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Abstract

Automatically generating globally coherent
stories is a challenging problem. Neural text
generation models have been shown to per-
form well at generating fluent sentences from
data, but they usually fail to keep track of the
overall coherence of the story after a couple of
sentences. Existing work that incorporates a
text planning module succeeded in generating
recipes and dialogues, but appears quite data-
demanding. We propose a novel story gener-
ation approach that generates globally coher-
ent stories from a fairly small corpus. The
model exploits a symbolic text planning mod-
ule to produce text plans, thus reducing the
demand of data; a neural surface realization
module then generates fluent text conditioned
on the text plan. Human evaluation showed
that our model outperforms various baselines
by a wide margin and generates stories which
are fluent as well as globally coherent.

1 Introduction

Automatic story generation is the task of automat-
ically determining the content and utilizing proper
language to craft stories. One of the most impor-
tant aspects of these stories is their coherence. The
scope of global coherence includes arranging the
contents in a plausible order, staying on topic, and
creating cohesion through anaphoric expressions,
etc.

Traditionally, story generation is performed
with symbolic planning systems (see, e.g., Mee-
han, 1976; Riedl and Young, 2010; Busemann and
Horacek, 1998). These systems often follow a
hierarchical pipeline: higher level modules per-
form text planning, determine discourse relations
and contents of each sentence; lower level mod-
ules account for surface realization accordingly.
Although capable of producing impressive, coher-
ent stories, these systems rely heavily on manual

knowledge engineering to select actions, charac-
ters, etc., properly, therefore generalizing poorly
to unseen domains.

Early NLG systems, on the other hand, excel
at generating fluent on-topic utterances (see, e.g.,
Mei et al., 2015; Wen et al., 2015). These mod-
els are data-based, and therefore can be applied to
new domains if data is available. However, these
models struggle to keep track of longer story or
dialog history, i.e., they may switch topics, repeat
information or say things that are not consistent
with sentences generated earlier (see, e.g., Vinyals
and Le, 2015; Shang et al., 2015). Extra modelling
efforts or knowledge input is required to improve
global coherence.

Neural NLG systems that incorporate text plan-
ning efforts could improve global coherence, and
grant some controllability over the contents, i.e.
making it possible to generate stories given spe-
cific input of what should happen in the story. (Fan
et al., 2019) uses a convolutional seq2seq model to
generate a chain of predicate-argument structures
from a prompt to sketch a story, and then uses an-
other convolutional seq2seq model to convert the
chain of predicate-argument structures to text. The
neural checklist model (Kiddon et al., 2016) keeps
track of the progress of recipe generation with
the usage of ingredient words, to generate recipes
from a bag of ingredients. If we consider the task
of story generation, events (“script” events; scripts
capture knowledge about “standardized sequences
of events about daily activities such as going to a
restaurant or visiting a doctor”) are also fairly in-
formative for the narration progress. Thus if one
could identify events within surface texts, it is, in
principle, possible to regard the events as indica-
tors of the narration progress (just like the ingre-
dients in a recipe) and apply the neural checklist
model.

These requirements are fulfilled by the
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InScript (Modi et al., 2017a) corpus, a small
corpus that contains a total of about 1000 stories
about everyday events from 10 scenarios. Each
story is annotated with script-relevant event types
to align them with surface language. However,
surprisingly, when we apply the neural checklist
model on InScript to generate stories, the
quality of the generated stories appears poor
(see the second item in Table 1 for a sample
generation).

We notice two possible reasons for why the neu-
ral checklist model does not perform well on the
task: (1) the scale of InScript is less that 0.5%
of the recipe task investigated in (Kiddon et al.,
2016), thus the model may not be able to properly
fit its complex structure and learn to plan the text;
(2) each script event in our data corresponds to
multiple possible surface realization options (e.g.,
both ’I went to the shop’ and ’I drove to the su-
permarket’ would be labeled as a go to store
event), which makes the alignment between an
event and the surface text inherently more com-
plicated than that between ingredients and surface
text.

To tackle these issues, we propose a new neu-
ral story generation model that exploits explicit,
symbolic text planning. The model consists of
two components: the agenda generator produces
an agenda, a sequence of script events that would
later be fleshed out to yield a story, by a neural
surface realization module; the neural surface re-
alization module treats the events in the agenda as
a latent variable that encodes the progress of story
generation, and produces text conditioned on it.
The outcome is a system that could be trained with
much less data. To our knowledge, this is the first
attempt to integrate a completely symbolic text
planner with a neural surface realization compo-
nent, to perform fully interpretable text planning.
Human evaluation shows that our system signif-
icantly outperforms various baselines in terms of
fluency and global coherence.
Our contributions are as follows:

• We develop a story generation model that
generates globally coherent stories about
daily activities.

• We propose a novel way to combine a neural
story generation model with an explicit, sym-
bolic text planning component; furthermore,
we show that the design reduces the demand
on training data.

• We illustrate the possibility of guiding the di-
rection of story generation by conditioning
the generation on a latent intention variable.

In the remainder of this paper, we start with a
discussion of related research, and then introduce
the InScript corpus. To follow is a detailed in-
troduction of our model and the results from hu-
man evaluation. Analysis of the results and some
discussions about future directions conclude the
paper.

2 Related Work

NLG Conditioned on Latent Intention
Variable

Incorporating a latent intention variable in NLG
systems yields improved controllability over the
content. It is proved effective in data-to-dialogue
generation (see, e.g., Yarats and Lewis, 2017;
Kiddon et al., 2016). In neural text generation,
some domain-specific categories of words are also
informative for the progress of generation. Kid-
don et al. (2016) developed an end-to-end neural
text generation model, which keeps track of the us-
age of the keywords (e.g. recipe ingredients) with
attention mechanism, and conditions surface real-
ization on the usage of these words.

NLG with Explicit Text Planning

Noting that RNN based language models could
only account for local coherence, attempts have
been made to perform text planning on a higher
level (e.g. Jain et al., 2017; Peng et al., 2018).
Puduppully et al. (2018) performs content se-
lection and planning with attention based neu-
ral networks before surface realization, to gen-
erate specifically structured NBA game sum-
maries. Martin et al. (2018) uses sequence to se-
quence neural network (event2event) to generate
events (represented by a verb and its most im-
portant arguments) corresponding to consecutive
sentences. A second sequence to sequence model
(event2sentence) generates a sentence based on
the event. Our method differs from that of Mar-
tin et al. (2018), mainly in that (1) we seek to
implement text coherence on a document level
whereas they mostly focused on consecutive sen-
tence pairs; (2) we do not incorporate explicit sen-
tence segmentation but leave the job to the surface
realization component.
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3 Data

Our work is based on the InScript corpus. We
mainly utilized its event annotations and the tem-
poral script graphs extracted from the corpus.

3.1 The InScript Corpus
The InScript corpus (Modi et al., 2017a) was
designed for the investigation of script knowledge.
The corpus includes around 100 stories for each
of 10 common daily scenarios. These stories are
annotated with event types as well as participant
types. For this paper, we only exploit the event
type annotations. An example is shown in Figure
1. The average story length is approximately 240
tokens; the corpus includes 238k tokens in total.
We use the corpus to train the neural surface real-
ization component.

3.2 The Temporal Script Graphs
Wanzare et al. (2017) compiled the InScript
event annotations into temporal script graphs (see
Figure 2). These directed graphs contain informa-
tion on the typical temporal order of events in a
script scenario, which is a crucial aspect of script
knowledge. In our method, temporal script graphs
are used to generate plausible sequences of events
for building the agenda.

4 Our Model

Overview
Our model consists of three modules. Firstly, a
symbolic agenda generator, which is responsi-
ble for performing text planning. Given a specific
scenario (e.g., baking a cake), it produces an
agenda according its temporal script graph. Sec-
ondly, a neural surface realization module, which
performs two tasks: (1) it predicts the next word
of the story conditioned on the text history and
the event that needs to be realized at a specific
point in the story; (2) it determines whether the
current event has been completely realized so the
generation could move to the next event in the
agenda. Finally, a story generator which performs
the following. (1) Calls the agenda generator to
generate an agenda. (2) Creates a seed, a short,
plausible beginning, to initialize surface realiza-
tion, e.g., ‘yesterday i went grocery shopping’.
(3) Iteratively calls the surface realization mod-
ule to perform a beam search (see, e.g., Sutskever
et al., 2014) and generate a complete story. (4) Re-
moves occasional (approx. once per thousand to-

kens) excessive repetitions in the generated story.
More precisely, when a word or phrase is repeated
at least three times, the third repetition would be
deleted. e.g., ‘i like the tree very very very much’
becomes ‘i like the tree very very much’. The gen-
eration terminates when the agenda is exhausted
and a sentence-terminating punctuation is gener-
ated.

4.1 The Agenda Generator

Given a scenario, the agenda generator goes
through the temporal script graph and samples a
path through it. For the example given in Figure
2, the path would start out with “choose recipe”
and continue with either “get ingredients” or “buy
ingredients”, followed by “add ingredients”, un-
til the end of the graph is reached. The agenda
generator also decides whether each event should
be realized. In natural stories, narrators usually
do not mention all of the events, and this com-
ponent enables our model to mimic this behav-
ior: the probability of event realization depends
on the likelihood of the event given its predeces-
sor p(e|e′), which is estimated on the training data
using an event bigram model. To avoid excessive
discontinuity in the realization, the agenda gener-
ator is prohibited to skip two consecutive events.
The outcome of this process is an agenda, a plau-
sible sequence of events.

Due to its symbolic nature, the agenda genera-
tor demands no extra training data, which is cru-
cial for reducing the demand of data. Moreover,
as the agenda generation is fully transparent and
interpretable, we gain fair controllability over the
content. For example, dropping a specific event
from the agenda would cause the generation to
skip it. Actually, it is also possible to use the sur-
face realization module independently and gener-
ate a story from an event sequence as input.

4.2 The Neural Surface Realization Module

Our neural surface realization module is a GRU
(Cho et al., 2014) language model, modified to en-
able two additional functionalities. (1) Condition-
ing the prediction of the successive word on the
generation progress. (2) Determining whether the
current event has been completely verbalized. If
so, the surface realization module shifts its focus
one event onward along the agenda and begins to
instantiate the next event. See Figure 3 for a con-
ceptual illustration.
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Figure 1: An excerpt from a story on TAKING A BATH in the InScript corpus taken from Modi et al. (2017b).
The referring expressions are in parentheses, and the corresponding discourse referent label is given by the super-
script. Referring expressions of the same discourse referent have the same color and superscript number. Script-
relevant events are in square brackets and colored in orange. Event types are indicated by the subscripts.

Figure 2: The Temporal Script Graphs for the BAKING
A CAKE script induced from the InScript corpus,
taken from (Wanzare et al., 2017). The nodes are the
event clusters whereas the dashed boxes include some
possible utterances that correspond to these clusters.

Figure 3: An illustration of the surface realization mod-
ule. It produces two outputs: a distribution over the
vocabulary that predicts the successive word, and a
boolean-valued variable that indicates whether the gen-
eration should move to the next event.

For the first functionality (see Figure 4 for the
model architecture), we condition the prediction
of the next word on both the previously instan-
tiated event (the preceding event) and the event
that should be verbalized now (the forthcoming
event). Intuitively, the surface realization mod-
ule will be informed with something like ‘I have
taken a shopping cart, now tell me how to get my
groceries’. We train a dense vector representation
for each event in the corpus, which we term event
vectors. To condition the surface realization on
the events, we grant the generator access to the

event vectors ept of the preceding event and eft of
the forthcoming event:

dt = Softmax(D[ot; e
p
t ; e

f
t ])

here dt is the output distribution that predicts the
successive word; D is an affine transformation; ‘;’
stands for vector concatenation; ot = Wht is the
content from the GRU language model where ht is
the GRU cell states, and W is another affine trans-
formation. To further relate the surface realiza-
tion with the generation progress, we concatenate
the event vectors with the embedding of previous
word as the input to the GRUs:

ht = GRU([xt−1; e
p
t−1; e

f
t−1])

As a direct consequence, we need to train dense
vector representations of all words in the vocab-
ulary. This is quite ambitious, as the corpus is
fairly small-scale (about 238k tokens). To allevi-
ate this data sparsity issue, we initialize our word
embeddings with Google’s pre-trained word2vec
vectors1 (see, e.g., Mikolov et al., 2013). The ef-
fectiveness of this domain-adaptation method in
language modelling is observed in Zhang et al.
(2016). As a side effect, our word embedding di-
mensionality is fixed at 300.

To determine whether the forthcoming event has
been instantiated, i.e. whether the model is ready
to move onwards, we integrate a binary classifier
into the architecture:

at = Softmax(A[ht; e
p
t ; e

f
t ])

hereA is a projection matrix; at is a 2-dimensional
vector. If a1 > a0, the surface realization mod-
ule decides that the forthcoming event has been
completely narrated and it should move one event
onwards to continue the generation; otherwise, it
stick with the current forthcoming event to com-
plete its instantiation.

1https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
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Figure 4: An illustration of the surface realization model architecture. It exploits a multi-task learning framework:
it outputs the distribution over the next token dt, as well as at, which determines whether to shift to the next event.

As there are more tokens than events in the cor-
pus, the aforementioned binary classification is bi-
ased. The ratio between the categories is about
0.85 : 0.15. To balance the performance on both
categories, we apply greater weight on the loss of
the less frequent category. More concretely, we
measure a weighted cross-entropy loss on output
at:

La(at, a
∗
t ; γ) =

{
−(1− γ) log a0t , a∗t = (1, 0)
−γ · log a1t , a∗t = (0, 1)

here a∗t is the ground truth; the weight coefficient
γ is a hyper-parameter. All in all, the surface re-
alization module exploits a multi-task learning ar-
chitecture. The final loss function is

L(at, a
∗
t , dt, d

∗
t ; γ, β) = H(dt, d

∗
t )+β·La(at, a

∗
t ; γ)

where H(·, ·) denotes the cross entropy between
the parameters; d∗t is the ground truth distribution
of the next word (herein: a one-hot vector); β is
another hyper-parameter.

It is worth noting that we did not incorporate
explicit sentence planning, but completely rely
on the surface realization module to perform sen-
tence segmentation. The underlying reason is the
absence of a clear correspondence between the
agenda events and the sentences: multiple events
could appear in a single sentence; likewise, multi-
ple sentences could be devoted to one single event.
We count on the surface realization module to
punctuate correctly and generate syntactically cor-
rect sentences.

5 Experiments

5.1 Experimental Set-up and Optimization

2.5% of the data were randomly selected as the
validation set; the rest was kept as the training set.
As evaluation will be up to humans instead of any

test set metric (see section 5.2), no test set is nec-
essary.

The model was implemented with Python 3.5.
The neural network part of the model was im-
plemented with Keras 2.1.2 (Chollet et al., 2015).
Optimization was performed with adam optimizer
(Kingma and Ba, 2014) with gradient clipping to
stabilize the training (see Pascanu et al., 2013). To
regularize the model, dropout (Srivastava et al.,
2014) was applied to all dense connections, in-
cluding the explicit dense layers and the fully-
connected layers within the GRU cells; besides,
we applied early stopping, which monitors the loss
function as is defined in section 4.2.

Hyper-parameters are tuned with a two-stage
random hyper-parameter search, which is empir-
ically proven more effective than grid search (see
Bergstra and Bengio, 2012). On the validation set,
the model yields a 0.90 accuracy and a 0.75 F1
score on the binary classification task concerning
output a (whether to shift to the next event; see
section 5.3.1 for some discussion on its conse-
quences) and a 38.9 perplexity for predicting the
next word. 2.

5.2 Evaluation

5.2.1 Model Variants
We re-implemented the neural checklist model by
Kiddon et al. (2016) as a baseline. We decided not
to use Martin et al. (2018) because the sentences
it generates are not lexicalized, i.e. they include
word categories like entity.n.01, which is not
directly suitable for human evaluation. Substitut-
ing these category labels with surface language is
substantially more difficult for our domain than
theirs. We also included a human ceiling and sev-

2In case of interest in reproducing our result, ap-
pendix A provides full details on hyper-parameter tun-
ing; the code is available at https://github.com/
arkgithubforyou/story_generation

https://github.com/arkgithubforyou/story_generation
https://github.com/arkgithubforyou/story_generation
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eral ablated versions of our final model into the
human evaluation. To follow is a list of the sys-
tems we evaluated.

• Human Author
Stories directly taken from the InScript
corpus. Expected to produce an upper bound
of the evaluation.

• Full
Our model as is described in section 4.

• GRU
A plain GRU language model trained on
InScript, intended to be a baseline that
has no specific global coherence control. Its
generations are seeded with scenario-specific
beginnings for some relevance. For ex-
ample, the seed for the Going Grocery
Shopping script is ‘yesterday i went gro-
cery shopping .’

• Neural Checklist
The neural checklist model as is described
in Kiddon et al. (2016). We applied a post-
processing similar to the one described in
section 4 to clean up the repetitions.

• Random Event Order
A variant of our model with the agenda gen-
erator ablated. As a substitution, the agendas
are now generated by randomly sampling a
sequence of events from the set of events cor-
responding to the respective script. We com-
pare this variant with the full model to ver-
ify the contribution of the agenda generator
in implementing global coherence.

For some intuition, see table 1 for sample genera-
tions from these systems.

5.2.2 Evaluation Method
Automatic evaluation of text quality, especially its
global coherence, is a challenging task (see, e.g.
Lapata and Barzilay, 2005; Purdy et al., 2018, for
some meaningful attempts though). We also ob-
served poor correlations between a few automatic
metrics and the results of human evaluation (see
appendix C for more details), and decided that au-
tomatic metrics are not suitable for our task. Thus
we performed human evaluation through crowd-
sourcing; it evaluates the following aspects of gen-
erated stories.

• Syntax
The syntactical correctness of the sentences.

• Global Coherence
The global coherence of a story with regard
to the given script, e.g., GOING GROCERY
SHOPPING. We evaluate from three aspects:
Inclusion (does the story cover the most nec-
essary steps about the topic?), Relevance
(does the story stay on-topic, and rarely men-
tion anything irrelevant to the topic? ), and
Order (does the story describe the activities
relevant to the topic in a plausible order?)

• Agenda Coverage
The correspondence between the generated
story and the agenda it was fed with. The
participants were asked whether each of the
agenda items has been realized in the story.

We ask participants five questions per story: for
Agenda Coverage, participants were asked to
check off the agenda items that were mentioned
in the story they saw; for the other four aspects,
participants were asked to rate on a 1 to 4 scale.
The evaluation experiment was implemented with
Lingoturk (Pusse et al., 2016); we hired partici-
pants and conducted the experiment on Prolific3.
See appendix B for more details on conducting the
experiment of human evaluation.

5.3 Results

5.3.1 Human Evaluation
Table 2 illustrates the results from human evalu-
ation. The GRU model, a plain language model
without coherence modeling, yields the worst
performance on all metrics. The output wildly
changes between topics and is incoherent globally;
the poor coherence probably also negatively af-
fects human judgments on syntactic correctness.
The neural checklist saw better perfor-
mance than plain GRUs, but it failed to include the
most necessary steps of the scenario. It seems the
model cannot correctly track the progress of the
generation, which, as discussed in section 1, we
suspect to be a consequence of the limited amount
of training data: as its attention-based content-
planning cannot make use of the order informa-
tion and has to learn it from data, the model (and
probably also other attention-based models) has a
substantially higher demand on training data.

3https://prolific.ac/

https://prolific.ac/
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GRU
yesterday i went grocery shopping . i did n’t know anything all the items in my cart , so that it was ready to pick up up
. i got my items off , and found it to the front of the store . i was on narita shopping cart because i had less than twenty
of them . i grabbed my cart and went to the cashier . i paid for the items , then i gave the cashier my money and my bag ,
checked my bags up , and the other items in my hand bag . i am glad i ’m flying for my plane and go through security .

Neural Checklist
yesterday i wanted to go grocery shopping . when i went to the front of the store , i went to the grocery store and drove to
the front of the store . i went to the cashier and drove to the front desk .

Random Event Order
yesterday i went grocery shopping . i grabbed a shopping cart and put the items on the list . i put my items in the cart and
drove to the store . i drove to the grocery store and went to the grocery store . i made a list of all the items i would need . i
put my items on the cart and headed to the store . when i entered the store , i grabbed a shopping cart and walked inside . i
put the cart away in the cart .

Agenda: evoking→ take shop cart→ put conveyor→ get groceries→ go grocery→ move section→ make list→ check off→
put conveyor→ leave→ enter→ take shop cart→ enter→ return shop cart→ story ends

Full
yesterday i went grocery shopping . i made a list of my list and drove to the grocery store . when i entered the store , i
grabbed a shopping cart and pushed the cart down to the meat aisle . i got all my items , and crossed items on my list . i
went to the checkout register and paid for my groceries . i put my groceries in my cart and left .

Agenda: evoking→make list→go to store→enter→take cart→move along sections→take grocery→check list→go to
checkout→pay→pack grocery→leave→ story ends

Human Author
yesterday i went grocery shopping . i took my grocery list with me , along with some reusable shopping bags . my grocery
list has all the items i want to buy on it . i selected a shopping cart from in front of the store , and went inside . i put my
reusable bags in the cart . i looked at my list and started in the produce section . i put different vegetables and fruits into
my cart . next i wheeled my cart to the cereal aisle and took a box of cereal . i went through the store aisle by aisle and
selected my groceries . each aisle is organized by types of food and non-food items . one aisle has dried pasta , canned
tomatoes , rice , and sauce . i selected a few boxes of pasta and some rice . another aisle carries plastic wrap , trash bags ,
and aluminum foil . as i went through the store , i kept looking at my list to see what i needed next . when i added each item
to my cart , i crossed it off my list . my last stop was the dairy aisle where i got milk and eggs . when i had all the groceries
i wanted , i went to the cash register ans stood in line . when it was my turn , i put each item on the conveyor belt and the
cashier scanned each one . a bagger put all of the groceries into my reusable bags . i paid , and then the cashier gave me a
receipt . i loaded the bags of groceries into the trunk of my car and drove home .

Table 1: Sample generations by different models on GOING GROCERY SHOPPING. The corresponding seeds
are displayed in boldface. Neural Checklist, Full used the same agenda, which is given in the table.

Agenda Coverage∗∗ Syntax Inclusion Order Relevance
human author 86% 0.86 0.91 0.93 0.83

full 71% 0.75 0.67 0.75 0.88
random event order 50% 0.45 0.46 0.14∗ 0.71
Neural Checklist 20% 0.54 0.34 0.27 0.53

GRU n/a 0.33 0.24 0.11∗ 0.22
∗: difference between the pair is not statistically significant due to paired T-test on a significant level α = 0.05.

∗∗: answers to the agenda coverage questions yield a Fleiss’ kappa of 0.34.

Table 2: Results from human evaluation. Highest scores out of automatic systems are displayed in boldface.
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Human Author : event ‘make a shopping list’ in scenario ‘going grocery shopping’
... next , i used the wipes the store provides at the entrance and wipe off the handle of the shopping cart , and my hands
, so i know my hands will stay clean while i choose my food . then i took out the shopping list i wrote at home and i
started . i always start with heavy things ...

Full Model : event ‘place fertilizer’ in scenario ‘planting a tree’
... yesterday i planted a tree. first , i decided to buy a small apple tree . i got a shovel and drove to the home . i found a
perfect spot in my backyard and dug a hole . i put the soil in the hole and then watered it . ...

Table 3: Examples where instantiations of agenda items failed to be approved by evaluators. Up: event instantiation
that was not explicit enough; down: event that was not instantiated due to an error in the output a from the surface
realization module.

The Full model was able to significantly out-
perform all other automatic variants and received
positive scores for all criteria. It reflects well
the events on the agenda and usually includes the
most necessary steps of the scripts in a plausi-
ble order, which indicates decent global coher-
ence. It even received a higher relevance score
than Human Author. However, this may re-
sult from our model often producing shorter sto-
ries than the human originals, see section 5.3.2.
Its agenda coverage score is lower than that of
Human Author. We detected two sources of
these errors: (1) event instantiations are some-
times not recognized as such by the participants,
because they are not explicit enough; this is also
the reason for why the agenda coverage score for
the original human texts is less than 100%. (2) Er-
rors in the event termination judgments of the sur-
face realization module: when the surface realiza-
tion module wrongly decided that the forthcoming
event has been instantiated, it would simply skip
the event in the generation. See table 3.

Random Event Order witnessed a dra-
matic performance drop compared to Full. Its
order score is not significantly different from that
of the GRU baseline. That means, particularly, our
agenda generator was crucial for and capable of
performing reliable text planning and incorporat-
ing global coherence. It retained high relevance
score (i.e., it still stays on-topic), as the agendas it
use were still about the respective scenarios. How-
ever, unexpectedly, the inclusion score and syntax
score also saw a sharp drop. For that we noticed
two possible origins. Firstly, it might result from a
systematic error of human evaluation – the stories
produced by the random model, violating global
coherence, are in general messy and would make
the assessment cognitively difficult. Thus they are
likely to receive lower scores. Secondly, our sur-

face realization is conditioned on a ‘previous event
/ forthcoming event’ pair, therefore, for less plau-
sible agendas (e.g., one produced by a random
agenda generator), the corresponding pairs would
appear less frequently in our small-scale corpus,
thus suffering more from data sparsity issues and
affect the quality of surface realization.

5.3.2 Qualitative Analysis
Most noticeably, the stories our model generates
are less elaborative than the corpus stories. From
the samples in table 1, we could see that the story
from the full model is much shorter than the
one taken from the corpus. It turns out that our
system often chose not to elaborate on an event: a
genuine human would occasionally list what she
bought from the grocery store, like vegetables,
fruits, pasta, rice; whereas our system would only
say ‘i got my items’. The most important reason
behind this is that these elaborations are sparse,
thus whenever our system sees ‘i got my items’
in the history, it will decide that the event take
items is already instantiated, and move onwards
to the next event. Another reason for generat-
ing shorter stories is our agenda generator can-
not correctly reproduce some real-world scenarios
where the events ‘cycle’. For example, the event
chain corresponding to a story about taking
a bus could occasionally look like borad →
ride → exit → board → ride → exit →
board . . . , when a passenger simply changes his
bus a few times. Future work that incorporates
an ‘elaboration-level’ control and more expressive
script knowledge representation might be able to
alleviate these issues.

5.3.3 Generalizability Aspects
Due to the stochastic nature of the agenda genera-
tor, the agendas it produces rarely coincide with
the ones in the corpus (less than 0.1%). That
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means our model can successfully generate new
script story lines.

In terms of generalizing to other domains, it is
worth noting that events is not the only means of
planning a story. Any category of words or sym-
bolic information that could outline a story (con-
ditioned on a specific topic), could take the role of
events in our model and allow for the application
of our approach. Examples include ingredient us-
ages in a recipe, incidents in a football match, and
progresses in a presidential election.

It is well observed that the InScript corpus
we use contains massive manual annotation effort.
However, we note the the event annotations we use
is inherently a cluster of utterances that correspond
to same script events. Thus it is feasible to sub-
stitute the event annotations in our method with
predicate-argument structures, which could be ac-
quired by dependency parsing.

6 Conclusion

To incorporate global coherence of story genera-
tion on small-scale corpora, we developed a novel,
data-driven, hybrid model which exploits a la-
tent intention variable to guide story generation.
The model includes a symbolic agenda generator
that performs text planning and is less demand-
ing on data, and a neural surface realization mod-
ule that accomplishes surface realization condi-
tioned on the agenda. Our model outperformed
various baselines according to the result of a hu-
man evaluation experiment which mostly focused
on global coherence. The model could be gener-
alized to other domains where words that indicate
narration progress are available. Future work will
include the exploration of some control over the
level of elaboration and developing more expres-
sive script knowledge representation to account
for more complicated scripts.
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A Hyper-parameter Tuning

Hyper-parameters are tuned with a two stage ran-
dom hyper-parameter search. In both stages we
test 60 random hyper-parameter combinations; the
5 best-performing hyper-parameter combinations
in the first stage decide the ranges from which
the hyper-parameters combinations for the second
stage were sampled. Table 4 shows the intervals
that the hyper-parameters were sampled from in
the first stage. Table 5 shows the hyper-parameters
that we finally chose. Each training session takes
3 to 4 hours on a single TITAN X.

B More Details on Human Evaluation

Four stories per model variant per script (that is,
200 stories in total) were randomly selected for
evaluation. Each task included the assessment
of five stories (one from each system); partici-
pants were compensated with 1.5GBP per task,
which corresponds to a payment of approx. 7GBP
per hour. For each of the stories, we collected
the judgments of about 10 crowd-sourcing partic-
ipants (about 400 participations in total). All par-
ticipants were native English speakers. Submis-
sions that left at least one question unanswered
or fall beyond 3 standard deviations are excluded
from the statistics. As a result, we received 1221
valid evaluation items in total.

C Automatic Metrics

We attempted a few automatic metrics for eval-
uating the quality of generated stories proposed
in the literature (see Lapata and Barzilay, 2005;
Purdy et al., 2018), including word overlap
(average of word overlap in consecutive sen-
tences), sentence vector (average cosine
of sentence vectors of consecutive sentences),
coreference rate (proportion of entities
refering to one already mentioned). The results
and their correlation with human evaluation are
shown in figure 6. Due to their poor correlation
with human evaluation results, we decided not to
rely on these metrics.
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Hyper-parameter Range Sampling Criterion
dropout rate [0.2, 0.8] uniform*
learning rate [10−5, 10−3] exponential**

gradient norm threshold [1.0, 1000.0] exponential**
batch size [23, 210] uniform-p2***

context length [5, 100] uniform-int****
event embedding size [26, 210] uniform-p2***

RNN size [26, 211] uniform-p2***
β: weight on loss term La [1.0, 2.0] uniform*

γ: weight on category-1 cross-entropy [1.0, 6.0] uniform*

*: sampled from a uniform distribution over the range.
**: sampled from a truncated exponential distribution over the range. i.e., we sampled its logarithm
from a uniform distribution.
***: sampled from a uniform distribution over the powers of 2 in the range.
****: sampled from a uniform distribution over all integers in the range.

Table 4: The initial ranges and sampling criteria of the random hyper-parameter search.

event em-
bedding
size

learning
rate

context
length

batch
size

maximum
gradient
norm

512 1.9e−5 46 256 3.17
Dropout GRU

size
β γ

0.456 1024 1.01 5.46

Table 5: The final choices of hyper-parameters. β is the weight applied on the output a and γ is weight applied on
the loss of the less frequent category in the binary classification.

System Word Overlap Sentence Vector Coreference Rate
human author 0.18(0.020) 0.62(0.019) 0.11(0.015)

full 0.27(0.030)2 0.89(0.029)1 0.00061(0.00070)
random event order 0.26(0.015)2 0.90(0.023)1 0.002(0.002)

GRU+Topic 0.35(0.11) 0.74 (0.078) 0.18(0.066)
GRU 0.26(0.018) 0.69(0.0080) 0.23(0.038)

corelation with human evaluation -0.59 -0.05 -0.55
1,2: differences between pairs are not statistically significant according to pair T-tests.

Table 6: Results from automatic evaluation, and their correlation with overall human evaluation results. Encoding
some information about the text though they may, these scores are hardly informative about global coherence.


