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Abstract

Neural network based approaches to auto-
mated story plot generation attempt to learn
how to generate novel plots from a corpus
of natural language plot summaries. Prior
work has shown that a semantic abstraction
of sentences called events improves neural
plot generation and and allows one to de-
compose the problem into: (1) the generation
of a sequence of events (event-to-event) and
(2) the transformation of these events into nat-
ural language sentences (event-to-sentence).
However, typical neural language generation
approaches to event-to-sentence can ignore
the event details and produce grammatically-
correct but semantically-unrelated sentences.
We present an ensemble-based model that gen-
erates natural language guided by events. Our
method outperforms the baseline sequence-to-
sequence model. Additionally, we provide re-
sults for a full end-to-end automated story gen-
eration system, demonstrating how our model
works with existing systems designed for the
event-to-event problem.

1 Introduction

Automated story plot generation is the problem of
creating a sequence of main plot points for a story
in a given domain. Generated plots must remain
consistent across the entire story, preserve long-
term dependencies, and make use of common-
sense and schematic knowledge (Wiseman et al.,
2017). Early work focused on symbolic plan-
ning and case-based reasoning (Meehan, 1977;
Turner and Dyer, 1986; Lebowitz, 1987; Gervás
et al., 2005; Porteous and Cavazza, 2009; Riedl
and Young, 2010; Ware and Young, 2011; Far-
rell et al., 2019) at the expense of manual world
domain knowledge engineering. Neural-network–
based approaches to story and plot generation train
a neural language model on a corpus of stories to
predict the next character, word, or sentence in a

sequence based on a history of tokens (Jain et al.,
2017; Clark et al., 2018; Fan et al., 2018; Martin
et al., 2018; Peng et al., 2018; Roemmele, 2018).

The advantage of neural network based ap-
proaches is that there is no need for explicit do-
main modeling beyond providing a corpus of ex-
ample stories. The primary pitfall of neural lan-
guage model approaches to story generation is that
the space of stories that can be generated is huge,
which in turn, implies that in a textual story cor-
pora any given sentence will likely only be seen
once. Martin et al. (2018) propose the use of a
semantic abstraction called events, demonstrating
that it aids in reducing the sparsity of the dataset.
They define an event to be a unit of a story that
creates a world state change; specifically, an event
is a tuple containing a subject, verb, direct object,
and some additional disambiguation tokens.

The event representation enables the decompo-
sition of the plot generation task into two sub-
problems: event-to-event and event-to-sentence.
Event-to-event is broadly the problem of gener-
ating the sequence of events that together com-
prise a plot. A model for addressing this prob-
lem is also responsible for maintaining plot coher-
ence and consistency. These events are abstrac-
tions and aren’t human-readable. Thus the sec-
ond sub-problem, event-to-sentence, focuses on
transforming these events into natural language
sentences. This second sub-problem can also be
viewed as guided language generation, using a
generated event as a guide.

Martin et al. (2018) further propose that this lat-
ter event-to-sentence problem can be thought of as
a translation task—translating from the language
of events into natural language. We find, how-
ever, that the sequence-to-sequence LSTM net-
works (Sutskever et al., 2014) that they chose to
address the problem frequently ignore the input
event and only generate text based on the orig-
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inal corpus, overwriting the plot-based decisions
made during event-to-event. There are two con-
tributing factors. Firstly, event-to-event models
tend to produce previously-unseen events, which,
when fed into the event-to-sentence model results
in unpredictable behavior. The mapping from an
unseen event to a sentence is unknown to a basic
sequence-to-sequence model. Secondly, sentences
are often only seen once in the entire corpus. De-
spite being converted into events, the sparsity of
the data means that each event is still likely seen a
very limited number of times.

The contributions of the paper are thus twofold.
We present an ensemble-based system for event-
to-sentence that allows for guided language gen-
eration and demonstrate that this outperforms a
baseline sequence-to-sequence approach. Addi-
tionally, we present the results of a full end-to-end
story generation pipeline as originally proposed by
Martin et al. (2018) (Figure 1), showing how all of
the sub-systems can be integrated.

2 Related Work

Early storytelling systems were based on symbolic
planning (Pérez y Pérez and Sharples, 2001; Riedl
and Young, 2010; Meehan, 1977; Lebowitz, 1987;
Ware and Young, 2011) and case-based reason-
ing (Turner and Dyer, 1986; Pérez y Pérez and
Sharples, 2001; Gervás et al., 2005). These sys-
tems required a high knowledge-engineering over-
head in terms of operators or stories transcribed
into symbolic form. Consequently, these systems
were only capable of generating stories in rela-
tively limited domains.

Machine learning approaches attempt to learn
domain information from a corpus of story exam-
ples (Swanson and Gordon, 2012; Li et al., 2013).
Recent work has looked at using recurrent neu-
ral networks (RNNs) for story and plot genera-
tion. Roemmele and Gordon (2018) use LSTMs
with skip-though vector embeddings (Kiros et al.,
2015) to generate stories. Khalifa et al. (2017)
train an RNN on a highly specialized corpus, such
as work from a single author.

Fan et al. (2018) introduce a form of hierarchi-
cal story generation in which a premise is first gen-
erated by the model and is then transformed into
a passage. This is a form of guided generation
wherein a single sentence of guidance is given.
Similarly, Yao et al. (2019) decompose story gen-
eration into planning out a storyline and then gen-

erating a story from it. Our work differs in that we
use an event-to-event process that provides guid-
ance to event-to-sentence.

3 Event-to-Event Implementation

In order to create a full improvisational story-
telling pipeline, we first needed to implement an
event-to-event model such that generated events
can be inputted into our event-to-sentence system.
Martin et al. (2018) showed that the performance
on both event-to-event and event-to-sentence im-
proves when using an abstraction known as an
event is used instead of natural language sen-
tences.

In our work, events are defined as a 5-tuple of
〈s, v, p, o,m〉 where v is a verb, s is the subject
of the verb, o is the object, p is the correspond-
ing preposition, and m can be a modifier, preposi-
tional object, or indirect object—any of which can
be absent. All elements are stemmed and gener-
alized with the exception of the preposition. We
follow the same generalization process as Mar-
tin et al. (2018), using enumerated named entity
recognition tags, VerbNet (Schuler and Kipper-
Schuler, 2005) v3.3 to generalize the verbs, and
WordNet (Miller, 1995) v3.1 for the nouns.

Our event-to-event system is the policy gradi-
ent deep reinforcement learner from Tambwekar
et al. (2019). Briefly, the technique starts with
a sequence-to-sequence LSTM model trained to
perform the event-to-event task. It is trained on
a sequence of “eventified” plot summaries. Us-
ing the REINFORCE algorithm (Williams, 1992),
we backpropagate a reward based on how close
the generated event is to a pre-trained goal. Here,
we are using genre-appropriate verbs (specifically,
VerbNet classes) as goals—verbs that appear often
at the end of the stories in our dataset. The reward
is the product of the distance of each verb from the
goal verb by the normalized frequency of how of-
ten the verb occurs before the goal verb in stories.
Details of how the reward is calculated are given
in Tambwekar et al. (2019).

The final event-to-event network is then placed
into the pipeline as the “Event-to-Event” module,
seen in Figure 1, and its output is fed into the fol-
lowing event-to-sentence models during testing.

4 Event-to-Sentence

We define event-to-sentence to be the problem of
selecting a sequence of words st = st0 , st1 , ..., stk
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Figure 1: The full automated story generation pipeline illustrating an example where the event-to-event module
generates only a single following event.

given the current input event et, i.e. the cur-
rent sentence is generated based on maximizing
Pr(st|et; θ) where θ refers to the parameters of
the generative system. The eventification in Sec-
tion 3 is a lossy process in which some of the in-
formation from the original sentence is dropped.
Thus, the task of event-to-sentence involves filling
in this missing information. There is also no guar-
antee that the event-to-event process will produce
an event that is part of the event-to-sentence train-
ing corpus, simply due to the fact that the space
of potential generated events is very large; the cor-
rect mapping from the generated event to a natural
language sentence would be unknown.

In prior work, Martin et al. (2018) use a
sequence-to-sequence LSTM neural network to
translate events into sentences. Even with the
“split and pruned” sentences that they create—
which we also use (see Section 5)—we find that
this vanilla sequence-to-sequence technique is not
robust to the afore-mentioned challenges. We ob-
serve that a sequence-to-sequence network ends
up operating as a simple language model and of-
ten ignores the input event when generating a sen-
tence. The generated sentence is usually gram-
matically correct, but retains little of the semantic
meaning given by the event.

We thus look for other forms of guided neural
language generation, with the goals of preserving
the semantic meaning from the event in addition
to keeping the generated sentences interesting.
We propose four different models—optimized to-
wards these two objectives, and a baseline fifth
model that is used as a fallthrough: (1) a retrieve-
and-edit model based on Hashimoto et al. (2018);

(2) template filling; (3) sequence-to-sequence with
Monte Carlo beam decoding; (4) sequence-to-
sequence with a finite state machine decoder; and
(5) vanilla sequence-to-sequence. We find that
none of these models by themselves can success-
fully find a balance between the goals of retaining
all of the event tokens and generating interesting
output. However, each of the models possess their
own strengths and weaknesses—each model es-
sentially being optimized towards a different point
on the spectrum between the two goals. We thus
combine these models into an ensemble in an at-
tempt to minimize the weaknesses of each individ-
ual model and achieve a balance between retaining
semantic meaning from the event and generating
interesting sentences.

In all of the following experiments, the task is
to translate events into “generalized” sentences. A
generalized sentence is one in which nouns are re-
placed by WordNet Synsets.

4.1 Retrieve-and-Edit

The first model is based on the retrieve-and-
edit framework for predicting structured out-
puts (Hashimoto et al., 2018), which we will refer
to as RetEdit. We first learn a task-specific simi-
larity between event tuples by training an encoder-
decoder to map each event onto an embedding that
can reconstruct the output sentence; this is our
retriever model. Next, we train an editor model
which maximizes the likelihood of generating the
target sentence given both the input event and a
retrieved event-sentence example pair. We used
a standard sequence-to-sequence model with at-
tention and copying (Gu et al., 2016) to stand in
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as our editor architecture. Although this frame-
work was initially applied to the generation of
GitHub Python code and Hearthstone cards, we
extend this technique to generate sentences from
our event tuples. Specifically, we first initialize a
new set of word embeddings with GLoVe (Pen-
nington et al., 2014), using random initialization
for out-of-vocabulary words. We use our train-
ing set to learn weights for the retriever and editor
models, set confidence thresholds for the model
with the validation set, and evaluate performance
using the test set.

In order to generate a sentence from a given in-
put event, there are two key phases: the “retrieve”
phase and the “edit” phase. With respect to the
input event, we first retrieve the nearest-neighbor
event and its corresponding sentence in the train-
ing set using the retriever model. Then, passing
both the retrieved event-sentence pair and the in-
put event as inputs, we use the editor model to
generate a sentence using beam search. Many of
the successes produced by the model stem from
its ability to retain the complex sentence struc-
tures that appear in our training corpus. How-
ever, this interaction with the training data can also
prove to be a major drawback of the method; tar-
get events that are distant in the embedding space
from training examples typically result in poor
sentence quality.

Since RetEdit relies heavily on having good ex-
amples, we set the confidence of the retrieve-and-
edit model to be proportional to 1− retrieval
distancewhen generating sentences as a lower re-
trieve distance implies greater confidence. We also
observe that our mapping from event to sentence is
not a one-to-one function. There are occasionally
multiple sentences that map to a single event, re-
sulting in retrieval distances of 0.In this case, the
example sentence is returned without any modifi-
cations.

4.2 Sentence Templating

As mentioned earlier, the baseline sequence-to-
sequence network operates as a simple language
model and can often ignore the input event when
generating a sentence. However, we know that
our inputs, an event tuple will have known parts
of speech.We created a simplified grammar for the

syntax of sentences generated from events:

S → NP v (NP ) (PP )

NP → d n

PP → p NP

where d is a determiner that will be added and the
rest of the terminal symbols correspond to an ar-
gument in the event, with n being s, o, or m, de-
pending on its position in the sentence. The re-
sulting sentence would be [ s]{v [ o] [p m]}
where blanks indicate where words must be added
to make a complete sentence.

First, our algorithm predicts the most likely
VerbNet frame based on the contents of the input
event (how many and which arguments are filled).
VerbNet provides a number of syntactic structures
for different verb classes based on how the verb is
being used. For example, if the input event con-
tains 2 nouns and a verb without a preposition, we
assume that the output sentence takes the form of
[NP V NP], but if it has 2 nouns, a verb, and a
proposition, then it should be [NP V PP].

Second, we apply a Bidirectional LSTM (BiL-
STM) language model trained on the generalized
sentences in our training corpus. Given a word,
we can generate words before and after it, within
a particular phrase as given by some of the rules
above, and concatenate the generated sentence
fragments together. Specifically, we use the AWD-
LSTM (Merity et al., 2018) architecture as our lan-
guage model since it is currently state-of-the-art.

At decode time, we continue to generate words
in each phrase until we reach a stopping condi-
tion: (1) reaching a maximum length (to prevent
run-on sentences); or (2) generating a token that
is indicative of an element in the next phrase, for
example seeing a verb being generated in a noun
phrase. When picking words from the language
model, we noticed that the words “the” and “and”
were extremely common. To increase the vari-
ety of the sentences, we sample from the top k
most-likely next words and enforce a number of
grammar-related rules in order to keep the coher-
ence of the sentence. For example, we do not al-
low two determiners nor two nouns to be gener-
ated next to each other.

One can expect that many of the results will
look structurally similar. However, with this ap-
proach, we can guarantee that the provided tokens
in the event will appear in the generated sentence.
To determine the confidence of the model for each
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sentence, we sum the loss after each generated to-
ken, normalize to sentence length, and subtract
from 1 as higher loss translates to lower confi-
dence.

4.3 Monte-Carlo Beam Search

Our third method is an adaptation of Monte
Carlo Beam Search (Cazenave, 2012) for event-to-
sentence. We train a sequence-to-sequence model
on pairs of events and generalized sentences. At
decoding time, we run Monte Carlo beam search
as an alternative search strategy within the de-
coder network. This method differs from tradi-
tional beam search in that it introduces another
scoring term that is used to re-weigh all the beams
at each timestep.

After top-scoring words are outputted by the
model at each time step, playouts are done from
each word, or node. A node is the final token
of the partially-generated sequences on the beam
currently and the start of a new playout. During
each playout, one word is sampled from a soft-
max produced at each step over all words in the
vocabulary. The decoder network is unrolled un-
til it reaches the “end-of-story” tag. Then, the
previously-generated sequence and the sequence
generated from the current playout are concate-
nated together and passed into a scoring function
that computes the current playout’s score.

The scoring function is a combination of
(1) BLEU scores up to 4-grams between the in-
put event and generated sentence, as well as (2) a
weighted 1-gram BLEU score between each item
in the input event and generated sentence. The
weights combining the 1-gram BLEU scores are
learned during validation time where the weight
for each word in the event that does not appear
in the final generated sequence gets bumped up.
Multiple playouts are done from each word and
the score s for the current word is computed as:

st = α ∗ st−1 + (1− α) ∗AV G(playoutt) (1)

where α is a constant.
In the end, k of the partial sequences with high-

est playout scores are kept as the current beam.
For the ensemble, this model’s confidence score is
the final score of the highest-scoring end node.

Monte Carlo beam search excels at creating di-
verse output. Since the score for each word is
based on playouts that sample based on weights
at each timestep, it is possible for the output to be

different across runs. The Monte Carlo beam de-
coder has been shown to generate better sentences
that are more grammatically-correct than the other
techniques in our ensemble, while sticking more
to the input than a traditional beam decoder. How-
ever, there is no guarantee that all input event to-
kens will be included in the final output sentence.

4.4 Finite State Machine Constrained Beams

Beam search in its various forms, including Monte
Carlo playouts, cannot ensure that the tokens from
an input event appear in the outputted sentence.
As such, we adapted the algorithm to fit such lex-
ical constraints. Anderson et al. (2016) adapted
beam search to fit captions for images, with the
lexical constraints coming from sets of image tags.
The method they devised, which they named Con-
strained Beam Search, used finite state machines
to guide the beam search toward generating the
desired tokens. This approach, which we have co-
opted for event-to-sentence, attempts to achieve a
balance between the flexibility and sentence qual-
ity typical of a beam search approach, while also
adhering to the context and story encoded in the
input events that more direct approaches (e.g. Sec-
tion 4.2) would achieve.

The algorithm works on a per-event basis, be-
ginning by generating a finite state machine. This
finite state machine consists of states that enforce
the presence of input tokens in the generated sen-
tence. As an example, assume we have an n-token
input event, {t1, t2, t3, ..., tn}. The corresponding
machine consists of 2n states. Each state main-
tains a search beam of size Bs with at most b
output sequences, corresponding to the configured
beam size s. At each time step, every state (barring
the initial state) receives from predecessor states
those output sequences whose last generated to-
ken matches an input event token. The state then
adds to its beam the bmost likely output sequences
from those received.

In the example, generating token t1 moves the
current state from the initial state to the state cor-
responding to t1, t3 to a state for t3, and so on.
The states t1 and t3 then, after generating tokens
t1 and t3 respectively, transmit said sequences to
the state t1,3. The states and transitions proceed
as such until reaching the final state, wherein they
have matched every token in the input event. Com-
pleted sequences in the final state contain all input
event tokens, thus providing us with the ability to
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retain the semantic meaning of the event.
As much as the algorithm is based around bal-

ancing generating good sentences with satisfying
lexical constraints, it does not perform particularly
well at either. It is entirely possible, if not at all
frequent, for generated sentences to contain all in-
put tokens but lose proper grammar and syntax, or
even fail to reach the final state within a fixed time
horizon. This is exacerbated by larger tuples of to-
kens, seen even at just five tokens per tuple. To
compensate, we relax our constraint to permit out-
put sequences that have matched at least three out
of five tokens from the input event. Still, at least
some of the generated sentences will exhibit the
problems mentioned above.

4.5 Ensemble

The entire event-to-sentence ensemble is designed
as a cascading sequence of the four models above.
We use the confidence scores generated by each
of the models in order to re-rank the outputs of
the individual models. This is done by setting a
confidence threshold for each of the models such
that if a confidence threshold fails, the next model
in the cascade is tried. The thresholds are tuned
by measuring the confidence scores generated on
the validation set of the corpus. The cascading se-
quence is defined in the order that the individual
models are presented above: (1) retrieve-and-edit,
(2) sentence templating, (3) Monte Carlo beam
search, (4) finite state constrained beam search,
and (5) standard beam search. This structure also
saves on computation as it sequentially queries
each model, terminating early and returning an
output sentence if the confidence threshold for any
of the individual models are met.

The event first goes through the retrieve-and-
edit framework, which generates a sentence and
corresponding confidence score. We observe that
this framework performs well when it is able to
retrieve a sample from the training set that is rel-
atively close in terms of retrieval distance to the
input. Given the sparsity of the dataset, this hap-
pens with a relatively low probability, and so we
place this model first in the sequence.

The next two models are each optimized to-
wards one of our two main goals. The sen-
tence templating approach retains all of the tokens
within the event and so loses none of its seman-
tic meaning, at the expense of generating a more
interesting sentence. The Monte-Carlo approach,

on the other hand, makes no guarantees regard-
ing retaining the original tokens within the event
but is capable of generating a diverse set of sen-
tences. We thus cascade first to the sentence tem-
plating model and then the Monte-Carlo approach,
implicitly placing greater importance on the goal
of retaining the semantic meaning of the event.

The final model queried is the finite state ma-
chine constrained beam search. This model has
no confidence score; either the model is success-
ful in producing a sentence within the given length
with the event tokens or not.In the case that the
finite state machine based model is unsuccess-
ful in producing a sentence, the final fallthrough
model—the baseline sequence-to-sequence model
with standard beam search decoding—is used.

5 Dataset

To aid in the performance of our story genera-
tion, we select a single genre: science fiction (sci-
fi). We scraped long-running science fiction TV
show plot summaries from the fandom wiki ser-
vice wikia.com. This fandom wiki service contains
longer and more detailed plot summaries than the
dataset used in Tambwekar et al. (2019), both of
which are qualities that we believe to be important
for the overall story generation process. The cor-
pus contains 2,276 stories in total, each an episode
of a TV show. The average story length is 89.23
sentences. There are stories from 11 shows, with
an average of 207 stories per show, from shows
like Doctor Who, Futurama, and The X-Files. The
data was pre-processed to simplify alien names in
order to aid named entity recognition.

Then the sentences were split, partially follow-
ing the “split-and-pruned” methodology of Mar-
tin et al. (2018). Sentences were split at S-bars
and conjunctions separating S’s, and the subject of
the sentence was re-inserted in the new sentences.
Once the sentences were split, they were “eventi-
fied” as described in Section 3. One benefit of hav-
ing split sentences is that there is a higher chance
of having a 1:1 correspondence between sentence
and event, instead of a single sentence becoming
multiple events. After the data is fully prepared, it
is split in a 8:1:1 ratio to create the training, vali-
dation, and testing sets respectively.

6 Experiments

We perform two sets of experiments, one set eval-
uating our models on the event-to-sentence prob-
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lem by itself, and another set intended to evaluate
the full storytelling pipeline.

Each of the models in the event-to-sentence en-
semble are trained on the training set in the sci-
fi corpus. The exact training details for each of
the models are as described above. Note that we
present results for the generalized sentences in-
stead of the sentences after slot-filling, as shown
in Figure 1, to directly measure the output of
the event-to-sentence ensemble. Additionally, all
of the models in the ensemble slot-fill the verb
automatically—filling a VerbNet class with a verb
of appropriate conjugation—except for the sen-
tence templating model which does verb slot-
filling during post-processing.

After the models are trained, we pick the cas-
cading thresholds for the ensemble by running the
validation set through each of the models and gen-
erating confidence scores. This is done by run-
ning a grid search through a limited set of thresh-
olds such that the overall BLEU-4 score (Papineni
et al., 2002) of the generated sentences in the vali-
dation set is maximized. These thresholds are then
frozen when running the final set of evaluations on
the test set. For the baseline sequence-to-sequence
method, we decode our output with a beam size of
5. We report perplexity and BLEU-4 scores, com-
paring against the gold standard from the test set.
Perplexity is a measure of the predictive accuracy
of a model and is calculated as:

Perplexity = 2−
∑

x p(x) log2 p(x) (2)

where x is a token in the text, and

p(x) =
count(x)∑
y∈Y count(y)

(3)

where Y is the vocabulary. Our BLEU-4 scores
are naturally low (where higher is better) because
of the creative nature of the task—good sentences
may not use any of the ground-truth n-grams.

The second experiment uses event sequences
generated by our event-to-event system as sum-
marized in Section 3. Our event-to-event system
requires goals in the form of verb classes. For the
science fiction data, common endings for stories
are VerbNet classes like “escape-51.1”, “discover-
84”, and “get-13.5.1”. In this paper, we will use
the goal “discover-84”. We seed the event-to-event
system with events extracted from the first sen-
tences of stories found in the test set. The system
then generates a sequence of events until it reaches

Model Perplexity BLEU Length
RetEdit 71.354 0.041 9.27
Templates 203.629 0.0034 5.43
Monte Carlo 71.385 0.0453 7.91
FSM 104.775 0.0125 10.98
Seq2seq 103.176 0.0425 6.59
Ensemble 70.179 0.0481 9.22

Table 1: Perplexity and BLEU scores along with av-
erage sentence lengths, thresholds, and utilization per-
centages for event-to-sentence models on the test set.

the goal verb. We then present this sequence of
events as well as the corresponding generalized
sentences generated using our ensemble.

7 Results/Discussion

Model Thresholds Test Utilization Pipeline Utilization
RetEdit 0.8 94.91% 55.71%
Templates 0.8 0.22% 0.91%
Monte Carlo 0.1 4.29% 41.10%
FSM - 0.15% 0.68%
Seq2seq - 0.43% 1.60%

Table 2: Thresholds and utilization percentages for the
models on the test sets and on the events generated by
the event-to-event system.

Our results are presented in the form of three
tables. Table 1 shows the perplexity, BLEU-4
scores, and average sentence length for event-to-
sentence on the testing set for each of the mod-
els, ensemble, and baseline. Note that some of
the models, such as the sentence templates, ignore
the idea of a gold standard sentence and are thus
poorly optimized towards perplexity and BLEU
scores. The ensemble, as predicted, still performs
better than any of the individual models as it is de-
signed to combine the models such that each of
their weaknesses are minimized. The average sen-
tence lengths highlight the differences between the
models, with the templates producing the short-
est sentences and the finite state machine taking
longer to generate sentences due to the constraints
it needs to satisfy. Table 2 shows the confidence
thresholds after tuning the ensemble. The RetE-
dit and sentence template models need 80% con-
fidence in their results, or the next model in the
cascade is tried. Table 2 also shows how often
each model in the ensemble is used generating
sentences from the eventified testing corpus and
from event-to-event. RedEdit was heavily used on
the test set, likely due the train and test sets having
a similar distribution of data. On the pipeline ex-
amples RetEdit is used much less—events gener-
ated by event-to-event may be very different from
those in the training set. A majority of the events
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Input Event RetEdit Templates Monte Carlo FSM Gold Standard
〈<PRP>, act-
114-1-1, to, ∅,
event.n.01〉

<PRP> and
<PERSON>0 move to
the event.n.01 of the
natural object.n.01.

<PRP> act-114-1-1 to
event.n.01.

<PRP> moves to
the nearest natu-
ral object.n.01.

physical entity.n.01
move back to the
phenomenon.n.01 of
the craft.n.02...

<PRP> move to the
event.n.01.

〈<PERSON>2,
send-11.1,
through,
<PERSON>6,
<LOCATION>1〉

<PERSON>2 sends
<PERSON>6 through
the <LOCATION>1.

The <PERSON>2
send-11.1 the
<PERSON>6 through
<LOCATION>1.

<PERSON>2 passes
this undercover in the
body part.n.01 and
collapses.

∅ In activity.n.01 to avoid
<PRP> out.n.01
<PERSON>2
would transport
<PERSON>6 through
the <LOCATION>1.

〈<PERSON>0,
admire-31.2, ∅,
<PERSON>3,
∅〉

<PERSON>0 believes
<PERSON>3.

<PERSON>0 admire-
31.2 and <PERSON>3

<PERSON>0 hates
<PERSON>3 saying
<PRP> s not ready
for duration.n.03 .

<PERSON>0 and
<PERSON>0
comes in <PRP>
content.n.05 for
wrongdoing.n.02 and
says <PERSON>0
has made on line.n.23
have made trait.n.01.

A pivotal artifact.n.01
in <PRP> act.n.02 is
a examination.n.01
divised by
<LOCATION>0
to make <PERSON>0
hate <PRP>
<PERSON>3.

Table 3: Event-to-sentence examples for each model. ∅ represents an empty parameter; <PRP> is a pronoun.

Input Sentence Extracted Event Generated Events (Event-to-Event) Generated Sentences (Event-to-Sentence; ensemble)
On Tatooine, Jabba
the Hutt inspects the
drone barge recently
delivered to him.

〈<ORGANIZATION>0,
assessment-34.1, ∅,
vessel.n.02, ∅〉

〈<PERSON>1, settle-36.1.2, ∅,
indicator.n.03, indicator.n.03 〉;
〈music.n.01, escape-51.1-1, from,
∅, ∅〉; 〈<PRP>, discover-84, to,
run-51.3.2, progenitor.n.01〉

The <ORGANIZATION>0 can not scan the vessel.n.02
of the <VESSEL>0. <PERSON>1 decides to be a little
person.n.01 at the structure.n.01. the ’music.n.01 arrives.
<PRP> finds a lonely person.n.01 on the upper one of the
craft.n.02 which is not an personal letter.n.01 but does not
respond to hails .

Boba Fett has just
chased down another
bounty, a Rodian art
dealer who sold fake
works to Gebbu the
Hutt.

〈<PERSON>0, chase-
51.6, ∅, bounty.n.04,
∅〉

〈<PERSON>0, chase-51.6,
to, magnitude.n.01, ∅〉;
〈magnitude.n.01, comprehend-87.2,
off, craft.n.02, magnitude.n.01〉;
〈<PERSON>2, amuse-31.1, off, ∅,
∅〉; 〈<PERSON>2, discover-84,
off, change of integrity.n.01, ∅〉

<PERSON>0 enters the bounty.n.04 and tells <PRP>.
<PERSON>0 attaches the explosive.a.01 to the
person.n.01 who is trying to fix the device.n.01 . the mag-
nitude.n.01 doesn’t know the craft.n.02 off the craft.n.02.
<PERSON>2 is surprised when <PRP> learns that the
person.n.01 is actually <PERSON>7 . <PERSON>2
sees the change of integrity.n.01 and tells <PRP>.

Table 4: End-to-end pipeline examples on previously-unseen input data.

that fall through RetEdit are caught by our Monte
Carlo beam search, irrespective of the fact that
RetEdit and sentence templates are most likely to
honor the event tokens.

Table 3 presents concrete examples of the gen-
eralized sentence outputs of each of the event-
to-sentence models and some trends are evident.
Retrieve-and-Edit focuses on semantics at the ex-
pense of sentence quality. Sentence templates pro-
duces output that matches the input event but is
very formulaic. Monte Carlo generates entertain-
ing and grammatically-correct sentences, but oc-
casionally loses the semantics of the input event.
The finite state machine attempts to achieve a bal-
ance between semantics and generating entertain-
ing output, however it sometimes fails to produce
an output given the constraints of the state ma-
chine itself. We further present the results of an
entire working pipeline in Table 4, demonstrating
the event-to-sentence’s ability to work with an ex-
isting plot generator.

8 Conclusions

Although event representations were shown in the
past to improve performance on plot generation
tasks—allowing for planning toward plot points,

we are faced with the problem of translating these
events into syntactically- and semantically-sound
sentences that are both interesting and keep the
meaning of the original event. We have found that
no one model is able to fully solve this task and so
we present the combination of four approaches—
each of which excel at and struggle with different
aspects of the translation—into an ensemble.

RetEdit excels when the input event is drawn
from a similar distribution as our training set, but
the FSM approach does not depend on the dis-
tribution that the input is drawn from. The Sen-
tence Templates generate semantically-sound sen-
tences that are generic in structure, whereas Monte
Carlo beam search generates more diverse out-
put but is not guaranteed to retain the meaning
of the input event. These models lie at different
points on the spectrum between retaining meaning
and generating interesting sentences. Future state-
of-the-art sentence-filling techniques can also be
added to the ensemble to account for the weak-
nesses of current models. This work completes the
end-to-end story generation pipeline previously-
conceived by Martin et al. (2018) and serves as a
stepping stone for research in sentence expansion
or event-to-sentence tasks.
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