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Abstract

In the era of social media, hate speech, trolling
and verbal abuse have become a common is-
sue. We present an approach to automatically
classify such statements, using a new deep
learning architecture. Our model comprises of
a Multi Dimension Capsule Network that gen-
erates the representation of sentences which
we use for classification. We further provide
an analysis of our model’s interpretation of
such statements. We compare the results of
our model with state-of-art classification al-
gorithms and demonstrate our model’s ability.
It also has the capability to handle comments
that are written in both Hindi and English,
which are provided in the TRAC dataset. We
also compare results on Kaggle’s Toxic com-
ment classification dataset.

1 Introduction

Many people refrain from expressing themselves
or giving opinions online for the fear of harass-
ment and abuse. Twitter admitted that such behav-
ior is resulting in users quitting from their platform
and sometimes they are even forced to change
their location. Due to this, combating hate speech
and abusive behavior has become a high priority
area for major companies like Facebook, Twitter,
Youtube, and Microsoft. With an ever-increasing
content on such platforms, it makes impossible to
manually detect toxic comments or hate speech.

Earlier works in Capsule network based deep
learning architecture to classify toxic comments
have proved that these networks work well as com-
pared to other deep learning architectures (Srivas-
tava et al., 2018). In this paper, we investigate the
performance of a multi-dimension Capsule net-
work as opposed to using a fixed dimension Cap-
sule network for capturing a sentence represen-
tation and we shall discuss how well it captures
features necessary for classification of such sen-

tences. For our experiments we have taken up two
different datasets, namely, TRAC-1, which has
comments in Hindi and English both scraped from
Facebook and Twitter and, Kaggle's Toxic Com-
ment Classification Challenge which is a multi-
label classification task. In our experiments, we
discovered that our model is capable of handling
transliterated comments, which is another major
challenge in this task. Since one of the datasets
we used, TRAC-1, was crawled from public Face-
book Pages and Twitter, mainly on Indian topics,
hence there is a presence of code-mixed text. This
type of data is more observed in a real-world sce-
nario.

2 Related Work

Numerous machine learning methods for detection
of inappropriate comments in online forums ex-
ist today. Traditional approaches include Naive
Bayes classifier (Kwok and Wang, 2013)(Chen
et al., 2012)(Dinakar et al., 2011), logistic re-
gression (Waseem, 2016) (Davidson et al., 2017)
(Wulczyn et al., 2017) (Burnap and L. Williams,
2015), support vector machines (Xu et al., 2012)
(Dadvar et al., 2013) (Schofield and Davidson,
2017), and random forests. However, deep learn-
ing models, for instance, convolutional neural net-
works (Gambäck and Sikdar, 2017) (Potapova and
Gordeev, 2016) and variants of recurrent neu-
ral networks (Pavlopoulos et al., 2017) (Gao and
Huang, 2017)(Pitsilis et al., 2018) (Zhang et al.,
2018), have shown promising results and achieved
better accuracies. Recent works in Toxic com-
ment classification (van Aken et al.) compared
different deep learning and shallow approaches on
datasets and proposed an ensemble model that out-
performs all approaches. Further, work done by
(Nikhil et al., 2018) (Kumar et al., 2018) proposed
LSTMs with attention on TRAC dataset for bet-
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Figure 1: Multi Dimension Capsule Network

ter classification. Capsule networks have shown to
work better on images (Sabour et al., 2017), also
recently these networks have been investigated for
text classification (Yang et al., 2018). (Srivastava
et al., 2018) proposed a Capsule Net based clas-
sifier for both the datasets used in this study, and
showed that it works better than the previous state-
of-art methods. We propose to extend this work by
modifying it into a multi-dimension Capsule net-
work, taking inspiration from Multi filter CNNs
(Kim, 2014a).

3 Multi Dimension Capsule Net for
Classification

We describe our multi-dimension Capsule Net ar-
chitecture in this section which consists primarily
of 5 layers as shown in Fig 1. To get initial sen-
tence representation, we concatenated individual
word representation obtained from pretrained fast-
Text embeddings (Joulin et al., 2016). The sen-
tence representation is then passed through a fea-
ture extraction layer which consists of BiLSTM
units to get a sentence representation. This rep-
resentation is then passed through the Primary and
Convolutional Capsule Layer to extract the high-
level features of a sentence. Finally, the features
are then passed through a classification layer to
calculate the class probabilities.
Word Embedding Layer: To get initial sentence
representation, we used a weight matrix W ∈
Rdw×|V | where, dw is the fixed vector dimension
and |V | is vocabulary size. The vector in column
wi of W represents lexical semantics of a word wi

obtained after pre-training an unsupervised model
on a large corpus (Mikolov et al., 2013), (Penning-
ton et al., 2014), (Joulin et al., 2016).
Feature Extraction Layer: This layer consists of
BiLSTM units to capture the contextual informa-
tion within words of a sentence. As proposed in
(Schuster and Paliwal, 1997), we obtained both the

Figure 2: Capsule Layers

forward and backward context of a sentence. The
layer outputs Ci = [−→ci ;←−ci ] ∈ R2×dsen for a word
wi where, −→ci and ←−ci are forward and backward
contexts (hidden activations), and dsen is number
of LSTM units. Finally, for all the N words, we
have C = [C1,C2, ...,CN] ∈ RN×(2×dsen). We
have used BiLSTMs for feature extraction as op-
posed to CNNs which have been used as a feature
extraction layer for capsules in (Yang et al., 2018)
and (Sabour et al., 2017), as CNNs put forward a
difficulty of choosing an optimal window size (Lai
et al., 2015) which could introduce noise.

Primary Capsule Layer: In (Sabour et al.,
2017) authors proposed to replace singular scalar
outputs of CNNs with highly informative vectors
which consist of “instantiation parameters”. These
parameters are supposed to capture local order
of word and their semantic representation (Yang
et al., 2018). We have extended the model pro-
posed in (Srivastava et al., 2018) to capture differ-
ent features from input by varying the dimension
of capsules. As proposed in (Kim, 2014b). having
different window size can allow us to capture N-
gram features from the input, we hypothesize that
by varying dimension of capsules we can capture
different instantiation parameters from the input.
For context vectors Ci, we used different shared
windows refer Fig 2, Wb ∈ R(2×dsen)×d to get
capsules pi, pi = g(WbCi) where, g is non-
linear squash activation (Sabour et al., 2017), d
is capsule dimension and dsen is the number of
LSTM units used to capture input features. Fac-
tor d can be used to vary a capsule’s dimension
which can be used to capture different instantia-
tion parameters. The capsules are then stacked
together to create a capsule feature map, P =
[p1,p2,p3, ...,pC] ∈ R(N×C×d) consisting of
total N × C capsules of dimension d.

Dynamic Routing algorithm was proposed in
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(Sabour et al., 2017) to calculate agreement be-
tween capsules. The routing process introduces a
coupling effect between the capsules of level (l)
and (l+1) controlling the connection strengths be-
tween child and parent capsules. Output of a cap-
sule is given by

sj =

m∑
i=1

cijûj|i; ûj|i = Ws
ijui

where, cij is the coupling coefficient between cap-
sule i of layer l to capsule j of layer (l+1) and
are determined by iterative dynamic routing, Ws

is the shared weight matrix between the layers l
and l+1. The routing process can be interpreted as
computing soft attention between lower and higher
level capsules.
Convolutional Capsule Layer: Similar to
(Sabour et al., 2017) and (Yang et al., 2018), the
capsules in this layer are connected to lower level
capsules. The connection strengths are calculated
by multiplying the input with a transformation ma-
trix followed by the routing algorithm. The can-
didate parent capsule ûj|i is computed by ûj|i =
Ws

ijui where, ui is the child capsule and Ws

is shared weight between capsule i and j. The
coupling strength between the child-parent cap-
sule is determined by the routing algorithm to pro-
duce the parent feature map in r iterative rounds
by cij =

exp(bij)∑
k exp(bik)

. Logits bij which are ini-
tially same, determines how strongly the capsules
j should be coupled with capsule i. The capsules
are then flattened out into a single layer and then
multiplied by a transformation matrix WFC fol-
lowed by routing algorithm to compute the final
sentence representation (sk). The sentence rep-
resentation is finally passed through the softmax
layer to calculate the class probabilities.

4 Datasets

4.1 Kaggle Toxic Comment Classification
In 2018, Kaggle hosted a competition named
Toxic Comment Classification1. The dataset is
made of Wikipedia talk page comments and is
contributed by Conversation AI. Each comment
has a multi-class label, and there are a total of
6 classes, namely, toxic, severe toxic, obscene,
threat, insult and identity hate. We split the data
(159571 sentences) into training (90%), validation
(10%) and 153164 test sentences.

1https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge/data

Figure 3: Confusion matrix for TRAC dataset

4.2 TRAC dataset
It is a dataset for Aggression identification2, and
contains 15,000 comments in both Hindi and En-
glish. The task is to classify the comments into the
following categories, Overtly Aggressive (OAG),
Covertly Aggressive (CAG), and Non-aggressive
(NAG). We used the train, dev and test data as pro-
vided by the organizers of the task.

5 Experiments

As a preprocessing step, we performed case-
folding of all the words and removal of punctua-
tions. The code for tokenization was taken from
(Devlin et al., 2018) which seems to properly sep-
arate the word tokens and special characters.
For training all our classification models, we
have used fastText embeddings of dimension 300
trained on a common crawl. For out of vocabulary
(OOV) words we initialized the embeddings ran-
domly. For feature extraction, we used 200 LSTM
units, each for capturing forward and backward
contexts (total of 400). We used 20 capsules of di-
mension 15 and another 20 of dimension 20 for all
the experiments. We kept the number of routings
to be 3 as more routings could introduce overfit-
ting. To further avoid overfitting, we adjusted the
dropout values to 0.4. We used cross-entropy as
the loss function and Adam as an optimizer (with
default values) for all the models. We obtained
all these hyperparameters values by tuning several
models on the validation set and then finally se-
lecting the model with minimum validation loss.

6 Results and Analysis

We have reported the results on a total of 3
datasets, two of which belong to TRAC-1 dataset.
Our evaluation metric for TRAC-1 is F1 score,
while for Kaggle dataset is ROC-AUC. We per-
formed better for all the datasets except for TRAC
Twitter data, in which our model could not beat
the previous Capsule Network. We have used very

2https://sites.google.com/view/trac1/shared-task
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Model Kaggle Toxic Comment Classification
(ROC-AUC)

TRAC
Twitter English

(F1-Score)

TRAC
Facebook English

(F1-Score)
Vanilla CNN 96.615 53.006 58.44

Bi-LSTM 97.357 54.147 61.223
Attention Networks (Raffel and Ellis, 2015) 97.425 55.67 62.404

Hierarchical CNN (Conneau et al., 2017) 97.952 53.169 58.942
Bi-LSTM with Maxpool (Lai et al., 2015) 98.209 53.391 62.02

Bi-LSTM and Logistic Regression 98.011 53.722 61.478
Pretrained LSTMs (Dai and Le, 2015) 98.05 53.166 62.9

CNN-Capsule (Yang et al., 2018) 97.888 54.82 60.09
LSTM-Capsule (Srivastava et al., 2018) 98.21 58.6 62.032

Our Model 98.464 57.953 63.532

Table 1: Results Of various architectures on publicly available datasets

Figure 4: CAG comment predicted as NAG comment

Figure 5: OAG comment predicted as CAG comment

strong and some recent baseline algorithms for
comparing our results. We shall now analyze ex-
amples for which our model is making mistakes,
we will pick samples from TRAC Facebook En-
glish dataset. For analysis, we use LIME (Ribeiro
et al., 2016), which performs some perturbations
on the input data to understand the relationship
between input and the output data. It uses a lo-
cal interpretable model to approximate the model
in question and tries to create certain explanations
of input data.

From the confusion matrix, we can observe that
the model gets most confused by predicting CAG
comments as NAG. This can be because the words
used in the sentence might not sound aggressive
and the model labels them as neutral sentences.
However, in reality, the sentence as a whole is a
sarcastic one. For example, refer to Fig 4 which
goes wrong because the words it is focussing on,
are all neutral words, but when combined, it is sar-

Figure 6: NAG comment predicted as OAG comment

casm on bridging the gap the between the poor and
the middle class.

Secondly, the model is also incorrectly predict-
ing NAG and OAG comments as CAG equally,
this is because there are certain comments against
the government which are mostly present in CAG
class. Refer to Fig 6 and Fig 4, in these comments,
the government or some government official is be-
ing criticized, the attack is not directly pointed and
there is hidden aggression.

7 Conclusion and Future Work

We reported our results on several obvious state-
of-the-art deep learning architectures and reported
better results on Capsule network. We also ana-
lyzed some misclassifications made by the model
and tried to reason them as well using heatmap of
the weights obtained from the model. For future
work, as mentioned in (Sabour et al., 2017), there
can be several methods to train capsules hence, we
would like to explore these methods. We also want
to try different loss functions like spread loss, fo-
cal loss and margin loss. We would also like to
explore competency of capsules on different NLP
tasks and explore their working using different in-
vestigation techniques seen in (Yang et al., 2018).
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