule
out tokens that are needed to construct the cor-
rect output, this may decrease model performance.
Our approach is guaranteed to never rule out cor-
rect outputs. For additional performance gains it
should be possible to combine both approaches.

7 Future Work

We have used superset approximations based on
finite-state automata instead of directly using the

grammar of the LF language, which will usu-
ally be context-free. This choice is driven by the
need for an efficient implementation of passTo-
ken and nextTokens, which could be expensive for
longer sequences when using a general context-
free grammar. However, for those context-free
grammars that are LR (Knuth, 1965), recognition
can be performed in linear time, and it is easy to
see that both passToken and nextTokens can then
be implemented with O(1) time complexity on av-
erage. Furthermore, the caching mechanism we
have proposed for nextTokens in this work is ap-
plicable in the case of LR grammars. Therefore, it
would be possible to implement the methods pro-
posed here for any LR grammar, and such gram-
mars cover most LF languages in practical use.9

For most LF languages there will be restrictions
on the logical types of expressions that can occur
in certain positions. We can detect some of these
restrictions in our finite-state automata, but in gen-
eral a type system could capture well-formedness
conditions that cannot be easily expressed with
FSAs, or even in context-free grammars. It would
be interesting to investigate how more expressive
type checking can be integrated into our present
framework in a more general setting.

8 Conclusion

We propose a method to improve the time effi-
ciency of seq2seq models for semantic parsing us-
ing a large vocabulary. We show that one can
leverage a finite-state approximation to the LF lan-
guage in order to speed up neural parsing signifi-
cantly. Given a context-free grammar for the LF
language, our strategy is general and can be ap-
plied to any model that predicts the output in a se-
quential manner.

In the future we will explore alternatives to
finite-state automata, which potentially character-
ize the relevant LF languages exactly while still
allowing for efficient computation of admissible
next tokens. We also plan to experiment with ad-
ditional datasets.
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Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech, pages 1045–1048.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, pages 246–252.

Mark-Jan Nederhof. 2000. Practical experiments with
regular approximation of context-free languages.
Computational Linguistics, 26(1):17–44.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS 2017 Workshop Autodiff.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1532–1543.

M. O. Rabin and D. Scott. 1959. Finite automata and
their decision problems. IBM Journal of Research
and Development, 3(2):114–125.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—
RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1341–1350.

22



Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2017. Symbolic priors for rnn-based semantic pars-
ing. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence,
IJCAI-17, pages 4186–4192.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, pages 440–
450.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 7–12.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir R. Radev.
2018. Syntaxsqlnet: Syntax tree networks for com-
plex and cross-domaintext-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1653–1663.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, AAAI
96, pages 1050–1055.

23



Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges, pages 24–33
Florence, Italy, August, 2nd 2019. c©2019 Association for Computational Linguistics

Relating RNN layers with the spectral WFA ranks in sequence modelling

Farhana Ferdousi Liza
School of Computing

University of Kent
Canterbury, CT2 7NF, UK
fl207@kent.ac.uk

Marek Grzes
School of Computing

University of Kent
Canterbury, CT2 7NF, UK
m.grzes@kent.ac.uk

Abstract
We analyse Recurrent Neural Networks
(RNNs) to understand the significance of
multiple LSTM layers. We argue that the
Weighted Finite-state Automata (WFA)
trained using a spectral learning algorithm
are helpful to analyse RNNs. Our results
suggest that multiple LSTM layers in RNNs
help learning distributed hidden states, but
have a smaller impact on the ability to learn
long-term dependencies. The analysis is based
on the empirical results, however relevant
theory (whenever possible) was discussed to
justify and support our conclusions.

1 Introduction

Sequence prediction is a problem that involves us-
ing historical sequence data (i.e. context) to pre-
dict the next symbol or symbols in the sequence.
Weighted Finite-state Automata (WFA) and Re-
current Neural Networks (RNNs) provide a gen-
eral framework for the representation of functions
that map strings (i.e. sequential data) to real num-
bers. Nondeterministic Weighted Finite-state Au-
tomata (WFA) map input words to real numbers
and are not guaranteed to be tractable (Avni and
Kupferman, 2015; Sharan et al., 2017). In gen-
eral, WFA use hidden states and learning is usually
done by the Expectation-Maximisation (EM) al-
gorithm, which is computationally expensive and
does not come with a guarantee of global optimal-
ity. Spectral learning algorithms for WFA (Balle
et al., 2014) provide an alternative to EM that
is both computationally efficient and statistically
consistent. On the other hand, RNNs are remark-
ably expressive models. Even a single-layer RNN
network has powerful sequence modelling capac-
ity. RNNs are also Turing complete and can rep-
resent any computable function (Siegelmann and
Sontag, 1991), but the theoretical analysis of even
a single-layer RNN is difficult.

Existing research shows that multilayer RNNs
are advantageous for efficient sequence modelling
(Zaremba et al., 2014; Jozefowicz et al., 2015).
However, it is hard to analyse such models theo-
retically. As a result, in spite of competitive em-
pirical results, it is not clear what kind of addi-
tional modelling power is gained by a deep archi-
tecture (i.e. more than one hidden layer in RNNs).
Stacking RNN layers (in space) is inspired by the
multilayer perceptron (MLP) and the hypothesis
Bengio et al. (2009) that multiple layers allow the
model to have greater complexity by incorporating
complex feature representations of each time step.
This allows each recurrent level to operate at a dif-
ferent time-scale. For the non-recurrent networks,
Bengio et al. (2009) hypothesise that a deep, hier-
archical model can be exponentially more efficient
at representing some functions than a shallow one.
Theoretical (Le Roux and Bengio, 2010; Delal-
leau and Bengio, 2011; Pascanu et al., 2013) and
empirical (Goodfellow et al., 2013; Hinton et al.,
2012) work on non-recurrent networks agrees with
the above hypothesis. Based on these results, Pas-
canu et al. (2014) assumed that the MLP-based
hypothesis proposed by Bengio et al. (2009) is
also true for the recurrent neural networks. The
earlier work attempted at capturing large context
and reducing the training time by using multilayer
RNNs. For example, El Hihi and Bengio (1996)
assumed that the layers increase the capacity of
learning the context by capturing the improved
long-term history, whereas Schmidhuber (2008)
argues that the stacked RNN requires less com-
putation per time-step and far fewer training se-
quences than a single-layer RNN.

Elman (1990) introduced the notion of ‘mem-
ory’ to capture non-fixed long-term contexts
through the recurrent layer. When stacking the
RNNs, the transition between the consecutive re-
current layers is still shallow (Pascanu et al.,
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2014). Thus, stacking the RNNs does not extend
the hypothesis of (Bengio et al., 2009) to the recur-
rent layer that is dedicated for long-term context
capture. The empirical results of Zaremba et al.
(2014); Jozefowicz et al. (2015) suggested that
multilayer RNNs improve sequence modelling.
We show empirical evidence that indicates that
a multilayer RNN does capture better context as
shown by El Hihi and Bengio (1996), but that is
achieved across stacked layers instead of the time
scale (i.e. instead of recurrent layer). Better learn-
ing depends on capturing the improved input rep-
resentation at each time step and capturing im-
proved long-term dependency from the previous
time-steps in a sequence. In this paper, we in-
vestigate RNN learning from the formal language
perspective using the WFA models, and we show
that adding more layers may not be sufficient if the
model has to deal with long-term dependencies.

WFA-based models are used for both theoreti-
cal studies and sequence prediction tasks includ-
ing language modelling (Buchsbaum et al., 1998).
Evaluating their performance on real and synthetic
data can help us to understand the model’s hidden
state relationship with the RNN layers. In the ex-
isting literature, stacking multiple RNN layers (in
space) is used to obtain improved accuracy on se-
quence prediction tasks, but this is done without
deeply-justified reasons of such choices. Our ex-
periments and analysis show that the hidden states
of a process can be modelled efficiently using mul-
tiple layers, but multiple layers may not be suffi-
cient to model long-term dependencies in sequen-
tial observations.

In this paper, we use two types of RNN models
(one is a single-layer and another is a two-layer
stacked RNN network) and a WFA. All methods
were evaluated on fifteen datasets to answer the
following question “what is the impact of multi-
ple RNN layers in sequence modelling?”. To an-
swer this question, we contrasted the impact of the
LSTM layers in RNNs with the rank (i.e. the num-
ber of hidden states) in the corresponding WFA
models.

2 Data

In this section we introduce the 15 datasets used
in the Sequence PredIction ChallengE (SPiCe) in
2016. The datasets consist of 8 synthetic (fully or
partially) and 7 real-world datasets. Among the
synthetic datasets, four are generated artificially

and four are partially synthetic based on real data.
Datasets are publicly available1 and descriptions
can be found in (Balle et al., 2017). Our number-
ing of datasets is consistent with SPiCe’16. The
synthetic datasets 1, 2, and 3 were artificially gen-
erated based on a Hidden Markov Model (HMM)
(Balle et al., 2017). HMM sequences were gen-
erated with n states and non-stationary transition
probabilities were obtained by partitioning the unit
interval [0,1) into n equal sub-intervals and letting
the states evolve as ht+1 = ht+Φ mod 1, for some
irrational number Φ. The emission probabilities
were sampled from a Dirichlet distribution. An-
other synthetic dataset, 12, consists of synthetic
data generated using the PAutomaC data gener-
ator (Verwer et al., 2014b). Partially synthetic
datasets 6 and 9 are based on software engineering
and come from the challenge RERS 2013 (Howar
et al., 2014). Partially synthetic datasets 14 and
15 contain synthetic data generated from two De-
terministic Finite State Automata learned using
the ALERGIA algorithm (Carrasco and Oncina,
1994) based on the NLP datasets 4 and 5, respec-
tively.

Real datasets 4 (English Verbs from Penn Tree-
bank), 5 (Character Language Modelling bench-
mark from Penn Treebank), and 8 (POS from An-
cora) all correspond to NLP problems from Penn
Treebank (Marcus et al., 1993a) and the Span-
ish Ancora corpus (Taulé et al., 2008). Dataset
11 (lemmalisation) was created from a lemma-
tised version of the Fickr-8k dataset (Hodosh et al.,
2013). Real dataset 13 (spelling correction) was
derived from a Twitter spelling correction corpus
(twi, 2010). Real datasets 7 and 10 are protein
families sequences taken from the Pfam database
(Finn et al., 2015).

3 Sequence Modelling and Evaluation

The Sequence PredictIction ChallengE (SPiCe)
(Balle et al., 2017) was an on-line competition to
predict the next element of a sequence. The com-
petition scored methods on their performance on
both real and synthetic data (see Sec. 2). Training
datasets consist of whole sequences and the aim is
to learn a model that allows the ranking of poten-
tial next symbols for a given test sequence (pre-
fix or context), that is, the most likely options for
a single next symbol. Once rankings for all pre-
fixes were submitted by the participants, the score

1http://spice.lif.univ-mrs.fr/data.php
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(NDCG5 explained below) of the submission was
computed. The score is a ranking metric based
on normalised discounted cumulative gain com-
puted from the ranking of 5 potential next sym-
bols starting from the most probable one. Suppose
the test set is made of prefixes y1, . . . , yM and the
distinct next symbols ranking submitted for yi is
(âi1, . . . , â

i
5) sorted from more likely to least likely.

The target probability distribution of possible next
symbols given the prefix yi, p(.|yi), was known to
the organisers. Thus, the exact measure for prefix
yi could be computed using the following equa-
tion:

NDCG5(âi1, . . . , â
i
5) =

∑5
k=1

p(âik|yi)
log2(k+1)∑5

k=1
pk

log2(k+1)

where p1 ≥ p2 ≥ . . . ≥ p5 are the top 5 values in
the distribution p(.|yi). More details on this eval-
uation can be found in (Balle et al., 2017).

4 WFA Models

WFA represent functions for mapping strings to
real numbers. WFA include as special instances
Deterministic Finite-state Automata (DFAs), hid-
den Markov models (HMMs), and predictive state
representations (PSRs).

Let Σ∗ denote the set of strings over a finite al-
phabet Σ and let λ be the empty word. A WFA
with k states is a tuple A = 〈a0, a∞, Aσ〉 where
a0, a∞ ∈ Rk are the initial and final weight vec-
tors respectively, and Aσ ∈ k× k is the transi-
tion matrix for each symbol σ ∈ Σ. A WFA
computes a function fA : Σ∗ → R defined for
each word x = x1x2 . . . xn ∈ Σ∗ by fA(x) =

ao
>Ax1Ax2 . . . Axna∞.
A WFAA with k states is minimal if its number

of states is minimal, i.e., any WFA B such that
fA = fB has at least k states. A function f :
Σ∗ → R is recognisable if it can be computed by
a WFA. In this case the rank of f is the number of
states of a minimal WFA computing f . Note that
this is the key reason why rank (i.e. the number of
hidden states) is an important parameter that we
exploit in this paper. If f is not recognisable, we
let rank(f ) =∞.

Approximating distributions over strings is a
hard learning problem. Learning WFA has expo-
nential computational complexity (Mohri, 2004).
The recent advancement in learning WFA is based
on spectral learning, which reduces the compu-

tation complexity of learning WFA (Balle et al.,
2014).

In this paper we use a Hankel matrix based
spectral learning algorithm for WFA. The basic
steps of the algorithm are as follows:

S1. Basis Selection: Choose a set of prefixes P
and suffixes S

S2. Build a Hankel matrix: The Hankel matrix
(Hf ∈ RΣ∗×Σ∗

) associated with a function
f : Σ∗ → R is a bi-infinite matrix . In prac-
tice, one deals with finite sub-blocks of the
Hankel matrix based on the chosen basis in
S1, thus B = (P, S) ⊂ Σ∗ × Σ∗. The cor-
responding sub-block of the Hankel matrix is
denoted by H ∈ R|P |×|S|. The entry H(p, s)
is the value of the target function on the se-
quence obtained by concatenating prefix p
with suffix s. Among all possible basis, we
are particularly interested in the ones with the
same rank as f . We say that a basis is com-
plete if rank(H) = rank(f) = rank(Hf ).

S3. Perform SVD on H = uσv>.

S4. Use the factorization F = uσ, B = v> and
H to recover the parameters of the minimal
WFA, following (Hsu et al., 2012, see Sec.
2.3).

The hyperparameters of the learning algorithm
(Balle et al., 2014) for retrieving the parameters of
the minimum WFA are the number of states n of
the target WFA and the basis (i.e. sets of P and
S). This n is also a rank of the n-dimensional re-
construction of the Hankel matrix when the best n
dimensions of its SVD are used.

We choose a basis that contains most fre-
quent elements (substrings) observed in the sam-
ple based on the work by Balle et al. (2012) as
this approach was found computationally efficient.
The rows and columns of the Hankel matrix corre-
spond to the substrings, and the cells of the Han-
kel matrix contain the frequencies of the corre-
sponding substrings. In this approach, the length
of these substrings along rows (nR) and along
column (nC) are also the hyperparameters of the
spectral learning algorithm for WFA (Balle et al.,
2014).

4.1 Tuning Hyperparameters
Similar to Larochelle et al. (2007), our tun-
ing method included a combination of multi-
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resolution search, coordinate ascent, and manual
search, with a significant utilisation of the last
method. On all datasets, our method first ini-
tialises nR and nC to 4 and n to 5. Note that
the actual number of rows (columns) in the Hankel
matrix is much larger than nR (nC). In the second
step, the algorithm starts the process of tuning the
number of states n because this was the most im-
portant hyperparameter in our preliminary experi-
ments. Random walk is used to select new values
of n with the step size being depended on the size
of the domain, i.e., the number of observations and
the number of sequences. Thus, when nR and nC
were kept constant, the value of nwas increased or
decreased randomly based on the score NDCG5

(Sec. 3), i.e., a form of coordinate ascent was per-
formed on n. After the highest score was achieved
by tuning n, n was frozen, and the algorithm used
the same randomised procedure to tune nR. Fi-
nally, the same procedure was executed to tune the
parameter nC.

On some problems, increasing n, nR and nC
to large values was not possible as the algorithm
became intractable.

5 Neural Models

Theoretically a single-layer RNN network should
be able to approximate any computable function.
However, it was observed recently that empirically
multilayer deep RNNs work better than shallower
(single layer) ones on some tasks, specifically on
natural language processing tasks. For instance,
Zaremba et al. (2014) used a stack of Long Short-
Term Memory (LSTM) layers for language mod-
elling and in (Sutskever et al., 2014) a 4-layer
deep architecture was crucial in achieving good
machine translation performance in an encoder-
decoder framework. Apart from considering the
number of layers as a hyperparameter, most recent
works do not explain the advantage of multilayer
RNNs. Moreover, the deep RNN language model
(Zaremba et al., 2014) is used by numerous other
models including Press and Wolf (2016); Gal and
Ghahramani (2016). This was also used as a base-
line in the exhaustive (over ten thousand different
RNN architectures) architecture search by Joze-
fowicz et al. (2015) in pursuit of a better architec-
ture, and they did not find architectures that were
significantly better than the baselines. Therefore,
a two-layer RNN is a strong baseline architecture
for certain sequence prediction tasks, especially

language modelling, where single-layer RNNs are
not so powerful.

In the SPiCe competition, there were three neu-
ral models explored by Shibata and Heinz (2017)
that achieved the winning accuracy. Among those
models, the basic model is a two-layer stacked
LSTM network. There is an all-connected non-
linear layer with a Rectified Linear Unit (ReLU)
activation function used on top of a stacked LSTM
(Fig. 1a). The two-layer LSTM stack was placed
on top of the embedding layer that is used to em-
bed each symbol xt of the sequence at position t.
The output layer consists of a softmax layer im-
plementing the softmax activation, which outputs
the network’s prediction of the next symbol of se-
quence yt = xt+1.

In this paper, we have simplified the basic ar-
chitecture in two ways. First, we removed the
fully-connected non-linear layer and introduced
dropout to all non-recurrent layers (Fig. 1b). Sec-
ond, we further simplified the model by using
just a single layer (Fig. 1c) with dropout at non-
recurrent layer. Dropout is an effective regular-
isation technique for deep neural networks (Hin-
ton et al., 2012). The motivation for removing the
all-connected layer is to reduce the number of pa-
rameters and the state-of-the-art sequence predic-
tion models (Zaremba et al., 2014) do not usually
have an all-connected non-linear layer on top of
the stacked LSTM. Stacked LSTMs are expres-
sive enough to capture most of regularities with-
out an additional all-connected non-linear layer.
The motivation for applying dropout to all non-
recurrent layers is to regularise the whole net-
works (Zaremba et al., 2014) instead of regular-
ising based on some particular layers (Shibata and
Heinz, 2017). We compare against a single-layer
LSTM in the results section.

Following Shibata and Heinz (2017) a ‘start’
symbol and an ‘end’ symbol were added to both
sides of each training sentence. Symbols are fed
into the model from the ‘start’ symbol.

5.1 Relevant Parameters and Parameter
Search

Neural models have more hyperparameters than
the other models (e.g. WFA). We used the hyper-
parameters from the baseline work (Shibata and
Heinz, 2017) with two major exceptions: we used
an LSTM network with one layer and two layers
(contrary to the baseline work, we removed fully
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Figure 1: Neural architectures for our experiments

connected layer as shown in Fig. 1b) and we ap-
plied the regularisation (i.e. dropout) differently
than the baseline study. We applied dropout to
regularise the whole network (except the recurrent
layer) instead of just the last two layers (in base-
line). The exact values of different parameters can
be found in Sec. 6.

6 Experiments

The hyperparameters (see Tab. 1) for the WFA
were tuned based on the approach described in
Sec. 4.1 to find the best results obtained in this pa-
per.

For the neural models, the weights were ini-
tialised with Gaussian samples, each of which has
zero mean and standard deviation

√
1

in size , where
in size is the dimension of input vectors. The
LSTM has 600 hidden nodes, the size of the em-
bedding layer was set to 100, and when a non-
linear layer is used between the LSTM and Soft-
max layers (for the baseline replication), the out-
put dimension was set to 300. These values were
set based on the baseline study (Shibata and Heinz,
2017), in which two hidden layer sizes (400 and
600) were used. In Shibata and Heinz (2017, Ta-
bles 1 and 2), hidden layer size did not have crit-

ical effect on the results. Considering SPiCe’16
datasets and the existing literature, 600 hidden
nodes make a large RNN network. We have used
two-layer and one-layer LSTM networks in our
experiments. The dropout rate was set to 0.5 for all
non-recurrent layers, which is known to be close
to optimal for a wide range of networks and tasks
(Srivastava et al., 2014).

Following the baseline study, for optimisation,
we used stochastic gradient descent (SGD) with
momentum of 0.9. The learning rate decreased
gradually from 0.1 to 0.001, where the number of
iterations is 45 and the mini-batch size is 128.

7 Results and Analysis

The main goal of our empirical investigation is to
show that correlating the impact of multiple layers
in RNN-based neural models with the number of
hidden states (quantified using a rank of the SVD)
in finite-state automata, we can increase the under-
standing of the deep neural networks. This way we
aim to explain the role of multiple RNN layers in
sequence modelling. In this discussion, we will
refer to Tab. 1 that reports the scores of the three
neural network models described in Sec. 5 and the
scores of the WFA models described in Sec. 4.
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Data WFA Neural Models (NN) RNN Improv.
# n nR nC WFA SPiCe NN RNN (2 Layers) RNN (1 Layer) Gain in score
1 4 5 5 0.8789 0.909 0.9180 0.8521 0.0391
2 6 5 5 0.8731 0.920 0.9210 0.9183 0.0479
3 5 10 3 0.8248 0.888 0.8938 0.8819 0.0690
4 500 5 5 0.5272 0.619 0.6131 0.6142 0.0918
5 450 5 5 0.5688 0.8100 0.8107 0.7988 0.2419
6 90 6 7 0.8096 0.863 0.8690 0.7815 0.0594
7 500 4 4 0.4474 0.736 0.7258 0.7176 0.2886
8 60 5 5 0.5426 0.645 0.6614 0.6521 0.1188
9 57 8 7 0.9324 0.962 0.9674 0.9546 0.0350

10 200 5 5 0.3623 0.574 0.5526 0.5604 0.2117
11 100 5 5 0.4147 0.520 0.5535 0.5412 0.1388
12 95 4 4 0.8113 0.799 0.8508 0.7116 0.0395
13 500 5 5 0.4990 0.592 0.6007 0.5357 0.1017
14 2 10 10 0.4649 0.350 0.3496 0.3616 -
15 3 6 6 0.2899 0.263 0.2655 0.2651 -

Table 1: The hyperparameters of WFA, the scores of WFA and neural models, and the score improvement by the
best neural model compared to WFA

Table 1 shows that the proposed one-layer neu-
ral network model has achieved competitive re-
sults compared with the two-layer stacked net-
work on many of the SPiCe datasets. The ad-
ditional layer in a two-layer model improved the
score most significantly on dataset 12, where the
score improved from 0.711 to 0.851 (0.14 units).
Another dataset where improvement was observed
was dataset 6 where the score improved by 0.088
units. On datasets 1 and 13, the improvements
were 0.065 and 0.065 units. In addition to those
bigger improvements, a two-layer stacked RNN
achieved slight improvement in score (≤ 0.02) on
datasets 2, 3, 5, 7, 8, 9, 10, and 11. Still, a one-
layer network did better than at least one of the
two-layer networks (i.e. SPiCe and the one pro-
posed in this paper) on datasets 4, 8, 10, and 11.
Overall, we can see that a one-layer RNN would
be a better choice for some of our datasets, al-
though using multiple layers leads to better predic-
tions on other datasets. This means that in order to
gain deeper insight into the behaviour of the meth-
ods, it is useful to investigate individual datasets
in detail and include WFA in our analysis. For this
reason, to shed some light on the impact of mul-
tiple layers in RNNs, we will analyse datasets 12
and 5 in the subsequent paragraphs. The reason
for this choice is that on dataset 12, the score im-
proved significantly using two layers, whereas on
dataset 5 a similar improvement was not observed.

Dataset 12 and High Rank The synthetic
dataset 12 was the biggest and arguably the most
challenging problem in SPiCe 2016. It was ini-
tially generated for another competition (PAu-
tomaC) using the PAutomaC data generator (Ver-
wer et al., 2014a). The best performing WFA
scored 0.8113 on this dataset with n = 95 and
nR = nC = 4. Although WFA is a Markov
model2 (i.e., a model that may require l-th order
representation, which makes predictions based on
l the most recent observations, to learn long-range
dependencies (Bengio and Frasconi, 1995b; Hin-
ton et al., 2001; Kakade et al., 2016)), on dataset
12, WFA was as good as the RNN models. Our
one-layer neural model scored 0.7116 and the two-
layer neural model improved the result to 0.8508.
So, we can clearly see that on this large dataset,
two layers improve the results. We argue that we
can use WFA results to explain the improvement
of our two-layer neural model. For that we will
focus on the rank of WFA (i.e. parameter n) and
the maximum length of substrings in its basis (i.e.
nR and nC). To score high on dataset 12, WFA
had to use 95 hidden states, which is a large num-
ber of hidden states for a traditional Baum-Welch
algorithm (Siddiqi et al., 2007). This means that

2Note that WFA is a generalisation of a Markov model
where the next state depends only on the current state (Pe-
nagarikano and Bordel, 2004); every Markov model can be
represented as a WFA.
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in order to solve this problem, a Markov model re-
quires a relatively large number of states. This fact
can explain why our two-layer neural model out-
performed a single-layer model because the sec-
ond LSTM layer increased the number of hidden
states in the neural model. Moreover, the ob-
tained WFA’s score is based on short substrings
(i.e. nR = nC = 4) in its basis. Therefore, it is
fair to expect that dataset 12 does not have long-
term dependencies since short substring statistics
are sufficient to capture the data-generating distri-
bution in this model. We believe that we can make
this claim because our WFA with short substrings
works very well on this data. All this means that
dataset 12 requires a relatively large number of
hidden states, but it does not have long-term de-
pendencies. Our two-layer neural model is suf-
ficient for such problems because two layers in-
crease the number of hidden states, whereas the
long-term dependencies are not an issue.

To support our discussion above, we should add
that in (Rabusseau et al., 2018) the hidden units of
the second-order RNN were shown to be related
to the rank or the hidden states of WFA. Note that
second-order and higher-order RNNs have their
recurrence depth increased by explicit, higher-
order multiplicative interactions between the hid-
den states at previous time steps and input at the
current time step. It was shown that any func-
tion that can be computed by a linear second-order
RNN (Giles et al., 1992) with n hidden units on
sequences of one-hot vectors (i.e. canonical basis
vectors) can be computed by a WFA with n states.
A higher-order RNN has additional connections
from multiple previous time steps whereas the
classic RNN has connection from one previous
time step only. Higher order RNNs allow a di-
rect mapping to a finite-state machine (Giles et al.,
1992; Omlin and Giles, 1996). However, a similar
connection is not available for classic RNNs and
WFA and more importantly for multilayer RNNs
and WFA. Based on these theoretical results and
our empirical investigation, we can conjecture that
the improved score on dataset 12 by using two
LSTM layers indicates that the multiple layers
helped to model the hidden states more efficiently.

Low Rank To support our arguments about the
rank (i.e. the number of hidden states) in our dis-
cussion about dataset 12, we can identify a com-
plementary relationship in other results. In partic-
ular, when we consider all datasets on which WFA

did well having a small rank (this is in contrast to
dataset 12 which required a high rank for WFA), a
two-layer network does not lead to significant im-
provement. This pattern can be seen on datasets 1,
2, and 3, and this complements our previous argu-
ments about dataset 12.

Dataset 5 and Long Context Dataset 5 is a real
dataset on which the best performing WFA model
scored 0.568 with rank n = 450 and substring
lengths nR = nC = 5. This dataset is large for
spectral learning and increasing nR and nC above
5 made the method intractable. Our one-layer neu-
ral model scored 0.7988 and a two-layer model
showed a small improvement scoring 0.8107. This
means that on this dataset adding more layers did
not change the score significantly. We will attempt
to explain the lack of a big improvement of a two-
layer neural model using our WFA results.

Dataset 5 corresponds to the NLP character lan-
guage modelling benchmark from Penn Treebank
(Marcus et al., 1993b). The other NLP datasets
are 4, 8, 11, and 13. Similar to dataset 5, in-
creasing the number of RNN layers did not sig-
nificantly improve the score on those datasets.
Most NLP data (including dataset 5) have long-
term dependencies because there are many train-
ing examples of word agreements (with different
long-range regularities) which span a large portion
of a sentence (Brown and Hinton, 2001). WFA
with discrete states have limited memory capacity
which gets consumed by having to deal with all
the intervening regularities in the sequence. We
can clearly see this in our results because in our
experiments on WFA, we have many hidden states
(n = 450). We can see that a large number of
hidden states was not sufficient to solve this prob-
lem using WFA when nR = nC = 5, i.e., when
substrings are short. In order to capture long-term
dependencies, our WFA would need to be trained
on longer substrings (higher nR and nC), but this
is infeasible to do on this large dataset because
the method becomes intractable. This problem re-
quires the learning algorithm to take care of the
long-term context.

We can provide a theoretical justification as to
why long substrings (i.e. prefixes and suffixes that
define the basis of a Hankel matrix) can lead to a
better model given a particular number of hidden
states, n. Note that the number of hidden states
n corresponds to the number of dimensions that
are kept after the SVD of the Henkel matrix. This
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means that n most informative latent dimensions
(i.e., those that carry the most variance) are used
as hidden states. If, given a particular value of
n, one model has better performance than another
model, it means that it’s best n dimensions capture
more variance than the best n latent dimensions of
the alternative model. This argument explains why
one basis of a Hankel matrix can lead to a bet-
ter model than another basis. Intuitively, it is also
natural to expect that long substrings can lead to a
better set of hidden states because they can capture
longer interactions between input symbols, which
should naturally lead to more informative hidden
states. If it was computationally feasible to eval-
uate dataset 5 with larger substring lengths, we
could investigate the spectral norm of the empir-
ical Hankel matrix with the increasing length of
substrings (i.e. nR, nC). This would shed some
light on the quality of the first hidden state in com-
pared models.

Theoretically, a one-layer RNN model can
capture infinite context (Siegelmann and Sontag,
1991), but due to training difficulties (e.g. the van-
ishing gradient problem), the context capture ca-
pacity of RNNs is limited. Despite this difficulty,
it was shown in the literature that RNNs can cap-
ture previous context of up to 200 tokens (Khan-
delwal et al., 2018). However, other researchers
(Pascanu et al., 2014) argue that stacking RNN
layers (like in our two-layer model) does not in-
crease the capacity of the model to capture longer
contexts. This means that our two-layer model
cannot deal with long contexts even when we add
more layers. Since WFA did not perform well on
dataset 5 having short context and a large number
of hidden states, we conjecture that this dataset re-
quires a long context and for this reason two-layers
in a neural model do not help. Our results are
consistent with other results where long-term con-
texts are captured by the recurrent layer (Bengio
and Frasconi, 1995a). According to the distributed
hypothesis (Bengio et al., 2009) stacking multi-
ple layers allows for learning distributed features
but not for capturing long-term contexts. Conse-
quently, we assume that the long-term contexts are
more important for dataset 5 to make efficient pre-
diction than the pure increase in the number of the
hidden states across the space.

Theoretical Considerations The relationship
between the number of types of hidden states (dis-
crete, or distributed), long-term dependency and

the sequence prediction has been explored by Hin-
ton et al. (2001); Bengio and Frasconi (1995b).
For example, the hidden state of a single HMM (a
specific version of WFA) can only convey log2K
bits of information about the recent history. In-
stead, if a generative model had a distributed hid-
den state representation (Williams and Hinton,
1991) consisting of M variables each with K al-
ternative states, it could convey M log2K bits of
information. This means that the information bot-
tleneck scales linearly with the number of vari-
ables and only logarithmically with the number of
alternative states of each variable (Hinton et al.,
2001). However, the link between the hidden state
modelling and the number of recurrent neural net-
work layers had not been explored before. From
this theoretical analysis, we can see that if we
have access to a large dataset then increasing the
number of layers helps in modelling the hidden
states more accurately (as seen in dataset 12), but
it does not have to help to capture long-term con-
texts (dataset 5). In the latter case, one has to use
models with high recurrence depth (Zilly et al.,
2017; Pascanu et al., 2013), but we leave their ex-
ploration for future work since in this paper we
wanted to focus on traditional LSTM layers.

Conclusion

Recurrent Neural Networks (RNNs) are a power-
ful tool for sequence modelling. However, RNNs
are non-linear models, which makes them diffi-
cult to analyse theoretically. In this paper, we em-
pirically analysed two RNN models (single-layer
and two-layer RNNs) to understand the impact of
the additional LSTM layers. We used Weighted
Finite-state Automata (WFA) trained using the
Hankel-based spectral learning algorithm. Based
on fifteen benchmark datasets from the SPiCe
2016 competition, our empirical analyses indicate
that multiple layers in RNNs help learning dis-
tributed hidden states through improved hidden
space modelling but have lesser impact on the abil-
ity to learn long-term dependencies.
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Abstract

In order to successfully model Long Distance
Dependencies (LDDs) it is necessary to un-
derstand the full-range of the characteristics
of the LDDs exhibited in a target dataset. In
this paper, we use Strictly k-Piecewise lan-
guages to generate datasets with various prop-
erties. We then compute the characteristics of
the LDDs in these datasets using mutual in-
formation and analyze the impact of factors
such as (i) k, (ii) length of LDDs, (iii) vocabu-
lary size, (iv) forbidden subsequences, and (v)
dataset size. This analysis reveal that the num-
ber of interacting elements in a dependency
is an important characteristic of LDDs. This
leads us to the challenge of modelling multi-
element long-distance dependencies. Our re-
sults suggest that attention mechanisms in neu-
ral networks may aide in modeling datasets
with multi-element long-distance dependen-
cies. However, we conclude that there is a
need to develop more efficient attention mech-
anisms to address this issue.

1 Introduction

Long Distance Dependencies (LDDs) describe an
interaction between two (or more) elements in a
sequence that are separated by an arbitrary num-
ber of positions. LDDs are related to the rate of de-
cay of statistical dependence of two points with in-
creasing time interval or spatial distance between
them. For example, in English there is a require-
ment for subjects and verbs to agree, compare:
“The dog in that house is aggressive” with “The
dogs in that house are aggressive”. This depen-
dence can be computed using information theo-
retic measure i.e. Mutual Information (Cover and
Thomas, 1991; Paninski, 2003; Bouma, 2009; Lin
and Tegmark, 2017).

To date most research on LDDs has focused on
the distance the dependency spans within the se-
quence. However, as our analysis will show the

complexity of LDDs not only arises from the dis-
tance but also a number of other factors, including:
(i) the number of unique symbols in a dataset, (ii)
the size of the dataset, (iii) the number of inter-
acting symbols within an LDD, and (iv) the dis-
tance between the interacting symbols. In this pa-
per we use SPk languages to explore the complex-
ity of LDDs. The motivation for using the SPk lan-
guage modelling task, is that the standard sequen-
tial benchmark datasets provide little to no con-
trol over the factors which directly contribute to
LDD characteristics. By contrast, using SPk lan-
guages we can generate benchmark datasets with
varying degrees of LDD complexity by modifying
the grammar of the SPk language (Rogers et al.,
2010; Fu et al., 2011; Avcu et al., 2017).

One aspect of LDDs that has been neglected
in the research on LDDs is the complexity that
arises from a multi-element dependency (i.e.,
dependencies that involves interactions between
more than 2 elements). By controlling k in the
SPk grammar, it is possible to generate datasets
with varying degrees of multi-element depen-
dency. This multi-element dependencies pose spe-
cific challenges to neural architectures that may
require these architectures to be augmented with
pointer or attention mechanisms. We explore
whether attention mechanism can help with multi-
element LDDs using two models, Transformer-
XL (Dai* et al., 2019) and AWD-LSTM (Mer-
ity et al., 2018). Transformer-XL employs multi-
head attention mechanism along with recurrence
mechanism. Whereas, AWD-LSTM is a weight
dropped LSTM which does not employ any atten-
tion/pointer mechanism.

The Transformer-XL and AWD-LSTM models
are both language models. A language model ac-
cepts a sequence of symbols and predicts the next
symbol in the sequence. The accuracy of a lan-
guage model is dependent on the capacity of the
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model to capture the LDDs in the data on which
it is evaluated. The standard evaluation metric for
language models is perplexity. Perplexity is the
measurement of the confusion or uncertainty of a
language model as it predicts the next symbol in a
sequence, and the lower the perplexity of a model
the better the performance of the model.

2 Related Work: Neural Networks and
Artificial Grammars

Formal Language Theory, primarily developed to
study the computational basis of human language
is now being used extensively to analyze any rule-
governed system (Chomsky, 1956, 1959; Fitch
and Friederici, 2012). Formal languages have pre-
viously been used to train RNNs and investigate
their inner workings. The Reber grammar (Reber,
1967) was used to train various 1st order RNNs
(Casey, 1996; Smith and Zipser, 1989). The Reber
grammar was also used as a benchmarking dataset
for LSTM models (Hochreiter and Schmidhuber,
1997). Regular languages, studied by Tomita
(Tomita, 1982), were used to train 2nd order RNNs
to learn grammatical structures of the strings (Wa-
trous and Kuhn, 1991; Giles et al., 1992).

Regular languages are the simplest grammars
(type-3 grammars) within the Chomsky hierarchy
which are driven by regular expressions. For neu-
ral network research an interesting subclass of
regular languages is the Strictly k-Piecewise lan-
guages. Strictly k-Piecewise languages are natu-
ral and can express some of the kinds of LDDs
found in natural languages (Jager and Rogers,
2012; Heinz and Rogers, 2010). This presents
an opportunity of using SPk grammar to gener-
ate benchmarking datasets (Avcu et al., 2017; Ma-
halunkar and Kelleher, 2018). In Avcu et al.
(2017), LSTM networks were trained to recognize
valid strings generated using SP2, SP4, SP8 gram-
mar. LSTM could recognize valid strings gener-
ated using SP2 and SP4 grammars but struggled
to recognize strings generated using SP8 grammar,
exposing the performance bottleneck of LSTM
networks. It has also been observed that the per-
formance of LSTMs on SP2 datasets degraded
when the length of the LDDs in the datasets were
increased, this was done by increasing the maxi-
mum length of the generated strings of SP2 (Ma-
halunkar and Kelleher, 2018).

3 Preliminaries

3.1 Strictly k-Piecewise Languages (SPk)

SPk languages form a subclass of regular lan-
guages. Subregular languages can be identified by
mechanisms much less complicated than Finite-
State Automata. Many aspects of human language
such as local and non-local dependencies are sim-
ilar to subregular languages (Jager and Rogers,
2012). More importantly, there are certain types of
long distance (non-local) dependencies in human
language which allow finite-state characterization
(Heinz and Rogers, 2010). These type of LDDs
can easily be characterized by SPk languages and
can be easily extended to other processes.

A language L, is described by a finite set of
unique symbols Σ and Σ* (free monoid) is a set
of finite sequences or strings of zero or more ele-
ments from Σ.

Example 3.1. Consider, Σ = {σ1, σ2, σ3, σ4}
where σ1, σ2, σ3, σ4 are the unique symbols. A
free monoid over Σ contains all concatenations of
these unique symbols. Thus, Σ* = {λ, σ1, σ1σ2,
σ1σ3, σ1σ4, σ3σ2, σ3σ1σ3, σ2σ1σ4σ3, ... }.
Definition 3.1. Let, u denote a string, e.g. u=
σ3σ2. The length of a string u is denoted by |u|,
and if u= σ3σ2 then |u|=2. A string with length
zero is denoted by λ.

Definition 3.2. A string v is a subsequence of
string w, iff v = σ1σ2 ... σn and w ∈ Σ*σ1Σ*σ2Σ*
... Σ*σnΣ*, where σ ∈ Σ. A subsequence of
length k is called a k-subsequence. Let subseqk(w)
denote the set of subsequences of w up to length k.

Example 3.2. Consider, Σ = {a, b, c, d}, w =
[acbd], u = [bd], v = [acd] and x = [db]. String u
is a subsequence of length k = 2 or 2-subsequence
of w. String v is a 3-subsequence of w. However,
string x is not a subsequence of w as it does not
contain [db] subsequence.

SPk languages are defined by grammar GSPk as
a set of permissible k-subsequences. Here, k in-
dicates the number of elements in a dependency.
Datasets generated to simulate 2 elements in a de-
pendency will be generated using SP2. This is
the simplest dependency structure. There are more
complex chained-dependency structures which re-
quire higher k grammars.

Example 3.3. Consider L, where Σ = {a, b, c, d}.
Let GSP2 be SPk grammar which is comprised of
permissible 2-subsequences. Thus, GSP2 = {aa,
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Figure 1: The automaton for GSP2 where nl=6

ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc,
dd}. GSP2 grammar is employed to generate SP2
datasets.
Definition 3.3. Subsequences which are not in the
grammar G are called forbidden subsequences1.
Example 3.4. Consider Example 3.3, although
{ab} is a possible 2-subsequence, it is not part of
the grammar GSP2. Hence, {ab} is a forbidden
subsequence.
Example 3.5. Consider strings u, v, w: u =
[bbcbdd], v = [bbdbbbcbddaa] and w = [bbabb-
bcbdd], where |u| = 6, |v| = 12 and |w| = 10.
Strings u and v are valid SP2 strings because they
are composed of subsequences that are in GSP2.
However, w is an invalid SP2 string because w
contains {ab} a subsequence which is a forbid-
den subsequence. These constraints apply for any
string x where |x| ∈ Z.
Example 3.6. Let GSP3 = {aaa, aab, abb, baa,
bab, bba, bbb, ...} and forbidden subsequence
= {aba} be an SP3 grammar which is com-
prised of permissible 3-subsequences. Thus, u =
[aaaaaaab], where |u| = 8 is a valid SP3 string
and v = [aaaaabaab], where |v| = 9 is an invalid
SP3 string as defined by the grammar GSP3.

The maximum extent of LDD exhibited by a
certain SPk language is equal to the length of the
strings generated which abide by the grammar.
However, as per definition 3.2, the strings gener-
ated using this method will also exhibit dependen-
cies of shorter lengths. It should be noted that the
length of the LDD is not the same as k. The length
of the LDD is the maximum distance between two
elements in a dependency, whereas k specifies the
number of elements in the dependency (as defined
in the the SPk grammar).
Example 3.7. As per Example 3.5, v = [bbdbb-
bcbddaa], consider b in the first position, subse-
quence {ba} exhibits dependency of 10 and 11.

1Refer section 5.2. Finding the shortest forbidden subse-
quences in (Fu et al., 2011) for method to compute forbidden
sequences for SPk language

Similarly, subsequence {bd} exhibits dependency
of 2, 9, 10, etc.

Figure 1 depicts a finite-state diagram of GSP2,
which generates strings of synthetic data. Con-
sider a string x from this data, ∀ generated strings
x generated using grammar GSP2: |x| = 6. The
forbidden subsequence for this grammar is {ab}.
Since {ab} is a forbidden subsequence, the state
diagram has no path (from state 0 to state 11)
because such a path would permit the genera-
tion of strings with {ab} as a subsequence, e.g.
{abcccc} Traversing the state diagram generates
valid strings e.g. {accdda, caaaaa}.

Various GSPk could be used to define an SPk
depending on the set of forbidden subsequences
chosen. Thus, we can construct rich datasets with
different properties for any SPk language. forbid-
den subsequences allow for the elimination of cer-
tain logically possible sequences while simulating
a real world dataset where the probability of oc-
currence of that particular sequence is highly un-
likely. Every SPk grammar is defined with at least
one forbidden subsequence.

3.2 Plotting LDD Characteristics

Mutual information has previously been used to
analyse LDDs in datasets. For example, in Ebel-
ing and Poeschel (2002), mutual information was
used to analyse the maximum length of the LDDs
in two English literary texts, Moby Dick by H.
Melville and Grimm’s tales. Another example, is
the work of Lin and Tegmark (2017) who analyzed
the LDD characteristics in enwik8 dataset.

Mutual information measures dependence be-
tween random variables X and Y . These ran-
dom variables have marginal distributions p(x)
and p(y) and are jointly distributed as p(x, y)
(Cover and Thomas, 1991; Li, 1990). Mutual in-
formation, I(X;Y ) is defined as;

I(X;Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y) (1)
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If X and Y are not correlated, in other words
if they are independent to each other, then
p(x)p(y) = p(x, y) and I(X;Y ) = 0. However,
ifX and Y are fully dependent on each other, then
p(x) = p(y) = p(x, y) which results in the maxi-
mum value of I(X;Y ).

Mutual information can also be expressed using
the entropy of X and Y i.e. H(X), H(Y ) and
their joint entropy, H(X,Y ) as given in the equa-
tions below:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (2)

H(X) = −
∑

x

p(x) log p(x) (3)

In our algorithm, we compute the H(X) using
Grassberger’s corrections (Grassberger, 2003).

H(X) = logN − 1/N

k∑

i=1

Niψ(Ni) (4)

where Ni is the frequency of unique symbol i,
N =

∑
Ni, K is the number of unique sym-

bols, and ψ(Ni) is the logarithmic derivative of
the gamma function of Ni.

In order to measure dependence between any
two symbols at a distance D in a sequence, we
design random variables X and Y so that X holds
the subsequence of the original sequence from in-
dex 0 till |dataset| − 1−D, and Y holds the sub-
sequence from index D till |dataset| − 1; where
D represents spacing between the symbols and
|dataset| or LEN is the size of the dataset. Next
we define a random variable XY that contains a
sequence of paired symbols one from X and one
from Y , where the symbols in a pair have the same
index in X and Y . Algorithm 1 explains the de-
tails.

Using this information, and Equations 2 and 4,
we calculate the mutual information I(X,Y ) at
a distance D in a sequence. We define the LDD
characteristics of any given sequential dataset as a
function of mutual information I(X;Y ) over the
distance D. Once we have calculated the mutual
information within a dataset at the different dis-
tances D which range between 1 to |dataset| we
can then plot the LDD characteristics as a graph of
distance D versus mutual information at D. The
LDD characteristics are plotted on a log-log axis,
the x-axis defines the distance between a pair of
symbols and the y-axis marks the mutual informa-
tion.

Algorithm 1 Computing LDD Characteristics
for D ← 1, |dataset| do

X ← dataset[0 : |dataset| −D]
Y ← dataset[D : |dataset|]
XY ← zero-matrix of size (KX ,KY )
for i← 0, |X| do

Increment XY [X[i], Y [i]]
end for
Compute NX

i , NX , KX for X
Compute NY

i , NY , KY for Y
Compute NXY

i , NXY , KXY for XY
Compute H(X), H(Y ) and H(X,Y ) Eq. 4
I[D]← H(X) +H(Y )−H(X,Y )

end for

4 LDD characteristics of SPk datasets

Natural datasets present little to no control over the
factors that affect LDDs. This, limits our ability to
understand LDDs in more detail. SPk languages
exhibit some types of LDDs occurring in natural
datasets. Moreover, by modifying the SPk gram-
mar we can control the LDD characteristics within
a dataset generated by the grammar. To understand
and validate the interaction between an SPk gram-
mar and the characteristics of the data it generates,
we used a number of datasets of SPk grammar and
analyzed the properties of these datasets. Every
dataset is a collection of strings and these strings
strictly follow the grammar. Hence the size of the
dataset (|dataset|) is the sum of the size of all the
strings. The datasets were generated using foma
(Hulden, 2009) and python (Avcu et al., 2017; Ma-
halunkar and Kelleher, 2018)2. Below we analyze
the impact of various factors on the resulting LDD
characteristics.

4.1 Impact of k
A dependency may arise within a dataset due to
two or more interacting elements. A two element
dependency is the simplest dependency structure
and is analyzed by models addressing LDDs.
However, multiple element dependency may not
be rare and if not modeled correctly may well con-
tribute to the errors of a model. Lack of knowledge
of these dependency structures within benchmark
datasets present significant limitation in compar-
ing the performance of different models aimed at
addressing LDDs. Different model architectures

2The scripts and details of these datasets are avail-
able at https://github.com/silentknight/
DelFol-ACL-2019
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Figure 2: LDD characteristics of datasets of SP2, SP4
and SP16 grammar exhibiting LDD of length 100.

may be able to represent one type of LDD char-
acteristic to a greater extent than another (e.g.,
distance versus k). However, unless the experi-
menter is able to control the LDD characteristics
present in a dataset it is not possible to disentan-
gle which characteristics a given model struggles
with based solely on the models performance on
the data. SPk grammar addresses this problem by
providing control over both dependency distance
and k.

We use SP2, SP4 and SP16 grammars to gen-
erate a set of datasets. With k={2, 4, 16}, we
generate datasets with different dependency struc-
tures with interacting elements 2, 4, and 16 re-
spectively. Figure 2 plots the LDD characteristics
of SP2, SP4 and SP16 grammars. They contain
uniform distribution of strings of string length l
where 60≤l≤100. The maximum length of strings
in each of these datasets is 100. Hence, we can
observe steeper mutual information decay beyond
D>100. k defines the number of correlated or de-
pendent elements in a dependency rule. As k in-
creases the grammar becomes more complex and
there is an overall reduction in frequency of the
dependent elements in a given sequence (due to
lower probability of these elements occurring in a
given sequence). Hence, the mutual information
is lower. This can be seen with dataset of SP16
as compared to SP2 and SP4. It is worth noting
that datasets with lower mutual information curves
tend to present more difficulty during modeling
(Mahalunkar and Kelleher, 2018).

4.2 Impact of LDD length

The distance or length between two interacting el-
ements present significant challenge in modeling
LDDs as the model is required to store the context

Figure 3: LDD characteristics of datasets of SP2 gram-
mar exhibiting LDDs of length 20, 100, 200 and 500.

of the interacting element persistently. The suc-
cess of a model is dependent on whether it is ca-
pable of storing the required length of the contexts
as dictated by the dataset.

We generated strings of maximum length 20
(2≤l≤20), 100 (21≤l≤100), 200 (101≤l≤200)
and 500 (201≤l≤500) using SP2 grammar. As ex-
plained in Example 3.6, by increasing the length of
the generated strings, the distance between depen-
dent elements is also increased, resulting in longer
LDDs. Consequently, using this string lengths we
can simulate LDD lengths of 20, 100, 200 and 500.

Figure 3 plots LDD characteristics of SP2
languages with maximum string length of
20, 100, 200, 500. The point where mutual infor-
mation decay is faster, the inflection point, lies
around the same point on x-axis as the maximum
length of the LDD. This confirms that SPk can
generate datasets with varying lengths of LDDs.

4.3 Impact of Vocabulary Size

We analyze the impact of vocabulary size
on LDD characteristics, we generate SP2
grammars where Σ1={a, b, c, d} (V=4) and
Σ2={a, b, c, d, ...., x, y, z} (V=26), where V
is vocabulary size. The impact of vocabulary
size can be seen in figure 4. Both these datasets
contain strings of maximum length 20. Hence
the mutual information decays at 20. Both curves
have identical decay indicating a similar grammar.
However the overall mutual information of the
dataset with V=26 is much lower then the mutual
information of the dataset with V=4. This
is because a smaller vocabulary results in an
increase in the probability of the occurrence of
each individual elements.
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Figure 4: LDD characteristics of datasets of SP2 gram-
mar with vocabulary of 4 and 26.

Figure 5: LDD characteristics of datasets of SP2 gram-
mar with varying forbidden subsequences.

4.4 Impact of forbidden subsequences

forbidden subsequences control the complexity of
a given grammar. We choose two sets of forbid-
den subsequences for SP2 grammar, {ab, bc} and
{ab, bc, cd, dc}.

Figure 5 plots the LDD characteristics of SP2
grammar with two set of forbidden subsequences
as {ab, bc} and {ab, bc, cd, dc}. It is seen that
the dataset with more forbidden subsequences ex-
hibited mutual information decay tending towards
a power law decay as compared to an exponen-
tial decay by dataset with less forbidden subse-
quences. As explained in Lin and Tegmark (2017),
datasets with exponential decay tend to exhibit
Markovian behavior and thus are easy to model as
compared to datasets with power law decay. Com-
plex LDDs in a dataset result in power law decay.
Thus, by controlling the forbidden subsequences,
one can introduce more complex LDDs.

4.5 Impact of dataset size
Another factor to analyze is the impact of the size
of the dataset (|dataset|) on LDDs of the same

Figure 6: LDD characteristics of datasets of SP2 gram-
mar with varying size of the datasets

grammar. We generate two sizes of the same SP2
grammar to study the impact of the size of the data
on the LDD characteristics, where one dataset is
twice the size of the other.

In figure 6 we can observe that LDD charac-
teristics of datasets sampled from the same gram-
mar are less likely to be affected by the size of the
dataset.

5 Multi-Element Long Distance
Dependencies: Attention Mechanisms
and k

As discussed above in section 4.1, LDDs may arise
due to multiple interacting elements, which can be
referred to as multi-element long-distance depen-
dency (ME-LDD). Current LDD research primar-
ily focuses on developing models which are capa-
ble of retaining contextual information across long
distances in sequential datasets. This approach,
which focuses solely on dependency distance, may
be insufficient in addressing the problems aris-
ing due to ME-LDDs. However, recent advances
in attention mechanisms and memory networks
may be able to represent ME-LDDs. In this
section we investigate two models, Transformer-
XL (Dai* et al., 2019) (with attention mecha-
nism) and AWD-LSTM (ASGD Weight-Dropped
LSTM) (without attention mechanism) (Merity
et al., 2018) so as to analyze how attention mech-
anisms help in modeling datasets with ME-LDDs.

The Transformer-XL model augments vanilla
Transformer models by introducing a recurrence
mechanism to the Transformer architecture. This
recurrence effectively encodes an arbitrarily long
context into a fixed size representation over con-
strained memory and computation. A vanilla
Transformer is made up of Multi-Head Attention
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Models
Test Perplexity in bpc

SP2 SP4 SP8 SP16

1 1.6855 1.8038 1.9611 2.0759

2 1.413 1.486 1.658 1.708

Table 1: Perplexity score of 1: Transformer-XL and
2: AWD-LSTM models of SP2, SP4, SP8 and SP16
datasets with vocabulary size V=4

Models
Test Perplexity in bpc

SP2 SP4 SP6 SP8

1 4.6846 4.7320 4.7384 4.7385

2 4.525 4.635 4.707 4.708

Table 2: Perplexity score of 1: Transformer-XL and
2: AWD-LSTM models of SP2, SP4, SP6 and SP8
datasets with vocabulary size V=26

and Feed Forward layers which aides in adding po-
sitional information to the embedded representa-
tion. The other model we tested, the AWD-LSTM,
uses a weight-drop mechanism so as to aid in regu-
larization of the LSTM network. Hence this model
does not explicitly uses attention mechanism.

We trained both these models with variants of
SPk grammar where k={2, 4, 8, 16} for vocab-
ulary size V=4 and k={2, 4, 6, 8} for vocabu-
lary size V=26. Hence, there are in total 8
datasets. Every dataset contains uniform distribu-
tion of strings with string length l where 60 ≤ l ≤
100. The string length ordering is not maintained
so as to not bias the models. In-order to train the
language models, every dataset is split into train-
ing/validation/test sets. All the training sets for
vocabulary size V=4 contain≈195000 number of
strings and the size of the training set is ≈24MB.
Similarly, all the training sets for vocabulary size
V=26 contain ≈222000 number of strings with
size of ≈40MB. All the test and validation sets
contain ≈16000 strings with size of 2MB3. The
hyperparameters for both the models were reused
from the Penn Treebank character model (Dai*
et al., 2019; Merity et al., 2018).

Table 1 lists the test perplexity scores of both
the models in bits per character for datasets with
vocabulary size V=4 and table 2 lists the test per-
plexity scores of both the models for datasets with
vocabulary size V=26. We plot the test perplex-
ity scores of all the datasets as function of k in

3The datasets and scripts used for training the models can
be found at https://github.com/silentknight/
DelFol-ACL-2019

Figure 7: Test perplexity score of Transformer-XL
and AWD-LSTM models of SP2, SP4, SP8 and SP16
datasets.

figure 7. Here we observe two distinct sets of per-
plexity growth curves. It can be seen that, as the
size of the vocabulary changes, the test perplex-
ity score across all the models also changes rela-
tively. This confirms that the vocabulary size of
the dataset does impact the perplexity score of the
models. This is attributed to the lower mutual in-
formation in the LDD characteristics as explained
in section 4.3.

Switching our focus to the growth in perplex-
ity as k increases, we tried to understand how the
presence of attention mechanism impacts the abil-
ity of the neural architectures to model the ME-
LDDs as k increases. For datasets with V=26, the
impact of attention mechanism in Transformer-XL
is apparent. The test perplexity score remains al-
most unchanged which we attribute to the pres-
ence of an attention mechanism. However, AWD-
LSTM model struggles to maintain test perplex-
ity scores as k increases, for datasets with V=26
(higher vocabulary size).

For datasets with V=4, it can be seen that
the test perplexity of Transformer-XL model as
a function of k scales exponentially. The pres-
ence of exponential relation indicates that the at-
tention mechanism of the Transformer helps the
model as k increases in the SPk grammar: the
exponential relationship indicates that the growth
in model’s perplexity appears to saturate as k in-
creases. For AWD-LSTM model, the test perplex-
ity with k also increases at similar rate as that
of Transformer-XL. This could be attributed to
smaller vocabulary size, which leads to less com-
plex dependency structure even at higher value of
k. Such datasets could be easily modeled using

40



non-attention mechanisms as seen in the figure 7.
Comparing the test perplexity scores in figure 7

for both of these models, it can be observed that
the overall test perplexity score of Transformer-
XL model for across all the datasets as com-
pared with AWD-LSTM model is higher. This
could be attributed to over-parameterization of
the Transformer-XL model. Transformer-XL uses
≈44 million parameters as compared to ≈18 mil-
lion used by AWD-LSTM model to model these
sub-regular languages. It should also be noted that
the height of the LDD characteristics of all the
datasets is significantly lower than natural datasets
(Mahalunkar and Kelleher, 2018). Consequently
the mutual information is very small at a given
distance D. This leads to higher perplexity in lan-
guage models modeling them.

We also observed no apparent impact on the
value of test perplexity scores of all the models on
training sets with twice the number of strings. This
can be substantiated by observing the LDD char-
acteristics in section 4.5. Limitation of foma tool
to generate datasets with various properties pre-
vented us from exploring more complex datasets.
E.g. we were unable to generate SP16 dataset with
vocabulary size of V=26 due to stack full error.

6 Discussion

The LDD characteristics of a dataset is indica-
tive of the presence of a certain type of grammar
in the dataset. Our experiments reveal that even
though a specific grammar does induce similar
LDD characteristics, there are subtle variations.
These variations depend on a number of factors
such as size of the vocabulary, length of contex-
tual relations, dependency structure (for e.g. “k”
and “forbidden subsequences”). This analysis im-
proves our understanding of the complex nature
of the LDDs. This analysis can be extended to
natural datasets in an effort to better understand
the datasets. Thus, if a sequential model such as
recurrent neural architecture intends to model a
dataset, knowing these factors would greatly bene-
fit in selecting the best hyper-parameters of the se-
quential model. By training Transformer-XL and
AWD-LSTM model with datasets possessing var-
ious properties, it was possible to observe the im-
pact of various properties on the perplexity score.
Also, the impact of multi-head attention mecha-
nism on the vocabulary size is quite evident. Our
results suggest that the Transformer-XL performs

much better with increase in vocabulary size. It is
also evidenced by its SoTA results on WikiText103
dataset (V=267735) (Dai* et al., 2019).

7 Conclusion

The majority of neural network research on se-
quential models focuses solely on modelling de-
pendencies across long distances. However, the
dependencies that occur in sequential data can
also be multi-element. Furthermore, the vocabu-
lary size, and the forbidden subsequences within a
grammar also contribute to the difficulty of mod-
elling the dependencies within a dataset.

In natural datasets all of these factors interact,
and can confound the analysis for model perfor-
mance. However, using SPk languages it is pos-
sible to synthesize sequential datasets and con-
trol the type of dependencies exhibited in these
datasets. Using a mutual information based anal-
ysis of SPk synthesized datasets we examined
how the different language characteristics (vocab-
ulary size, forbidden subsequences) and depen-
dency characteristics (length, k) are reflected in
the datasets generated by SPk grammars. Fur-
thermore, our results suggest that attention mech-
anisms in neural networks may aide in modeling
datasets with multi-element long-distance depen-
dencies. Although we encourage developing more
efficient models.

The potential impact of this work for neural
networks research include: an appreciation of the
multifaceted nature of LDDs; a procedure for mea-
suring LDD characteristics within a dataset; an
understanding of how different hyper-parameters
setting on an SPk based dataset synthesis process
(string length, k, forbidden subsequences, vocabu-
lary size) affect the mutual information profile of
the resulting dataset.
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Abstract

In this paper, we systematically assess the
ability of standard recurrent networks to per-
form dynamic counting and to encode hierar-
chical representations. All the neural models
in our experiments are designed to be small-
sized networks both to prevent them from
memorizing the training sets and to visual-
ize and interpret their behaviour at test time.
Our results demonstrate that the Long Short-
Term Memory (LSTM) networks can learn to
recognize the well-balanced parenthesis lan-
guage (Dyck-1) and the shuffles of multiple
Dyck-1 languages, each defined over different
parenthesis-pairs, by emulating simple real-
time k-counter machines. To the best of our
knowledge, this work is the first study to intro-
duce the shuffle languages to analyze the com-
putational power of neural networks. We also
show that a single-layer LSTM with only one
hidden unit is practically sufficient for recog-
nizing the Dyck-1 language. However, none
of our recurrent networks was able to yield
a good performance on the Dyck-2 language
learning task, which requires a model to have
a stack-like mechanism for recognition.

1 Introduction

Recurrent Neural Networks (RNNs) are known to
capture long-distance and complex dependencies
within sequential data. In recent years, RNN-
based architectures have emerged as a power-
ful and effective architecture choice for language
modeling (Mikolov et al., 2010). When equipped
with infinite precision and rational state weights,
RNN models are known to be theoretically Turing-
complete (Siegelmann and Sontag, 1995). How-
ever, there still remain some fundamental ques-
tions regarding the practical computational ex-
pressivity of RNNs with finite precision.

Weiss et al. (2018) have recently demonstrated
that Long Short-Term Memory (LSTM) models

(Hochreiter and Schmidhuber, 1997), a popular
variant of RNNs, can, theoretically, emulate a sim-
ple real-time k-counter machine, which can be de-
scribed as a finite state controller with k separate
counters, each containing integer values and capa-
ble of manipulating their content by adding ±1 or
0 at each time step (Fischer et al., 1968). The au-
thors further tested their theoretical result by train-
ing the LSTM networks to learn anbn and anbncn.
Their examination of the cell state dynamics of the
models exhibited the existence of simple count-
ing mechanisms in the cell states. Nonetheless,
these two formal languages can be captured by
a particularly simple form of automaton, a deter-
ministic one-turn two-counter automaton (Gins-
burg and Spanier, 1966). Hence, there is still an
open question of whether the LSTMs can empiri-
cally learn to emulate more general finite-state au-
tomata equipped with multiple counters capable of
performing an arbitrary number of turns.

In the present paper, we answer this question
in the affirmative. We assess the empirical per-
formance of three types of recurrent networks—
Elman-RNNs (or RNNs, in short), LSTMs, and
Gated Recurrent Units (GRUs)—to perform dy-
namic counting by training them to learn the
Dyck-1 language. Our results demonstrate that
the LSTMs with only a single hidden unit perform
with perfect accuracy on the Dyck-1 learning task,
and successfully generalize far beyond the training
set. Furthermore, we show that the LSTMs can
learn the shuffles of multiple Dyck-1 languages,
defined over disjoint parenthesis-pairs, which re-
quire the emulation of multiple-counter arbitrary-
turn machines. Our results corroborate the theo-
retical findings of Weiss et al. (2018), while ex-
tending their empirical observations. On the other
hand, when trained to learn the Dyck-2 language,
which is a strictly context-free language, all our
recurrent models failed to learn the language.
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2 Preliminaries

We start by defining several subclasses of de-
terministic pushdown automata (DPA). Following
Valiant and Paterson (1975), we define a deter-
ministic one-counter automaton (DCA1) to be a
DPA with a stack alphabet consisting of only one
symbol. Traditionally, this construction allows ε-
moves (that is, executing actions on the stack with-
out the observance of any inputs), but we restrict
our attention to simple DCA1s without ε-moves in
the rest of this paper. Similarly, we call a DPA that
contains k separate stacks, with each stack using
only one stack symbol, a deterministic k-counter
automaton (DCAk).1

One can impose a further restriction on the di-
rection of stack movement of a DPA. This no-
tion leads to the definition of a deterministic n-
turn pushdown automaton (or n-turn DPA, in
short) and is well-studied by Ginsburg and Spanier
(1966) and Valiant (1974): A DPA is said to be
an n-turn DPA if the total number of direction
changes in the stack movement of the DPA is at
most n for each stack. Note that a one-turn DCA1

can recognize anbn (Valiant, 1973), whereas a
one-turn DCA2 can recognize anbncn. We say that
a DCAk with no limit on the number of turns can
perform dynamic counting.

3 Related Work

Formal languages have long been used to demon-
strate the computational power of neural net-
works. Early studies (Steijvers, 1996; Tonkes
and Wiles, 1997; Rodriguez and Wiles, 1998;
Bodén et al., 1999; Bodén and Wiles, 2000;
Rodriguez, 2001) employed Elman-style RNNs
(Elman, 1990) to recognize simple context-free
and context-sensitive languages, such as anbn,
anbncn, and anbncbmam. Most of these architec-
tures, however, suffered from the vanishing gradi-
ent problem (Hochreiter, 1998) and could not gen-
eralize far beyond their training sets.

Using LSTMs (Hochreiter and Schmidhuber,
1997), Gers and Schmidhuber (2001) showed that
their models could learn two strictly context-free
languages and one strictly context-sensitive lan-
guage by effectively using their gating mecha-
nisms. In contrast, Das et al. (1992) proposed

1Weiss et al. (2018) call such a construction a k-counter
machine. Previous papers provide a detailed investigation of
the complexity of counting machines (Minsky, 1967; Fischer
et al., 1968; Valiant and Paterson, 1975; Valiant, 1975).

an RNN model with an external stack memory,
named Recurrent Neural Network Pushdown Au-
tomaton (NNPDA), to learn basic context-free
grammars.

More recently, Joulin and Mikolov (2015) in-
troduced simple RNN models equipped with dif-
ferentiable stack modules, called Stack-RNN, to
infer algorithmic patterns, and showed that their
model could successfully learn various formal lan-
guages, in particular anbn, anbncn, anbncndn,
anb2n. Inspired by the early model design of
NNPDAs, Grefenstette et al. (2015) also proposed
memory-augmented recurrent networks (Neural
Stacks, Queues, and DeQues), which are RNNs
equipped with unbounded differentiable memory
modules, to perform sequence-to-sequence trans-
duction tasks that require specific data structures.

Deleu and Dureau (2016) investigated the abil-
ity of Neural Turing Machines (NTMs; Graves
et al. (2014)) to capture long-distance dependen-
cies in the Dyck-1 language. Their empirical
findings demonstrated that an NTM can recog-
nize this language by emulating a DPA. Simi-
larly, Sennhauser and Berwick (2018), Bernardy
(2018), and Hao et al. (2018) conducted experi-
ments on the Dyck languages to explore whether
recurrent networks can learn nested structures.
These studies assessed the performance of their re-
current models to predict the next possible paren-
thesis, assuming that it is a closing parenthesis.2

In fact, Bernardy (2018) used a purpose-designed
architecture, called RUSS, which contains recur-
rent units with stack-like states, to perform the
closing-parenthesis-completion task. Though the
RUSS model had no trouble generalizing to longer
and deeper sequences, as the author mentions, the
specificity of the architecture disqualifies it as a
practical model choice for natural language mod-
eling tasks. Additionally, Skachkova et al. (2018)
trained recurrent networks to predict the last ap-
propriate closing parenthesis, given a Dyck-2 se-
quence without its last symbol. They showed that
their GRU and LSTM models performed with al-
most full accuracy on this parenthesis-completion
task, but their task does not illustrate that these
RNN models can recognize the Dyck language.

Most recently, Weiss et al. (2018) and Suz-
gun et al. (2019) showed that the LSTM networks
can develop natural counting mechanisms to rec-

2Their approach is slightly different than ours in the sense
that we always try to predict the set of all the possible opening
and closing parentheses at each time step.
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ognize simple context-free and context-sensitive
languages, particularly anbn, anbncn, anbncndn.
Their examination of the cell states of the LSTMs
revealed that the models learned to emulate sim-
ple one- and two-turn counters to recognize these
formal languages, but the authors did not conduct
any experiments on tasks that require counters to
perform arbitrary number of turns.

4 Models

All the models in this paper are recurrent neural
architectures and known to capture long-distance
relationships in sequential data. We would like to
compare and contrast their ability to perform dy-
namic counting to recognize simple counting lan-
guages. We further investigate whether they can
learn the Dyck-2 language by emulating a DPA.

A simple RNN architecture (Elman, 1990) is a
recurrent model that takes an input xt and a pre-
vious hidden state representation ht−1 to produce
the next hidden state representation ht, that is:

ht = f(Wihxt + bih + Whhht−1 + bhh)

yt = σ(Wyht)

where xt ∈ RD is the input, ht ∈ RH the hidden
state, yt ∈ RD the output at time t, Wy ∈ RD×H

the linear output layer, f an activation function3

and σ an elementwise logistic sigmoid function.
In theory, it is known that RNNs with infinite

precision and rational state weights are computa-
tionally universal models (Siegelmann and Son-
tag, 1995). However, in practice, the exact com-
putational power of RNNs with finite precision is
still unknown. Empirically, RNNs suffer from the
vanishing or exploding gradient problem, as the
length of the input sequences grow (Hochreiter,
1998). To address this issue, different neural archi-
tectures have been proposed over the years. Here,
we focus on two popular RNN variants with simi-
lar gating mechanism, namely LSTMs and GRUs.

The LSTM model was introduced by Hochreiter
and Schmidhuber (1997) to capture long-distance
dependencies more accurately than simple RNNs.
It contains additional gating components to facili-
tate the flow of gradients during back-propagation.

The GRU model was proposed by Cho et al.
(2014) as an alternative to LSTM. GRUs are simi-
lar to LSTMs in their design, but do not contain an
additional memory unit.

3In our experiments, we used the tanh function.

5 Experimental Setup
To evaluate the capability of RNN-based architec-
tures to perform dynamic counting and to encode
hierarchical representations, we conducted experi-
ments on four different synthetic sequence predic-
tion tasks. Each task was designed to highlight
some particular feature of recurrent networks. All
the tasks were formulated as supervised learning
problems with discrete k-hot targets and mean-
squared-error loss under the sequence prediction
framework, defined next. We repeated each exper-
iment ten times but used the same random seed
across each run for each of the tasks to ensure
comparability of RNN, GRU, and LSTM models.

5.1 The Sequence Prediction Task
Following Gers and Schmidhuber (2001), we
trained the models as follows: Given a sequence in
the language, we presented one character at each
time step to the network and trained the network
to predict the set of next possible characters in the
language, based on the current input character and
the prior hidden state. We used a one-hot represen-
tation to encode the inputs and a k-hot representa-
tion to encode the outputs. In all the experiments,
the objective was to minimize the mean-squared
error of the sequence predictions. We used an out-
put threshold criterion of 0.5 for the sigmoid layer
to indicate which characters were predicted by the
model. Finally, we turned this sequence predic-
tion task into a sequence classification task by ac-
cepting a sequence if the model predicted all of its
output values correctly and rejecting it otherwise.

5.2 Training Details
Given the nature of the four languages that we
will describe shortly, if recurrent models can learn
them, then they should be able to do so with rea-
sonably few hidden units and without the employ-
ment of any embedding layer or the dropout opera-
tion.4 To that end, all the recurrent models used in
our experiments were single-layer networks con-
taining less than 10 hidden units. The number of
hidden units that the networks contained for the
Dyck-1, Dyck-2, Shuffle-2, and Shuffle-6 experi-
ments were 3, 4, 4, and 8, respectively. (In Sec-
tion 7, we describe further experiments with as
few as a single hidden unit.) In all our experi-
ments, we used the Adam optimizer (Kingma and
Ba, 2014) with hyperparameter α = 0.001.

4Some previous studies used embeddings (Sennhauser
and Berwick, 2018; Bernardy, 2018) and the dropout oper-
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Sample ( ( ) ) ( ) ( ) ( [ ( ) ] ) [ ( [ ] ) ] [ ]

Input ( ( ) ) ( ) ( ) ( [ ( ) ] ) [ ( [ ] ) ] [ ]
Output 1 1 1 0 1 0 1 0 1 2 1 2 1 0 2 1 2 1 2 0 2 0

Table 1: Example input-output pairs for the Dyck-1 (left) and Dyck-2 (right) languages.

Sample ( [ ( ) ) ] [ ( [ ] ] ) [ { ( ) } ] 〈 d e 〉
Input ( [ ( ) ) ] [ ( [ ] ] ) [ { ( ) } ] 〈 d e 〉
Output 1 3 3 3 2 0 2 3 3 3 1 0 2 6 7 6 2 0 8 24 8 0

Table 2: Example input-output pairs for the Shuffle-2 (left) and Shuffle-6 (right) languages.

6 Experiments

The first language, Dyck-1 (or D1), consists of
well-balanced sequences of opening and closing
parentheses. Recall that a neural network need not
be equipped with a stack-like mechanism to recog-
nize the Dyck-1 language under the sequence pre-
diction paradigm; a single counter DCA1 is suffi-
cient. However, dynamic counting is required to
capture the language.

The next two languages are the shuffles of two
and six Dyck-1 languages, each defined over dis-
joint parentheses; we refer to these two languages
as Shuffle-2 and Shuffle-6, respectively. These two
tasks are formulated to investigate whether recur-
rent networks can emulate deterministic k-counter
automata by performing dynamic counting, sepa-
rately counting the number of opening and closing
parentheses for each of the distinct parenthesis-
pairs and predicting the closing parentheses for the
pairs for which the counters are non-zero, in addi-
tion to the opening parentheses. In contrast, the
final language, Dyck-2, is a context-free language
which cannot be captured by a simple counting
mechanism; a model capable of recognizing the
Dyck-2 language must contain a stack-like com-
ponent (Sennhauser and Berwick, 2018).

Tables 1 and 2 provide example input-output
pairs for the four languages under the sequence-
prediction task. For purposes of presentation only,
we use a simple binary encoding of the output sets
to concisely represent the output. In all of the
languages we investigate in this paper, the open
parentheses are always allowable as next symbol;
we assign the set of open parentheses the number
0. Each closing parenthesis is assigned a different
power of 2: ) is assigned to 1, ] to 2, } to 4, 〉 to 8, e
to 16, and c to 32. (These latter closing parenthe-

ation (Bernardy, 2018) in their experiments.

ses are needed for the Shuffle-6 language below.)
The set of predicted symbols is then the sum of
the associated numbers. For instance, an output 3
represents the prediction of any of the open paren-
theses as well as ) and ].

We note that even though an input sequence
might appear in two different languages, it might
have different target representations. This obser-
vation is important especially when making com-
parisons between the Dyck-2 and the Shuffle-2
languages. For instance, the output sequence for
( [ ] ) in the Dyck-2 language is 1 2 1 0, whereas
the output sequence for ( [ ] ) in the Shuffle-2 lan-
guage is 1 3 1 0.

6.1 The Dyck-1 Language
The Dyck-1 language, or the well-balanced paren-
thesis language, arises naturally in enumerative
combinatorics, statistics, and formal language the-
ory. A sequence in the Dyck-1 language needs to
contain an equal number of opening and closing
parentheses, with the constraint that at each time
step the total number of opening parentheses must
be greater than or equal to the total number of clos-
ing parentheses so far. In other words, for a given
sequence s = s1 · · · s2n of length 2n in the Dyck-1
language over the alphabet Σ = {(, )}, if we have
a function f that assigns value +1 to ‘(’ and value
−1 to ‘)’, then we know that it is always true that∑j

i=1 f(si) ≥ 0 with strict equality when j = 2n,
for all j ∈ [1, . . . , 2n]. Therefore, a model with a
single unbounded counter can recognize this lan-
guage.

A probabilistic context-free grammar for the
Dyck-1 language can be written as follows:

S →





(S) with probability p
SS with probability q
ε with probability 1− (p+ q)

where 0 < p, q < 1 and (p+ q) < 1.
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Training Set Short Test Set Long Test Set
Task Model Min Max Med Min Max Med Min Max Med

Dyck-1 RNN 0.45 76.17 46.96 0.28 73.62 41.89 0.06 24.44 7.19
Dyck-1 GRU 99.37 100 100 99.34 100 100 67.68 95.58 84.38
Dyck-1 LSTM 100 100 100 100 100 100 99.98 100 100

Shuffle-2 RNN 33.68 87.77 58.16 29.42 86.48 55.37 0.54 25.58 2.75
Shuffle-2 GRU 99.73 100 99.97 99.62 99.98 99.93 83.70 95.18 93.12
Shuffle-2 LSTM 100 100 100 100 100 100 96.84 99.98 99.35

Shuffle-6 RNN 0.26 57.39 44.54 0.16 54.80 41.38 0 0.64 0.15
Shuffle-6 GRU 96.32 99.98 99.78 96.08 99.98 99.81 51.96 97.30 85.14
Shuffle-6 LSTM 99.68 100 100 99.74 100 100 82.92 99.72 98.14

Dyck-2 RNN 4.37 31.67 14.74 2.96 27.46 12.21 0 0.46 0.01
Dyck-2 GRU 7.78 53.34 28.71 5.38 49.06 25.08 0 1.56 0.05
Dyck-2 LSTM 19.76 52.13 35.82 16.58 48.24 31.29 0 1.46 0.20

Table 3: The performances of the RNN, GRU, and LSTM models on four language modeling tasks. Shuffle-2
denotes the shuffle of two Dyck-1 languages defined over different alphabets, and similarly Shuffle-6 denotes the
shuffle of six Dyck-1 languages defined over different alphabets. Min/Max/Median results were obtained from
10 different runs of each model with the same random seed across each run. We note that the LSTM models not
only outperformed the RNN and GRU models but also often achieved full accuracy on the short test set in all
the “counting” tasks. Nevertheless, even the LSTMs were not able to yield a good performance on the Dyck-2
language modeling task, which requires a stack-like mechanism.

Setting p = 1
2 and q = 1

4 , we generated
10, 000 distinct Dyck sequences, whose lengths
were bounded to [2, 50], for the training set. We
used two test sets: The “short” test set con-
tained 5, 000 distinct Dyck words defined in the
same length interval as the training set but distinct
from it. The “long” test set contained 5, 000 dis-
tinct Dyck words defined in the interval [52, 100].
Hence, there was no overlap between any of the
training and test sets.
Results: Table 3 lists the performances of the
RNN, GRU, and LSTM models on the Dyck-1 lan-
guage. First, we highlight that all the LSTM mod-
els obtained full accuracy on the training set and
short test set, whose sequences were bounded to
[2, 50], in all the ten trials. They were also able to
easily generalize to longer and deeper sequences
in the long test set: They obtained perfect accu-
racy in nine out of ten trials and 99.98% accuracy
(only 1 incorrect prediction) in the remaining trial.
These results exhibit that the LSTMs can indeed
perform unbounded dynamic counting.

The GRUs yielded an almost similar qualita-
tive performance on the training and first test sets;
however, they could not generalize well to longer
and deeper sequences. On the other hand, the
RNN models performed significantly worse than
the first two recurrent models, in terms of their

median accuracy rate. We note that similar empir-
ical observations about the performance-level dif-
ferences between the RNNs, GRUs, and LSTMs
for other simple formal languages were also re-
ported by Weiss et al. (2018) and Bernardy (2018).
6.2 The Shuffle-k Language
Next, we consider two shuffle languages, which
are both generated by the Dyck-1 language. Be-
fore describing each task in detail, let us first de-
fine the notion of shuffling formally. The shuffling
operation || : Σ∗ × Σ∗ → P(Σ∗) can be induc-
tively defined as follows:5

• u||ε = ε||u = {u}
• αu||βv = α(u||βv) ∪ β(αu||v)

for any α, β ∈ Σ and u, v ∈ Σ∗. For instance, the
shuffling of ab and cd would be:

ab||cd = {abcd, acbd, acdb, cabd, cadb, cdab}
There is a natural extension of the shuffling oper-
ation || to languages. The shuffle of two languages
L1 and L2, denoted L1||L2, is defined as the set of
all the possible interleavings of the elements of L1
and L2, respectively, that is:

L1||L2 =
⋃

u∈L1, v∈L2
u||v

5We abuse notation by allowing a string to stand for its
own singleton set.
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Given a language L, we define its self-shuffling
L||2 to be L||σ(L), where σ is an isomorphism on
the vocabulary of L to a disjoint vocabulary. More
generally, we define the k-self-shuffling

L||k =

{
{ε} if k = 0
L||σ(L||k−1) otherwise .

The Shuffle-2 Language: The first language is
D1||2, the shuffle ofD1 andD1, where the firstD1

is over the alphabet {(, )} and the second over the
alphabet {[, ]}. For instance, the sequence ( [ ) ] is
in D1||2 but not in D2, whereas ( ] [ ) is in neither
D1||2 nor D2. Note that D2 is a subset of D1||2,
but not the other way around.6

To generate the training and test corpora, we
used a probabilistic context-free grammar for the
Dyck-2 language, which we will describe shortly,
but considered correct target values for the se-
quences interpreted as per the Shuffle-2 language.
The training set contained 10, 000 distinct se-
quences of lengths in [2, 50]. As before, the short
test set had 5, 000 distinct samples defined over the
same length interval but disjoint from the training
set, and the long test set had 5, 000 distinct sam-
ples, whose lengths were bounded to [52, 100].

The Shuffle-6 Language: The second shuffle
language is D1||6, the shuffle of six Dyck-1 lan-
guages, each defined over different parenthesis-
pairs. Concretely, we used the following pairs:
( ), [ ], { }, 〈 〉, d e, b c. In theory, an automa-
ton with six separate unbounded-turn counters
(DCA6) can recognize this language. Hence,
we wanted to explore whether our recurrent net-
works can learn to emulate a dynamic-counting 6-
counter machine.

Figure 1: Length and maximum depth distributions of
training/test sets for an example Shuffle-6 experiment.

The training and two test corpora were gener-
ated in the same style as the previous sequence
prediction task; however, we included 30, 000
samples in the training set for this language, due

6On the other hand, we highlight once again that the target
sequences in D1||2 are often different from those in D2.

to the complexity of the language. Figure 1 shows
the length and maximum depth distributions of the
training and test sets for one of the Shuffle-6 ex-
periments.

Results: As shown shown in Table 3, the LSTM
models achieved a median accuracy of 100% on
the training and short test sets in both of the shuf-
fle language variants. Furthermore, they were able
to generalize well to longer and deeper sequences
in both shuffle languages, achieving an almost per-
fect median accuracy score on the long test set.
In contrast, the GRU models performed slightly
worse than the LSTM models on the training and
short test sets, but the GRUs did not yield the same
performance as the LSTMs on the long test set,
obtaining median scores of 93.12% and 85.14%
in the Shuffle-2 and Shuffle-6 languages, respec-
tively. Additionally, the simple RNN models al-
ways performed much worse than the GRU and
LSTM models and could not even learn the train-
ing sets in either of the shuffle languages. These
empirical findings show that the LSTM models
can successfully emulate a DCAk, a deterministic
(real-time) automaton with k-counters, each capa-
ble of performing an arbitrary number of turns.

6.3 The Dyck-2 Language
The generalized Dyck language, Dn, represents
the core of the notion of context-freeness by virtue
of the Characterization Theorem of Chomsky and
Schützenberger (1963), which provides a natural
way to characterize the CFL class:

Theorem 6.1. Any language in CFL can be repre-
sented as a homomorphic image of the intersection
of a Dyck languageDn and a regular languageR.

Furthermore, Dn can be reduced to D2 at the
expense of increasing the depth and length of the
original sequences in the former language.

Proposition 6.2. Dn is reducible to D2.

Proof. 7 Let Dn be the Dyck language with n
distinct pairs of parentheses. Let us further sup-
pose that p = {p1, p2, p3, . . . , pn} are the opening
parentheses and that p̄ = {p1, p2, p3, . . . , pn} are
their corresponding closing parentheses. We set
m = dlog2 ne and encode each opening and clos-
ing parenthesis in Dn with m bits using either (
and [ or ) and ]. Furthermore, we map empty string
to empty string.

7A similar reduction is also provided by Magniez et al.
(2014).
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Given an open parenthesis pi, we first determine
the m-digit binary representation of the number
i − 1 and then use ( to encode 0’s and [ to en-
code 1’s in this representation. Given a closing
parenthesis pi, we determine the m-digit binary
representation of the number i − 1, write the bi-
nary number in the reverse order, and then use )
to encode 0’s and ] to encode 1’s. That is,

Γ : p ∪ p̄ ∪ {ε} → Sm ∪ {ε}
pi 7→ Enc([ ◦ Bin(i− 1)

pi 7→ Enc)] ◦ Rev ◦ Bin(i− 1)

ε 7→ ε

where S = {(, [, ), ]}, the parentheses in D2. We
note that s = s1s2s3 · · · sk is in Dn if and only if
Γ(s) = Γ(s1)Γ(s2)Γ(s3) · · ·Γ(sk) is in D2, com-
pleting the reduction.

The previous proposition simply shows that we
can map an expression in Dn to an expression in
D2 at the expense of creating a deeper structure in
the latter language by a factor of m = dlog2 ne.
For instance, if an expression s in Dn has a maxi-
mum depth of k, then the expression generated by
the mapping above would have a maximum depth
of k ×m in D2.

Motivated by context-free-language universal-
ity (Sennhauser and Berwick, 2018), we therefore
experimented with the Dyck-2 language defined
over two types of parenthesis-pairs, namely {(, )}
and {[, ]}, as well. The recognition of the Dyck-2
language requires a model to possess a stack-like
component; real-time primitive counting does not
enable us to capture the Dyck-2 language. Hence,
if an RNN-based architecture learns to recognize
this language, we can conclude that RNNs with fi-
nite precision can actually learn complex deeply
nested representations.

A probabilistic context-free grammar for the
Dyck-2 language can be written as follows:

S →





(S) with probability p
2

[S] with probability p
2

SS with probability q
ε with probability 1− (p+ q)

where 0 < p, q < 1 and (p+ q) < 1.
Setting p = 1

2 and q = 1
4 , we generated 10, 000

distinct sequences, whose lengths were bounded
to [2, 50], for the training set. Again, we generated
5, 000 other distinct Dyck-2 sequences of lengths

defined in the interval [2, 50] for the first test set
and 5, 000 distinct sequences of lengths defined in
the interval [52, 100] for the second test set. As in
the previous case, there was no overlap between
the training and test sets.
Results: As shown in Table 3, we found that
none of our RNNs was able to emulate a DPA to
recognize the Dyck-2 language, a context-free lan-
guage that requires a model to contain a stack-like
mechanism for recognition. Overall, the LSTM
models had the best performances among all the
networks, but they still failed to employ a stack-
based strategy to learn the Dyck-2 language. Even
the best LSTM model could achieve only 48.24%
and 1.46% accuracy scores on the short and long
test sets, respectively.

7 Discussion and Analysis

7.1 Visualization of Hidden+Cell States
Our empirical results on the Dyck-1 and Shuffle
languages suggest that our LSTM models were
performing dynamic counting to recognize these
languages. In order to validate our hypothesis, we
visualized the hidden and cell states of some of
our LSTM models that achieved full accuracy on
the test sets.

Figure 2 illustrates that our LSTM is able to rec-
ognize the samples inD1||6 by emulating a DCA6.
In fact, the discrete even transitions in the cell state
dynamics of the model reveal that six out of eight
hidden units in the model are acting like separate
counters. In some cases, we further discovered
that certain units learned to count the length of the
input sequences. Such length counting behaviours
are also observed in machine translation (Shi et al.,
2016; Bau et al., 2019; Dalvi et al., 2019) when the
LSTMs are trained on a fixed-length training cor-
pus.8

On the other hand, Figure 3 provides visualiza-
tions of the hidden and cell state dynamics of one
of our single-layer LSTM models with four hid-
den units when the model was presented two se-
quences in the Dyck-2 language. Both sequences
have some noticeable patterns and were chosen to
explore whether the model behaves differently in
repeated (or similar) subsequences. It seems that
the LSTM model is trying to employ a complex
counting strategy to learn the Dyck-2 language but
failing to accomplish this task.

8The visualizations for the Dyck-1 and Shuffle-2 lan-
guages were qualitatively similar.
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Figure 2: Visualization of the cell state dynamics of one of the LSTM models trained to learn D1||6, the Shuffle-6
language. The solid lines show the values of the cell states of the six out of eight units in the model, whereas the
dashed lines depict the current depth of each distinct parenthesis-pair inD1||6. We highlight the striking parallelism
between the solid lines and the dashed-lines. Our visualizations confirm that the LSTM models employ a simple
counting mechanism to recognize the Shuffle languages.

7.2 LSTM with a Single Hidden Unit

In theory, a DCA1 should be able to easily rec-
ognize Dyck-1, the well-balanced parenthesis lan-
guage. Can an LSTM with one hidden unit learn
Dyck-1? Our empirical results (Figure 4) con-
firmed that LSTMs can indeed learn this language
by effectively using the single hidden unit to count
up the total number of left and right parentheses in
the sequence. Similarly, we found that an LSTM
with only two hidden units can recognize D1||2.

7.3 Predicting the Last Closing Parenthesis

Following Skachkova et al. (2018), we also trained
an LSTM model with four hidden units to learn to
predict the last closing parenthesis in the Dyck-2
language. The model learned the task in a cou-
ple of epochs and achieved perfect accuracy on the
training and test sets. However, our simple analy-
sis of the cell state dynamics of the LSTM in Fig-
ure 5 suggests that the model is doing some com-
plex form of counting to perform the desired task,
rather than learning the Dyck-2 language.

8 Conclusion

We investigated the ability of standard recurrent
networks to perform dynamic counting and to en-
code hierarchical representations, by considering
three simple counting languages and the Dyck-2
language. Our empirical results highlight the over-
all high-caliber performance of the LSTM mod-
els over the simple RNNs and GRUs, and further
inflect our understanding of the limitations and
strengths of these models.
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Figure 3: Visualization of the hidden and cell state dynamics of one of the LSTMs trained to learn the Dyck-2
language. The time steps at which the model made incorrect predictions are marked with an apostrophe in the
horizontal axis. The plots on the left provide a demonstration of the periodic behaviour of the hidden and cell
states of the model for a long sequence. Similarly, the plots on the right provide the complex counting behaviour
of the model as it observes a nested sequence. We witnessed similar behaviours in our other models as well.

Figure 4: A single-layer LSTM with one hidden unit
learns the Dyck-1 language by counting up upon the
observance of ( and down upon the observance of ).
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