
ACL 2019

Storytelling

Proceedings of the Second Workshop

August 1, 2019
Florence, Italy



c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-44-4

ii



Introduction

Welcome to the second *ACL workshop on Storytelling!

Human storytelling has existed for as far back as we can trace, and is thought to be fundamental to
being human. Stories help share ideas, histories, and common ground. This workshop examines what
storytelling is, its structure and components, and how it is expressed, with respect to state of the art in
language and computation.

Part of grounding artificial intelligence work in human experience can involve the generation,
understanding, and sharing of stories. This workshop highlights the diverse work being done in
storytelling and AI across different fields. Papers at this workshop are multi-disciplinary, including work
on neural and linguistic approaches to understanding and generating stories in narrative texts, social
media, and visual narratives.

The second workshop of Storytelling received 22 submissions. We accepted 14 submissions into the
proceedings, 6 of which were presented as oral presentations, and 8 as posters. We accepted 3 of the
submitted papers as non-archival works to be presented during the poster session. We are pleased to host
an invited talk from Melissa Roemmele.

We hope you enjoy the workshop!
The Storytelling Workshop Organizers

iii





Organizers:

Francis Ferraro, University of Maryland Baltimore County
Ting-Hao (Kenneth) Huang, Pennsylvania State University
Stephanie M. Lukin, U.S. Army Research Laboratory
Margaret Mitchell, Google

Program Committee:

Snigdha Chaturvedi*, University of California, Santa Cruz
Elizabeth Clark, University of Washington
David Elson, Google
Drew Farris*, Booz Allen Hamilton
Mark Finlayson*, Florida International University
Jon Gillick, University of California, Berkeley
Andrew Gordon, University of Southern California
Daphne Ippolito*, University of Pennsylvania
Anna Kasunic, Carnegie Mellon University
Lun-Wei Ku*, Academia Sinica
Boyang "Albert" Li*, Baidu Research
Joao Magalhaes, Universidade Nova de Lisboa
Ramesh Manuvinakurike*, University of Southern California
Lara Martin, Georgia Institute of Technology
Cynthia Matuszek*, University of Maryland Baltimore County
Nanyun Peng, University of Southern California
Eli Pincus*, University of Southern California
Elahe Rahimtoroghi, Google
Melissa Roemmele, SDL
Mark Riedl, Georgia Institute of Technology
Mariët Theune*, University of Twente

An immense thank you to all our reviewers, especially these last-minute reviewers (*). We could
not have put together our program without everyone’s help!

Invited Speaker:

Melissa Roemmele, SDL

v





Table of Contents

Composing a Picture Book by Automatic Story Understanding and Visualization
Xiaoyu Qi, Ruihua Song, Chunting Wang, Jin Zhou and Tetsuya Sakai . . . . . . . . . . . . . . . . . . . . . . . . 1

"My Way of Telling a Story": Persona based Grounded Story Generation
Khyathi Chandu, Shrimai Prabhumoye, Ruslan Salakhutdinov and Alan W Black . . . . . . . . . . . . . 11

Using Functional Schemas to Understand Social Media Narratives
Xinru Yan, Aakanksha Naik, Yohan Jo and Carolyn Rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A Hybrid Model for Globally Coherent Story Generation
Fangzhou Zhai, Vera Demberg, Pavel Shkadzko, Wei Shi and Asad Sayeed . . . . . . . . . . . . . . . . . . . 34

Guided Neural Language Generation for Automated Storytelling
Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung, Zhaochen Luo, William Ma, Lara Martin

and Mark Riedl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

An Analysis of Emotion Communication Channels in Fan-Fiction: Towards Emotional Storytelling
Evgeny Kim and Roman Klinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Narrative Generation in the Wild: Methods from NaNoGenMo
Judith van Stegeren and Mariët Theune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Lexical concreteness in narrative
Michael Flor and Swapna Somasundaran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Simple Approach to Classify Fictional and Non-Fictional Genres
Mohammed Rameez Qureshi, Sidharth Ranjan, Rajakrishnan Rajkumar and Kushal Shah . . . . . . 81

Detecting Everyday Scenarios in Narrative Texts
Lilian Diana Awuor Wanzare, Michael Roth and Manfred Pinkal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Personality Traits Recognition in Literary Texts
Daniele Pizzolli and Carlo Strapparava. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

Winter is here: Summarizing Twitter Streams related to Pre-Scheduled Events
Anietie Andy, Derry Tanti Wijaya and Chris Callison-Burch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

WriterForcing: Generating more interesting story endings
Prakhar Gupta, Vinayshekhar Bannihatti Kumar, Mukul Bhutani and Alan W Black . . . . . . . . . . 117

Prediction of a Movie’s Success From Plot Summaries Using Deep Learning Models
You Jin Kim, Yun Gyung Cheong and Jung Hoon Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii





Conference Program

Thursday, August 1, 2019

08:45–09:00 Opening Remarks

Morning Session 1

09:00–10:00 Invited Talk
Melissa Roemmele

10:00–10:30 Composing a Picture Book by Automatic Story Understanding and Visualization
Xiaoyu Qi, Ruihua Song, Chunting Wang, Jin Zhou and Tetsuya Sakai

10:30–11:00 Morning Break

Morning Session 2

11:00–11:30 "My Way of Telling a Story": Persona based Grounded Story Generation
Khyathi Chandu, Shrimai Prabhumoye, Ruslan Salakhutdinov and Alan W Black

11:30–12:00 Using Functional Schemas to Understand Social Media Narratives
Xinru Yan, Aakanksha Naik, Yohan Jo and Carolyn Rose

12:00–12:30 A Hybrid Model for Globally Coherent Story Generation
Fangzhou Zhai, Vera Demberg, Pavel Shkadzko, Wei Shi and Asad Sayeed

12:30–14:00 Lunch

Afternoon Session

14:00–14:30 Guided Neural Language Generation for Automated Storytelling
Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung, Zhaochen Luo, William Ma,
Lara Martin and Mark Riedl

14:30–15:00 An Analysis of Emotion Communication Channels in Fan-Fiction: Towards Emo-
tional Storytelling
Evgeny Kim and Roman Klinger

15:00–15:30 Poster Lightning Talks

15:30–16:00 Afternoon Break

ix



Thursday, August 1, 2019 (continued)

16:00–17:30 Poster Session

Adversarial Generation and Encoding of Nested Texts
Alon Rozental

Narrative Generation in the Wild: Methods from NaNoGenMo
Judith van Stegeren and Mariët Theune

Lexical concreteness in narrative
Michael Flor and Swapna Somasundaran

A Simple Approach to Classify Fictional and Non-Fictional Genres
Mohammed Rameez Qureshi, Sidharth Ranjan, Rajakrishnan Rajkumar and Kushal
Shah

DREAMT - Embodied Motivational Conversational Storytelling
David Powers

Detecting Everyday Scenarios in Narrative Texts
Lilian Diana Awuor Wanzare, Michael Roth and Manfred Pinkal

Personality Traits Recognition in Literary Texts
Daniele Pizzolli and Carlo Strapparava

Winter is here: Summarizing Twitter Streams related to Pre-Scheduled Events
Anietie Andy, Derry Tanti Wijaya and Chris Callison-Burch

WriterForcing: Generating more interesting story endings
Prakhar Gupta, Vinayshekhar Bannihatti Kumar, Mukul Bhutani and Alan Black

Prediction of a Movie’s Success From Plot Summaries Using Deep Learning Models
You Jin Kim, Yun Gyung Cheong and Jung Hoon Lee

Character-Centric Storytelling
Aditya Surikuchi and Jorma Laaksonen

17:30–17:45 Closing Remarks

x



Proceedings of the Second Storytelling Workshop, pages 1–10
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Composing a Picture Book
by Automatic Story Understanding and Visualization

Xiaoyu Qi1, Ruihua Song1, Chunting Wang2 , Jin Zhou2, Tetsuya Sakai3

1Microsoft, Beijing, China
2Beijing Film Academy, Beijing, China

3Waseda University, Tokyo, Japan
{xiaqi, rsong}@microsoft.com, 04172154@mail.bfa.edu.cn

whitezj@vip.sina.com, tetsuyasakai@acm.org

Abstract

Pictures can enrich storytelling experiences.
We propose a framework that can automati-
cally compose a picture book by understand-
ing story text and visualizing it with paint-
ing elements, i.e., characters and backgrounds.
For story understanding, we extract key infor-
mation from a story on both sentence level and
paragraph level, including characters, scenes
and actions. These concepts are organized and
visualized in a way that depicts the develop-
ment of a story. We collect a set of Chinese
stories for children and apply our approach to
compose pictures for stories. Extensive exper-
iments are conducted towards story event ex-
traction for visualization to demonstrate the ef-
fectiveness of our method.

1 Introduction

A story is an ordered sequence of steps, each of
which can contain words, images, visualizations,
video, or any combination thereof (Kosara and
Mackinlay, 2013). There exist vast amounts of
story materials on the Internet, while few of them
include visual data. Among the few presented to
audience, some include illustrations to make the
stories more vivid; others are converted to video
forms such as cartoons and films, of which the
production consumes a lot of time and human ef-
forts. Although visualized stories are difficult to
generate, they are more comprehensible, memo-
rable and attractive. Thus, automatic story under-
standing and visualization has a broad application
prospect in storytelling.

As an initial study, we aim to analyze events of
a story and visualize them by combining painting
elements, i.e., characters and backgrounds. Story
understanding has been a challenging task in Nat-
ural Language Processing area for a long time
(Charniak, 1972). In order to understand a story,
we need to tackle the problem of event extraction

in a story. A story usually consists of several plots,
where characters appear and make actions. We de-
fine event keywords of a story as: scene (where),
character (who, to whom) and action (what). We
extract events from story on both sentence level
and paragraph level, so as to make use of the in-
formation in each sentence and the context of the
full story.

As for story visualization, the most challenging
problem is stage directing. We need to organize
the events following certain spatial distribution
rules. Although literary devices might be used e.g.
flashbacks, the order in a story plot roughly corre-
sponds with time (Kosara and Mackinlay, 2013).
We arrange the extracted events in a screen along
the story timeline. Positions of elements on the
screen are determined according to both current
and past events. Finally, with audio track added,
simple animations could be generated. These sim-
ple animations are like storyboards, in which each
image represents a major event that correspond to
a sentence or a group of consecutive sentences in
the story text.

Regarding storytelling, we need to first know
our audiences, assess their level of domain knowl-
edge and familiarity with visualization conven-
tions (Ma et al., 2012). In this paper, our tar-
get is to understand and visualize Chinese stories
for children. We collect children’s stories from
the Internet. (The sources are described in Sec-
tion 7.1.) Then, we extract events and prepare vi-
sualization materials and style for children. The
framework we proposed, however, has wide exten-
sibility, since it does not depend on domain spe-
cific knowledge. It could serve as an automatic
picture book composition solution to other fields
and target audience.

Our contributions are threefold. 1) We propose
an end-to-end framework to automatically gener-
ate a sequence of pictures that represent major

1



events in a story text. 2) New formulation of story
event extraction from sentence level to paragraph
level to align the events in a temporal order. 3) We
propose using a neural encoder-decoder model to
extract story events and present empirical results
with significant improvements over the baseline.

The paper is organized as follows: In Section 2
we introduce related work. Then we formulate
the problem and overview our proposed solution
in Section 3. Details of different modules are pro-
vided in Section 4, 5 and 6. We describe our data
and experiments in Section 7. In Section 8 we
make conclusion and present our future work.

2 Related Work

2.1 Story Event Extraction

Event extraction is to automatically identify events
from text about what happened, when, where,
to whom, and why (Zhou et al., 2014). Previ-
ous work on event extraction mainly focuses on
sentence-level event extraction driven by data or
knowledge.

Data-driven event extraction methods rely on
quantitative methods to discover relations (Hogen-
boom et al., 2011). Term frequency-inverse doc-
ument frequency ( TF-IDF) (Salton and McGill,
1986) and clustering (Tanev et al., 2008) are
widely used. Okamoto et al. (2009) use hierar-
chical clustering to extract local events. Liu et
al. (2008) employ weighted undirected bipartite
graphs and clustering methods to extract events
from news. Lei et al. (2005) propose using sup-
port vector machines for news event extraction.

Knowledge-driven approaches take advantages
of domain knowledge, using lexical and syntac-
tical parsers to extract target information. Mc-
Closky et al. (2011) convert text to a dependency
tree and use dependency parsing to solve the prob-
lem. Aone et al. (2009) and Nishihara et al. (2009)
focus on designed patterns to parse text. Zhou et
al. (2014) propose a Bayesian model to extract
structured representation of events from Twitter in
an unsupervised way. Different frameworks are
designed for specific domains, such as the work in
(Yakushiji et al., 2000), (Cohen et al., 2009) and
(Li et al., 2002)). Although there is less demand
of training data for knowledge-driven approaches,
knowledge acquisition and pattern design remain
difficult.

In order to deal with the disadvantages of both
methods, researchers work on combining them.

At the training stages of data-driven methods, ini-
tial bootstrapppings with dependency parser (Lee
et al., 2003) and clustering techniques (Piskorski
et al., 2007) are used for better semantic under-
standing. Chun et al. (2004) combine lexicon
syntactic parser and term co-occurrences to ex-
tract biomedical events while Jungermann et al.
(2008) combine a parser with undirected graphs.
The only trial of neural network on this task is the
work in (Tozzo et al., 2018), where they employ
RNN with dependency parser as training initial-
ization.

We propose a hybrid encoder-decoder ap-
proach for story event extraction to avoid human-
knowledge requirement and better utilize the neu-
ral network. Moreover, previous work focus on
sentence-level event extraction, which has a gap to
apply to full story visualization due to the loss of
event continuity. Thus, we extend event extraction
to paragraph level so that it is possible to visualize
a story coherently in a time sequence.

2.2 Story Visualization

Previous work mainly focuses on narrative visu-
alization (Segel and Heer, 2010), where the visu-
alization intention is deeper understanding of the
data and the logic inside. Valls et al. (2017) ex-
tract story graphs a formalism that captures the
events (e.g., characters, locations) and their inter-
actions in a story. Zitnick et al. (2013) and Zeng et
al. (2009) interpret sentences and visualize scenes.
There also exists visual storytelling task (Huang
et al., 2016).

The most relevant work to ours is that of Shi-
mazu et al. (1988), where they outlined a story
driven animation system and presented story un-
derstanding mechanism for creating animations.
They mainly targeted on interpretations of three
kinds of actions: action causality check, action
continuity beyond a sentence and hidden actions
between neighbouring sentences. The key solu-
tion was a Truth Maintenance System proposed
in (Doyle, 1979), which relies on pre-defined con-
strains from human knowledge. Understanding a
story with a TMS system would cost a lot of man-
ual efforts. In light of this, we propose an ap-
proach to story understanding that automatically
learns from labelled story data.

Different from previous work, we propose new
story visualization techniques, including tempo-
ral and spatial arrangement for screen view. Our

2



Sentence-Level Event Extraction

Paragraph-Level Event Integration

Story Visualization

... ...
Sentence i:

(Little mouse was 
planting beans in the 

garden.)

Sentence 1:
(Uncle cow was 

working in the field.)

Sentence T:
(He said, ''It's fun. It's 

fun.'')

     Painting elements
    meta data:
   1. Scene horizon
  2. Elment size:             
         (height, width)
 ...

Scene: field
Role: uncle cow
Action: working

Role: he
Action: said

Scene: garden
Role: little mouse

Action: planting beans

Position: (left,top)

Scene: field
Role: uncle cow
Action: working

Scene: garden
Role: little mouse 

Action: said

Scene: garden
Role: little mouse

Action: planting beans

Audio track

Painting elements

... ...

... ...

+

+

Figure 1: A flowchart for story understanding and vi-
sualization

framework generates story animations automati-
cally from end to end. Moreover, it is based on
event extraction on both sentence level and para-
graph level.

3 Problem Formulation and System
Overview

We formulate the problem as follows: the input is
a story that contains m paragraphs and each para-
graph p contains n sentences, which are composed
of several words. The output is a series of im-
ages that correspond to the story. An image I is
composed by some prepared painting elements (30
scenes, such as sea, and 600 characters, such as
fox and rabbit, with different actions in our experi-
ment). As it is costly to prepare painting elements,
given a number of stories to visualize, we hope
that the fewer elements are prepared the better.

We show the flowchart of our proposed solution
in Figure 1. Given a story text, we first split it
into a sequence of narrative sentences. Story event
extraction is conducted within each sentence in-
dependently. Then events are integrated on para-
graph level and fed into the visualization stage,
where they are distributed temporally and spatially
on the screen. The visualization part determines

what to be shown on the screen, when and where
they should be arranged. Finally, painting ele-
ments are displayed on the screen and audio track
is added to make a picture book with audio.

4 Sentence-Level Event Extraction

We start from event extraction on sentence-
level. Given a sentence s = (x1, x2, ..., xT )
of length T , we intend to get a label se-
quence y = (y1, y2, ..., yT ), where yi ∈
scene, character, action, others, i ∈ [1, T ]. We
propose using a neural encoder-decoder model to
extract events from a story.

4.1 BiLSTM-CRF
BiLSTM-CRF is the state-of-the-art method to
solve the sequence labeling problem. Thus we ap-
ply this model to extract events in sentence level.

We can encode the story sentence with a Bidi-
rectional LSTM (Graves and Schmidhuber, 2005),
which processes each training sequence forwards
and backwards. A Conditional Random Fields
(CRF) (Ratinov and Roth, 2009) layer is used as
the decoder to overcome label-bias problem .

Given a sentence s = (x1, x2, ..., xT ) of length
T , we annotate each word and get a ground-truth
label sequence l = (l1, l2, ..., lT ). Every word
xi(i ∈ [1, T ]) is converted into a real-valued vec-
tor ei(i ∈ [1, T ]) with a word-embedding dic-
tionary pre-trained from Wikipedia Chinese cor-
pus. Then the sentence is represented as E =
(e1, e2, ..., eT ), where each ei is padded to a fixed-
length. We set the embedding length to 100 in our
experiment. The embedded sentence vector E is
fed into a BiLSTM neural network. The hidden
state hi of the network is calculated in the same
way as in (Graves and Schmidhuber, 2005).

Different from standard LSTM, Bidirectional
LSTM introduces a second hidden layer that pro-
cesses data flow in the opposite direction. There-
fore, it is able to extract information from both the
previous and latter knowledge. Each final hidden
state is the concatenation of the forward and back-
ward hidden states:

ht = [
←−
ht ;
−→
ht ] (1)

Instead of adding a softmax classification layer
after the hidden states, we employ CRF (Rati-
nov and Roth, 2009) to take the label correla-
tions into consideration. The hidden layer h =
(h1, h2, ..., hT ) is fed into the CRF layer. We

3



intend to get the predicted label sequence y =
(y1, y2, ..., yT ). The conditional probability is de-
fined as:

f(y, h) =
T∑

i=1

W T
yihi +

T∑

i=0

Ayi,yi+1

P (y|h) = exp(f(y, h))∑
y
′ exp(f(y′ , h))

(2)

where T is the length of the output sequence. W T
yi

is weight matrix. Ayi,yi+1 represents the transi-
tioning score from label yi to label yi+1. And y

′

stands for any possible output label sequence. Our
training objective is minimizing the negative log
likelihood of P (y|h).

4.2 Model Variants
Recently, a new pre-trained model BERT obtains
new state-of-the-art results on a variety of natu-
ral language processing tasks (Devlin et al., 2018).
We apply this model to our story event extraction.
We input a sentence to the BERT base model re-
leased by Devlin et al. The last layer of BERT
serves as word embedding and input of the BiL-
STM model. The other parts of the model remain
the same for comparison. We refer to this variant
as BERT-BiLSTM-CRF.

We also experiment with IDCNN model
(Strubell et al., 2017) and fix the parameter setting
for comparison. IDCNN model leverages convo-
lutional neural network instead of recurrent one to
accelerate the training process.

5 Paragraph-Level Event Integration

When generating a story animation, we need to
take consideration of the full paragraph, so that
the events could be continuous in temporary or-
der. (A story might consists of one or multiple
paragraphs.) In this part, we integrate sentence-
level story events to paragraph-level ones. Given
a story paragraph p = (s1, s2, ..., sn) of length
n, where sentence s = (x1, x2, ..., xT ) has corre-
sponding label sequence y = (y1, y2, ..., yT ), we
integrate the label information and get a refined
event keyword set for each sentence, denoted as
ŷ = (scene, character, action). ŷ indicates the
events in the current sentence.

A story paragraph example is presented in Table
1. The sentence-level detection results are listed.
Event detection results of a story vary in different
sentences and they are quite unbalanced. Only the

1st, the 8th and the 14th sentence have tokens indi-
cating the story scenes. We need to infer that the
first scene “field” should cover the sentence spans
from the 1st to the 7th. And the scene changes to
“river” in the 8th sentence and remains until the
13th one. Then it turns to “garden” and keeps the
same until the end of the story. Similarly, we have
to decide which character and action should ap-
pear in a sentence time span according to the para-
graph information, even if nothing is detected in a
specific sentence.

We mainly consider scene and character detec-
tion. An action may last from when it last emerged
until the next action, such as running or driving.
While it could also be short and happens within
a sentence time (e.g. He sits down.). The deter-
mination of action continuity requires significantly
more human knowledge and is beyond this paper’s
scope.

Extracted scene of a sentence is expanded to
its neighbours in both forward and backward di-
rections. At the scene boundaries, we follow the
newly detected one. In this way, the story is di-
vided into several scenes. Then we deal with
characters within scenes. Normally, a character
emerges at the first detected sentence and remains
on the screen until the current plot ends.

6 Story Visualization

In this part, we calculate positions on the screen
for each element. We define the position as
[left, top] in percentage relative to the top-left
corner of the screen. Elements’ positions are de-
termined according to three constraints: 1) Meta
data of the painting elements for the characters; 2)
character number and significance in current time
span; 3) history positions of the elements. The
painting meta data of all elements include the fol-
lowing information:

• (height, width): size of an element

The additional meta data of a painting scene are:

• horizon: distance from the horizontal line in
a scene to the scene bottom. We use it as a
safe line to arrange the feet of our characters;
otherwise, a bear might float above the grass-
land, for example.

• point A: left point on the screen where we
can locate a character.

4



story sentence (actions denoted with underlines) scene character
1. The sun beat down on the earth. / sun
2. Uncle cow was working in the field. field uncle cow
3. Beads of sweat were pattering down. / /
4. Seeing this, little elephant Lala quickly went to his side. / little elephant Lala, his
5. He fanned up big ears, and sent cool wind for uncle cow. / He, uncle cow
6. Uncle cow said with a smile:“Its so cool, thank you.” / uncle cow
7. Lala replied happily:“No worries. No worries.” / Lala
8. Grandma bear was washing clothes by the river, river Grandma bear
9. She was wiping sweat from time to time. / She
10. Lala saw it and fanned his big ears. / Lala
11. Grandma bear was not hot. / Grandma bear
12. She smiled kindly and said, “Good boy, thank you.” / She
13. Lala replied:“No worries, no worries.” / Lala
14. Little mouse was planting beans in the garden. garden Little mouse
15. Lala walked forward with enthusiasm and said, / Lala
16. “Little mouse, let me help you fan the wind.” / Little mouse
17. “Thank you very much.” said the mouse gratefully. / the mouse
18. Lala fanned her big ears again. / Lala
19. Suddenly he fanned the little mouse against the plantain leaf. / he, little mouse
20. Lala scratched her head shyly and said, “I’m really sorry.” / Lala
21. Little mouse snort a laugh, and he said, “It’s fun. It’s fun.” / Little mouse

Table 1: Example of extracted results for story “Big ears of the little elephant”. (We have translated the Chinese
story into English.)

• point B: right point on the screen where we
can locate a character.

We calculate the character number to show on
the screen in a time span and evenly distribute their
positions based on the painting elements size and
the horizon of the scene. Characters with high sig-
nificance ( talking ones or newly emerged ones )
are placed near point A or B. If the character ap-
peared in previous time spans, its position keeps
the same or changes by minimal distance. The po-
sition should follow the equations:

top ≤ 1− height− horizon (3)

left ≤ 1− width (4)

min ||top− top
′ || (5)

min ||left− left
′ || (6)

where top
′

and left
′

stand for previous position
of an element. If the element appears for the first
time, Equation 6 and 7 are ignored.

As to the orientation setting, we initialize each
character with an orientation facing towards the
middle of the screen. Those who are talking or
interacting with each other are set face to face.

Finally, we add a timeline to the story. Each
event in the text is assigned a start time and an
end time, so that it appears in the screen accord-
ingly. Along with an audio track, the static images
are combined to generate a story animation. The
characters are mapped to corresponding elements
with the detected actions if they are available (e.g.,
we have the elements when a character is saying).
Dialogue boxes are added to show which charac-
ter is saying. The painting elements are prepared
in clip art style to make it more flexible to change
them, as shown in Figure 2.

7 Experiment and Discussion

7.1 Experiment Setup
Data Collection: We collect 3,680 Chinese stories
for children from the Internet1. The stories include
47 sentences on average. We randomly sample
10, 000 sentences from the stories and split them
into three parts: training set (80%), testing set
1http://www.tom61.com
http://www.cnfla.com
http://story.beva.com
http://www.61ertong.com
(Our data are public copyrighted.)

5



Dataset Train Test Dev
#sentences 8,000 1,000 1,000
#scene 5,896 711 664
#character 10,073 1,376 1,497
#action 15,231 1,949 2,023

Table 2: Dataset statistics.

Event scene character action
Example sea, forest... fox, bear... cry, run...

Table 3: Story events examples.

(10%), and development set (10%). We hired four
experienced annotators to provide story events an-
notations. For each sentence, the annotators se-
lect event keywords and give them a category la-
bel of scene, character, or action. The words rather
than event keywords are regarded as “others”. We
present the statistics of the collected corpus in Ta-
ble 2.

Each sentence in the training and development
set was annotated by one annotator for the sake
of saving cost. But each sentence in the testing
sets was annotated by three annotators indepen-
dently. We calculate Fleiss’ Kappa (Viera et al.,
2005) to evaluate the agreement among annota-
tors. For each token in a sentence, it is annotated
as y(y ∈ scene, character, action, others) by
3 annotators. The Fleiss’ Kappa value is 0.580,
which shows that the annotations have moderate
agreement.

For story visualization, we hire two designers
to design elements for storytelling. The elements
include story scenes and characters (with different
actions). Each frame of an animation consists of
several elements. This mechanism is flexible for
element switch and story plot development. We
prepared 30 scenes and 600 characters, which have
high frequencies in the collected stories. Some ex-
ample animation elements are shown in Table 3.

Training Details: In the neural based meth-
ods, the word embedding size is 100. The LSTM
model contains 100 hidden units and trains with
a learning rate of 0.001 and Adam (Kingma and
Ba, 2014) optimizer. The batch size is set to 20
and 50% dropout is used to avoid overfitting. We
train the model for 100 epochs although it con-
verges quickly.

Event Method Precision Recall F1
scene Parser 0.585 0.728 0.649
scene IDCNN 0.968 0.968 0.968
scene BiLSTM 0.973 0.974 0.973
scene BERT 0.931 0.918 0.924
chara Parser 0.514 0.475 0.494
chara IDCNN 0.829 0.758 0.792
chara BiLSTM 0.831 0.758 0.793
chara BERT 0.833 0.853 0.843
action Parser 0.373 0.377 0.375
action IDCNN 0.423 0.375 0.395
action BiLSTM 0.442 0.400 0.420
action BERT 0.500 0.499 0.499

Table 4: Sentence-level results comparison. (chara
is short for character. BiLSTM and BERT represent
BiLSTM-CRF and BERT-BiLSTM-CRF respectively.)
We report the mean scores and conduct Tukey’s HSD
test. For scene extraction, the F1 score differences of
all method pairs are statistically significant. So are that
on character extraction (except the difference between
BiLSTM and IDCNN). For action extraction, only the
difference between BERT and Parser is significant.

7.2 Sentence-Level Evaluation

We compare the neural based models with a base-
line based on parser. We first conduct word
segmentation with Jieba (Sun, 2012) and part of
speech (POS) annotation using Stanford CoreNLP
Toolkit (Manning et al., 2014). Then we use de-
pendency parser to extract events. For scene ex-
traction, we find that most scenes in the chil-
drens’ stories are common places with few spe-
cific names or actions. Thus, we construct a com-
mon place dictionary with 778 scene tokens. We
keep NP, NR, NT and NN (Klein and Manning,
2003) of POS tagging results and filter the scene
tokens according to the scene dictionary. Depen-
dency parser is employed to extract characters and
actions. The subjects and objects in a sentence are
denoted as the current story characters. The pred-
icates (usually in terms of verbs or verb phrases)
in the dependency tree are considered to contain
actions of the corresponding characters.

The mean evaluation results over the test sets
are shown in Table 4. The result shows that
the BiLSTM-CRF method can achieve as high as
0.973 F1 score in scene extraction. The BERT-
BiLSTM-CRF method can achieve 0.843 F1
score in character extraction, which is high too.
But action extraction is the most difficult. Even

6



Sentence (actions denoted with underlines) Scene character
1. The chicken and duck walked happily by the lake. lake chicken,duck
2. The chicken and duck walked happily by the lake. lake chicken,duck
1. The rabbit’s father and mother are in a hurry at home. home rabbit’s father,mother
2. The rabbit’s father and mother are in a hurry at home. home rabbit,father,mother
1. He walked into the big forest with his mother’s words. forest He
2. He walked into the big forest with his mother’s words. forest He,his mother
1. He said that he once donated money to mountain children. / he,children
2. He said that he once donated money to mountain children. mountain he,children
1. The rabbit walked and suddenly heard a deafening help. / rabbit
2. The rabbit walked and suddenly heard a deafening help. / rabbit

Table 5: Case study of sentence-level event extraction results.(1:Annotation, 2:Detection)

Event Method Precision Recall F1
scene sentence 0.694 0.581 0.632
scene paragraph 0.878? 0.837† 0.857†

chara sentence 0.705 0.763 0.733
chara paragraph 0.846† 0.987? 0.911†

Table 6: Paragraph-level event integration results.
(chara is short for character.) † and ? denote our im-
provements are significant in t-test with p ≤ 0.01 and
p ≤ 0.10 respectively.

the best method BERT-BiLSTM-CRF can achieve
0.499 F1 score only, which is too low to use.

We conduct Tukey HSD significant test over
all method pairs too. The results indicate that
the neural methods are significantly better than
the baseline based on parser in scene and charac-
ter extraction. BERT-BiLSTM-CRF also signifi-
cantly beats the parser baseline in action extrac-
tion. Among three neural methods, BERT brings
significant improvements over the BiLSTM-CRF
method in scene and character extraction. Only in
scene extraction, BiLSTM-CRF is the best and the
differences are significant.

Table 5 illustrates sample event extraction re-
sults. We can find that most of the story events
are correctly extracted while there still exist a lot
of biases. For example, some detected events do
not actually happen in real but merely appear in
the imagination or dialogues. (e.g. In verb phrase
“heard a deafening help”, the action is “heard”,
not “deafening”.) Some serves as an adjective
that modifies an character. (e.g. In noun phrase
“mountain children”, “mountain” does not indi-
cate the current scene, but the children’s home-
town.)

7.3 Paragraph-Level Evaluation

In this evaluation, we focus on event switch de-
tection. Take paragraph-level scene detection as
an example. The story in Table 1 includes three
scenes: field, river and garden, starting from the
1st, the 8th and the 14th sentence respectively.
Paragraph-level event extraction is required to find
the correct switch time and the event content. We
compare simple extension of sentence-level results
and paragraph-level event integration results (de-
noted as base and ours in Table 6).

We randomly selected 20 stories from the col-
lected corpus and manually annotated the scene
and character spans. Scene keywords are mapped
into 30 categories of painting scenes. Sentence-
level scene results are extended in a way where the
first sentence including the keyword is regarded as
the start of the scene span and the previous sen-
tence of next scene is denoted as the span end. For
paragraph-level scene integration, scene spans are
extended both in forward and backward orienta-
tion. Moreover, the dialogue contexts are ignored
because the scene in a dialogue might not be the
current one. It might be imagination or merely ac-
tion of the past or the future. Other event informa-
tion is also utilized as supplement, as the charac-
ters keywords might indicate specific scenes.

We calculate precision, recall and F1 value for
event detection. A correct hit should detect both
the event switch time and the right content. The
results are listed in Table 6. As we can see, about
0.878% of scene switches are correctly detected.
After story scene switch information extracted,
it is used in paragraph-level character detection.
Character switch is defined as the appearance and
disappearance of a single character. The first time

7



(a) First scene: field (b) Second scene: river

(c) Third scene: garden (d) Painting elements

Figure 2: Visualized scenes and painting elements of story “Big ears of the little elephant”

when a character keyword is detected is denoted
as the switch time of appearance. Scene switch
is used as an indication of disappearance of the
characters in that scene. Paragraph-level character
detection reaches relatively higher accuracy than
sentence-level character detection, with F1 score
of over 0.91. T-test results indicate that our im-
provements are statistically significant.

7.4 Visualization Demonstration

Using the prepared 30 painting scenes and 600
characters, we are able to generate picture books
for the collected 3680 stories, with 1.42 scenes and
2.71 characters in each story on average.

Figure 2 shows some story pictures and painting
elements. More examples of video visualization
results could be found on our website2.

8 Conclusion and Future Work

In this paper, we propose a framework to address
the problem of automatic story understanding and
visualization. Story event extraction is extended
from sentence level to paragraph level for continu-
ous visualization. We collect children’s story from
the Internet and apply our framework to generate
simple story picture books with audio.

2https://github.com/StoryVisualization/Demos

Currently, our story events include scenes, char-
acters and actions. There is room for event ex-
traction improvement. Furthermore, it is difficult
to enumerate and compose an intimate action be-
tween characters, such as “hug”, or a complex ac-
tion, such as “kneeling on the ground”. We plan to
learn the various actions from examples, such as
movies, in the future.

Acknowledgments

We would like to thank Qingcai Cui from
Microsoft and Yahui Chen from Beijing Film
Academy for providing helpful ideas, data and re-
sources.

References
Eugene Charniak. 1972. Toward a model of children’s

story comprehension. Ph.D. thesis, Massachusetts
Institute of Technology.

Hong-Woo Chun, Young-Sook Hwang, and Hae-
Chang Rim. 2004. Unsupervised event extraction
from biomedical literature using co-occurrence in-
formation and basic patterns. In International Con-
ference on Natural Language Processing, pages
777–786. Springer.

K Bretonnel Cohen, Karin Verspoor, Helen L Johnson,
Chris Roeder, Philip V Ogren, William A Baum-
gartner Jr, Elizabeth White, Hannah Tipney, and

8



Lawrence Hunter. 2009. High-precision biologi-
cal event extraction with a concept recognizer. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task, pages 50–58. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jon Doyle. 1979. A truth maintenance system. Artifi-
cial intelligence, 12(3):231–272.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Frederik Hogenboom, Flavius Frasincar, Uzay Kay-
mak, and Franciska De Jong. 2011. An overview of
event extraction from text. In Workshop on Detec-
tion, Representation, and Exploitation of Events in
the Semantic Web (DeRiVE 2011) at Tenth Interna-
tional Semantic Web Conference (ISWC 2011), vol-
ume 779, pages 48–57. Citeseer.

Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin
Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Ja-
cob Devlin, Ross Girshick, Xiaodong He, Pushmeet
Kohli, Dhruv Batra, et al. 2016. Visual storytelling.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1233–1239.

Felix Jungermann and Katharina Morik. 2008. En-
hanced services for targeted information retrieval by
event extraction and data mining. In International
Conference on Application of Natural Language to
Information Systems, pages 335–336. Springer.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Asso-
ciation for Computational Linguistics.

Robert Kosara and Jock Mackinlay. 2013. Story-
telling: The next step for visualization. Computer,
46(5):44–50.

Chang-Shing Lee, Yea-Juan Chen, and Zhi-Wei Jian.
2003. Ontology-based fuzzy event extraction agent
for chinese e-news summarization. Expert Systems
with Applications, 25(3):431–447.

Zhen Lei, Ying Zhang, Yu-chi Liu, et al. 2005. A sys-
tem for detecting and tracking internet news event.
In Pacific-Rim Conference on Multimedia, pages
754–764. Springer.

Fang Li, Huanye Sheng, and Dongmo Zhang. 2002.
Event pattern discovery from the stock market bul-
letin. In International Conference on Discovery Sci-
ence, pages 310–315. Springer.

Mingrong Liu, Yicen Liu, Liang Xiang, Xing Chen,
and Qing Yang. 2008. Extracting key entities and
significant events from online daily news. In In-
ternational Conference on Intelligent Data Engi-
neering and Automated Learning, pages 201–209.
Springer.

Kwan-Liu Ma, Isaac Liao, Jennifer Frazier, Helwig
Hauser, and Helen-Nicole Kostis. 2012. Scientific
storytelling using visualization. IEEE Computer
Graphics and Applications, 32(1):12–19.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

David McClosky, Mihai Surdeanu, and Christopher D
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages
1626–1635. Association for Computational Linguis-
tics.

Yoko Nishihara, Keita Sato, and Wataru Sunayama.
2009. Event extraction and visualization for obtain-
ing personal experiences from blogs. In Symposium
on Human Interface, pages 315–324. Springer.

Masayuki Okamoto and Masaaki Kikuchi. 2009. Dis-
covering volatile events in your neighborhood:
Local-area topic extraction from blog entries. In
Asia Information Retrieval Symposium, pages 181–
192. Springer.

Jakub Piskorski, Hristo Tanev, and Pinar Oezden Wen-
nerberg. 2007. Extracting violent events from on-
line news for ontology population. In International
Conference on Business Information Systems, pages
287–300. Springer.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the thirteenth conference on compu-
tational natural language learning, pages 147–155.
Association for Computational Linguistics.

Gerard Salton and Michael J McGill. 1986. Introduc-
tion to modern information retrieval.

Edward Segel and Jeffrey Heer. 2010. Narrative vi-
sualization: Telling stories with data. IEEE trans-
actions on visualization and computer graphics,
16(6):1139–1148.

9



Hideo Shimazu, Yosuke Takashima, and Masahiro
Tomono. 1988. Understanding of stories for anima-
tion. In Proceedings of the 12th conference on Com-
putational linguistics-Volume 2, pages 620–625. As-
sociation for Computational Linguistics.

Emma Strubell, Patrick Verga, David Belanger, and
Andrew McCallum. 2017. Fast and accurate entity
recognition with iterated dilated convolutions. arXiv
preprint arXiv:1702.02098.

J Sun. 2012. jiebachinese word segmentation tool.

Hristo Tanev, Jakub Piskorski, and Martin Atkinson.
2008. Real-time news event extraction for global
crisis monitoring. In International Conference on
Application of Natural Language to Information
Systems, pages 207–218. Springer.

Alex Tozzo, Dejan Jovanovic, and Mohamed Amer.
2018. Neural event extraction from movies descrip-
tion. In Proceedings of the First Workshop on Sto-
rytelling, pages 60–66.

Josep Valls-Vargas, Jichen Zhu, and Santiago Ontañón.
2017. Towards automatically extracting story
graphs from natural language stories. In Workshops
at the Thirty-First AAAI Conference on Artificial In-
telligence.

Anthony J Viera, Joanne M Garrett, et al. 2005. Under-
standing interobserver agreement: the kappa statis-
tic. Fam med, 37(5):360–363.

Akane Yakushiji, Yuka Tateisi, Yusuke Miyao, and
Jun-ichi Tsujii. 2000. Event extraction from
biomedical papers using a full parser. In Biocom-
puting 2001, pages 408–419. World Scientific.

Xin Zeng and Tan Mling. 2009. A review of scene
visualization based on language descriptions. In
2009 Sixth International Conference on Computer
Graphics, Imaging and Visualization, pages 429–
433. IEEE.

Deyu Zhou, Liangyu Chen, and Yulan He. 2014. A
simple bayesian modelling approach to event extrac-
tion from twitter. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
700–705.

C Lawrence Zitnick, Devi Parikh, and Lucy Vander-
wende. 2013. Learning the visual interpretation of
sentences. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1681–1688.

10



Proceedings of the Second Storytelling Workshop, pages 11–21
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

“My Way of Telling a Story”: Persona based Grounded Story Generation

Khyathi Raghavi Chandu ∗, Shrimai Prabhumoye ∗,
Ruslan Salakhutdinov, Alan W Black

Language Technologies Institute, Carnegie Mellon University
Pittsburgh, PA, USA

{kchandu, sprabhum, rsalakhu, awb}@cs.cmu.edu

Abstract

Visual storytelling is the task of generating sto-
ries based on a sequence of images. Inspired
by the recent works in neural generation focus-
ing on controlling the form of text, this paper
explores the idea of generating these stories in
different personas. However, one of the main
challenges of performing this task is the lack
of a dataset of visual stories in different per-
sonas. Having said that, there are independent
datasets for both visual storytelling and anno-
tated sentences for various persona. In this pa-
per we describe an approach to overcome this
by getting labelled persona data from a differ-
ent task and leveraging those annotations to
perform persona based story generation. We
inspect various ways of incorporating person-
ality in both the encoder and the decoder repre-
sentations to steer the generation in the target
direction. To this end, we propose five models
which are incremental extensions to the base-
line model to perform the task at hand. In our
experiments we use five different personas to
guide the generation process. We find that the
models based on our hypotheses perform bet-
ter at capturing words while generating stories
in the target persona.

1 Introduction

Storytelling through pictures has been dated back
to prehistoric times – around 30,000 years ago,
paintings of herds of animals like bisons, rhinos
and gazelles were made in a cave in Southern
France. However, these were not merely paintings,
they were stories about the heroic adventures of
humans. Since then visual storytelling has evolved
from paintings to photography to motion pictures
to video games. With respect to its timeline, neural

∗Both authors contributed equally to this work.

generative storytelling has gained traction only re-
cently. Recent research has focused on challenges
in generating longer documents (Wiseman et al.,
2017; Lau and Baldwin, 2016) as well as on pre-
dicting the next events in the story (Martin et al.,
2018). Contemporary research has focused on us-
ing deep generative models to capture high-level
plots and structures in stories (Fan et al., 2018).
Recent years have also seen some work hinging
on the event structures and scripts (Mostafazadeh
et al., 2016; Rishes et al., 2013; Peng et al., 2018).
Generating an appropriate ending of a story was
also studied by Guan et al. (2018) and Sharma
et al. (2018). Research on generating stories from
a sequence of images is anew (Peng et al., 2018;
Lukin et al., 2018; Kim et al., 2018; Hsu et al.,
2018; Gonzalez-Rico and Fuentes-Pineda, 2018).

Cavazza et al. (2009) have stressed the impor-
tance of expressing emotions in the believability
of the automated storytelling system. Adapting
a personality trait hence becomes crucial to cap-
ture and maintain interest of the audience. Asso-
ciating the narrative to a personality instigates a
sense of empathy and relatedness. Although there
has been research in generating persona based di-
alog responses and generating stylistic sentences
(Shuster et al., 2018; Fu et al., 2018; Prabhumoye
et al., 2018; Shen et al., 2017), generating persona
based stories with different personality types nar-
rating them has been unexplored. In this paper, we
focus on generating a story from a sequence of im-
ages as if the agent belongs to a particular person-
ality type. In specific, we choose to perform exper-
imentations on visual story telling (Huang et al.,
2016).

This paper introduces a novel approach to gen-
erating visual stories in five different personality
types. A key challenge to this end is the lack

11



of large scale persona annotated stories. We ad-
dress this by transferring knowledge from anno-
tated data in dialog domain to the storytelling do-
main. We base our visual story generator model
on Kim et al. (2018) and propose multiple tech-
niques to induce the personalities in the latent rep-
resentations of both the encoder and the decoder.
The goal of our work is to learn the mapping be-
tween the latent representations of the images and
the tokens of the story such that we encourage our
generative model to generate tokens of a particu-
lar personality. We evaluate our generative models
using the automatic metric of ROUGE (Lin, 2004)
which takes into account the sentence level sim-
ilarity in structure and thus roughly evaluates the
matching of content. We acknowledge that there is
a drop in this metric since our model is not trying
to optimize generation alone but also adapt per-
sonality from a different dataset.

We also evaluate the success of generating the
story in the target personality type using automatic
and qualitative analysis. The automatic metrics
comprise of the classification accuracies rooted
from the annotated data. We observe that one of
the proposed models (LEPC, described in Section
3 performs slightly better at classification accura-
cies for most of the personas while retaining simi-
lar ROUGE scores.

The main contribution of this paper is showing
simple yet effective approaches to narrative visual
stories in different personality types. The paper
also displays an effective way of using annotated
data in the dialog domain to guide the generative
models to a specified target personality.

2 Related Work

Visual Story Telling: Last decade witnessed
enormous interest in research at the intersec-
tion of multiple modalities, especially vision and
language. Mature efforts in image captioning
(Hossain et al., 2019) paved way into more ad-
vanced tasks like visual question answering (Wu
et al., 2017) and visual dialog (Das et al., 2017) ,
(Mostafazadeh et al., 2017). As an obvious next
step from single shot image captioning lies the
task of describing a sequence of images which are
related to one another to form a story like nar-
rative. This task was introduced as visual story
telling by Huang et al. (2016), differentiating de-

scriptions of images in isolation (image captions)
and stories in sequences. The baseline model that
we are leveraging to generate personality condi-
tioned story generation is based on the model pro-
posed by Kim et al. (2018) for the visual story
telling challenge. Another simple yet effective
technique is late fusion model by Smilevski et al.
(2018). In addition to static images, Gella et al.
(2018) have also collected a dataset of describ-
ing stories from videos uploaded on social media.
Chandu et al. (2019) recently introduced a dataset
for generating textual cooking recipes from a se-
quence of images and proposed two models to in-
corporate structure in procedural text generation
from images.

Style Transfer: One line of research that is
closely related to our task is style transfer in text.
Recently generative models have gained popular-
ity in attempting to solve style transfer in text with
non-parallel data (Hu et al., 2017; Shen et al.,
2017; Li et al., 2018). Some of this work has also
focused on transferring author attributes (Prabhu-
moye et al., 2018), transferring multiple attributes
(Lample et al., 2019; Logeswaran et al., 2018)
and collecting parallel dataset for formality (Rao
and Tetreault, 2018). Although our work can be
viewed as another facet of style transfer, we have
strong grounding of the stories in the sequence of
images.

Persona Based Dialog: Persona based genera-
tion of responses has been studied by NLP com-
munity in dialog domain. (Li et al., 2016) en-
coded personas of individuals in contextualized
embeddings that capture the background informa-
tion and style to maintain consistency in the re-
sponses given. The embeddings for the speaker
information are learnt jointly with the word em-
beddings. Following this work, (Zhou et al., 2018)
proposed Emotional Chatting Machine that gener-
ates responses in an emotional tone in addition to
conditioning the content. The key difference be-
tween former and latter work is that the latter cap-
tures dynamic change in emotion as the conversa-
tion proceeds, while the user persona remains the
same in the former case. (Zhang et al., 2018) re-
lease a huge dataset of conversations conditioned
on the persona of the two people interacting. This
work shows that conditioning on the profile infor-

12



mation improves the dialogues which is measured
by next utterance prediction. In these works, the
gold value of the target response was known. For
our work, we do not have gold values of stories in
different personas. Hence we leverage annotated
data from a different task and transfer that knowl-
edge to steer our generation process.

Multimodal domain: With the interplay be-
tween visual and textual modalities, an obvious
downstream application for persona based text
generation is image captioning. Chandrasekaran
et al. (2018) worked on generating witty captions
for images by both retrieving and generating with
an encoder-decoder architecture. This work used
external resources to gather a list of words that
are related to puns from web which the decoder
attempts to generate conditioned on phonological
similarity. Wang and Wen (2015) studied the sta-
tistical correlation of words associated with spe-
cific memes. These ideas have also recently pen-
etrated into visual dialog setting. Shuster et al.
(2018) have collected a grounded conversational
dataset with 202k dialogs where humans are asked
to portray a personality in the collection process.
They have also set up various baselines with dif-
ferent techniques to fuse the modalities including
multimodal sum combiner and multimodal atten-
tion combiner. We use this dataset to learn per-
sonas which are adapted to our storytelling model.

3 Models

We have a dataset of visual stories S =

{S1, . . . ,Sn}. Each story Si is a set of sequence
of five images and the corresponding text of the
story Si = {(I(1)i ,x

(1)
i ), . . . , (I

(5)
i ,x

(5)
i )}. Our

task is to generate the story based on not only the
sequence of the images but also closely follow-
ing the narrative style of a personality type. We
have five personality types (described in Section
4) P = {p1, . . . ,p5} and each story is assigned
one of these five personalities as their target per-
sona. Here, each pi represents the one-hot encod-
ing of the target personality for story i.e p1 =

[1, 0, 0, 0, 0] and so on till p5 = [0, 0, 0, 0, 1].
Hence, we create a dataset such that for each story,
we also have a specified target personality type
Si = {(I(1)i ,x

(1)
i ), . . . , (I

(5)
i ,x

(5)
i );pi}. The in-

puts to our models are the sequence of images and

the target personality type. We build generative
models such that they are able to generate stories
in the specified target personality type from the
images. In this section, we first briefly describe
classifiers that are trained discriminatively to iden-
tify each of the personalities and then move on to
the story generation models that make use of these
classifiers.

Here is an overview of the differences in the six
models that we describe next.

1. The baseline model (Glocal) is a sequence
to sequence model with global and local
contexts for generating story sentence corre-
sponding to each image.

2. The Multitask Personality Prediction (MPP)
model is equipped with predicting the per-
sonality in addition to generating the sen-
tences of the story. This model also incor-
porates binary encoding of personality.

3. The Latent Encoding of Personality in Con-
text (LEPC) model incorporates an embed-
ding of the personality as opposed to binary
encoding.

4. The Latent Encoding of Personality in De-
coder (LEPD) model augments personality
embedding at each step in the decoder, where
each step generates a token.

5. Stripped Encoding of Personality in Context
(SEPC) is similar to LEPC but encodes per-
sonality embedding after stripping the mean
of the story representation.

6. Stripped Encoding of Personality in Decoder
(SEPD) is similar to LEPD but encodes per-
sonality embedding after stripping the mean
of the story representation. This is similar to
the intuition behind SEPC.

3.1 Classification

We use convolutional neural network (CNN) ar-
chitecture to train our classifiers. We train five
separate binary classifiers for each of the person-
ality types. The classifiers are trained to predict
whether a sentence belongs to a particular person-
ality or not. We train the classifiers in a supervised
manner. We need labeled data to train each of the
classifiers. Each sample of text x in the respective

13



datasets of each of the five personality types has
a label in the set {0, 1}. Let θ

pj

C denote the pa-
rameters of the classifier for personality pj where
j ∈ {1, . . . , 5}. Each classifier is trained with the
following objective:

L(θ
pj

C ) = EX [log qC(pj |x)] (1)

We use cross entropy loss to calculate Lpj

C for
each of the five classifiers. The classifiers accept
continuous representations of tokens as input.

3.2 Story Generation

We present five extensions to incorporate person-
ality based features in the generation of stories.

(1) Baseline model (Glocal): We first describe
the baseline model that is used for visual story
telling. This is based on the model (Kim et al.,
2018) that attained better scores on human evalua-
tion metrics. It follows an encoder-decoder frame-
work translating a sequence of images into a story.
From here on, we refer to this model as glocal
through the rest of the paper owing to the global
and local features in the generation of story se-
quence at each step (described in this section).

The image features for each of the steps are ex-
tracted with a ResNet-152 (He et al., 2016) post
resizing to 224 X 224. The features are taken from
the penultimate layer of this pretrained model and
the gradients are not propagated through this layer
during optimization. These features are passed
through a fully connected layer to obtain the fi-
nal image features. In order to obtain an over-
all context of the story, the sequence of the im-
age features are passed through a Bi-LSTM. This
represents the global context of the story. For each
step in the generation of the story, the local context
corresponding to the specificity of that particular
image is obtained by augmenting the image fea-
tures (local context) to the context features from
the Bi-LSTM (global context). These glocal fea-
tures are used to decode the story sentence at each
step. This concludes the encoder part of the story.
The decoder of each step in the story also uses an
LSTM which takes the same glocal feature for that
particular step at each time step. Hence there are
5 glocal features feeding into each time step in the
decoder.

For simplicity in understanding, we use the fol-

lowing notations throughout model descriptions to
represent mathematical formulation of the genera-
tion models. Subscript k indicates the kth step or
sentence in a story. Subscript i indicates the ith

story example. The story encoder is represented
as Encoder which comprises of the features ex-
tracted from the penultimate layer of ResNet-152
concatenated with the global context features from
the Bi-LSTM. The entirety of this representation
in encoder and the glocal features obtained is rep-
resented using zk for the kth step or sentence in
the story.

zk = Encoder(Ik) (2)

Now, the generation of a sentence in the story is
represented as follows:

x̂k ∼
∏

t

Pr(x̂t
k|x̂<t

k , zk) (3)

The generated sentence x̂k is obtained from
each of the output words x̂t

k which is generated
by conditioning on all of the prior words x̂<t

k and
the glocal feature obtained as zk.

Personality based Generation: In the rest of
the section, we are going to describe the incremen-
tal extensions to the baseline to adapt the model to
perform persona based story generation.

(2) Multitask Personality Prediction (MPP):
The intuition behind the hypothesis here is to pro-
vide the personality information to the model and
also enable it to predict the personality along with
the generation of the story. The obvious extension
to provide personality information is to incorpo-
rate the one-hot encoding pi ∈ P of the five per-
sonas in the context before the decoder. The visual
story telling data is split into five predetermined
personalities as described in Section 4. For each
story, the corresponding personality is encoded in
a one hot representation and is augmented to the
glocal context features. These features are then
given to the decoder to produce each step in the
story. The model is enabled to perform two tasks:
the primary task is to generate the story and the
secondary task is to predict the personality of the
story. The classifiers described in Section 3.1 are
used to perform personality prediction. Formally,

14



the generation process is represented by:

x̂k ∼
∏

t

Pr(x̂t
k|x̂<t

k , zk,pi) (4)

Here, we condition the generation of each word
on the glocal context features zk, binary encoding
of the personality pi and the words generated till
that point.

The cross entropy loss for generation is Lg and
the loss for the prediction of each of the personal-
ities is L

pj

C given by Eq 1. The overall loss opti-
mized for this model is:

Ltotal = α ·Lg +
(1− α)

5
·

5∑

j=1

Lpj

C

The overall model is optimized on this total
loss. We use cross entropy loss for each of the
individual losses. We give a higher weight α to
the story generation and equally distribute the re-
maining (1−α) among each of the 5 personalities.

(3) Latent Encoding of Personality in Context
(LEPC): This model is an incremental improve-
ment over MPP model. The key difference is the
incorporation of personality as an embedding that
captures more centralized traits in the words be-
longing to that particular personality. For each of
the five personality types, we have a latent repre-
sentation of the personality (P), as opposed to the
binary encoding in MPP model. Similar to the ear-
lier setting, this average personality feature vector
is concatenated with the glocal context vector The
generation step is formally represented as:

x̂k ∼
∏

t

Pr(x̂t
k|x̂<t

k , [zk;P ],pi) (5)

This means that zk is concatenated with P to
give personality informed representation; and the
generation of each word is conditioned on these
concatenated features zk, binary encoding of the
personality pi and the words generated so far.

(4) Latent Encoding of Personality in Decoder
(LEPD): Instead of augmenting the personality
traits to the context as done in LEPC model, they
could be explicitly used in each step of decoding.
The latent representation of the personality (P) is
concatenated with the word embedding for each

time step in the decoder.

x̂k ∼
∏

t

Pr(x̂t
k|[x̂<t

k ;P ], zk,pi) (6)

The generation of each of the words is condi-
tioned on the words generated so far that are al-
ready concatenated with the average vector for the
corresponding personality, and the glocal features
along with the binary encoding of the personality.

(5) Stripped Encoding of Personality in Con-
text (SEPC): In order to orient the generation
more towards the personality, we need to go be-
yond simple augmentation of personality. Deriv-
ing motivation from neural storytelling1, we use
a similar approach to subtract central characteris-
tics of words in a story and add the characteristics
of the personality. Along the same lines of cal-
culating an average representation for each of the
personalities, we also obtain an average represen-
tation of the story S. This average representation
S intuitively captures the style of the story. Es-
sentially, the story style is being stripped off the
context and personality style is incorporated. The
modified glocal feature that is given to the decoder
is obtained as m = zk − S + P . The genera-
tion process is now conditioned on m instead of
zk. Hence, the generation of each word in decod-
ing is conditioned on the words generated so far
(x̂<t

k ), the binary encoding of the personality (pi)
and the modified representation of the context fea-
tures (m).

x̂k ∼
∏

t

Pr(x̂t
k|x̂<t

k ,m,pi) (7)

Here, note that the context features obtained
thus far are from the visual data and performing
this operation is attempting to associate the visual
data with the central textual representations of the
personalities and the stories.

(6) Stripped Encoding of Personality in De-
coder (SEPD): This model is similar to SEPC
with the modification of performing the stripping
at each word embedding in the decoder as opposed
to the context level stripping. The time steps to
strip features is at the sentence level in SEPC and
is at word level in SEPD model. The LSTM based

1https://github.com/ryankiros/
neural-storyteller

15



decoder decodes one word at a time. At each of
these time steps, the word embedding feature E is
modified as ek = E − S + P . This modification
is performed in each step of the decoding process.
These modified features are used to generate each
sentence in the full story. The model is trained to
generate a sentence in the story as described be-
low:

x̂k ∼
∏

t

Pr(x̂t
k|e<t

k , zk,pi) (8)

The generation of each word is conditioned on
the modified word embeddings using the afore-
mentioned transformation (e<t

k ), the binary encod-
ings of the personalities (pi) and the glocal context
features.

4 Datasets

Coalescing the segments of personality and se-
quential generation together, our task is to gen-
erate a grounded sequential story from the view
of a personality. To bring this to action, we de-
scribe the two sources of data we use to generate
personality based stories in this section. The first
source of data is focussed on generic story gener-
ation from a sequence of images and the second
source of data includes annotations for personal-
ity types for sentences. We tailor a composition of
these two sources to obtain a dataset for person-
ality based visual storytelling. Here, we note that
the techniques described above can be applied for
unimodal story generation as well.

Visual Story Telling: Visual Storytelling is the
task of generating stories from a sequence of im-
ages. A dataset for this grounded sequential gen-
eration problem was collected by Huang et al.
(2016) and an effort for a shared task 2 was led
in 2018. The dataset includes 40,155 training se-
quences of stories. It comprises of a sequence
of images, descriptions of images in isolation and
stories of images in sequences. We randomly di-
vide the dataset into 5 segments (comprising of
8031 stories each) and each segment is associated
with a personality.

Personality Dialog: Shuster et al. (2018) have
provided a dataset of 401k dialog utterances, each

2http://visionandlanguage.net/
workshop2018/index.html#challenge

of which belong to one of 215 different person-
alities. The dataset was collected through image
grounded human-human conversations. Humans
were asked to play the role of a given personality.
This makes this dataset very pertinent for our task
as it was collected through engaging image chat
between two humans enacting their personalities.

For our task, we wanted to choose a set of
five distinct personality types. Let the set of ut-
terances that belong to each personality type be
Up = {u1p, . . . , unp} where p ∈ {1, . . . , 215}.
We first calculate the pooled BERT representation
(Devlin et al., 2018) of each of the utterances. To
get the representation of the personality P , we
simply average the BERT representations of all the
utterances that belong to that personality. The rep-
resentation of each personality is given by:

Pp =
Σn
k=1BERT (ukp)

n
(9)

This representation is calculated only on the train
set of (Shuster et al., 2018).

Since our goal is to pick five most distinct per-
sonality types, we have the daunting task of fil-
tering the 215 personality types to 5. To make
our task easier we want to group similar personal-
ities together. Hence, we use K-Means Clustering
to cluster the representations of the personalities
into 40 clusters 3. We get well formed and mean-
ingful clusters which look like [Impersonal, Aloof
(Detached, Distant), Apathetic (Uncaring, Disin-
terested), Blunt, Cold, Stiff]; [Practical, Ratio-
nal, Realistic, Businesslike]; [Empathetic, Sympa-
thetic, Emotional]; [Calm, Gentle, Peaceful, Re-
laxed, Mellow (Soothing, Sweet)] etc. We then
build a classifier using the technique described in
Section 3.1 to classify the utterances to belong to
one of the 40 clusters. We pick the top five clus-
ters that give the highest accuracy for the 40-way
classification.

The five personality clusters selected are:

• Cluster 1 (C1): Arrogant, Conceited, Ego-
centric, Lazy, Money-minded, Narcissistic,
Pompous and Resentful

• Cluster 2 (C2): Skeptical and Paranoid
3We do not perform exhaustive search on the number of

clusters. We tried k values of 5, 20 and 40 and selected 40 as
the ideal value based on manual inspection of the clusters.

16



• Cluster 3 (C3): Energetic, Enthusiastic, Ex-
citing, Happy, Vivacious, Excitable

• Cluster 4 (C4): Bland and Uncreative

• Cluster 5 (C5): Patriotic

We build five separate classifiers, one for each
personality cluster. Note that these clusters are
also associated with personalities and hence are
later referred as P followed by the cluster id in the
following sections. To build the five binary clas-
sifiers, we create label balanced datasets for each
cluster i.e we randomly select as many negative
samples from the remaining 4 clusters as there are
positive samples in that cluster. We use the train,
dev and test split as is from (Shuster et al., 2018).
The dataset statistics for each of the five clusters is
provided in Table 1.

Cluster Type Train Dev Test
Cluster 1 26538 1132 2294
Cluster 2 6614 266 608
Cluster 3 19784 898 1646
Cluster 4 6646 266 576
Cluster 5 3262 138 314

Table 1: Statistics of data belonging to each of the per-
sona clusters

Note that all the datasets have a balanced dis-
tribution of labels 0 and 1. For our experiments
it does not matter that distribution of the number
of samples is different because we build separate
classifiers for each of the cluster and their output
is treated as independent from one another.

As seen in Table 2, all the classifiers attain good
accuracies and F-scores on the test set.

C1 C2 C3 C4 C5
Acc. 79.12 81.09 83.17 77.95 84.08
F1 0.79 0.81 0.83 0.78 0.84

Table 2: Performance of classifiers for each of the per-
sona clusters

We finally calculate the representation P for
each of the five clusters and the representation S
of stories using equation 9. Note that S is calcu-
lated over the visual story tellind dataset. These
representations are used by our generative models
LEPC, LEPD, SEPC, and SEPD.

5 Experiments and Results

This section presents the experimental setup for
the models described in Section 3. Each of the
models are incremental extensions over the base-
line glocal model. The hyperparameters used for
this are as follows.

Hyperparameters: The hidden size of the Bi-
LSTM encoder of the story to capture context
is 1024. The dimensionality of the glocal con-
text vector zk is 2048. A dropout layer of 50%
is applied post the fully connected layer to ob-
tain the image features and after the global fea-
tures obtained from Bi-LSTM which is 2 layered.
The word embedding dimension used is 256. The
learning rate is 1e-3 with a weight decay of 1e-
5. Adam optimizer is used with batch normaliza-
tion and a momentum of 0.01. Weighting the loss
functions differently is done to penalize the model
more if the decoding is at fault as compared to not
predicting the personality of the story. α is set to
0.5 and each of the individual personality losses
are weighted by a factor of 0.1.

The rest of the 5 models use the same hyperpa-
rameter setting with an exception to word embed-
ding dimension. The average personality (P) and
the average story (S) representations are obtained
from pre-trained BERT model.Hence this is a 768
dimensional vector. In order to perform the strip-
ping of the story feature and adding the personality
features to the word embeddings in the decoder,
the word embedding dimension is matched to 768
in the SEPD model.

Model C1 C2 C3 C4 C5
Glocal 69.90 73.29 51.55 34.91 65.86
MPP 69.35 72.44 47.54 33.83 58.49
LEPC 70.10 73.24 52.13 34.59 66.42
LEPD 76.44 79.20 33.71 34.02 67.13
SEPC 76.76 77.00 32.84 44.53 60.08
SEPD 78.14 79.44 31.33 34.99 73.88

Table 3: Performance (in terms of accuracy) of gener-
ated stories to capture persona

5.1 Quantitative Results

We perform two sets of experiments: (1) evalu-
ating the performance of the models on capturing
the personalities in the story and (2) performance

17



Original grandma loves when 
all the kids come over 
to visit .

she will pick them 
them up and put them 
on her lap even 
though it <unk> .

the kids love each 
other as well giving 
lots of hugs and love .

grandma can not 
forget her little girl and 
gives her some love 
as well .

grandpa says it 's 
time for cake .

Glocal the family is having a 
great time .

they are playing with 
each other .

he is happy to see his 
grandson .

she is being silly the birthday girl is 
eating a cake .

MPP [ male ] and his 
friends are having a 
great time .

they are all smiles for 
the camera .

everyone is enjoying 
their new family .

[ female ] is so excited 
to be there .

she is very happy 
about her birthday .

LEPC the family was having 
a great time .

they were so happy to 
be together .

they were having a 
good time with 
grandson .

she was very excited 
to play with a kid .

he was surprised by 
all of his friends .

LEPD the family was ready 
to see a lot of a party .

they had a great time . they were having a lot 
of fun .

we had a great day . he was happy to eat 
cake .

SEPC the parade was very 
beautiful .

there were a lot of 
people there .

we were so happy to 
be a great time .

i had a great time . this was a picture of 
a little girl .

SEPD the family is a great 
time .

it was a lot of a big . there were a lot . i had a picture . they were a very .

Figure 1: Comparison of generated stories from all the described models.

Model ROUGE L
Glocal 0.1805
MPP 0.1713
LEPC 0.1814
LEPD 0.1731
SEPC 0.1665
SEPD 0.1689

Table 4: ROUGE L scores for the generated stories by
each of our models

of story generation. The former evaluation is per-
formed using the pre-trained classifiers (3.1) on
the personality dataset. We calculate the classi-
fication accuracy of the generated stories of the
test set for the desired target personality. How-
ever, we need to note that the classification error
of the models trained is reflected in this result as
well. This evaluation is done at a sentence level
i.e accuracy is calculated over each sentence of the
story (each sentence of the story has the same tar-
get personality as that of the entire story). The
performance of the generation is evaluated using

the ROUGE score 4. Although this captures the
generic aspect of generation, the metric explicitly
does not evaluate whether the story is generated
on a conditioned personality. In future, we would
also like to look at automatic evaluation of the gen-
erated stories with respect to incorporation of per-
sonalities.

Table 3 shows the results of classification ac-
curacy for each of the five personalities. Table 4
shows the results of ROUGE L evaluation. We ac-
knowledge that there would be a deviation to this
automatic score since optimizing the gold standard
generation of story from training data is not our
end goal. Rather our models make use of two dis-
tinct datasets and learn to transfer the traits anno-
tated in personality dialog dataset into the visual
story telling dataset.

Despite this, we notice that LEPC model gives
comparative results to that of the glocal model in
terms of story generation. It is noticed that LEPC

4We use the implementation from https://github.
com/Maluuba/nlg-eval

18



model also gives slight improvement on the clas-
sification accuracies for most of the clusters (each
cluster representing a personality). However this
is an insufficient result to generalize that incorpo-
rating personality at context level performs bet-
ter than that at the word level since the inverted
stance is observed in SEPC and SEPD models. We
plan to investigate this further by performing ab-
lations and examine which operation is causing
these models to perform weakly. Note that the
SEPC model performs the best in incorporating
personality in three of the five personality types.
But this model takes a hit in the automatic score.
This is because our generative models are dealing
with competing losses or reconstruction of classi-
fication.

5.2 Qualitative Results

We present an example of the story generated by
each of the models proposed in Figure 1. This
example belongs to persona in cluster C3. The
words corresponding to this cluster are highlighted
with blue color in the persona conditioned gen-
eration of the stories. The main observation is
that all of the five sentences in the story contain
a word relevant to happiness for each of the MPP,
LEPC and LEPD models. SEPC and SEPD mod-
els capture these happiness features in only two
and one sentences respectively. The glocal model
does not cater explicitly to the personality while
our proposed models attempt to capture the per-
sona tone in generation. This is observed in the
fourth generated sentence in the sequence by each
of our proposed models. While the glocal model
uses the word ‘silly’, our models capture the tone
and generate ‘excited’ and ‘great’. Similarly for
the fifth sentence, MPP, LEPC and LEPD gener-
ate ‘happy’, ‘surprised’ and ‘happy’ respectively.

It is observed that in most generated stories,
the language model has taken a rough hit in the
SEPD model. This is also substantiated in Fig-
ure 1. This seems to be due to stripping away the
essential word embedding features that contribute
to linguistic priors or language model. This could
be potentially corrected by retaining the word em-
bedding feature as is and augmenting it with the
stripped features. Having presented these results,
we notice that there is a significant scope for im-
proving the generation of the story while capturing

high level persona traits in generation.

6 Conclusions and Future Work

Automatic storytelling is a creative writing task
that has long been the dream of text generation
models. The voice conveying this story is the nar-
rative style and this can be attributed to different
personalities, moods, situations etc. In the case
of persona based visual storytelling, this voice not
only is aware of the grounded content to be con-
veyed in the images, but also has a model to steer
the words in the narrative to characterize the per-
sona.

A key challenge here is that there is no targeted
data for this specific task. Hence we leverage
annotations of persona from an external persona
based dialog dataset and apply it on the visual sto-
rytelling dataset. We address this task of attribu-
tion of a personality while generating a grounded
story by simple techniques of incorporating per-
sona information in our encoder-decoder archi-
tecture. We propose five simple incremental ex-
tensions to the baseline model that captures the
personality. Quantitatively, our results show that
the LEPC model is improving upon the accuracy
while at the same time not dropping the automatic
scores. We also observe that the persona induced
models are generating at least one word per sen-
tence in the story that belong to that particular per-
sona. While automatically evaluating this can be
tricky, we adapt a classification based evaluation
of whether the generated output belongs to the per-
sona class or not. In the future, we hope to also
perform human evaluations for measuring both the
target personality type of the generated and story
and its coherence.

There is yet a lot of scope in incorporating the
persona in the word embeddings. This is an on-
going work and we plan on investigating the rela-
tively poor ROUGE performance of the SEPC and
SEPD models and rectify them by equipping them
with language model information. We also plan to
work towards a stable evaluation protocol for this
task in the future.

References
Marc Cavazza, David Pizzi, Fred Charles, Thurid Vogt,

and Elisabeth André. 2009. Emotional input for

19



character-based interactive storytelling. In Proceed-
ings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume
1, pages 313–320. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Arjun Chandrasekaran, Devi Parikh, and Mohit Bansal.
2018. Punny captions: Witty wordplay in image de-
scriptions. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 770–775.

Khyathi Chandu, Alan W Black, and Eric Nyberg.
2019. Storyboarding of recipes: Grounded contex-
tual generation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, Florence, Italy. Association for Computa-
tional Linguistics.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José MF Moura, Devi Parikh,
and Dhruv Batra. 2017. Visual dialog. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 2.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 889–898.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan
Zhao, and Rui Yan. 2018. Style transfer in text:
Exploration and evaluation. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Spandana Gella, Mike Lewis, and Marcus Rohrbach.
2018. A dataset for telling the stories of social media
videos. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 968–974.

Diana Gonzalez-Rico and Gibran Fuentes-Pineda.
2018. Contextualize, show and tell: a neural visual
storyteller. arXiv preprint arXiv:1806.00738.

Jian Guan, Yansen Wang, and Minlie Huang. 2018.
Story ending generation with incremental encod-
ing and commonsense knowledge. arXiv preprint
arXiv:1808.10113.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

MD Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin,
and Hamid Laga. 2019. A comprehensive survey of
deep learning for image captioning. ACM Comput-
ing Surveys (CSUR), 51(6):118.

Chao-Chun Hsu, Szu-Min Chen, Ming-Hsun Hsieh,
and Lun-Wei Ku. 2018. Using inter-sentence di-
verse beam search to reduce redundancy in visual
storytelling. arXiv preprint arXiv:1805.11867.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the 34th
International Conference on Machine Learning-
Volume 70, pages 1587–1596. JMLR. org.

Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin
Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Ja-
cob Devlin, Ross Girshick, Xiaodong He, Pushmeet
Kohli, Dhruv Batra, et al. 2016. Visual storytelling.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1233–1239.

Taehyeong Kim, Min-Oh Heo, Seonil Son, Kyoung-
Wha Park, and Byoung-Tak Zhang. 2018. Glac
net: Glocal attention cascading networks for multi-
image cued story generation. arXiv preprint
arXiv:1805.10973.

Guillaume Lample, Sandeep Subramanian, Eric Smith,
Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-
Lan Boureau. 2019. Multiple-attribute text rewrit-
ing. In International Conference on Learning Rep-
resentations.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. ACL 2016,
page 78.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 994–1003.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Lajanugen Logeswaran, Honglak Lee, and Samy Ben-
gio. 2018. Content preserving text generation with
attribute controls. In Advances in Neural Informa-
tion Processing Systems, pages 5103–5113.

Stephanie Lukin, Reginald Hobbs, and Clare Voss.
2018. A pipeline for creative visual storytelling. In
Proceedings of the First Workshop on Storytelling,
pages 20–32.

20



Lara J Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark O Riedl. 2018. Event representations for au-
tomated story generation with deep neural nets. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Nasrin Mostafazadeh, Chris Brockett, Bill Dolan,
Michel Galley, Jianfeng Gao, Georgios P Sp-
ithourakis, and Lucy Vanderwende. 2017. Image-
grounded conversations: Multimodal context for
natural question and response generation. arXiv
preprint arXiv:1701.08251.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James Allen, and Lucy Vanderwende.
2016. Caters: Causal and temporal relation scheme
for semantic annotation of event structures. In Pro-
ceedings of the Fourth Workshop on Events, pages
51–61.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43–49.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan
Salakhutdinov, and Alan W Black. 2018. Style
transfer through back-translation. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 866–876.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may i introduce the gyafc dataset: Corpus,
benchmarks and metrics for formality style transfer.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 129–140.

Elena Rishes, Stephanie M Lukin, David K Elson, and
Marilyn A Walker. 2013. Generating different story
tellings from semantic representations of narrative.
In International Conference on Interactive Digital
Storytelling, pages 192–204. Springer.

Rishi Sharma, James Allen, Omid Bakhshandeh, and
Nasrin Mostafazadeh. 2018. Tackling the story end-
ing biases in the story cloze test. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
volume 2, pages 752–757.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in neural informa-
tion processing systems, pages 6830–6841.

Kurt Shuster, Samuel Humeau, Antoine Bordes, and
Jason Weston. 2018. Engaging image chat: Model-
ing personality in grounded dialogue. arXiv preprint
arXiv:1811.00945.

Marko Smilevski, Ilija Lalkovski, and Gjorgi
Madzarov. 2018. Stories for images-in-sequence
by using visual and narrative components. arXiv
preprint arXiv:1805.05622.

William Yang Wang and Miaomiao Wen. 2015. I
can has cheezburger? a nonparanormal approach to
combining textual and visual information for pre-
dicting and generating popular meme descriptions.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 355–365.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263.

Qi Wu, Damien Teney, Peng Wang, Chunhua Shen,
Anthony Dick, and Anton van den Hengel. 2017.
Visual question answering: A survey of methods and
datasets. Computer Vision and Image Understand-
ing, 163:21–40.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? arXiv preprint arXiv:1801.07243.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Thirty-Second AAAI
Conference on Artificial Intelligence.

21



Proceedings of the Second Storytelling Workshop, pages 22–33
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Using Functional Schemas to Understand Social Media Narratives

Xinru Yan Aakanksha Naik Yohan Jo Carolyn Rosé
Language Technologies Institute

Carnegie Mellon University
{xinruyan, anaik, yohanj, cp3a}@cs.cmu.edu

Abstract

We propose a novel take on understanding
narratives in social media, focusing on learn-
ing “functional story schemas”, which consist
of sets of stereotypical functional structures.
We develop an unsupervised pipeline to ex-
tract schemas and apply our method to Red-
dit posts to detect schematic structures that are
characteristic of different subreddits. We val-
idate our schemas through human interpreta-
tion and evaluate their utility via a text clas-
sification task. Our experiments show that
extracted schemas capture distinctive struc-
tural patterns in different subreddits, improv-
ing classification performance of several mod-
els by 2.4% on average. We also observe that
these schemas serve as lenses that reveal com-
munity norms.

1 Introduction

Narrative understanding has long been consid-
ered a central, yet challenging task in natural lan-
guage understanding (Winograd, 1972). Recent
advances in NLP have revived interest in this
area, especially the task of story understanding
(Mostafazadeh et al., 2016a). Most computational
work has focused on extracting structured story
representations (often called “schemas”) from lit-
erary novels, folktales, movie plots or news ar-
ticles (Chambers and Jurafsky, 2009; Finlayson,
2012; Chaturvedi et al., 2018). In our work, we
shift the focus to understanding the structure of
stories from a different data source: narratives
found on social media. Table 1 provides an exam-
ple story from the popular online discussion fo-
rum Reddit 1. Prior work has studied stories of
personal experiences found on social media, iden-
tifying new storytelling patterns. However, these
studies have focused on how storyteller identity is
conveyed (Page, 2013). In our work, we instead

1https://www.reddit.com/

i was eating breakfast this morning while my
stepfather was making his lunch to take to
work. as he reached for the plastic wrap for
his sandwich i subtly mentioned that he could
use a reusable container. so he walked over to
the container drawer and used a container re-
alizing that it was the perfect size. i know its
not much but hopefully he remembers this to-
morrow when making his lunch...

Table 1: Sample personal story from Reddit

aim to understand novel structural patterns exhib-
ited by such stories.

Computational work in story understanding of-
ten attempts to construct structured representa-
tions revolving around specific narrative elements.
Broadly, these approaches can be divided into two
classes: event-centric techniques (Chambers and
Jurafsky, 2008) and character-centric techniques
(Bamman, 2015). We adopt a novel take that fo-
cuses instead on extracting the “functional struc-
ture” of stories. For example, a common story can
have a functional structure consisting of phases
such as character introduction, conflict setup and
resolution. To represent such structure, we pro-
pose the paradigm of functional story schemas,
which consist of stereotypical sets of functional
structures. A major difference between our con-
ceptualization of functional story schemas and
prior approaches is the focus on high-level narra-
tive structure, which reduces domain-specificity in
the found schemas. Studies have shown that func-
tional narrative structures are critical in forming
stories and play an important role in story under-
standing (Brewer and Lichtenstein, 1980, 1982).

We develop a novel unsupervised pipeline to
extract functional schemas (§3), which consists
of two stages: functional structure identification
and structure grouping for schema formation. The
first stage uses the Content word filtering and

22



Speaker preferences Model (CSM), a generative
model originally applied to detect schematic pro-
gressions of speech-acts in conversations (Jo et al.,
2017), while the second stage groups strongly co-
occurring sets of structures using principal com-
ponent analysis (PCA) (Jolliffe, 2011). To validate
extracted schemas, we perform a two-phase evalu-
ation: manual interpretation of schemas (§4.2) and
automated evaluation in a downstream text classi-
fication task (§4.3).

Utilizing our pipeline to extract functional
schemas from posts on three subreddits discussing
environmental issues 2, namely /r/environment,
/r/ZeroWaste and /r/Green, we observe that our
schema interpretations reflect typical posting
strategies employed by users in each of these sub-
reddits. Incorporating schema information into
the feature space also boosts the performance of
a variety of baseline text classification models on
subreddit prediction by 2.4% on average. After
validation, we use extracted schemas to gain fur-
ther insight into how stories function in social me-
dia (§5). We discover that functional schemas re-
veal community norms, since they capture dom-
inant and unique posting styles followed by users
of each subreddit. We hope that our conceptualiza-
tion of functional story schemas provides an inter-
esting research direction for future work on story
understanding, especially stories on social media.

2 Background & Related Work

2.1 Narrative Understanding
Much prior work on narrative understanding has
focused on extracting structured knowledge repre-
sentations (“templates” or “schemas”) from narra-
tives. These works can be divided into two major
classes based on the narrative aspect they attend
to: event-centric and character-centric.

Event-centric approaches primarily focus on
learning “scripts”, which are stereotypical se-
quences of events occurring in the narrative
along with their participants (Schank and Abel-
son, 1977). While scripts were introduced in the
1970s, not much early work (with the exception
of Mooney and DeJong (1985)) attempted to build
models for this task due to its complexity. How-
ever, it has garnered more interest in recent years.
Chambers and Jurafsky (2008) modeled scripts as
narrative event chains, defined as partially ordered

2All data and code are available at https://github.
com/xinru1414/Reddit

sets of events related to a single common actor,
and built an evaluation called the narrative cloze
test aimed at predicting a missing event in the
script given all other events. Chambers and Ju-
rafsky (2009) broadened the scope of event chains
by defining “narrative schemas” which model all
actors involved in a set of events along with their
role. These inspired several script learning ap-
proaches (Regneri et al., 2010; Balasubramanian
et al., 2013). A related line of research focused on
extracting “event schemas”, which store seman-
tic roles for typical entities involved in an event.
Several works proposed unsupervised methods for
this task (Chambers and Jurafsky, 2011; Che-
ung et al., 2013; Chambers, 2013; Nguyen et al.,
2015). Recent research identified a key prob-
lem with the narrative cloze test, namely that lan-
guage modeling approaches perform well with-
out learning about events (Pichotta and Mooney,
2014; Rudinger et al., 2015). This drove the es-
tablishment of a new task: the story cloze test
where the goal was to select the correct end-
ing for a story given two endings (Mostafazadeh
et al., 2016a; Sharma et al., 2018). Several works
showed that incorporating event sequence infor-
mation provides improvement in this task (Peng
et al., 2017; Chaturvedi et al., 2017b). Addition-
ally, some work has focused on defining new script
annotation schemes (Mostafazadeh et al., 2016b;
Wanzare et al., 2016; Modi et al., 2016) and
domain-specific script-based story understanding
(Mueller, 2004; McIntyre and Lapata, 2009).

Character-centric approaches adopt the outlook
that characters make a narrative compelling and
drive the story. While no standard paradigms
have been established for character representa-
tion, a common approach concentrated on learn-
ing character types or personas (Bamman et al.,
2013, 2014). Other work proposed to model
inter-character relationships (Krishnan and Eisen-
stein, 2015; Chaturvedi et al., 2016, 2017a). In-
formation about character types and their rela-
tionships has been demonstrated to be useful for
story understanding tasks such as identifying in-
correct narratives (e.g., reordered or reversed sto-
ries) (Elsner, 2012) and detecting narrative simi-
larity (Chaturvedi et al., 2018). Finally, an inter-
esting line of research has focused on constructing
“plot units”, which are story representations con-
sisting of affect states of characters and tensions
between them. Plot units were first proposed by

23



Lehnert (1981) and have recently attracted inter-
est from the NLP community resulting in the de-
velopment of computational approaches (Appling
and Riedl, 2009; Goyal et al., 2010).

Our work takes a unique approach in that we
propose a computational technique to learn func-
tional schemas from stories. Functional schemas
consist of stereotypical sets of functional struc-
tures observed in stories. The key difference be-
tween functional schemas and scripts is that scripts
contain events present in the narrative, while func-
tional schemas consist of phases in a story arc.
For example, for a crime story, a script represen-
tation may contain a “murder” event, but a func-
tional schema could represent that event as “incit-
ing incident”, based on its role in the arc. Func-
tional structures are key to rhetorical structure the-
ory for discourse analysis (Labov, 1996; Labov
and Waletzky, 1997) and have been operational-
ized in discourse parsing (Li et al., 2014; Xue
et al., 2015). However, not much work has ex-
plored their utility in uncovering novel narrative
structures. One exception is Finlayson (2012),
which learned functional structures from folktales,
indicating that computational techniques could re-
cover patterns described in Propp’s theory of folk-
tale structure (Propp, 2010). Our work differs
since we aim to uncover new schemas instead of
validating existing structural theories. We take this
perspective because we are interested in studying
stories told on social media which may not con-
form to existing theories of narrative structure.

2.2 Schema Induction via Topic Models

To computationally extract functional schemas, it
is important to identify characteristic functional
structures from stories. Topic models, such as La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003),
can be used for automatic induction of such struc-
tures since they identify latent themes, which may
be treated as functions, from a set of documents.
However, vanilla topic models do not model tran-
sitions between themes, whereas stories tend to
follow stereotypical sequences of functional struc-
tures. For example, the conflict in a story must be
set up before the resolution. Hence, to account
for the order of functional structures, conversation
models can be employed (Ritter et al., 2010; Lee
et al., 2013; Ezen-Can and Boyer, 2015; Brychcı́n
and Král, 2017; Joty and Mohiuddin, 2018; Paul,
2012; Wallace et al., 2013; Jo et al., 2017). These

models impose structure on transitions between la-
tent themes, typically using an HMM. This un-
covers latent themes that account for interactions
among themselves, helping to identify dialogue
acts, which these models aim to extract. A sim-
ilar HMM-based framework has been used to ex-
tract story schemas from news articles (Barzilay
and Lee, 2004).

Among many conversation models, we use the
Content word filtering and Speaker preferences
Model (CSM), which recently offered the best per-
formance at unsupervised dialogue act identifica-
tion (Jo et al., 2017). We choose this model be-
cause it has some characteristics which make it
especially useful for capturing functional struc-
tures. Above all, it automatically distinguishes
between topical themes and functional structures,
which have different behavior. For example, a
functional structure that represents asking a ques-
tion would be characterized by wh-adverbs and
question marks, rather than the specific content of
questions. Being able to make this distinction be-
tween topics and functional structures is crucial to
our task of extracting functional schemas.

3 Method

We use unsupervised algorithms to induce func-
tional schemas from stories. More specifically our
pipeline consists of the following stages:

1. Functional Structure Identification: We
use CSM to identify typical sequences of
functional structures.

2. Story Schema Formation: We perform
PCA to form functional schemas.

3.1 Functional Structure Identification

The first step in our pipeline is to identify the typ-
ical sequences of functional structures in the cor-
pus, which will then be clustered to form several
functional schemas. Specifically, we utilize CSM
to identify underlying functional structures from
the corpus.

CSM is a generative model originally applied to
conversation – a sequence of utterances by speak-
ers. The model assumes that a corpus of conversa-
tions has a set of functional structures undertaken
by individual sentences. Each structure is repre-
sented as a language model, i.e., a probability dis-
tribution over words. CSM can be seen as a combi-
nation of an HMM and a topic model but adopts a

24



deliberate design choice different from other mod-
els that focus mainly on topical themes. It cap-
tures linguistic structures using multiple mecha-
nisms. First, the model encodes that, in a conver-
sation the content being discussed transitions more
slowly than the structures that convey the content.
Capturing the difference in transition paces allows
the model to distinguish co-occurrence patterns of
fast-changing words (functional structures) from
words that occur consistently throughout (topical
themes).

CSM also assumes that each utterance plays
some functional role, indicated by structural el-
ements found within it, and that the function is
probabilistically conditioned on that of the pre-
ceding utterance. This captures dependencies be-
tween utterance-level functions and thus those be-
tween lower-level structural elements within sen-
tences as well. We can see these dependen-
cies in, for example, a tech forum, where a con-
versation begins with a user’s utterance of “in-
formation seeking” comprising such functional
structures as introduction, problem statement, and
question. This utterance may be followed by
another user’s utterance of “providing solutions”
comprising such functional structures as sugges-
tions and references. Formally, an utterence-level
function is represented as a “state”, a probability
distribution over functional structures.

Since each story in our task is a monologue
rather than a conversation, we need to format our
data in a way analogous to a conversation to ap-
ply CSM. Specifically, we treat each story as a
“conversation”, and each sentence in the story as
an “utterance”. Accordingly, each “conversation”
has only one speaker. This way, we apply CSM
to a corpus of stories, still benefiting from the
model’s ability to distinguish functional structures
from topical themes and account for temporal de-
pendencies between functional structures.

3.2 Functional Schema Formation

After determining functional structures, we iden-
tify sets of most strongly co-occurring structures
to form functional story schemas. To identify
co-occurring structures, we represent each story
as a bag of functional structures and run PCA3.
Each resultant principal component is treated as a

3Though using PCA in the next phase removes ordering
from the final schemas constructed, incorporating ordering
during functional structure estimation helps in detecting more
salient structures.

schema, consisting of functional structures which
have a high loading value for that component.
Since principal components are orthogonal, ex-
tracted schemas will be distinct. In addition, the
set of extracted schemas will be representative of
most stories, because PCA retains the variance of
the original data. The functional structures present
in each schema (based on loading) are treated as
elements of that schema.

4 Experiments

4.1 Dataset

We demonstrate the utility of our schema ex-
traction pipeline on Reddit posts4. We select
three active subreddits to construct our dataset,
/r/environment, /r/ZeroWaste,and /r/Green, which
cover issues from the environmental domain. We
are interested in studying how people structure
their experiences and stories differently in each
subreddit, though all of them discuss similar top-
ics, as well as the extent to which our extracted
functional schemas capture such subtle structural
differences. We collect all posts from these sub-
reddits since their inception until Jan 2019. Table
2 summarizes statistics for our dataset.

Subreddit # of Posts

environment 3, 785
ZeroWaste 2, 944

Green 305

Table 2: Dataset Statistics

Using our schema extraction pipeline, we first
extract a set of 10 functional structures using
CSM5. Then using PCA, we derive 10 sets of co-
occurring structures as our candidate functional
schemas. Next, we manually inspect each set of
structures and select the most salient 4 sets as our
functional schemas6. To validate these schemas,
we perform a two-fold evaluation. First, we man-
ually interpret extracted functional structures and
schemas. Second, we demonstrate the utility of
our schemas by incorporating them into a down-
stream task: text classification.

4According to the Reddit User Agreement, users grant
Reddit the right to make their content available to other or-
ganizations or individuals.

5For CSM specific parameter settings see A.
6During manual inspection, we also try to ensure diversity

(each set contains different structures).

25



4.2 Manual Schema Interpretation
In order to interpret the schemas, we first need to
label functional structures extracted by CSM. La-
beling was performed independently by two an-
notators who looked at sample sentences assigned
to each structure by the model and assigned struc-
ture name labels based on inspection. A consensus
coding was assembled as the final interpretation
after an adjudicating discussion. Table 3 gives a
brief overview of the structure labels along with
examples for each. We see that the detected struc-
tures indeed represent strategies commonly used
by Reddit users.

Schemas can now be interpreted based on
labels assigned to the structures they contain.
Final schema interpretations, along with sample
posts for each schema, are presented in table 4.
We observe that schema 0 and schema 2 are news
and fact oriented, whereas schema 1 and schema
3 include more personal experiences. Moreover,
new posts can also be fit into these schemas.
We assign a schema to each post P using the
following formula:

schema(P ) = argmax
s∈S

∑

t∈s
lt ∗

nt
nP

(1)

Here, S is the set of schemas, s is a schema, t
is a functional structure, nt is the number of sen-
tences assigned t in P , nP is the total number of
sentences in P , and lt is the absolute value of the
PCA loading for t.

Figure 1 shows the proportion of posts from
each subreddit assigned to each schema. We
clearly see that posts from different subreddits fol-
low different schemas. Specifically, half of the
posts in subreddit /r/environment fit into schema
0 and about 1/4 of the posts fit into schema 2;
Schema 1 dominates posts in /r/ZeroWaste; Posts
in /r/Green occupy schemas 0, 1, 2 and 3 in de-
creasing numbers. This demonstrates that our
extracted schemas do capture typical structures
present in Reddit posts and that posts in each sub-
reddit indeed exhibit unique structures.

4.3 Using Schemas for Text Classification
In addition to manual interpretation, we demon-
strate the practical utility of our schema extrac-
tion pipeline by applying it in a downstream task:
multi-label text classification. In our task setup,
we treat each post as a document and the sub-
reddit it belongs to as the document label. Since

Proportion of subreddit posts

Environment

ZeroWaste

Green

0 0.25 0.5 0.75 1

Scehma-0 Schema-1 Schema-2 Schema-3

Proportion of posts assigned to each schema from different 
subreddits

Figure 1: Proportion of schemas for each subreddit

all subreddits in our dataset focus on environmen-
tal issues, most posts discuss similar topics, mak-
ing classification using only content information
hard. However, as we observed in our schema
interpretation, posts from different subreddits fol-
low different schematic structures. Hence, we hy-
pothesize that using schema information should
help on this task. As a preliminary experiment,
we construct a document representation using only
schema-based features. Each document is rep-
resented as a 4-dimensional vector consisting of
schema scores calculated per equation (1). The
performance of logistic regression (LR) and sup-
port vector machine (SVM) classifiers using these
feature representations is presented in table 5.
These scores demonstrate that schema information
is extremely predictive for the classification task
in comparison to a majority vote baseline. En-
couraged by this result, we conduct further exper-
iments in which schema information is combined
with word features. We experiment with both neu-
ral and non-neural baseline models for our task.
Our models and results are described below.

4.3.1 Baseline Models
We set up the following baseline models, which
use only word-level information, for text classifi-
cation:

• LR: A logistic regression classifier with two
feature settings (bag-of-words or tf-idf)
• NB: A naive bayes classifier with two feature

settings (bag-of-words or tf-idf)
• SVM: A support vector machine classifier

with unigram bag-of-word features
• BiLSTM: A bi-directional LSTM with

mean-pooling (Yang et al., 2016), followed
by an MLP classifier
• CNN: A CNN with filter sizes 3,4,5 and max-

pooling (Kim, 2014), followed by an MLP

26



Structure Label Examples
0 Requesting help any advice would be appreciated

any ideas on how i can do this
1 Asking for feedback & thanking thanks in advance for your help

if you want to help please send me a message here
2 Disclosing personal stories i teach global environmental history...

i’m trying to learn more about being eco-friendly...
3 Presenting news/statements this is called economy of scale

solar is unreliable expensive and imported
4 Catch-all for questions how happy will we be when our wells are dry

how do we make up for these losses
5 Presenting news/facts (numbers) 85 of our antibiotics come from ascomycetes fungi...

reduce the global population of bears by two thirds...
6 Expressing personal opinions now i think that landfills are the devil...

i am sure something can be done with them...
7 Providing motivation we r/environment need to be a vehicle for change...

we need to engage learn share eulogize and inform
8 Non-English sentences men data siden 2005 viste veksten av disse...

durant ces cent dernires annes...
9 Catch-all for personal story bits when i asked for a carafe of water he said...

all i wanted to do was use a cup to get some coffee...

Table 3: 10 functional structures extracted by CSM along with examples. These structures are more general than
narrative primitives appearing in classic theoretical frameworks such as Propp’s theory, but we believe that they
provide a reasonable approximation.

classifier

For all models using bag-of-words or tf-idf
features, we restrict the vocabulary to the most
frequent 2, 000 words. All neural models use
300-dimensional GloVe embeddings (Pennington
et al., 2014).

4.3.2 Schema-based Extension Models
To incorporate schema features alongside word-
level features, we adopt a strategy inspired by
domain adaptation techniques (Daume III, 2007;
Kim et al., 2016). Daume III (2007) proposed
a feature augmentation strategy for domain adap-
tation, which was extended to neural models by
(Kim et al., 2016). It works as described: given
two domains (“source” and “target”), each feature
is duplicated thrice creating three versions – a gen-
eral version, a source-specific version and a target-
specific version. We follow the same intuition
considering each schema to be a separate domain.
Hence, we duplicate each feature 5 times (a gen-
eral version and 4 schema-specific versions). For
example, if a document contains the word “plas-
tic”, our feature space includes “general plastic”,
“schema0 plastic”, and so on. We experiment

with several feature duplication strategies, result-
ing in the following settings for each model:

• Vanilla: Only the general domain features
contain non-zero values. All schema domain
features are set to zero, hence this setting con-
tains no schema information.
• AllSent: Both general and schema domains

contain non-zero feature values computed us-
ing sentences from the entire document. For
each document, only one schema domain (i.e.
assigned schema) contains non-zero values.
• SchemaSent: General domain feature val-

ues are computed using the entire document,
while schema domain feature values are com-
puted using only sentences which contain
structures present in the assigned schema.

4.3.3 Results
To evaluate the performance of all models on
our text classification task, we create a held-out
test set using 10% of our data. The remain-
ing data is divided into train and dev sets. To
avoid double-dipping into the same data for both
schema learning and subreddit prediction, we use
dev set to learn schemas, and train AllSent and

27



Schema Interpretation Examples
0 Presenting news/facts, asking ques-

tions and providing motivation
deforestation in the amazon can hardly be a headline
for forty years running...how happy will we be when
our wells are dry...right now the jaguars are on the
rise and i have hope

1 Disclosing personal problems or
opinions, sharing story snippets and
providing motivation

i am not a techsavvy person...i literally know the
bare minimum of how a computer works

2 Presenting news/facts, asking ques-
tions and sharing story snippets

the commission by environmental campaigners fore-
cast 3 trillion euros would generate by 2050...it has
yet to achieve agreement on binding targets beyond
2020...the crown report finds almost totally green
energy would lead to half a million extra jobs

3 Disclosing personal problems, pre-
senting facts and requesting help

i just got this job the only job i’ve been able to find
for the last year...we work on different studies each
week for the likes of bayer and monsanto...i know i
should stop pestering the internet for help but you’re
so benevolent

Table 4: Manual interpretation for 4 schemas extracted by PCA, along with example post sinppets. Note that the
functional structures in each schema may appear in any order in the post, not necessarily the one presented here

Model Accuracy

LR 83.64%
SVM 82.79%

Table 5: Accuracy of classifiers using only schema fea-
tures for text classification. Majority vote accuracy is
53.34%

SchemaSent models on train data only. However
for the Vanilla setting, we can use both train and
dev sets for training since no schema information
is used. Because we need a large dev set to learn
good schemas, we perform a 50 : 50 split to create
train and dev sets. Exact statistics are provided in
table 6.

Split # of Posts

Train 3, 166
Dev 3, 165
Test 703

Table 6: Dataset split statistics

Table 7 shows the performance of all models
in different settings on the text classification task.
We observe that for both neural and non-neural
models, incorporating schema information helps
in all cases, the only exception being NB-BoW.

We also notice that neural and non-neural models
achieved comparable performance which is sur-
prising. To further investigate this, we look into
precision recall and F1 scores of the best model
for each type respectively i.e. NB-BoW Vanilla
and CNN AllSent. Our investigation shows that
unlike NB-BoW, the CNN model completely ig-
nores the minority subreddit /r/Green, which we
believe could be due to the fact that our dataset is
extremely small for neural models.

Model Vanilla AllSent SchemaSent

LR-BoW 80.2% 85.1% 84.8%
LR-TfIdf 81.4% 80.7% 81.7%
NB-BoW 86.9% 78.0% 77.2%
NB-TfIdf 69.6% 79.8% 79.2%

SVM 77.8% 83.8% 85.2%
BiLSTM 82.4% 79.8% 82.9%

CNN 85.2% 87.3% 86.6%

Table 7: Accuracy of all models on text classification

5 Discussion

Our interpretation and experiments demonstrate
that the extracted functional schemas uncover
novel narrative structures employed by Reddit
users. We also observe that functional schemas
are differently distributed across subreddits, in-

28



dicating that communities follow diverse story-
telling practices, even when discussing similar
topics. These subtle schema differences between
narratives across subreddits can aid us in discern-
ing how users structure stories differently when
participating in different communities. In our
case, extracted schemas show that users in sub-
reddits /r/environment and /r/Green use more fact-
oriented functions while telling stories (high abun-
dance of stories fitting schemas 0 and 2), whereas
users in subreddit /r/ZeroWaste use more personal
experience-oriented functions (high abundance of
stories fitting schemas 1 and 3). We highlight
this by giving prototypical example posts with as-
signed schema labels for each subreddit below:

...there is so many problems today with
plastic strawsthe uk and the us use a
combined total of 550 million plastic
straws each day and unfortunately its
safe to say that not all 550 million of
these plastic items are recycled ...
(/r/environment, Schema 0)

...every single year plastic cards ho-
tel key cards etc amount to 75 million
pounds of pvc wasted or about 34000
tonsthe eiffel tower weighs just around
10000 tonsthis is the equivalent of bury-
ing around 3 eiffel towers a year just
from used pvc cards...
(/r/Green, Schema 0)

...i had a few vegetables that were wilt-
ing and ready to be discarded...instead
i made a soup with all of them and
some broth and miso...it’s good and isn’t
wasteful...
(/r/ZeroWaste, Schema 1)

More importantly, these narrative structures
unique to each subreddit, as captured by functional
schemas, can act as a lens and provide insight into
community posting norms. This is analogous with
previous work on computational sociolinguistics,
where researchers have demonstrated that online
discussion forums create community norms about
language usage, and members adapt their language
to conform to those norms (Nguyen et al., 2016).
Especially on Reddit, language style is an essen-
tial indicator of community identity (Tran and
Ostendorf, 2016; Chancellor et al., 2018). Our

schemas help us make similar observations, show-
ing that dominant user posting styles in each sub-
reddit seem to be ones that conform to subreddit
descriptions. Figure 2 presents descriptions for all
subreddits which we use in our dataset. We see
/r/environment and /r/Green specifically position
themselves as platforms to discuss news and cur-
rent issues, which is also recovered by our func-
tional schemas since they contain an abundance of
news and fact related functions. On the other hand,
/r/ZeroWaste positions itself as a platform for like-
minded people, resulting in dominant schemas
demonstrating an abundance of functional struc-
tures related to describing personal experiences.
This indicates that our technique of inducing func-
tional schemas from social media posts is useful
for drawing interesting insights about how narra-
tives align to community norms in online discus-
sion forums.

Figure 2: Subreddit description corresponding to
schemas

6 Conclusion & Future Work

In this work we propose a novel computational ap-
proach to understand social media narratives. We
present a unique take on story understanding, fo-
cusing on learning functional story schemas which
are sets of typical functional structures. We first
introduce a computational pipeline utilizing un-
supervised methods such as CSM and PCA, to
extract schemas and use it on social media data
(posts from different communities on Reddit). We
then validate learned schemas through human in-
terpretation and a downstream text classification
task. Our interpretation shows typical posting
strategies used by community members and our
experiments demonstrate that integrating schema
information improves the performance of base-
line models on subreddit prediction. Finally, we
observe that functional schemas not only capture
specific narrative structures existing in subreddits,

29



but also reveal online community norms, which
helps us better understand how stories function in
social media.

A limitation of our work is that PCA-based
grouping loses information about ordering of
functional structures within each schema. Mov-
ing forward, we plan to tackle this to form ordered
schemas. Possible applications of our work in-
clude using extracted schemas to study evolution
of community norms and changes in user compli-
ance to these norms over time.

7 Acknowledgements

This research was funded by Dow. The authors
would like to thank the anonymous reviewers for
their constructive feedback.

References
D Scott Appling and Mark O Riedl. 2009. Represen-

tations for learning to summarize plots. In AAAI
Spring Symposium: Intelligent Narrative Technolo-
gies II, pages 1–4.

Niranjan Balasubramanian, Stephen Soderland,
Mausam, and Oren Etzioni. 2013. Generating co-
herent event schemas at scale. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1721–1731, Seattle,
Washington, USA. Association for Computational
Linguistics.

David Bamman. 2015. People-Centric Natural Lan-
guage Processing. Ph.D. thesis, Carnegie Mellon
University.

David Bamman, Brendan O’Connor, and Noah A.
Smith. 2013. Learning latent personas of film char-
acters. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 352–361, Sofia, Bul-
garia. Association for Computational Linguistics.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A Bayesian mixed effects model of literary
character. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 370–379, Bal-
timore, Maryland. Association for Computational
Linguistics.

Regina Barzilay and Lillian Lee. 2004. Catching the
drift: Probabilistic content models, with applica-
tions to generation and summarization. In HLT-
NAACL 2004: Main Proceedings, pages 113–120,
Boston, Massachusetts, USA. Association for Com-
putational Linguistics.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

William F Brewer and Edward H Lichtenstein. 1980.
Event schemas, story schemas, and story grammars.
Center for the Study of Reading Technical Report;
no. 197.

William F Brewer and Edward H Lichtenstein. 1982.
Stories are to entertain: A structural-affect theory of
stories. Journal of pragmatics, 6(5-6):473–486.

Tomáš Brychcı́n and Pavel Král. 2017. Unsupervised
dialogue act induction using Gaussian mixtures. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 485–490,
Valencia, Spain. Association for Computational Lin-
guistics.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1797–
1807, Seattle, Washington, USA. Association for
Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of ACL-08: HLT, pages 789–797, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 602–610, Suntec,
Singapore. Association for Computational Linguis-
tics.

Nathanael Chambers and Dan Jurafsky. 2011.
Template-based information extraction without
the templates. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
976–986, Portland, Oregon, USA. Association for
Computational Linguistics.

Stevie Chancellor, Andrea Hu, and Munmun
De Choudhury. 2018. Norms matter: contrast-
ing social support around behavior change in
online weight loss communities. In Proceedings
of the 2018 CHI Conference on Human Factors in
Computing Systems, page 666. ACM.

Snigdha Chaturvedi, Mohit Iyyer, and Hal Daume III.
2017a. Unsupervised learning of evolving relation-
ships between literary characters. In Thirty-First
AAAI Conference on Artificial Intelligence.

Snigdha Chaturvedi, Haoruo Peng, and Dan Roth.
2017b. Story comprehension for predicting what
happens next. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1603–1614, Copenhagen, Den-
mark. Association for Computational Linguistics.

30



Snigdha Chaturvedi, Shashank Srivastava, Hal
Daume III, and Chris Dyer. 2016. Modeling
evolving relationships between characters in literary
novels. In Thirtieth AAAI Conference on Artificial
Intelligence.

Snigdha Chaturvedi, Shashank Srivastava, and Dan
Roth. 2018. Where have I heard this story before?
identifying narrative similarity in movie remakes. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 673–678, New
Orleans, Louisiana. Association for Computational
Linguistics.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Van-
derwende. 2013. Probabilistic frame induction. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 837–846, Atlanta, Georgia. Association for
Computational Linguistics.

Hal Daume III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
256–263, Prague, Czech Republic. Association for
Computational Linguistics.

Micha Elsner. 2012. Character-based kernels for nov-
elistic plot structure. In Proceedings of the 13th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 634–
644, Avignon, France. Association for Computa-
tional Linguistics.

Aysu Ezen-Can and Kristy Elizabeth Boyer. 2015. Un-
derstanding student language: An unsupervised dia-
logue act classification approach. Journal of Educa-
tional Data Mining (JEDM), 7(1):51–78.

Mark Alan Finlayson. 2012. Learning narrative struc-
ture from annotated folktales. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Amit Goyal, Ellen Riloff, and Hal Daume III. 2010.
Automatically producing plot unit representations
for narrative text. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 77–86, Cambridge, MA. Associ-
ation for Computational Linguistics.

Yohan Jo, Michael Yoder, Hyeju Jang, and Carolyn
Rosé. 2017. Modeling dialogue acts with content
word filtering and speaker preferences. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2179–2189,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Ian Jolliffe. 2011. Principal component analysis.
In International encyclopedia of statistical science,
pages 1094–1096. Springer.

Shafiq Joty and Tasnim Mohiuddin. 2018. Model-
ing speech acts in asynchronous conversations: A
neural-CRF approach. Computational Linguistics,
44(4):859–894.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751, Doha, Qatar.
Association for Computational Linguistics.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016. Frustratingly easy neural domain adaptation.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 387–396, Osaka, Japan.
The COLING 2016 Organizing Committee.

Vinodh Krishnan and Jacob Eisenstein. 2015. “you’re
mr. lebowski, I’m the dude”: Inducing address
term formality in signed social networks. In Pro-
ceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1616–1626, Denver, Colorado. Association
for Computational Linguistics.

William Labov. 1996. Some further steps in narrative
analysis. The Journal of Narrative and Life His-
tory. Special Issue: Oral Versions of Personal Ex-
perience: Three Decades of Narrative Analysis, 7.

William Labov and Joshua Waletzky. 1997. Narrative
analysis: oral versions of personal experience.

Donghyeon Lee, Minwoo Jeong, Kyungduk Kim,
Seonghan Ryu, and Gary Geunbae Lee. 2013. Un-
supervised Spoken Language Understanding for a
Multi-Domain Dialog System. IEEE Transac-
tions on Audio, Speech, and Language Processing,
21(11):2451–2464.

Wendy G Lehnert. 1981. Plot units and narrative sum-
marization. Cognitive science, 5(4):293–331.

Jiwei Li, Rumeng Li, and Eduard Hovy. 2014. Re-
cursive deep models for discourse parsing. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2061–
2069, Doha, Qatar. Association for Computational
Linguistics.

Neil McIntyre and Mirella Lapata. 2009. Learning to
tell tales: A data-driven approach to story genera-
tion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP, pages 217–225, Suntec, Sin-
gapore. Association for Computational Linguistics.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. InScript: Narrative texts
annotated with script information. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 3485–
3493, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

31



Raymond J Mooney and Gerald DeJong. 1985. Learn-
ing schemata for natural language processing. In IJ-
CAI, pages 681–687.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016a. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James Allen, and Lucy Vanderwende.
2016b. CaTeRS: Causal and temporal relation
scheme for semantic annotation of event structures.
In Proceedings of the Fourth Workshop on Events,
pages 51–61, San Diego, California. Association for
Computational Linguistics.

Erik T Mueller. 2004. Understanding script-based sto-
ries using commonsense reasoning. Cognitive Sys-
tems Research, 5(4):307–340.

Dong Nguyen, A. Seza Doğruöz, Carolyn P. Rosé, and
Franciska de Jong. 2016. Survey: Computational
sociolinguistics: A Survey. Computational Linguis-
tics, 42(3):537–593.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret,
and Romaric Besançon. 2015. Generative event
schema induction with entity disambiguation. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
188–197, Beijing, China. Association for Computa-
tional Linguistics.

Ruth Page. 2013. Stories and social media: Identities
and interaction. Routledge.

Michael J. Paul. 2012. Mixed membership Markov
models for unsupervised conversation modeling. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
94–104, Jeju Island, Korea. Association for Compu-
tational Linguistics.

Haoruo Peng, Snigdha Chaturvedi, and Dan Roth.
2017. A joint model for semantic sequences:
Frames, entities, sentiments. In Proceedings of
the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pages 173–183,
Vancouver, Canada. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Karl Pichotta and Raymond Mooney. 2014. Statisti-
cal script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 220–229, Gothenburg, Sweden. As-
sociation for Computational Linguistics.

Vladimir Propp. 2010. Morphology of the Folktale,
volume 9. University of Texas Press.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988, Uppsala, Sweden. Associ-
ation for Computational Linguistics.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Un-
supervised modeling of twitter conversations. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
172–180, Los Angeles, California. Association for
Computational Linguistics.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction
as language modeling. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1681–1686, Lisbon, Portu-
gal. Association for Computational Linguistics.

Roger C Schank and Robert P Abelson. 1977. Scripts.
Plans, Goals and Understanding.

Rishi Sharma, James Allen, Omid Bakhshandeh, and
Nasrin Mostafazadeh. 2018. Tackling the story end-
ing biases in the story cloze test. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 752–757, Melbourne, Australia. Association
for Computational Linguistics.

Trang Tran and Mari Ostendorf. 2016. Characterizing
the language of online communities and its relation
to community reception. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1030–1035, Austin, Texas.
Association for Computational Linguistics.

Byron C. Wallace, Thomas A. Trikalinos, M. Barton
Laws, Ira B. Wilson, and Eugene Charniak. 2013. A
generative joint, additive, sequential model of topics
and speech acts in patient-doctor communication.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1765–1775, Seattle, Washington, USA. Association
for Computational Linguistics.

Lilian DA Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. Descript: A
crowdsourced corpus for the acquisition of high-
quality script knowledge. In Proceedings of the

32



Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 3494–
3501.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive psychology, 3(1):1–191.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi
Prasad, Christopher Bryant, and Attapol Ruther-
ford. 2015. The CoNLL-2015 shared task on shal-
low discourse parsing. In Proceedings of the Nine-
teenth Conference on Computational Natural Lan-
guage Learning - Shared Task, pages 1–16, Beijing,
China. Association for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

A Appendices

A.1 CSM Parameter Values
Various parameter values were tested and the final
parameter setting was chosen based on model per-
formance and the parameter setting suggested in
the original paper (Jo et al., 2017).

We found the optimal number of functional
structures to be 10. Higher numbers tend to
capture too content-specific structures, and lower
numbers too general structures. The optimal num-
ber of content topics is 5, which indicates that the
corpus is focused on environmental related issues
and the content is relatively common across the
corpus. The number of states reflects different pat-
terns of structure composition within a post, and
5 states were found to be optimal. More states
tend to capture too post-specific structures, and
less states cannot account for the diversity of struc-
tures.

Parameter ν ∈ [0, 1] is the weight on state tran-
sition probabilities (as opposed to speaker pref-
erences) for determining an utterance’s state. 1
means only state transition probabilities are con-
sidered, and 0 means only speaker preferences are
considered. In our study, we treat each post as a
“conversation” that has only one speaker. There-
fore, a low weight would identify functional struc-
tures that distinguish between posts rather than be-
tween sentences. We find a high weight (ν = 0.9)
drives the model to identify sentence structures
well that also account for some consistency within
each post. Parameter η ∈ [0, 1] is the weight

on structure language models (as opposed to con-
tent topics) for generating words. 1 means that all
words are generated from structure language mod-
els, and 0 means only from content topics. Our
setting (η = 0.8) filters out 20% of words as con-
tent. This is quite a large proportion compared to
the original paper, meaning that the corpus has a
relatively large proportion of words that constitute
functional structures.

Other hyperparameters for the model were set
as per the original paper: αF = γA = 0.1, αB =
γS = 1, β = 0.001.

33



Proceedings of the Second Storytelling Workshop, pages 34–45
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

A Hybrid Model for Globally Coherent Story Generation

Zhai Fangzhou†, Vera Demberg†,‡, Pavel Shkadzko†, Wei Shi† and Asad Sayeed∗
† Dept. of Language Science and Technology

‡ Dept. of Mathematics and Computer Science, Saarland University
∗Dept. of Philosophy, Linguistics and Theory of Science, University of Gothenburg

{fzhai, vera, w.shi}@coli.uni-saarland.de
p.shkadzko@gmail.com, asad.sayeed@gu.se

Abstract

Automatically generating globally coherent
stories is a challenging problem. Neural text
generation models have been shown to per-
form well at generating fluent sentences from
data, but they usually fail to keep track of the
overall coherence of the story after a couple of
sentences. Existing work that incorporates a
text planning module succeeded in generating
recipes and dialogues, but appears quite data-
demanding. We propose a novel story gener-
ation approach that generates globally coher-
ent stories from a fairly small corpus. The
model exploits a symbolic text planning mod-
ule to produce text plans, thus reducing the
demand of data; a neural surface realization
module then generates fluent text conditioned
on the text plan. Human evaluation showed
that our model outperforms various baselines
by a wide margin and generates stories which
are fluent as well as globally coherent.

1 Introduction

Automatic story generation is the task of automat-
ically determining the content and utilizing proper
language to craft stories. One of the most impor-
tant aspects of these stories is their coherence. The
scope of global coherence includes arranging the
contents in a plausible order, staying on topic, and
creating cohesion through anaphoric expressions,
etc.

Traditionally, story generation is performed
with symbolic planning systems (see, e.g., Mee-
han, 1976; Riedl and Young, 2010; Busemann and
Horacek, 1998). These systems often follow a
hierarchical pipeline: higher level modules per-
form text planning, determine discourse relations
and contents of each sentence; lower level mod-
ules account for surface realization accordingly.
Although capable of producing impressive, coher-
ent stories, these systems rely heavily on manual

knowledge engineering to select actions, charac-
ters, etc., properly, therefore generalizing poorly
to unseen domains.

Early NLG systems, on the other hand, excel
at generating fluent on-topic utterances (see, e.g.,
Mei et al., 2015; Wen et al., 2015). These mod-
els are data-based, and therefore can be applied to
new domains if data is available. However, these
models struggle to keep track of longer story or
dialog history, i.e., they may switch topics, repeat
information or say things that are not consistent
with sentences generated earlier (see, e.g., Vinyals
and Le, 2015; Shang et al., 2015). Extra modelling
efforts or knowledge input is required to improve
global coherence.

Neural NLG systems that incorporate text plan-
ning efforts could improve global coherence, and
grant some controllability over the contents, i.e.
making it possible to generate stories given spe-
cific input of what should happen in the story. (Fan
et al., 2019) uses a convolutional seq2seq model to
generate a chain of predicate-argument structures
from a prompt to sketch a story, and then uses an-
other convolutional seq2seq model to convert the
chain of predicate-argument structures to text. The
neural checklist model (Kiddon et al., 2016) keeps
track of the progress of recipe generation with
the usage of ingredient words, to generate recipes
from a bag of ingredients. If we consider the task
of story generation, events (“script” events; scripts
capture knowledge about “standardized sequences
of events about daily activities such as going to a
restaurant or visiting a doctor”) are also fairly in-
formative for the narration progress. Thus if one
could identify events within surface texts, it is, in
principle, possible to regard the events as indica-
tors of the narration progress (just like the ingre-
dients in a recipe) and apply the neural checklist
model.

These requirements are fulfilled by the

34



InScript (Modi et al., 2017a) corpus, a small
corpus that contains a total of about 1000 stories
about everyday events from 10 scenarios. Each
story is annotated with script-relevant event types
to align them with surface language. However,
surprisingly, when we apply the neural checklist
model on InScript to generate stories, the
quality of the generated stories appears poor
(see the second item in Table 1 for a sample
generation).

We notice two possible reasons for why the neu-
ral checklist model does not perform well on the
task: (1) the scale of InScript is less that 0.5%
of the recipe task investigated in (Kiddon et al.,
2016), thus the model may not be able to properly
fit its complex structure and learn to plan the text;
(2) each script event in our data corresponds to
multiple possible surface realization options (e.g.,
both ’I went to the shop’ and ’I drove to the su-
permarket’ would be labeled as a go to store
event), which makes the alignment between an
event and the surface text inherently more com-
plicated than that between ingredients and surface
text.

To tackle these issues, we propose a new neu-
ral story generation model that exploits explicit,
symbolic text planning. The model consists of
two components: the agenda generator produces
an agenda, a sequence of script events that would
later be fleshed out to yield a story, by a neural
surface realization module; the neural surface re-
alization module treats the events in the agenda as
a latent variable that encodes the progress of story
generation, and produces text conditioned on it.
The outcome is a system that could be trained with
much less data. To our knowledge, this is the first
attempt to integrate a completely symbolic text
planner with a neural surface realization compo-
nent, to perform fully interpretable text planning.
Human evaluation shows that our system signif-
icantly outperforms various baselines in terms of
fluency and global coherence.
Our contributions are as follows:

• We develop a story generation model that
generates globally coherent stories about
daily activities.

• We propose a novel way to combine a neural
story generation model with an explicit, sym-
bolic text planning component; furthermore,
we show that the design reduces the demand
on training data.

• We illustrate the possibility of guiding the di-
rection of story generation by conditioning
the generation on a latent intention variable.

In the remainder of this paper, we start with a
discussion of related research, and then introduce
the InScript corpus. To follow is a detailed in-
troduction of our model and the results from hu-
man evaluation. Analysis of the results and some
discussions about future directions conclude the
paper.

2 Related Work

NLG Conditioned on Latent Intention
Variable

Incorporating a latent intention variable in NLG
systems yields improved controllability over the
content. It is proved effective in data-to-dialogue
generation (see, e.g., Yarats and Lewis, 2017;
Kiddon et al., 2016). In neural text generation,
some domain-specific categories of words are also
informative for the progress of generation. Kid-
don et al. (2016) developed an end-to-end neural
text generation model, which keeps track of the us-
age of the keywords (e.g. recipe ingredients) with
attention mechanism, and conditions surface real-
ization on the usage of these words.

NLG with Explicit Text Planning

Noting that RNN based language models could
only account for local coherence, attempts have
been made to perform text planning on a higher
level (e.g. Jain et al., 2017; Peng et al., 2018).
Puduppully et al. (2018) performs content se-
lection and planning with attention based neu-
ral networks before surface realization, to gen-
erate specifically structured NBA game sum-
maries. Martin et al. (2018) uses sequence to se-
quence neural network (event2event) to generate
events (represented by a verb and its most im-
portant arguments) corresponding to consecutive
sentences. A second sequence to sequence model
(event2sentence) generates a sentence based on
the event. Our method differs from that of Mar-
tin et al. (2018), mainly in that (1) we seek to
implement text coherence on a document level
whereas they mostly focused on consecutive sen-
tence pairs; (2) we do not incorporate explicit sen-
tence segmentation but leave the job to the surface
realization component.

35



3 Data

Our work is based on the InScript corpus. We
mainly utilized its event annotations and the tem-
poral script graphs extracted from the corpus.

3.1 The InScript Corpus
The InScript corpus (Modi et al., 2017a) was
designed for the investigation of script knowledge.
The corpus includes around 100 stories for each
of 10 common daily scenarios. These stories are
annotated with event types as well as participant
types. For this paper, we only exploit the event
type annotations. An example is shown in Figure
1. The average story length is approximately 240
tokens; the corpus includes 238k tokens in total.
We use the corpus to train the neural surface real-
ization component.

3.2 The Temporal Script Graphs
Wanzare et al. (2017) compiled the InScript
event annotations into temporal script graphs (see
Figure 2). These directed graphs contain informa-
tion on the typical temporal order of events in a
script scenario, which is a crucial aspect of script
knowledge. In our method, temporal script graphs
are used to generate plausible sequences of events
for building the agenda.

4 Our Model

Overview
Our model consists of three modules. Firstly, a
symbolic agenda generator, which is responsi-
ble for performing text planning. Given a specific
scenario (e.g., baking a cake), it produces an
agenda according its temporal script graph. Sec-
ondly, a neural surface realization module, which
performs two tasks: (1) it predicts the next word
of the story conditioned on the text history and
the event that needs to be realized at a specific
point in the story; (2) it determines whether the
current event has been completely realized so the
generation could move to the next event in the
agenda. Finally, a story generator which performs
the following. (1) Calls the agenda generator to
generate an agenda. (2) Creates a seed, a short,
plausible beginning, to initialize surface realiza-
tion, e.g., ‘yesterday i went grocery shopping’.
(3) Iteratively calls the surface realization mod-
ule to perform a beam search (see, e.g., Sutskever
et al., 2014) and generate a complete story. (4) Re-
moves occasional (approx. once per thousand to-

kens) excessive repetitions in the generated story.
More precisely, when a word or phrase is repeated
at least three times, the third repetition would be
deleted. e.g., ‘i like the tree very very very much’
becomes ‘i like the tree very very much’. The gen-
eration terminates when the agenda is exhausted
and a sentence-terminating punctuation is gener-
ated.

4.1 The Agenda Generator

Given a scenario, the agenda generator goes
through the temporal script graph and samples a
path through it. For the example given in Figure
2, the path would start out with “choose recipe”
and continue with either “get ingredients” or “buy
ingredients”, followed by “add ingredients”, un-
til the end of the graph is reached. The agenda
generator also decides whether each event should
be realized. In natural stories, narrators usually
do not mention all of the events, and this com-
ponent enables our model to mimic this behav-
ior: the probability of event realization depends
on the likelihood of the event given its predeces-
sor p(e|e′), which is estimated on the training data
using an event bigram model. To avoid excessive
discontinuity in the realization, the agenda gener-
ator is prohibited to skip two consecutive events.
The outcome of this process is an agenda, a plau-
sible sequence of events.

Due to its symbolic nature, the agenda genera-
tor demands no extra training data, which is cru-
cial for reducing the demand of data. Moreover,
as the agenda generation is fully transparent and
interpretable, we gain fair controllability over the
content. For example, dropping a specific event
from the agenda would cause the generation to
skip it. Actually, it is also possible to use the sur-
face realization module independently and gener-
ate a story from an event sequence as input.

4.2 The Neural Surface Realization Module

Our neural surface realization module is a GRU
(Cho et al., 2014) language model, modified to en-
able two additional functionalities. (1) Condition-
ing the prediction of the successive word on the
generation progress. (2) Determining whether the
current event has been completely verbalized. If
so, the surface realization module shifts its focus
one event onward along the agenda and begins to
instantiate the next event. See Figure 3 for a con-
ceptual illustration.

36



Figure 1: An excerpt from a story on TAKING A BATH in the InScript corpus taken from Modi et al. (2017b).
The referring expressions are in parentheses, and the corresponding discourse referent label is given by the super-
script. Referring expressions of the same discourse referent have the same color and superscript number. Script-
relevant events are in square brackets and colored in orange. Event types are indicated by the subscripts.

Figure 2: The Temporal Script Graphs for the BAKING
A CAKE script induced from the InScript corpus,
taken from (Wanzare et al., 2017). The nodes are the
event clusters whereas the dashed boxes include some
possible utterances that correspond to these clusters.

Figure 3: An illustration of the surface realization mod-
ule. It produces two outputs: a distribution over the
vocabulary that predicts the successive word, and a
boolean-valued variable that indicates whether the gen-
eration should move to the next event.

For the first functionality (see Figure 4 for the
model architecture), we condition the prediction
of the next word on both the previously instan-
tiated event (the preceding event) and the event
that should be verbalized now (the forthcoming
event). Intuitively, the surface realization mod-
ule will be informed with something like ‘I have
taken a shopping cart, now tell me how to get my
groceries’. We train a dense vector representation
for each event in the corpus, which we term event
vectors. To condition the surface realization on
the events, we grant the generator access to the

event vectors ept of the preceding event and eft of
the forthcoming event:

dt = Softmax(D[ot; e
p
t ; e

f
t ])

here dt is the output distribution that predicts the
successive word; D is an affine transformation; ‘;’
stands for vector concatenation; ot = Wht is the
content from the GRU language model where ht is
the GRU cell states, and W is another affine trans-
formation. To further relate the surface realiza-
tion with the generation progress, we concatenate
the event vectors with the embedding of previous
word as the input to the GRUs:

ht = GRU([xt−1; e
p
t−1; e

f
t−1])

As a direct consequence, we need to train dense
vector representations of all words in the vocab-
ulary. This is quite ambitious, as the corpus is
fairly small-scale (about 238k tokens). To allevi-
ate this data sparsity issue, we initialize our word
embeddings with Google’s pre-trained word2vec
vectors1 (see, e.g., Mikolov et al., 2013). The ef-
fectiveness of this domain-adaptation method in
language modelling is observed in Zhang et al.
(2016). As a side effect, our word embedding di-
mensionality is fixed at 300.

To determine whether the forthcoming event has
been instantiated, i.e. whether the model is ready
to move onwards, we integrate a binary classifier
into the architecture:

at = Softmax(A[ht; e
p
t ; e

f
t ])

hereA is a projection matrix; at is a 2-dimensional
vector. If a1 > a0, the surface realization mod-
ule decides that the forthcoming event has been
completely narrated and it should move one event
onwards to continue the generation; otherwise, it
stick with the current forthcoming event to com-
plete its instantiation.

1https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

37



Figure 4: An illustration of the surface realization model architecture. It exploits a multi-task learning framework:
it outputs the distribution over the next token dt, as well as at, which determines whether to shift to the next event.

As there are more tokens than events in the cor-
pus, the aforementioned binary classification is bi-
ased. The ratio between the categories is about
0.85 : 0.15. To balance the performance on both
categories, we apply greater weight on the loss of
the less frequent category. More concretely, we
measure a weighted cross-entropy loss on output
at:

La(at, a
∗
t ; γ) =

{
−(1− γ) log a0t , a∗t = (1, 0)
−γ · log a1t , a∗t = (0, 1)

here a∗t is the ground truth; the weight coefficient
γ is a hyper-parameter. All in all, the surface re-
alization module exploits a multi-task learning ar-
chitecture. The final loss function is

L(at, a
∗
t , dt, d

∗
t ; γ, β) = H(dt, d

∗
t )+β·La(at, a

∗
t ; γ)

where H(·, ·) denotes the cross entropy between
the parameters; d∗t is the ground truth distribution
of the next word (herein: a one-hot vector); β is
another hyper-parameter.

It is worth noting that we did not incorporate
explicit sentence planning, but completely rely
on the surface realization module to perform sen-
tence segmentation. The underlying reason is the
absence of a clear correspondence between the
agenda events and the sentences: multiple events
could appear in a single sentence; likewise, multi-
ple sentences could be devoted to one single event.
We count on the surface realization module to
punctuate correctly and generate syntactically cor-
rect sentences.

5 Experiments

5.1 Experimental Set-up and Optimization

2.5% of the data were randomly selected as the
validation set; the rest was kept as the training set.
As evaluation will be up to humans instead of any

test set metric (see section 5.2), no test set is nec-
essary.

The model was implemented with Python 3.5.
The neural network part of the model was im-
plemented with Keras 2.1.2 (Chollet et al., 2015).
Optimization was performed with adam optimizer
(Kingma and Ba, 2014) with gradient clipping to
stabilize the training (see Pascanu et al., 2013). To
regularize the model, dropout (Srivastava et al.,
2014) was applied to all dense connections, in-
cluding the explicit dense layers and the fully-
connected layers within the GRU cells; besides,
we applied early stopping, which monitors the loss
function as is defined in section 4.2.

Hyper-parameters are tuned with a two-stage
random hyper-parameter search, which is empir-
ically proven more effective than grid search (see
Bergstra and Bengio, 2012). On the validation set,
the model yields a 0.90 accuracy and a 0.75 F1
score on the binary classification task concerning
output a (whether to shift to the next event; see
section 5.3.1 for some discussion on its conse-
quences) and a 38.9 perplexity for predicting the
next word. 2.

5.2 Evaluation

5.2.1 Model Variants
We re-implemented the neural checklist model by
Kiddon et al. (2016) as a baseline. We decided not
to use Martin et al. (2018) because the sentences
it generates are not lexicalized, i.e. they include
word categories like entity.n.01, which is not
directly suitable for human evaluation. Substitut-
ing these category labels with surface language is
substantially more difficult for our domain than
theirs. We also included a human ceiling and sev-

2In case of interest in reproducing our result, ap-
pendix A provides full details on hyper-parameter tun-
ing; the code is available at https://github.com/
arkgithubforyou/story_generation

38



eral ablated versions of our final model into the
human evaluation. To follow is a list of the sys-
tems we evaluated.

• Human Author
Stories directly taken from the InScript
corpus. Expected to produce an upper bound
of the evaluation.

• Full
Our model as is described in section 4.

• GRU
A plain GRU language model trained on
InScript, intended to be a baseline that
has no specific global coherence control. Its
generations are seeded with scenario-specific
beginnings for some relevance. For ex-
ample, the seed for the Going Grocery
Shopping script is ‘yesterday i went gro-
cery shopping .’

• Neural Checklist
The neural checklist model as is described
in Kiddon et al. (2016). We applied a post-
processing similar to the one described in
section 4 to clean up the repetitions.

• Random Event Order
A variant of our model with the agenda gen-
erator ablated. As a substitution, the agendas
are now generated by randomly sampling a
sequence of events from the set of events cor-
responding to the respective script. We com-
pare this variant with the full model to ver-
ify the contribution of the agenda generator
in implementing global coherence.

For some intuition, see table 1 for sample genera-
tions from these systems.

5.2.2 Evaluation Method
Automatic evaluation of text quality, especially its
global coherence, is a challenging task (see, e.g.
Lapata and Barzilay, 2005; Purdy et al., 2018, for
some meaningful attempts though). We also ob-
served poor correlations between a few automatic
metrics and the results of human evaluation (see
appendix C for more details), and decided that au-
tomatic metrics are not suitable for our task. Thus
we performed human evaluation through crowd-
sourcing; it evaluates the following aspects of gen-
erated stories.

• Syntax
The syntactical correctness of the sentences.

• Global Coherence
The global coherence of a story with regard
to the given script, e.g., GOING GROCERY
SHOPPING. We evaluate from three aspects:
Inclusion (does the story cover the most nec-
essary steps about the topic?), Relevance
(does the story stay on-topic, and rarely men-
tion anything irrelevant to the topic? ), and
Order (does the story describe the activities
relevant to the topic in a plausible order?)

• Agenda Coverage
The correspondence between the generated
story and the agenda it was fed with. The
participants were asked whether each of the
agenda items has been realized in the story.

We ask participants five questions per story: for
Agenda Coverage, participants were asked to
check off the agenda items that were mentioned
in the story they saw; for the other four aspects,
participants were asked to rate on a 1 to 4 scale.
The evaluation experiment was implemented with
Lingoturk (Pusse et al., 2016); we hired partici-
pants and conducted the experiment on Prolific3.
See appendix B for more details on conducting the
experiment of human evaluation.

5.3 Results

5.3.1 Human Evaluation
Table 2 illustrates the results from human evalu-
ation. The GRU model, a plain language model
without coherence modeling, yields the worst
performance on all metrics. The output wildly
changes between topics and is incoherent globally;
the poor coherence probably also negatively af-
fects human judgments on syntactic correctness.
The neural checklist saw better perfor-
mance than plain GRUs, but it failed to include the
most necessary steps of the scenario. It seems the
model cannot correctly track the progress of the
generation, which, as discussed in section 1, we
suspect to be a consequence of the limited amount
of training data: as its attention-based content-
planning cannot make use of the order informa-
tion and has to learn it from data, the model (and
probably also other attention-based models) has a
substantially higher demand on training data.

3https://prolific.ac/

39



GRU
yesterday i went grocery shopping . i did n’t know anything all the items in my cart , so that it was ready to pick up up
. i got my items off , and found it to the front of the store . i was on narita shopping cart because i had less than twenty
of them . i grabbed my cart and went to the cashier . i paid for the items , then i gave the cashier my money and my bag ,
checked my bags up , and the other items in my hand bag . i am glad i ’m flying for my plane and go through security .

Neural Checklist
yesterday i wanted to go grocery shopping . when i went to the front of the store , i went to the grocery store and drove to
the front of the store . i went to the cashier and drove to the front desk .

Random Event Order
yesterday i went grocery shopping . i grabbed a shopping cart and put the items on the list . i put my items in the cart and
drove to the store . i drove to the grocery store and went to the grocery store . i made a list of all the items i would need . i
put my items on the cart and headed to the store . when i entered the store , i grabbed a shopping cart and walked inside . i
put the cart away in the cart .

Agenda: evoking→ take shop cart→ put conveyor→ get groceries→ go grocery→ move section→ make list→ check off→
put conveyor→ leave→ enter→ take shop cart→ enter→ return shop cart→ story ends

Full
yesterday i went grocery shopping . i made a list of my list and drove to the grocery store . when i entered the store , i
grabbed a shopping cart and pushed the cart down to the meat aisle . i got all my items , and crossed items on my list . i
went to the checkout register and paid for my groceries . i put my groceries in my cart and left .

Agenda: evoking→make list→go to store→enter→take cart→move along sections→take grocery→check list→go to
checkout→pay→pack grocery→leave→ story ends

Human Author
yesterday i went grocery shopping . i took my grocery list with me , along with some reusable shopping bags . my grocery
list has all the items i want to buy on it . i selected a shopping cart from in front of the store , and went inside . i put my
reusable bags in the cart . i looked at my list and started in the produce section . i put different vegetables and fruits into
my cart . next i wheeled my cart to the cereal aisle and took a box of cereal . i went through the store aisle by aisle and
selected my groceries . each aisle is organized by types of food and non-food items . one aisle has dried pasta , canned
tomatoes , rice , and sauce . i selected a few boxes of pasta and some rice . another aisle carries plastic wrap , trash bags ,
and aluminum foil . as i went through the store , i kept looking at my list to see what i needed next . when i added each item
to my cart , i crossed it off my list . my last stop was the dairy aisle where i got milk and eggs . when i had all the groceries
i wanted , i went to the cash register ans stood in line . when it was my turn , i put each item on the conveyor belt and the
cashier scanned each one . a bagger put all of the groceries into my reusable bags . i paid , and then the cashier gave me a
receipt . i loaded the bags of groceries into the trunk of my car and drove home .

Table 1: Sample generations by different models on GOING GROCERY SHOPPING. The corresponding seeds
are displayed in boldface. Neural Checklist, Full used the same agenda, which is given in the table.

Agenda Coverage∗∗ Syntax Inclusion Order Relevance
human author 86% 0.86 0.91 0.93 0.83

full 71% 0.75 0.67 0.75 0.88
random event order 50% 0.45 0.46 0.14∗ 0.71
Neural Checklist 20% 0.54 0.34 0.27 0.53

GRU n/a 0.33 0.24 0.11∗ 0.22
∗: difference between the pair is not statistically significant due to paired T-test on a significant level α = 0.05.

∗∗: answers to the agenda coverage questions yield a Fleiss’ kappa of 0.34.

Table 2: Results from human evaluation. Highest scores out of automatic systems are displayed in boldface.

40



Human Author : event ‘make a shopping list’ in scenario ‘going grocery shopping’
... next , i used the wipes the store provides at the entrance and wipe off the handle of the shopping cart , and my hands
, so i know my hands will stay clean while i choose my food . then i took out the shopping list i wrote at home and i
started . i always start with heavy things ...

Full Model : event ‘place fertilizer’ in scenario ‘planting a tree’
... yesterday i planted a tree. first , i decided to buy a small apple tree . i got a shovel and drove to the home . i found a
perfect spot in my backyard and dug a hole . i put the soil in the hole and then watered it . ...

Table 3: Examples where instantiations of agenda items failed to be approved by evaluators. Up: event instantiation
that was not explicit enough; down: event that was not instantiated due to an error in the output a from the surface
realization module.

The Full model was able to significantly out-
perform all other automatic variants and received
positive scores for all criteria. It reflects well
the events on the agenda and usually includes the
most necessary steps of the scripts in a plausi-
ble order, which indicates decent global coher-
ence. It even received a higher relevance score
than Human Author. However, this may re-
sult from our model often producing shorter sto-
ries than the human originals, see section 5.3.2.
Its agenda coverage score is lower than that of
Human Author. We detected two sources of
these errors: (1) event instantiations are some-
times not recognized as such by the participants,
because they are not explicit enough; this is also
the reason for why the agenda coverage score for
the original human texts is less than 100%. (2) Er-
rors in the event termination judgments of the sur-
face realization module: when the surface realiza-
tion module wrongly decided that the forthcoming
event has been instantiated, it would simply skip
the event in the generation. See table 3.

Random Event Order witnessed a dra-
matic performance drop compared to Full. Its
order score is not significantly different from that
of the GRU baseline. That means, particularly, our
agenda generator was crucial for and capable of
performing reliable text planning and incorporat-
ing global coherence. It retained high relevance
score (i.e., it still stays on-topic), as the agendas it
use were still about the respective scenarios. How-
ever, unexpectedly, the inclusion score and syntax
score also saw a sharp drop. For that we noticed
two possible origins. Firstly, it might result from a
systematic error of human evaluation – the stories
produced by the random model, violating global
coherence, are in general messy and would make
the assessment cognitively difficult. Thus they are
likely to receive lower scores. Secondly, our sur-

face realization is conditioned on a ‘previous event
/ forthcoming event’ pair, therefore, for less plau-
sible agendas (e.g., one produced by a random
agenda generator), the corresponding pairs would
appear less frequently in our small-scale corpus,
thus suffering more from data sparsity issues and
affect the quality of surface realization.

5.3.2 Qualitative Analysis
Most noticeably, the stories our model generates
are less elaborative than the corpus stories. From
the samples in table 1, we could see that the story
from the full model is much shorter than the
one taken from the corpus. It turns out that our
system often chose not to elaborate on an event: a
genuine human would occasionally list what she
bought from the grocery store, like vegetables,
fruits, pasta, rice; whereas our system would only
say ‘i got my items’. The most important reason
behind this is that these elaborations are sparse,
thus whenever our system sees ‘i got my items’
in the history, it will decide that the event take
items is already instantiated, and move onwards
to the next event. Another reason for generat-
ing shorter stories is our agenda generator can-
not correctly reproduce some real-world scenarios
where the events ‘cycle’. For example, the event
chain corresponding to a story about taking
a bus could occasionally look like borad →
ride → exit → board → ride → exit →
board . . . , when a passenger simply changes his
bus a few times. Future work that incorporates
an ‘elaboration-level’ control and more expressive
script knowledge representation might be able to
alleviate these issues.

5.3.3 Generalizability Aspects
Due to the stochastic nature of the agenda genera-
tor, the agendas it produces rarely coincide with
the ones in the corpus (less than 0.1%). That

41



means our model can successfully generate new
script story lines.

In terms of generalizing to other domains, it is
worth noting that events is not the only means of
planning a story. Any category of words or sym-
bolic information that could outline a story (con-
ditioned on a specific topic), could take the role of
events in our model and allow for the application
of our approach. Examples include ingredient us-
ages in a recipe, incidents in a football match, and
progresses in a presidential election.

It is well observed that the InScript corpus
we use contains massive manual annotation effort.
However, we note the the event annotations we use
is inherently a cluster of utterances that correspond
to same script events. Thus it is feasible to sub-
stitute the event annotations in our method with
predicate-argument structures, which could be ac-
quired by dependency parsing.

6 Conclusion

To incorporate global coherence of story genera-
tion on small-scale corpora, we developed a novel,
data-driven, hybrid model which exploits a la-
tent intention variable to guide story generation.
The model includes a symbolic agenda generator
that performs text planning and is less demand-
ing on data, and a neural surface realization mod-
ule that accomplishes surface realization condi-
tioned on the agenda. Our model outperformed
various baselines according to the result of a hu-
man evaluation experiment which mostly focused
on global coherence. The model could be gener-
alized to other domains where words that indicate
narration progress are available. Future work will
include the exploration of some control over the
level of elaboration and developing more expres-
sive script knowledge representation to account
for more complicated scripts.

References
James Bergstra and Yoshua Bengio. 2012. Random

search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Stephan Busemann and Helmut Horacek. 1998. A
flexible shallow approach to text generation. arXiv
preprint cs/9812018.

Kyunghyun Cho, Bart van Merriënboer Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder

for statistical machine translation. arXiv preprint
arXiv:1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. arXiv
preprint arXiv:1902.01109.

Parag Jain, Priyanka Agrawal, Abhijit Mishra, Mo-
hak Sukhwani, Anirban Laha, and Karthik Sankara-
narayanan. 2017. Story generation from sequence
of independent short descriptions.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 329–339.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mirella Lapata and Regina Barzilay. 2005. Automatic
evaluation of text coherence: Models and represen-
tations. In IJCAI, volume 5, pages 1085–1090.

Lara J. Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark O. Riedl. 2018. Event representations for
automated story generation with deep neural nets.
In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 868–875.

James Richard Meehan. 1976. The metanovel: writing
stories by computer. Technical report, YALE UNIV
NEW HAVEN CONN DEPT OF COMPUTER SCI-
ENCE.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2015. What to talk about and how? selective gen-
eration using lstms with coarse-to-fine alignment.
arXiv preprint arXiv:1509.00838.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2017a. Inscript: Narrative texts
annotated with script information. arXiv preprint
arXiv:1703.05260.

Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Say-
eed, and Manfred Pinkal. 2017b. Modeling seman-
tic expectation: Using script knowledge for referent
prediction. arXiv preprint arXiv:1702.03121.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning, pages 1310–1318.

42



Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43–49.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2018.
Data-to-text generation with content selection and
planning. arXiv preprint arXiv:1809.00582.

Christopher Purdy, Xinyu Wang, Larry He, and Mark
Riedl. 2018. Predicting generated story quality with
quantitative measures. In Fourteenth Artificial Intel-
ligence and Interactive Digital Entertainment Con-
ference.

Florian Pusse, Asad Sayeed, and Vera Demberg. 2016.
Lingoturk: managing crowdsourced tasks for psy-
cholinguistics. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics: Demonstra-
tions, pages 57–61.

Mark O Riedl and Robert Michael Young. 2010. Nar-
rative planning: Balancing plot and character. Jour-
nal of Artificial Intelligence Research, 39:217–268.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. arXiv preprint arXiv:1503.02364.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2017. Inducing script struc-
ture from crowdsourced event descriptions via semi-
supervised clustering. In Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics, pages 1–11.

Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola
Mrksic, Pei-Hao Su, David Vandyke, and Steve
Young. 2015. Stochastic language generation
in dialogue using recurrent neural networks with
convolutional sentence reranking. arXiv preprint
arXiv:1508.01755.

Denis Yarats and Mike Lewis. 2017. Hierarchical
text generation and planning for strategic dialogue.
arXiv preprint arXiv:1712.05846.

Jian Zhang, Xiaofeng Wu, Andy Way, and Qun Liu.
2016. Fast gated neural domain adaptation: Lan-
guage model as a case study. In Proceedings of
COLING 2016, the 26th International Conference

on Computational Linguistics: Technical Papers,
pages 1386–1397.

43



A Hyper-parameter Tuning

Hyper-parameters are tuned with a two stage ran-
dom hyper-parameter search. In both stages we
test 60 random hyper-parameter combinations; the
5 best-performing hyper-parameter combinations
in the first stage decide the ranges from which
the hyper-parameters combinations for the second
stage were sampled. Table 4 shows the intervals
that the hyper-parameters were sampled from in
the first stage. Table 5 shows the hyper-parameters
that we finally chose. Each training session takes
3 to 4 hours on a single TITAN X.

B More Details on Human Evaluation

Four stories per model variant per script (that is,
200 stories in total) were randomly selected for
evaluation. Each task included the assessment
of five stories (one from each system); partici-
pants were compensated with 1.5GBP per task,
which corresponds to a payment of approx. 7GBP
per hour. For each of the stories, we collected
the judgments of about 10 crowd-sourcing partic-
ipants (about 400 participations in total). All par-
ticipants were native English speakers. Submis-
sions that left at least one question unanswered
or fall beyond 3 standard deviations are excluded
from the statistics. As a result, we received 1221
valid evaluation items in total.

C Automatic Metrics

We attempted a few automatic metrics for eval-
uating the quality of generated stories proposed
in the literature (see Lapata and Barzilay, 2005;
Purdy et al., 2018), including word overlap
(average of word overlap in consecutive sen-
tences), sentence vector (average cosine
of sentence vectors of consecutive sentences),
coreference rate (proportion of entities
refering to one already mentioned). The results
and their correlation with human evaluation are
shown in figure 6. Due to their poor correlation
with human evaluation results, we decided not to
rely on these metrics.

44



Hyper-parameter Range Sampling Criterion
dropout rate [0.2, 0.8] uniform*
learning rate [10−5, 10−3] exponential**

gradient norm threshold [1.0, 1000.0] exponential**
batch size [23, 210] uniform-p2***

context length [5, 100] uniform-int****
event embedding size [26, 210] uniform-p2***

RNN size [26, 211] uniform-p2***
β: weight on loss term La [1.0, 2.0] uniform*

γ: weight on category-1 cross-entropy [1.0, 6.0] uniform*

*: sampled from a uniform distribution over the range.
**: sampled from a truncated exponential distribution over the range. i.e., we sampled its logarithm
from a uniform distribution.
***: sampled from a uniform distribution over the powers of 2 in the range.
****: sampled from a uniform distribution over all integers in the range.

Table 4: The initial ranges and sampling criteria of the random hyper-parameter search.

event em-
bedding
size

learning
rate

context
length

batch
size

maximum
gradient
norm

512 1.9e−5 46 256 3.17
Dropout GRU

size
β γ

0.456 1024 1.01 5.46

Table 5: The final choices of hyper-parameters. β is the weight applied on the output a and γ is weight applied on
the loss of the less frequent category in the binary classification.

System Word Overlap Sentence Vector Coreference Rate
human author 0.18(0.020) 0.62(0.019) 0.11(0.015)

full 0.27(0.030)2 0.89(0.029)1 0.00061(0.00070)
random event order 0.26(0.015)2 0.90(0.023)1 0.002(0.002)

GRU+Topic 0.35(0.11) 0.74 (0.078) 0.18(0.066)
GRU 0.26(0.018) 0.69(0.0080) 0.23(0.038)

corelation with human evaluation -0.59 -0.05 -0.55
1,2: differences between pairs are not statistically significant according to pair T-tests.

Table 6: Results from automatic evaluation, and their correlation with overall human evaluation results. Encoding
some information about the text though they may, these scores are hardly informative about global coherence.

45



Proceedings of the Second Storytelling Workshop, pages 46–55
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Guided Neural Language Generation for Automated Storytelling

Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung,
Zhaochen Luo, William Ma, Lara J. Martin, and Mark O. Riedl

School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA, USA
{raj.ammanabrolu, etien, wcheung8,

zluo, wma61, ljmartin, riedl}@gatech.edu

Abstract

Neural network based approaches to auto-
mated story plot generation attempt to learn
how to generate novel plots from a corpus
of natural language plot summaries. Prior
work has shown that a semantic abstraction
of sentences called events improves neural
plot generation and and allows one to de-
compose the problem into: (1) the generation
of a sequence of events (event-to-event) and
(2) the transformation of these events into nat-
ural language sentences (event-to-sentence).
However, typical neural language generation
approaches to event-to-sentence can ignore
the event details and produce grammatically-
correct but semantically-unrelated sentences.
We present an ensemble-based model that gen-
erates natural language guided by events. Our
method outperforms the baseline sequence-to-
sequence model. Additionally, we provide re-
sults for a full end-to-end automated story gen-
eration system, demonstrating how our model
works with existing systems designed for the
event-to-event problem.

1 Introduction

Automated story plot generation is the problem of
creating a sequence of main plot points for a story
in a given domain. Generated plots must remain
consistent across the entire story, preserve long-
term dependencies, and make use of common-
sense and schematic knowledge (Wiseman et al.,
2017). Early work focused on symbolic plan-
ning and case-based reasoning (Meehan, 1977;
Turner and Dyer, 1986; Lebowitz, 1987; Gervás
et al., 2005; Porteous and Cavazza, 2009; Riedl
and Young, 2010; Ware and Young, 2011; Far-
rell et al., 2019) at the expense of manual world
domain knowledge engineering. Neural-network–
based approaches to story and plot generation train
a neural language model on a corpus of stories to
predict the next character, word, or sentence in a

sequence based on a history of tokens (Jain et al.,
2017; Clark et al., 2018; Fan et al., 2018; Martin
et al., 2018; Peng et al., 2018; Roemmele, 2018).

The advantage of neural network based ap-
proaches is that there is no need for explicit do-
main modeling beyond providing a corpus of ex-
ample stories. The primary pitfall of neural lan-
guage model approaches to story generation is that
the space of stories that can be generated is huge,
which in turn, implies that in a textual story cor-
pora any given sentence will likely only be seen
once. Martin et al. (2018) propose the use of a
semantic abstraction called events, demonstrating
that it aids in reducing the sparsity of the dataset.
They define an event to be a unit of a story that
creates a world state change; specifically, an event
is a tuple containing a subject, verb, direct object,
and some additional disambiguation tokens.

The event representation enables the decompo-
sition of the plot generation task into two sub-
problems: event-to-event and event-to-sentence.
Event-to-event is broadly the problem of gener-
ating the sequence of events that together com-
prise a plot. A model for addressing this prob-
lem is also responsible for maintaining plot coher-
ence and consistency. These events are abstrac-
tions and aren’t human-readable. Thus the sec-
ond sub-problem, event-to-sentence, focuses on
transforming these events into natural language
sentences. This second sub-problem can also be
viewed as guided language generation, using a
generated event as a guide.

Martin et al. (2018) further propose that this lat-
ter event-to-sentence problem can be thought of as
a translation task—translating from the language
of events into natural language. We find, how-
ever, that the sequence-to-sequence LSTM net-
works (Sutskever et al., 2014) that they chose to
address the problem frequently ignore the input
event and only generate text based on the orig-

46



inal corpus, overwriting the plot-based decisions
made during event-to-event. There are two con-
tributing factors. Firstly, event-to-event models
tend to produce previously-unseen events, which,
when fed into the event-to-sentence model results
in unpredictable behavior. The mapping from an
unseen event to a sentence is unknown to a basic
sequence-to-sequence model. Secondly, sentences
are often only seen once in the entire corpus. De-
spite being converted into events, the sparsity of
the data means that each event is still likely seen a
very limited number of times.

The contributions of the paper are thus twofold.
We present an ensemble-based system for event-
to-sentence that allows for guided language gen-
eration and demonstrate that this outperforms a
baseline sequence-to-sequence approach. Addi-
tionally, we present the results of a full end-to-end
story generation pipeline as originally proposed by
Martin et al. (2018) (Figure 1), showing how all of
the sub-systems can be integrated.

2 Related Work

Early storytelling systems were based on symbolic
planning (Pérez y Pérez and Sharples, 2001; Riedl
and Young, 2010; Meehan, 1977; Lebowitz, 1987;
Ware and Young, 2011) and case-based reason-
ing (Turner and Dyer, 1986; Pérez y Pérez and
Sharples, 2001; Gervás et al., 2005). These sys-
tems required a high knowledge-engineering over-
head in terms of operators or stories transcribed
into symbolic form. Consequently, these systems
were only capable of generating stories in rela-
tively limited domains.

Machine learning approaches attempt to learn
domain information from a corpus of story exam-
ples (Swanson and Gordon, 2012; Li et al., 2013).
Recent work has looked at using recurrent neu-
ral networks (RNNs) for story and plot genera-
tion. Roemmele and Gordon (2018) use LSTMs
with skip-though vector embeddings (Kiros et al.,
2015) to generate stories. Khalifa et al. (2017)
train an RNN on a highly specialized corpus, such
as work from a single author.

Fan et al. (2018) introduce a form of hierarchi-
cal story generation in which a premise is first gen-
erated by the model and is then transformed into
a passage. This is a form of guided generation
wherein a single sentence of guidance is given.
Similarly, Yao et al. (2019) decompose story gen-
eration into planning out a storyline and then gen-

erating a story from it. Our work differs in that we
use an event-to-event process that provides guid-
ance to event-to-sentence.

3 Event-to-Event Implementation

In order to create a full improvisational story-
telling pipeline, we first needed to implement an
event-to-event model such that generated events
can be inputted into our event-to-sentence system.
Martin et al. (2018) showed that the performance
on both event-to-event and event-to-sentence im-
proves when using an abstraction known as an
event is used instead of natural language sen-
tences.

In our work, events are defined as a 5-tuple of
〈s, v, p, o,m〉 where v is a verb, s is the subject
of the verb, o is the object, p is the correspond-
ing preposition, and m can be a modifier, preposi-
tional object, or indirect object—any of which can
be absent. All elements are stemmed and gener-
alized with the exception of the preposition. We
follow the same generalization process as Mar-
tin et al. (2018), using enumerated named entity
recognition tags, VerbNet (Schuler and Kipper-
Schuler, 2005) v3.3 to generalize the verbs, and
WordNet (Miller, 1995) v3.1 for the nouns.

Our event-to-event system is the policy gradi-
ent deep reinforcement learner from Tambwekar
et al. (2019). Briefly, the technique starts with
a sequence-to-sequence LSTM model trained to
perform the event-to-event task. It is trained on
a sequence of “eventified” plot summaries. Us-
ing the REINFORCE algorithm (Williams, 1992),
we backpropagate a reward based on how close
the generated event is to a pre-trained goal. Here,
we are using genre-appropriate verbs (specifically,
VerbNet classes) as goals—verbs that appear often
at the end of the stories in our dataset. The reward
is the product of the distance of each verb from the
goal verb by the normalized frequency of how of-
ten the verb occurs before the goal verb in stories.
Details of how the reward is calculated are given
in Tambwekar et al. (2019).

The final event-to-event network is then placed
into the pipeline as the “Event-to-Event” module,
seen in Figure 1, and its output is fed into the fol-
lowing event-to-sentence models during testing.

4 Event-to-Sentence

We define event-to-sentence to be the problem of
selecting a sequence of words st = st0 , st1 , ..., stk

47



Figure 1: The full automated story generation pipeline illustrating an example where the event-to-event module
generates only a single following event.

given the current input event et, i.e. the cur-
rent sentence is generated based on maximizing
Pr(st|et; θ) where θ refers to the parameters of
the generative system. The eventification in Sec-
tion 3 is a lossy process in which some of the in-
formation from the original sentence is dropped.
Thus, the task of event-to-sentence involves filling
in this missing information. There is also no guar-
antee that the event-to-event process will produce
an event that is part of the event-to-sentence train-
ing corpus, simply due to the fact that the space
of potential generated events is very large; the cor-
rect mapping from the generated event to a natural
language sentence would be unknown.

In prior work, Martin et al. (2018) use a
sequence-to-sequence LSTM neural network to
translate events into sentences. Even with the
“split and pruned” sentences that they create—
which we also use (see Section 5)—we find that
this vanilla sequence-to-sequence technique is not
robust to the afore-mentioned challenges. We ob-
serve that a sequence-to-sequence network ends
up operating as a simple language model and of-
ten ignores the input event when generating a sen-
tence. The generated sentence is usually gram-
matically correct, but retains little of the semantic
meaning given by the event.

We thus look for other forms of guided neural
language generation, with the goals of preserving
the semantic meaning from the event in addition
to keeping the generated sentences interesting.
We propose four different models—optimized to-
wards these two objectives, and a baseline fifth
model that is used as a fallthrough: (1) a retrieve-
and-edit model based on Hashimoto et al. (2018);

(2) template filling; (3) sequence-to-sequence with
Monte Carlo beam decoding; (4) sequence-to-
sequence with a finite state machine decoder; and
(5) vanilla sequence-to-sequence. We find that
none of these models by themselves can success-
fully find a balance between the goals of retaining
all of the event tokens and generating interesting
output. However, each of the models possess their
own strengths and weaknesses—each model es-
sentially being optimized towards a different point
on the spectrum between the two goals. We thus
combine these models into an ensemble in an at-
tempt to minimize the weaknesses of each individ-
ual model and achieve a balance between retaining
semantic meaning from the event and generating
interesting sentences.

In all of the following experiments, the task is
to translate events into “generalized” sentences. A
generalized sentence is one in which nouns are re-
placed by WordNet Synsets.

4.1 Retrieve-and-Edit

The first model is based on the retrieve-and-
edit framework for predicting structured out-
puts (Hashimoto et al., 2018), which we will refer
to as RetEdit. We first learn a task-specific simi-
larity between event tuples by training an encoder-
decoder to map each event onto an embedding that
can reconstruct the output sentence; this is our
retriever model. Next, we train an editor model
which maximizes the likelihood of generating the
target sentence given both the input event and a
retrieved event-sentence example pair. We used
a standard sequence-to-sequence model with at-
tention and copying (Gu et al., 2016) to stand in

48



as our editor architecture. Although this frame-
work was initially applied to the generation of
GitHub Python code and Hearthstone cards, we
extend this technique to generate sentences from
our event tuples. Specifically, we first initialize a
new set of word embeddings with GLoVe (Pen-
nington et al., 2014), using random initialization
for out-of-vocabulary words. We use our train-
ing set to learn weights for the retriever and editor
models, set confidence thresholds for the model
with the validation set, and evaluate performance
using the test set.

In order to generate a sentence from a given in-
put event, there are two key phases: the “retrieve”
phase and the “edit” phase. With respect to the
input event, we first retrieve the nearest-neighbor
event and its corresponding sentence in the train-
ing set using the retriever model. Then, passing
both the retrieved event-sentence pair and the in-
put event as inputs, we use the editor model to
generate a sentence using beam search. Many of
the successes produced by the model stem from
its ability to retain the complex sentence struc-
tures that appear in our training corpus. How-
ever, this interaction with the training data can also
prove to be a major drawback of the method; tar-
get events that are distant in the embedding space
from training examples typically result in poor
sentence quality.

Since RetEdit relies heavily on having good ex-
amples, we set the confidence of the retrieve-and-
edit model to be proportional to 1− retrieval
distancewhen generating sentences as a lower re-
trieve distance implies greater confidence. We also
observe that our mapping from event to sentence is
not a one-to-one function. There are occasionally
multiple sentences that map to a single event, re-
sulting in retrieval distances of 0.In this case, the
example sentence is returned without any modifi-
cations.

4.2 Sentence Templating

As mentioned earlier, the baseline sequence-to-
sequence network operates as a simple language
model and can often ignore the input event when
generating a sentence. However, we know that
our inputs, an event tuple will have known parts
of speech.We created a simplified grammar for the

syntax of sentences generated from events:

S → NP v (NP ) (PP )

NP → d n

PP → p NP

where d is a determiner that will be added and the
rest of the terminal symbols correspond to an ar-
gument in the event, with n being s, o, or m, de-
pending on its position in the sentence. The re-
sulting sentence would be [ s]{v [ o] [p m]}
where blanks indicate where words must be added
to make a complete sentence.

First, our algorithm predicts the most likely
VerbNet frame based on the contents of the input
event (how many and which arguments are filled).
VerbNet provides a number of syntactic structures
for different verb classes based on how the verb is
being used. For example, if the input event con-
tains 2 nouns and a verb without a preposition, we
assume that the output sentence takes the form of
[NP V NP], but if it has 2 nouns, a verb, and a
proposition, then it should be [NP V PP].

Second, we apply a Bidirectional LSTM (BiL-
STM) language model trained on the generalized
sentences in our training corpus. Given a word,
we can generate words before and after it, within
a particular phrase as given by some of the rules
above, and concatenate the generated sentence
fragments together. Specifically, we use the AWD-
LSTM (Merity et al., 2018) architecture as our lan-
guage model since it is currently state-of-the-art.

At decode time, we continue to generate words
in each phrase until we reach a stopping condi-
tion: (1) reaching a maximum length (to prevent
run-on sentences); or (2) generating a token that
is indicative of an element in the next phrase, for
example seeing a verb being generated in a noun
phrase. When picking words from the language
model, we noticed that the words “the” and “and”
were extremely common. To increase the vari-
ety of the sentences, we sample from the top k
most-likely next words and enforce a number of
grammar-related rules in order to keep the coher-
ence of the sentence. For example, we do not al-
low two determiners nor two nouns to be gener-
ated next to each other.

One can expect that many of the results will
look structurally similar. However, with this ap-
proach, we can guarantee that the provided tokens
in the event will appear in the generated sentence.
To determine the confidence of the model for each

49



sentence, we sum the loss after each generated to-
ken, normalize to sentence length, and subtract
from 1 as higher loss translates to lower confi-
dence.

4.3 Monte-Carlo Beam Search

Our third method is an adaptation of Monte
Carlo Beam Search (Cazenave, 2012) for event-to-
sentence. We train a sequence-to-sequence model
on pairs of events and generalized sentences. At
decoding time, we run Monte Carlo beam search
as an alternative search strategy within the de-
coder network. This method differs from tradi-
tional beam search in that it introduces another
scoring term that is used to re-weigh all the beams
at each timestep.

After top-scoring words are outputted by the
model at each time step, playouts are done from
each word, or node. A node is the final token
of the partially-generated sequences on the beam
currently and the start of a new playout. During
each playout, one word is sampled from a soft-
max produced at each step over all words in the
vocabulary. The decoder network is unrolled un-
til it reaches the “end-of-story” tag. Then, the
previously-generated sequence and the sequence
generated from the current playout are concate-
nated together and passed into a scoring function
that computes the current playout’s score.

The scoring function is a combination of
(1) BLEU scores up to 4-grams between the in-
put event and generated sentence, as well as (2) a
weighted 1-gram BLEU score between each item
in the input event and generated sentence. The
weights combining the 1-gram BLEU scores are
learned during validation time where the weight
for each word in the event that does not appear
in the final generated sequence gets bumped up.
Multiple playouts are done from each word and
the score s for the current word is computed as:

st = α ∗ st−1 + (1− α) ∗AV G(playoutt) (1)

where α is a constant.
In the end, k of the partial sequences with high-

est playout scores are kept as the current beam.
For the ensemble, this model’s confidence score is
the final score of the highest-scoring end node.

Monte Carlo beam search excels at creating di-
verse output. Since the score for each word is
based on playouts that sample based on weights
at each timestep, it is possible for the output to be

different across runs. The Monte Carlo beam de-
coder has been shown to generate better sentences
that are more grammatically-correct than the other
techniques in our ensemble, while sticking more
to the input than a traditional beam decoder. How-
ever, there is no guarantee that all input event to-
kens will be included in the final output sentence.

4.4 Finite State Machine Constrained Beams

Beam search in its various forms, including Monte
Carlo playouts, cannot ensure that the tokens from
an input event appear in the outputted sentence.
As such, we adapted the algorithm to fit such lex-
ical constraints. Anderson et al. (2016) adapted
beam search to fit captions for images, with the
lexical constraints coming from sets of image tags.
The method they devised, which they named Con-
strained Beam Search, used finite state machines
to guide the beam search toward generating the
desired tokens. This approach, which we have co-
opted for event-to-sentence, attempts to achieve a
balance between the flexibility and sentence qual-
ity typical of a beam search approach, while also
adhering to the context and story encoded in the
input events that more direct approaches (e.g. Sec-
tion 4.2) would achieve.

The algorithm works on a per-event basis, be-
ginning by generating a finite state machine. This
finite state machine consists of states that enforce
the presence of input tokens in the generated sen-
tence. As an example, assume we have an n-token
input event, {t1, t2, t3, ..., tn}. The corresponding
machine consists of 2n states. Each state main-
tains a search beam of size Bs with at most b
output sequences, corresponding to the configured
beam size s. At each time step, every state (barring
the initial state) receives from predecessor states
those output sequences whose last generated to-
ken matches an input event token. The state then
adds to its beam the bmost likely output sequences
from those received.

In the example, generating token t1 moves the
current state from the initial state to the state cor-
responding to t1, t3 to a state for t3, and so on.
The states t1 and t3 then, after generating tokens
t1 and t3 respectively, transmit said sequences to
the state t1,3. The states and transitions proceed
as such until reaching the final state, wherein they
have matched every token in the input event. Com-
pleted sequences in the final state contain all input
event tokens, thus providing us with the ability to

50



retain the semantic meaning of the event.
As much as the algorithm is based around bal-

ancing generating good sentences with satisfying
lexical constraints, it does not perform particularly
well at either. It is entirely possible, if not at all
frequent, for generated sentences to contain all in-
put tokens but lose proper grammar and syntax, or
even fail to reach the final state within a fixed time
horizon. This is exacerbated by larger tuples of to-
kens, seen even at just five tokens per tuple. To
compensate, we relax our constraint to permit out-
put sequences that have matched at least three out
of five tokens from the input event. Still, at least
some of the generated sentences will exhibit the
problems mentioned above.

4.5 Ensemble

The entire event-to-sentence ensemble is designed
as a cascading sequence of the four models above.
We use the confidence scores generated by each
of the models in order to re-rank the outputs of
the individual models. This is done by setting a
confidence threshold for each of the models such
that if a confidence threshold fails, the next model
in the cascade is tried. The thresholds are tuned
by measuring the confidence scores generated on
the validation set of the corpus. The cascading se-
quence is defined in the order that the individual
models are presented above: (1) retrieve-and-edit,
(2) sentence templating, (3) Monte Carlo beam
search, (4) finite state constrained beam search,
and (5) standard beam search. This structure also
saves on computation as it sequentially queries
each model, terminating early and returning an
output sentence if the confidence threshold for any
of the individual models are met.

The event first goes through the retrieve-and-
edit framework, which generates a sentence and
corresponding confidence score. We observe that
this framework performs well when it is able to
retrieve a sample from the training set that is rel-
atively close in terms of retrieval distance to the
input. Given the sparsity of the dataset, this hap-
pens with a relatively low probability, and so we
place this model first in the sequence.

The next two models are each optimized to-
wards one of our two main goals. The sen-
tence templating approach retains all of the tokens
within the event and so loses none of its seman-
tic meaning, at the expense of generating a more
interesting sentence. The Monte-Carlo approach,

on the other hand, makes no guarantees regard-
ing retaining the original tokens within the event
but is capable of generating a diverse set of sen-
tences. We thus cascade first to the sentence tem-
plating model and then the Monte-Carlo approach,
implicitly placing greater importance on the goal
of retaining the semantic meaning of the event.

The final model queried is the finite state ma-
chine constrained beam search. This model has
no confidence score; either the model is success-
ful in producing a sentence within the given length
with the event tokens or not.In the case that the
finite state machine based model is unsuccess-
ful in producing a sentence, the final fallthrough
model—the baseline sequence-to-sequence model
with standard beam search decoding—is used.

5 Dataset

To aid in the performance of our story genera-
tion, we select a single genre: science fiction (sci-
fi). We scraped long-running science fiction TV
show plot summaries from the fandom wiki ser-
vice wikia.com. This fandom wiki service contains
longer and more detailed plot summaries than the
dataset used in Tambwekar et al. (2019), both of
which are qualities that we believe to be important
for the overall story generation process. The cor-
pus contains 2,276 stories in total, each an episode
of a TV show. The average story length is 89.23
sentences. There are stories from 11 shows, with
an average of 207 stories per show, from shows
like Doctor Who, Futurama, and The X-Files. The
data was pre-processed to simplify alien names in
order to aid named entity recognition.

Then the sentences were split, partially follow-
ing the “split-and-pruned” methodology of Mar-
tin et al. (2018). Sentences were split at S-bars
and conjunctions separating S’s, and the subject of
the sentence was re-inserted in the new sentences.
Once the sentences were split, they were “eventi-
fied” as described in Section 3. One benefit of hav-
ing split sentences is that there is a higher chance
of having a 1:1 correspondence between sentence
and event, instead of a single sentence becoming
multiple events. After the data is fully prepared, it
is split in a 8:1:1 ratio to create the training, vali-
dation, and testing sets respectively.

6 Experiments

We perform two sets of experiments, one set eval-
uating our models on the event-to-sentence prob-

51



lem by itself, and another set intended to evaluate
the full storytelling pipeline.

Each of the models in the event-to-sentence en-
semble are trained on the training set in the sci-
fi corpus. The exact training details for each of
the models are as described above. Note that we
present results for the generalized sentences in-
stead of the sentences after slot-filling, as shown
in Figure 1, to directly measure the output of
the event-to-sentence ensemble. Additionally, all
of the models in the ensemble slot-fill the verb
automatically—filling a VerbNet class with a verb
of appropriate conjugation—except for the sen-
tence templating model which does verb slot-
filling during post-processing.

After the models are trained, we pick the cas-
cading thresholds for the ensemble by running the
validation set through each of the models and gen-
erating confidence scores. This is done by run-
ning a grid search through a limited set of thresh-
olds such that the overall BLEU-4 score (Papineni
et al., 2002) of the generated sentences in the vali-
dation set is maximized. These thresholds are then
frozen when running the final set of evaluations on
the test set. For the baseline sequence-to-sequence
method, we decode our output with a beam size of
5. We report perplexity and BLEU-4 scores, com-
paring against the gold standard from the test set.
Perplexity is a measure of the predictive accuracy
of a model and is calculated as:

Perplexity = 2−
∑

x p(x) log2 p(x) (2)

where x is a token in the text, and

p(x) =
count(x)∑
y∈Y count(y)

(3)

where Y is the vocabulary. Our BLEU-4 scores
are naturally low (where higher is better) because
of the creative nature of the task—good sentences
may not use any of the ground-truth n-grams.

The second experiment uses event sequences
generated by our event-to-event system as sum-
marized in Section 3. Our event-to-event system
requires goals in the form of verb classes. For the
science fiction data, common endings for stories
are VerbNet classes like “escape-51.1”, “discover-
84”, and “get-13.5.1”. In this paper, we will use
the goal “discover-84”. We seed the event-to-event
system with events extracted from the first sen-
tences of stories found in the test set. The system
then generates a sequence of events until it reaches

Model Perplexity BLEU Length
RetEdit 71.354 0.041 9.27
Templates 203.629 0.0034 5.43
Monte Carlo 71.385 0.0453 7.91
FSM 104.775 0.0125 10.98
Seq2seq 103.176 0.0425 6.59
Ensemble 70.179 0.0481 9.22

Table 1: Perplexity and BLEU scores along with av-
erage sentence lengths, thresholds, and utilization per-
centages for event-to-sentence models on the test set.

the goal verb. We then present this sequence of
events as well as the corresponding generalized
sentences generated using our ensemble.

7 Results/Discussion

Model Thresholds Test Utilization Pipeline Utilization
RetEdit 0.8 94.91% 55.71%
Templates 0.8 0.22% 0.91%
Monte Carlo 0.1 4.29% 41.10%
FSM - 0.15% 0.68%
Seq2seq - 0.43% 1.60%

Table 2: Thresholds and utilization percentages for the
models on the test sets and on the events generated by
the event-to-event system.

Our results are presented in the form of three
tables. Table 1 shows the perplexity, BLEU-4
scores, and average sentence length for event-to-
sentence on the testing set for each of the mod-
els, ensemble, and baseline. Note that some of
the models, such as the sentence templates, ignore
the idea of a gold standard sentence and are thus
poorly optimized towards perplexity and BLEU
scores. The ensemble, as predicted, still performs
better than any of the individual models as it is de-
signed to combine the models such that each of
their weaknesses are minimized. The average sen-
tence lengths highlight the differences between the
models, with the templates producing the short-
est sentences and the finite state machine taking
longer to generate sentences due to the constraints
it needs to satisfy. Table 2 shows the confidence
thresholds after tuning the ensemble. The RetE-
dit and sentence template models need 80% con-
fidence in their results, or the next model in the
cascade is tried. Table 2 also shows how often
each model in the ensemble is used generating
sentences from the eventified testing corpus and
from event-to-event. RedEdit was heavily used on
the test set, likely due the train and test sets having
a similar distribution of data. On the pipeline ex-
amples RetEdit is used much less—events gener-
ated by event-to-event may be very different from
those in the training set. A majority of the events

52



Input Event RetEdit Templates Monte Carlo FSM Gold Standard
〈<PRP>, act-
114-1-1, to, ∅,
event.n.01〉

<PRP> and
<PERSON>0 move to
the event.n.01 of the
natural object.n.01.

<PRP> act-114-1-1 to
event.n.01.

<PRP> moves to
the nearest natu-
ral object.n.01.

physical entity.n.01
move back to the
phenomenon.n.01 of
the craft.n.02...

<PRP> move to the
event.n.01.

〈<PERSON>2,
send-11.1,
through,
<PERSON>6,
<LOCATION>1〉

<PERSON>2 sends
<PERSON>6 through
the <LOCATION>1.

The <PERSON>2
send-11.1 the
<PERSON>6 through
<LOCATION>1.

<PERSON>2 passes
this undercover in the
body part.n.01 and
collapses.

∅ In activity.n.01 to avoid
<PRP> out.n.01
<PERSON>2
would transport
<PERSON>6 through
the <LOCATION>1.

〈<PERSON>0,
admire-31.2, ∅,
<PERSON>3,
∅〉

<PERSON>0 believes
<PERSON>3.

<PERSON>0 admire-
31.2 and <PERSON>3

<PERSON>0 hates
<PERSON>3 saying
<PRP> s not ready
for duration.n.03 .

<PERSON>0 and
<PERSON>0
comes in <PRP>
content.n.05 for
wrongdoing.n.02 and
says <PERSON>0
has made on line.n.23
have made trait.n.01.

A pivotal artifact.n.01
in <PRP> act.n.02 is
a examination.n.01
divised by
<LOCATION>0
to make <PERSON>0
hate <PRP>
<PERSON>3.

Table 3: Event-to-sentence examples for each model. ∅ represents an empty parameter; <PRP> is a pronoun.

Input Sentence Extracted Event Generated Events (Event-to-Event) Generated Sentences (Event-to-Sentence; ensemble)
On Tatooine, Jabba
the Hutt inspects the
drone barge recently
delivered to him.

〈<ORGANIZATION>0,
assessment-34.1, ∅,
vessel.n.02, ∅〉

〈<PERSON>1, settle-36.1.2, ∅,
indicator.n.03, indicator.n.03 〉;
〈music.n.01, escape-51.1-1, from,
∅, ∅〉; 〈<PRP>, discover-84, to,
run-51.3.2, progenitor.n.01〉

The <ORGANIZATION>0 can not scan the vessel.n.02
of the <VESSEL>0. <PERSON>1 decides to be a little
person.n.01 at the structure.n.01. the ’music.n.01 arrives.
<PRP> finds a lonely person.n.01 on the upper one of the
craft.n.02 which is not an personal letter.n.01 but does not
respond to hails .

Boba Fett has just
chased down another
bounty, a Rodian art
dealer who sold fake
works to Gebbu the
Hutt.

〈<PERSON>0, chase-
51.6, ∅, bounty.n.04,
∅〉

〈<PERSON>0, chase-51.6,
to, magnitude.n.01, ∅〉;
〈magnitude.n.01, comprehend-87.2,
off, craft.n.02, magnitude.n.01〉;
〈<PERSON>2, amuse-31.1, off, ∅,
∅〉; 〈<PERSON>2, discover-84,
off, change of integrity.n.01, ∅〉

<PERSON>0 enters the bounty.n.04 and tells <PRP>.
<PERSON>0 attaches the explosive.a.01 to the
person.n.01 who is trying to fix the device.n.01 . the mag-
nitude.n.01 doesn’t know the craft.n.02 off the craft.n.02.
<PERSON>2 is surprised when <PRP> learns that the
person.n.01 is actually <PERSON>7 . <PERSON>2
sees the change of integrity.n.01 and tells <PRP>.

Table 4: End-to-end pipeline examples on previously-unseen input data.

that fall through RetEdit are caught by our Monte
Carlo beam search, irrespective of the fact that
RetEdit and sentence templates are most likely to
honor the event tokens.

Table 3 presents concrete examples of the gen-
eralized sentence outputs of each of the event-
to-sentence models and some trends are evident.
Retrieve-and-Edit focuses on semantics at the ex-
pense of sentence quality. Sentence templates pro-
duces output that matches the input event but is
very formulaic. Monte Carlo generates entertain-
ing and grammatically-correct sentences, but oc-
casionally loses the semantics of the input event.
The finite state machine attempts to achieve a bal-
ance between semantics and generating entertain-
ing output, however it sometimes fails to produce
an output given the constraints of the state ma-
chine itself. We further present the results of an
entire working pipeline in Table 4, demonstrating
the event-to-sentence’s ability to work with an ex-
isting plot generator.

8 Conclusions

Although event representations were shown in the
past to improve performance on plot generation
tasks—allowing for planning toward plot points,

we are faced with the problem of translating these
events into syntactically- and semantically-sound
sentences that are both interesting and keep the
meaning of the original event. We have found that
no one model is able to fully solve this task and so
we present the combination of four approaches—
each of which excel at and struggle with different
aspects of the translation—into an ensemble.

RetEdit excels when the input event is drawn
from a similar distribution as our training set, but
the FSM approach does not depend on the dis-
tribution that the input is drawn from. The Sen-
tence Templates generate semantically-sound sen-
tences that are generic in structure, whereas Monte
Carlo beam search generates more diverse out-
put but is not guaranteed to retain the meaning
of the input event. These models lie at different
points on the spectrum between retaining meaning
and generating interesting sentences. Future state-
of-the-art sentence-filling techniques can also be
added to the ensemble to account for the weak-
nesses of current models. This work completes the
end-to-end story generation pipeline previously-
conceived by Martin et al. (2018) and serves as a
stepping stone for research in sentence expansion
or event-to-sentence tasks.

53



References

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, page
36945.

Tristan Cazenave. 2012. Monte Carlo Beam Search.
IEEE Transactions on Computational Intelligence
and AI in games, 4(1):68–72.

Elizabeth Clark, Yangfeng Ji, and Noah A. Smith.
2018. Neural Text Generation in Stories Using En-
tity Representations as Context. In NAACL-HLT.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical Neural Story Generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 889–898.

R. Farrell, S. G. Ware, and L. J. Baker. 2019. Manip-
ulating narrative salience in interactive stories using
indexter’s pairwise event salience hypothesis. IEEE
Transactions on Games, pages 1–1.

Pablo Gervás, Belén Dı́az-Agudo, Federico Peinado,
and Raquel Hervás. 2005. Story plot generation
based on CBR. Knowledge-Based Systems, 18(4-
5):235–242.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. Association for
Computational Linguistics (ACL).

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy Liang. 2018. A Retrieve-and-Edit Frame-
work for Predicting Structured Outputs. In 32nd
Conference on Neural Information Processing Sys-
tems (NeurIPS 2018), Montréal, Canada.

Parag Jain, Priyanka Agrawal, Abhijit Mishra, Mo-
hak Sukhwani, Anirban Laha, and Karthik Sankara-
narayanan. 2017. Story generation from sequence
of independent short descriptions. In SIGKDD
Workshop on Machine Learning for Creativity
(ML4Creativity).

Ahmed Khalifa, Gabriella A. B. Barros, and Julian To-
gelius. 2017. DeepTingle. In International Confer-
ence on Computational Creativity, page 8.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Michael Lebowitz. 1987. Planning Stories. In Pro-
ceedings of the 9th Annual Conference of the Cogn-
tive Science Society, pages 234–242.

Boyang Li, Stephen Lee-Urban, George Johnston, and
Mark O. Riedl. 2013. Story generation with crowd-
sourced plot graphs. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence,
AAAI’13, pages 598–604. AAAI Press.

Lara J. Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark O. Riedl. 2018. Event Representations for Au-
tomated Story Generation with Deep Neural Nets.
In Thirty-Second AAAI Conference on Artificial In-
telligence (AAAI-18), pages 868–875, New Orleans,
Louisiana.

James R. Meehan. 1977. TALE-SPIN, an interactive
program that writes stories. Proceedings of the 5th
international joint conference on Artificial intelli-
gence, 1:91–98.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and Optimizing LSTM
Language Models. In 6th International Conference
on Learning Representations, ICLR 2018.

George A. Miller. 1995. WordNet: A Lexical
Database for English. Communications of the ACM,
38(11):39–41.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards Controllable
Story Generation. In Proceedings of the First Work-
shop on Storytelling, pages 43–49, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Mike Pérez y Pérez and Rafael Sharples. 2001. MEX-
ICA: A computer model of a cognitive account of
creative writing. Journal of Experimental & Theo-
retical Artificial Intelligence, 13(2001):119–139.

Julie Porteous and Marc Cavazza. 2009. Control-
ling narrative generation with planning trajectories:
The role of constraints. In Joint International Con-
ference on Interactive Digital Storytelling, volume
5915 LNCS, pages 234–245. Springer.

Mark O Riedl and R Michael Young. 2010. Narrative
Planning: Balancing Plot and Character. Journal of
Artificial Intelligence Research, 39:217–267.

Melissa Roemmele. 2018. Neural Networks for Narra-
tive Continuation. Ph.D. thesis, University of South-
ern California.

54



Melissa Roemmele and Andrew S Gordon. 2018. An
Encoder-decoder Approach to Predicting Causal Re-
lations in Stories. In Proceedings of the First Work-
shop on Storytelling, pages 50–59, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Karin Kipper Schuler and Karen Kipper-Schuler. 2005.
VerbNet: A Broad-Coverage, Comprehensive Verb
Lexicon. Ph.D. thesis, University of Pennsylvania.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112.

Reid Swanson and Andrew Gordon. 2012. Say Any-
thing: Using textual case-based reasoning to en-
able open-domain interactive storytelling. ACM
Transactions on Interactive Intelligent Systems,
2(3):16:1–16:35.

Pradyumna Tambwekar, Murtaza Dhuliawala, Ani-
mesh Mehta, Lara J. Martin, Brent Harrison, and
Mark O. Riedl. 2019. Controllable Neural Story
Plot Generation via Reward Shaping. arXiv, page 7.

Scott R Turner and Michael George Dyer. 1986. The-
matic knowledge, episodic memory and analogy in
MINSTREL, a story invention system. University of
California, Computer Science Department.

Stephen Ware and R. Michael Young. 2011. Cpocl: A
narrative planner supporting conflict. In Proceed-
ings of the 7th AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment.

Ronald J. Williams. 1992. Simple Statistical Gradient-
Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8(3):229–256.

Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2017. Challenges in data-to-document gen-
eration. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
And-Write: Towards Better Automatic Storytelling.
In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI-19).

55



Proceedings of the Second Storytelling Workshop, pages 56–64
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

An Analysis of Emotion Communication Channels in Fan Fiction:
Towards Emotional Storytelling

Evgeny Kim and Roman Klinger
Institut für Maschinelle Sprachverarbeitung

University of Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

{evgeny.kim,roman.klinger}@ims.uni-stuttgart.de

Abstract
Centrality of emotion for the stories told by
humans is underpinned by numerous studies
in literature and psychology. The research in
automatic storytelling has recently turned to-
wards emotional storytelling, in which char-
acters’ emotions play an important role in
the plot development (Theune et al., 2004;
y Pérez, 2007; Méndez et al., 2016). How-
ever, these studies mainly use emotion to gen-
erate propositional statements in the form “A
feels affection towards B” or “A confronts B”.
At the same time, emotional behavior does
not boil down to such propositional descrip-
tions, as humans display complex and highly
variable patterns in communicating their emo-
tions, both verbally and non-verbally. In this
paper, we analyze how emotions are expressed
non-verbally in a corpus of fan fiction short
stories. Our analysis shows that stories written
by humans convey character emotions along
various non-verbal channels. We find that
some non-verbal channels, such as facial ex-
pressions and voice characteristics of the char-
acters, are more strongly associated with joy,
while gestures and body postures are more
likely to occur with trust. Based on our analy-
sis, we argue that automatic storytelling sys-
tems should take variability of emotion into
account when generating descriptions of char-
acters’ emotions.

1 Introduction and Motivation

As humans, we make sense of our experiences
through stories (McKee, 2003). A key compo-
nent of any captivating story is a character (Kress,
2005) and a key component of every charac-
ter is emotion, as “without emotion a charac-
ter’s personal journey is pointless” (Ackerman and
Puglisi, 2012, p. 1). Numerous works pinpoint
the central role of emotions in storytelling (Hogan,
2015; Johnson-Laird and Oatley, 2016; Ingerman-
son and Economy, 2009), as well as story com-

prehension and evaluation (Komeda et al., 2005;
Van Horn, 1997; Mori et al., 2019).

Emotion analysis and automatic recognition in
text is mostly channel-agnostic, i.e., does not
consider along which non-verbal communication
channels (face, voice, etc.) emotions are ex-
pressed. However, we know that the same emo-
tions can be expressed non-verbally in a variety of
ways (Barrett, 2017, p. 11), for example, through
internal feelings of the character, as shown in Fig-
ure 1. We argue that automatic storytelling sys-
tems should take this information into account, as
versatility of the emotion description is a prerequi-
site for engaging and believable storytelling (Ack-
erman and Puglisi, 2012, p. 3).

There is a growing body of literature in the field
of natural language generation that uses emotions
as a key component for automatic plot construc-
tion (Theune et al., 2004; y Pérez, 2007; Méndez
et al., 2016) and characterization of virtual agents
(Imbert and de Antonio, 2005; Dias and Paiva,
2011). However, these and other studies put an
emphasis on emotion per se (“A feels affection
towards B”), or on the social behavior of charac-
ters “A confronts B”) making little or no reference
to how characters express emotions, both verbally
and non-verbally.

In this paper, we aim at closing this gap by ana-
lyzing how characters express their emotions us-
ing non-verbal communication signals. Specifi-

His body ached to do something, to ... revel in violence.

Character
Farrington

Emotion
Anger

Channel
Physical sensations

Figure 1: Example of the emotion expressed using
non-verbal communication channel. The annotation of
character and emotion are available in the dataset by
Kim and Klinger (2019). Channel annotation (in blue)
is an extension to the original dataset.

56



cally, we analyze how eight emotions (joy, sad-
ness, anger, fear, trust, disgust, surprise, and
anticipation) defined by Plutchik (2001) are ex-
pressed along the following channels introduced
by van Meel (1995): 1) physical appearance, 2) fa-
cial expressions, 3) gaze, looking behavior, 4) arm
and hand gesture, 5) movements of body as a
whole, 6) characteristics of voice, 7) spatial rela-
tions, and 8) physical make-up.

This paper is an extension to our previous study
(Kim and Klinger, 2019), in which we presented
a corpus of emotion relations between characters
in fan fiction short stories. We post-annotate the
corpus with non-verbal expressions of emotions
and analyze two scenarios of non-verbal emo-
tion expression: when the feeler of an emotion
is alone, and when a communication partner, who
also plays a role in the development of emotion, is
present. In our analysis, we look into the emotions
associated with each non-verbal behavior, map-
ping emotions to non-verbal expressions they fre-
quently occur with.

Our contributions are therefore the following:
1) we propose that natural language generation
systems describing emotions should take into ac-
count how emotions are expressed non-verbally,
2) we extend the annotations presented in Kim and
Klinger (2019) and quantitatively analyze the data,
3) we show that facial expressions, voice, eyes
and body movements are the top three channels
among which the emotion is expressed, 4) based
on the data, we show that some emotions are more
likely to be expressed via a certain channel, and
this channel is also influenced by the presence or
non-presence of a communication partner.

Our corpus is available at https://www.ims.
uni-stuttgart.de/data/emotion.

2 Related Work

Emotion analysis has received great attention
in natural language processing (Mohammad and
Bravo-Marquez, 2017; Mohammad et al., 2018;
Klinger et al., 2018; Felbo et al., 2017; Abdul-
Mageed and Ungar, 2017; Zhou and Wang, 2018;
Gui et al., 2017, i.a.). Most existing studies on
the topic cast the problem of emotion analysis
as a classification task, by classifying documents
(e.g., social media posts) into a set of predefined
emotion classes. Emotion classes used for the
classification are usually based on discrete cate-
gories of Ekman (1970) or Plutchik (2001) (cf.

Alm et al. (2005), Suttles and Ide (2013), Mo-
hammad (2012)). Fewer studies address emotion
recognition using a dimensional emotion repre-
sentation (cf. Buechel and Hahn (2017); Preoţiuc-
Pietro et al. (2016)). Such representation is based
on the valence-arousal emotion model (Russell,
1980), which can be helpful to account for sub-
jective emotional states that do not fit into discrete
categories.

Early attempts to computationally model emo-
tions in literary texts date back to the 1980s and
are presented in the works by Anderson and Mc-
Master (1982, 1986), who build a computational
model of affect in text tracking how emotions de-
velop in a literary narrative.

More recent studies in the field of digital hu-
manities approach emotion analysis from various
angles and for a wide range of goals. Some stud-
ies use emotions as feature input for genre clas-
sification (Samothrakis and Fasli, 2015; Henny-
Krahmer, 2018; Yu, 2008; Kim et al., 2017),
story clustering (Reagan et al., 2016), mapping
emotions to geographical locations in literature
(Heuser et al., 2016), and construction of so-
cial networks of characters (Nalisnick and Baird,
2013; Jhavar and Mirza, 2018). Other studies use
emotion analysis as a starting point for stylome-
try (Koolen, 2018), inferring psychological char-
acters’ traits (Egloff et al., 2018), and analysis
of the causes of emotions in literature (Kim and
Klinger, 2018, 2019).

To the best of our knowledge, there is no pre-
vious research that addresses the question of how
emotions are expressed non-verbally. The only
work that we are aware of is a literary study by
van Meel (1995), who proposes several non-verbal
communication channels for emotions and per-
forms a manual analysis on a set of several books.
He finds that voice is the most frequently used
category, followed by facial expressions, arm and
hand gestures and bodily postures. Van Meel ex-
plains the dominancy of voice by the predominant
role that speech plays in novels. However, van
Meel does not link the non-verbal channels to any
specific emotions. In this paper, we extend his
analysis by mapping the non-verbal channels to a
set of specific emotions felt by the characters.

3 Corpus Creation

We post-annotate our dataset of emotion rela-
tions between characters in fan fiction (Kim and

57



Emotion Fa
ce

B
od

y

A
pp

ea
r.

L
oo

k.

Vo
ic

e

G
es

tu
re

Sp
tr

el
.

Se
ns

at
io

ns

N
o

ch
an

ne
l

To
ta

l

anger 23 20 5 38 51 7 0 4 163 311
anticipation 4 14 0 17 4 2 7 6 267 321
disgust 3 6 1 3 0 0 0 1 149 163
fear 4 28 13 16 8 1 0 25 124 219
joy 76 26 7 12 52 19 5 33 268 498
sadness 3 5 4 4 2 0 3 7 81 109
surprise 10 5 3 13 1 0 0 2 118 152
trust 4 15 1 4 1 21 3 0 144 193

Total 127 119 34 107 119 50 18 78 1314 1966

Table 1: Counts of emotion and expression-channel pairs. No channel means that instance contains no reference
to how emotion is expressed non-verbally.

Klinger, 2019) with non-verbal communication
channels of emotion expressions. The dataset in-
cludes complete annotations of 19 fan fiction short
stories and of one short story by James Joyce.
The emotion relation is characterized by a triple
(Cexp, e, Ccause), in which the character Cexp
feels the emotion e. The character Ccause (to
which we refer as a “communication partner”) is
part of an event which triggers the emotion e. The
emotion categorization presented in the dataset
follows Plutchik’s (2001) classification, namely
joy, sadness, anger, fear, trust, disgust, surprise,
and anticipation.

Given an annotation of a character with an emo-
tion, we annotate non-verbal channels of emotion
expressions following the classification proposed
by van Meel (1995), who defines the following
eight categories: 1) physical appearance, 2) facial
expressions, 3) gaze, looking behavior, 4) arm and
hand gesture, 5) movements of body as a whole, 6)
characteristics of voice, 7) spatial relations (refer-
ences to personal space), and 8) physical make-up.
To clarify the category of physical make-up, we
redefine it under the name of physical sensations,
i.e., references to one’s internal physiological sig-
nals perceived by the feeler of the emotion.

The task is exemplified in Figure 1. Labels
for emotion (Anger) and character (Farrington)
are given. Physical sensation is an example of a
channel annotation we use to extend the original
dataset.

The annotations were done by three graduate
students in our computational linguistics depart-

a1–a2 a1–a3 a2–a3

Span 31 29 45
Sentence 49 45 59

Table 2: F1 scores in % for agreement between annota-
tors on a span level. a1, a2, and a3 are different annota-
tors. Span: label of channel and offsets are considered.
Sentence: only label of the channel in the sentence is
considered.

ment within a one-month period. The annotators
were asked to read each datapoint in the dataset
and decide if the emotion expressed by the feeler
(character) has an associated non-verbal channel
of expression. If so, the annotators were instructed
to mark the corresponding textual span and select
a channel label from the list of non-verbal commu-
nication channels given above.

The results of inter-annotator agreement (IAA)
are presented in Table 2. We measure agreement
along two dimensions: 1) span, where we mea-
sure how well two people agree on the label of
a non-verbal emotion expression, as well as on
the exact textual position of this expression, and
2) sentence, where we measure how well two peo-
ple agree on the label of non-verbal emotion ex-
pression in a given sentence (i.e., the exact posi-
tions of the channel are not taken into account).
The agreement is measured using the F1 measure,
where we assume that annotations by one person
are true, and annotations by another person are
predicted. As one can see, the agreement scores
for spans (i.e., channel label and exact textual po-

58



face body appear. look. voice gest. sptrel sens
channel

anger

anticipation

disgust

fear

joy

sadness

surprise

trust

em
ot

io
n

0.16 0.14 0.03 0.26 0.34 0.05 0 0.03

0.07 0.26 0 0.31 0.07 0.04 0.13 0.11

0.21 0.43 0.07 0.21 0 0 0 0.07

0.04 0.29 0.14 0.17 0.08 0.01 0 0.26

0.33 0.11 0.03 0.05 0.23 0.08 0.02 0.14

0.11 0.18 0.14 0.14 0.07 0 0.11 0.25

0.29 0.15 0.09 0.38 0.03 0 0 0.06

0.08 0.31 0.02 0.08 0.02 0.43 0.06 0
0.00

0.08

0.16

0.24

0.32

0.40

Figure 2: Distribution of non-verbal channels with all
emotions. Darker color indicates higher value. Values
in the cells are percentage ratios. Each cell is normal-
ized by the row sum of absolute frequencies.

sitions) are relatively low (lowest 29%, highest
45% F1 respectively). The IAA scores on a sen-
tence level are higher (lowest agreement is 45%,
highest 59% F1 respectively), as we only consider
the label of the non-verbal channel in a sentence
without looking into the exact textual positions of
the annotations.

4 Analysis

Table 1 summarizes the results of the annotation of
non-verbal channels of emotion expressions, Ta-
ble 3 gives examples of these expressions in the
dataset.

In total, there are 652 annotations of non-verbal
emotion expressions. By absolute counts, facial
expressions (Face, 127 occurrences), body move-
ments (Body, 119), voice (Voice, 199), and look-
ing behavior (Look., 107) have the highest number
of annotations. Spatial relations (Sptrel., 78) and
physical appearance (Appear., 34) have the lowest
number of annotations.

4.1 Emotion-Channel associations

We start our analysis by looking into the emotion-
channel associations. Namely, we analyze which
non-verbal channels are associated with which
emotions. To that end, we plot a heatmap of the
emotion–non-verbal-channel matrix. The value of
each cell in the heatmap is normalized by the row
sum (i.e., total counts of channel annotations) and
represents the likelihood of emotion-channel as-
sociation in the dataset, for each emotion, respec-
tively.

As Figure 2 shows, anger is more likely to be
expressed with voice, while joy is more likely to

Figure 3: Emotion-channel map. Each branch is an
emotion, whose branches are the top three non-verbal
channels associated with the emotion.

be expressed with face. In contrast to all other
emotions, sadness is more likely to be experienced
internally (sens. column in Figure 2) by the feeler,
as opposed to being communicated non-verbally.
Some channels and emotions show no association,
such as gestures (gest.) and disgust or spatial re-
lations (sptrel.) and anger. Given the relatively
small size of the dataset, we do not argue that
these associations are not possible in principle.
For example, fear and spatial relations have zero
association in our analysis, however, it is likely
that somebody expresses this emotion by moving
away subconsciously (increasing personal space)
from the source of danger. At the same time, fear
is most strongly associated with body movements
as a whole, which can be difficult to distinguish
from spatial relations. However, we believe that
these associations still reflect the general trend:
emotions that require immediate actions and serve
evolutionary survival function, such as anger, dis-
gust, and fear, are more likely to be expressed
with actions. For example, anger is an unpleas-
ant emotion that often occurs as a response to an
appraisal of a blocked goal (Harmon Jones and
Harmon-Jones, 2016), which can be resolved by
using voice characteristics (commanding or shout-
ing at someone who prevents you from achieving
your goal).

Overall, we observe that face, look., voice, and
body channels are predominantly used with all
emotions. We visualize the strongest associations
of emotions and non-verbal channels in Figure 3.
For each emotion, the figure shows the top three
(in a descending order) strongly associated non-
verbal channels. As one can see, the branches
are dominated by face, look., voice, and body
channels. The only exception is trust, for which
the predominant way to express emotions non-

59



Channel Emotion Examples

Facial expressions anger rolled his eyes
fear smiled nervously

Body movements anger stormed back out
trust slumped his shoulders

Physical appearance fear blushed crimson red

Looking behavior fear averted her eyes
anticipation pause to look back

Voice joy purred
fear voice getting smaller and smaller

Arm and hand gestures trust opened her arms

Spatial relations joy leaping into her arms
trust pulled him closer to his chest

Physical sensations joy tingling all over
fear hear in his throat

Table 3: Textual examples of non-verbal emotion expressions.

face body appear. look. voice gest. sptrel sens
channel

anger

anticipation

disgust

fear

joy

sadness

surprise

trust

em
ot

io
n

-0.14 -0.09 0.01 0.12 0.14 -0.02 0 -0.02

0.03 -0.12 0 0.12 0.03 0 -0.06 -0.01

0.21 0.03 -0.13 0.01 0 0 0 -0.13

0.02 -0.05 0.02 0.07 0.01 -0.01 0 -0.06

-0.03 0 0.03 -0.04 -0.05 -0.01 0 0.08

0.11 -0.15 0.14 0.14 0.07 0 -0.22 -0.08

0.29 -0.85 0.09 0.38 0.03 0 0 0.06

-0.42 0.31 0.02 0.08 0.02 -0.07 0.06 0 0.75

0.50

0.25

0.00

0.25

Figure 4: The difference between situations, in which a
character feels an emotion and the communication part-
ner is present, and situations in which the communica-
tion partner is not present (normalized by row sum).
Darker color/higher values indicates that the channel is
more likely to be used when there is a communication
partner.

verbally is through gestures, and sadness, which
is predominantly felt “internally” (sensations).

4.2 Presence of a communication partner

The original dataset contains information whether
an emotion of the character is evoked by another
character (communication partner). We use this
information to understand how the presence of a
communication partner affects the choice of a non-
verbal channel.

To that end, we plot a heatmap (Figure 4) from

the delta values between situations, in which the
communication partner is present, and situations
in which the communication partner is not present.
As it can be seen from Figure 4, trust is more
strongly associated with body movements when a
communication partner is present. Sadness, which
is more likely to associate with inner physical sen-
sations in the feeler, is expressed through the phys-
ical appearance and looking behavior when the
communication partner is present. Likewise, dis-
gust is more likely to be expressed with facial ex-
pressions, and anticipation is more likely to be ex-
pressed with looking behavior.

Again, we observe that body, voice, face, and
look. channels are the predominant non-verbal
communication channels for emotion expressions.

4.3 Timeline analysis

To understand if there are patterns in the frequency
of use of non-verbal channels in a narrative, we
perform an additional analysis.

For this analysis, we split each short story in
the dataset in ten equally sized chunks and get fre-
quencies of each non-verbal channel, which are
then plotted as time-series with confidence inter-
vals (Figure 5). The averaged values for each
channel are plotted as a dark line with circular
markers. The lighter area around the main line
represents confidence intervals of 95%, which are
calculated using bootstrap resampling.

60



Figure 5: Distribution of non-verbal emotion expressions in the narrative. Markers on the plot lines indicate the
text chunk. The plots are given for ten chunks. Light area around the solid line indicates confidence interval of
95%. y-axis shows percentage.

We observe the general tendency of all non-
verbal channels to vanish towards the end of the
story. The only exception is Facial expressions,
which after peaking in the middle of a story reverts
to the mean. Overall, we find no consistent pattern
in the use of non-verbal channels from beginning
to an end of a story.

5 Discussion and Conclusion

The results of the analysis presented in Section
4 show that emotions are expressed in a vari-
ety of ways through different non-verbal channels.
However, the preferred communication channel
depends on whether a communication partner is
present or not. Some channels are used predom-
inantly only when the feeler communicates her
emotion to another character, other channels can
be used in any situation.

Sadness stands out from other emotions in a
sense that it is predominantly not expressed using
any external channels of non-verbal communica-
tion. In other words, it is more common for the
characters in the annotated dataset to go through
sadness “alone” and feel it “in the body”, rather
than show it to the outer world. However, when
another character (communication partner) is the
reason of sadness experienced by the feeler, he or
she will most likely use eyes and overall behavior
to show this emotion.

In this paper, we showed that in human-written
stories, emotions are not only expressed as propo-
sitions in the form of “A feels affection towards
B” or “A confronts B”. As Table 3 shows, of-

ten there is no direct mention of the feelings A
holds towards B (“rolled his eyes”, “purred”). It is,
therefore, important, that this observation finds its
place in automatic storytelling systems. Some at-
tempts have been done in natural language gener-
ation towards controllable story generation (Peng
et al., 2018; Tambwekar et al., 2018). We pro-
pose that emotion expression should be one of the
controllable parameters in automatic storytellers.
As more and more language generation systems
have started using emotion as one of the cen-
tral components for plot development and charac-
terization of characters, there will be a need for
a more versatile and subtle description of emo-
tions, which is realized not only through proposi-
tional statements. In the end, no single instance of
same emotion is expressed in the same way (Bar-
rett, 2017), and emotion-aware storytelling sys-
tems should take this information into account
when generating emotional profiles of characters.

6 Future Work

This paper proposes one approach to non-verbal
emotion description that relies on a rigid ontol-
ogy of emotion classes. However, it might be
reasonable to make use of unsupervised clustering
of non-verbal descriptions to overcome the limita-
tions of using a relatively small number of coarse
emotion categories for the description of character
emotions. Once clustered, such descriptions could
be incorporated in the generated text (e.g., a plot
summary) and would elaborate all the simplistic
descriptions of character emotions.

61



Other research directions seems feasible too.
For example, the annotations, which we presented
in this paper, can be used for building and training
a model that automatically recognizes non-verbal
channels of emotion expressions. This might, in a
multi-task learning setting, improve emotion clas-
sification. The data we provide could also be used
as a starting point for terminology construction,
namely bootstrapping a lexicon of emotion com-
munications with different channels. Finally, our
work can serve as a foundation for the develop-
ment of an automatic storytelling system that takes
advantage of such resources.

Acknowledgements

This research has been conducted within the
CRETA project (http://www.creta.uni-stuttgart.
de/) which is funded by the German Ministry
for Education and Research (BMBF) and partially
funded by the German Research Council (DFG),
projects SEAT (Structured Multi-Domain Emo-
tion Analysis from Text, KL 2869/1-1).

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

EmoNet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
718–728, Vancouver, Canada. Association for Com-
putational Linguistics.

Angela Ackerman and Becca Puglisi. 2012. The Emo-
tion Thesaurus: A Writer’s Guide to Character Ex-
pression. JADD Publishing.

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: Machine learn-
ing for text-based emotion prediction. In Proceed-
ings of the Conference on Human Language Tech-
nology and Empirical Methods in Natural Language
Processing, HLT ’05, pages 579–586, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Clifford W. Anderson and George E. McMaster. 1982.
Computer assisted modeling of affective tone in
written documents. Computers and the Humanities,
16(1):1–9.

Clifford W. Anderson and George E. McMaster. 1986.
Modeling emotional tone in stories using tension
levels and categorical states. Computers and the Hu-
manities, 20(1):3–9.

Lisa Feldman Barrett. 2017. How emotions are made:
The secret life of the brain. Houghton Mifflin Har-
court.

Sven Buechel and Udo Hahn. 2017. Emobank: Study-
ing the impact of annotation perspective and repre-
sentation format on dimensional emotion analysis.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 578–
585, Valencia, Spain. Association for Computational
Linguistics.

João Dias and Ana Paiva. 2011. Agents with emotional
intelligence for storytelling. In Affective Comput-
ing and Intelligent Interaction, pages 77–86, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Mattia Egloff, Antonio Lieto, and Davide Picca. 2018.
An ontological model for inferring psychological
profiles and narrative roles of characters. In Digi-
tal Humanities 2018: Conference Abstracts, Mexico
City, Mexico.

Paul Ekman. 1970. Universal facial expressions of
emotion. California Mental Health Research Di-
gest, 8(4):151–158.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1615–1625, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Lin Gui, Jiannan Hu, Yulan He, Ruifeng Xu, Qin Lu,
and Jiachen Du. 2017. A question answering ap-
proach for emotion cause extraction. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1593–1602,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Eddie Harmon Jones and Cindy Harmon-Jones. 2016.
Anger. In Michael Lewis, Jeannette M. Haviland-
Jones, and Lisa Feldman Barrett, editors, Handbook
of Emotions, chapter 44, pages 774–792. Guilford
Publications, New York.

Ulrike Edith Gerda Henny-Krahmer. 2018. Explo-
ration of sentiments and genre in spanish american
novels. In Digital Humanities 2018: Conference
Abstracts, Mexico, Mexico.

Ryan Heuser, Franco Moretti, and Erik Steiner. 2016.
The Emotions of London. Technical report, Stan-
ford University. Pamphlets of the Stanford Literary
Lab.

Patrick Colm Hogan. 2015. What Literature Teaches
Us about Emotion, pages 273–290. Oxford Univer-
sity Press, USA.

Ricardo Imbert and Angélica de Antonio. 2005. An
emotional architecture for virtual characters. In Vir-
tual Storytelling. Using Virtual Reality Technologies
for Storytelling, pages 63–72, Berlin, Heidelberg.
Springer Berlin Heidelberg.

62



Randy Ingermanson and Peter Economy. 2009. Writ-
ing fiction for dummies. John Wiley & Sons.

Harshita Jhavar and Paramita Mirza. 2018. EMOFIEL:
Mapping emotions of relationships in a story. In
Companion Proceedings of the The Web Conference
2018, WWW ’18, pages 243–246, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Philip N. Johnson-Laird and Keith Oatley. 2016. Emo-
tions in Music, Literature, and Film. In Michael
Lewis, Jeannette M. Haviland-Jones, and Lisa Feld-
man Barrett, editors, Handbook of Emotions, chap-
ter 4, pages 82–97. Guilford Publications, New
York.

Evgeny Kim and Roman Klinger. 2018. Who feels
what and why? Annotation of a literature corpus
with semantic roles of emotions. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 1345–1359, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Evgeny Kim and Roman Klinger. 2019. Frowning
Frodo, Wincing Leia, and a Seriously Great Friend-
ship: Learning to Classify Emotional Relationships
of Fictional Characters. In Proceedings of the An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, Min-
neapolis, USA. Association for Computational Lin-
guistics. Accepted.

Evgeny Kim, Sebastian Padó, and Roman Klinger.
2017. Investigating the relationship between liter-
ary genres and emotional plot development. In Pro-
ceedings of the Joint SIGHUM Workshop on Com-
putational Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature, pages 17–26,
Vancouver, Canada. Association for Computational
Linguistics.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. IEST: WASSA-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Hidetsugu Komeda, Yoshiaki Nihei, and Takashi
Kusumi. 2005. Roles of reader’s feelings in under-
standing narratives: forefeel, empathy, and a sense
of strangeness. Shinrigaku kenkyu: The Japanese
Journal of Psychology, 75(6):479–486.

Corina Koolen. 2018. Women’s books versus books by
women. In Digital Humanities 2018: Conference
Abstracts, Mexico City, Mexico.

Nancy Kress. 2005. Characters, Emotion & Viewpoint:
Techniques and Exercises for Crafting Dynamic
Characters and Effective Viewpoints. Writer’s Di-
gest Books.

Robert McKee. 2003. Storytelling that moves peo-
ple. A conversation with screenwriting coach Robert
Mckee. Harvard business review, 81(6):51—5, 136.

Jacques M. van Meel. 1995. Representing emotions
in literature and paintings: A comparative analysis.
Poetics, 23(1):159 – 176. Emotions and Cultural
Products.

Gonzalo Méndez, Pablo Gervás, and Carlos León.
2016. On the use of character affinities for story
plot generation. In Knowledge, Information and
Creativity Support Systems, pages 211–225, Cham.
Springer International Publishing.

Saif M. Mohammad. 2012. From once upon a time to
happily ever after: Tracking emotions in mail and
books. Decision Support Systems, 53(4):730–741.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 34–49, Copenhagen, Den-
mark. Association for Computational Linguistics.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
SemEval-2018 task 1: Affect in tweets. In Proceed-
ings of The 12th International Workshop on Seman-
tic Evaluation, pages 1–17, New Orleans, Louisiana.
Association for Computational Linguistics.

Yusuke Mori, Hiroaki Yamane, Yoshitaka Ushiku, and
Tatsuya Harada. 2019. How narratives move your
mind: A corpus of shared-character stories for con-
necting emotional flow and interestingness. Infor-
mation Processing & Management.

Eric T. Nalisnick and Henry S. Baird. 2013. Extract-
ing sentiment networks from shakespeare’s plays. In
2013 12th International Conference on Document
Analysis and Recognition, pages 758–762.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43–49, New Orleans, Louisiana.
Association for Computational Linguistics.

Rafael Pérez y Pérez. 2007. Employing emotions to
drive plot generation in a computer-based storyteller.
Cognitive Systems Research, 8(2):89–109.

Robert Plutchik. 2001. The nature of emotions. Amer-
ican Scientist, 89(4):344–350.

Daniel Preoţiuc-Pietro, H. Andrew Schwartz, Gregory
Park, Johannes Eichstaedt, Margaret Kern, Lyle Un-
gar, and Elisabeth Shulman. 2016. Modelling va-
lence and arousal in facebook posts. In Proceedings
of the 7th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analy-
sis, pages 9–15, San Diego, California. Association
for Computational Linguistics.

63



Andrew J. Reagan, Lewis Mitchell, Dilan Kiley,
Christopher M. Danforth, and Peter Sheridan Dodds.
2016. The emotional arcs of stories are dominated
by six basic shapes. EPJ Data Science, 5(1):31.

James A. Russell. 1980. A circumplex model of af-
fect. Journal of Personality and Social Psychology,
39:1161–1178.

Spyridon Samothrakis and Maria Fasli. 2015. Emo-
tional sentence annotation helps predict fiction
genre. PloS one, 10(11):e0141922.

Jared Suttles and Nancy Ide. 2013. Distant supervi-
sion for emotion classification with discrete binary
values. In Computational Linguistics and Intelligent
Text Processing, pages 121–136, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Pradyumna Tambwekar, Murtaza Dhuliawala, Ani-
mesh Mehta, Lara J. Martin, Brent Harrison, and
Mark O. Riedl. 2018. Controllable neural story gen-
eration via reinforcement learning. arXiv preprint
arXiv:1809.10736.

Mariët Theune, Sander Rensen, Rieks op den Akker,
Dirk Heylen, and Anton Nijholt. 2004. Emotional
characters for automatic plot creation. In Interna-
tional Conference on Technologies for Interactive
Digital Storytelling and Entertainment, pages 95–
100. Springer.

Leigh Van Horn. 1997. The characters within us:
Readers connect with characters to create meaning
and understanding. Journal of Adolescent & Adult
Literacy, 40(5):342–347.

Bei Yu. 2008. An evaluation of text classification
methods for literary study. Literary and Linguistic
Computing, 23(3):327–343.

Xianda Zhou and William Yang Wang. 2018. Mo-
jiTalk: Generating emotional responses at scale. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1128–1137, Melbourne, Aus-
tralia. Association for Computational Linguistics.

64



Proceedings of the Second Storytelling Workshop, pages 65–74
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Narrative Generation in the Wild: Methods from NaNoGenMo

Judith van Stegeren
Human Media Interaction

University of Twente
Enschede, The Netherlands

j.e.vanstegeren@utwente.nl

Mariët Theune
Human Media Interaction

University of Twente
Enschede, The Netherlands
m.theune@utwente.nl

Abstract

In text generation, generating long stories is
still a challenge. Coherence tends to decrease
rapidly as the output length increases. Espe-
cially for generated stories, coherence of the
narrative is an important quality aspect of the
output text. In this paper we examine how nar-
rative coherence is attained in the submissions
of NaNoGenMo 2018, an online text genera-
tion event where participants are challenged to
generate a 50,000 word novel. We list the main
approaches that were used to generate coher-
ent narratives and link them to scientific liter-
ature. Finally, we give recommendations on
when to use which approach.

1 Introduction

Coherence is generally considered to be a property
of a good story. For a story to be coherent, “all
the parts of the story must be structured so that the
entire sequence of events is interrelated in a mean-
ingful way” (Shapiro and Hudson, 1991), p.960.
For generated stories, in particular those generated
using neural models, coherence tends to decrease
rapidly as the output length increases. For this
reason, generating long stories is still a challenge
(Kiddon et al., 2016).

To gain more insight in how generation of long
stories is done ‘in the wild’, we review a collection
of story generation projects that were created as
part of the online challenge NaNoGenMo.

NaNoGenMo, or National Novel Generation
Month1, is a yearly online event that challenges
participants to create a novel using text genera-
tion. Participants have one month (November) to
develop a text generator and use it to procedurally
generate the text of their novel. GitHub is used
to register for the event and share participants’
progress throughout the month. To qualify as a

1https://www.github.com/nanogenmo

NaNoGenMo winner, participants have to publish
their code and share a generated text of at least
50,000 words.

Since NaNoGenMo takes place online, we can
use it to study practical approaches to text genera-
tion and story generation. Participants do not nec-
essarily use state-of-the-art techniques from story
generation research. Instead, the NaNoGenMo en-
tries offer us a look into practical novel generation
methods used in a (mostly) non-academic context.
NaNoGenMo provides an accessible repository of
story generation projects (including both code and
output) that is incomparable to any academic gen-
eration challenge in terms of diversity and scale.
What makes NaNoGenMo extra interesting is that
it focuses on the generation of texts with a much
longer length than addressed in most scientific re-
search.

We analysed the work of participants from
NaNoGenMo 20182, see Section 3. We start with
categorising the projects by their output type, focus-
ing on projects that generate text with a novel-like
structure. We then list the main methods for text
generation used by participants in Section 4, since
text generation methods influence the coherence of
the output text. In Section 5, we discuss projects
that generate text with a coherent narrative struc-
ture. We list the different approaches that were used
to achieve this narrative structure, and link them
to scientific literature. Finally, we provide some
recommendations on when to use which approach.

2 Related work

2.1 NaNoGenMo

NaNoGenMo was invented in 2013 by Darius
Kazemi. His inspiration was NaNoWriMo, or Na-
tional Novel Writing Month, another online event

2https://github.com/NaNoGenMo/2018

65



in November where participants are challenged to
write a 50,000 word novel.

The first attempt to create a survey of text gener-
ation methods used by NaNoGenMo participants
was a blog post3 in Russian. The author dis-
cussed projects of NaNoGenMo 2013-2015, and
categorised them by generation technique, such
as Markov chains, recycling existing works of fic-
tion, simulation, high-level plot generation, and
neural networks. Inspired by this blog post, the
NaNoGenMo community conducted their own sur-
vey4 of methods (2016) and programming lan-
guages (2014–2017) as part of the event.

There is some cross-pollination between the
NaNoGenMo community and academia. Partic-
ipants sometimes refer to research articles, either
for their own projects or to help other participants.
Additionally, NaNoGenMo has been mentioned
in scientific literature in fields that have a close
connection to the goal of the event: procedural
generation for games (Karth, 2018), story gener-
ation (Montfort, 2014; Horswill, 2016) and com-
putational creativity (McGovern and Scott, 2016;
Cook and Colton, 2018; Compton et al., 2015).

Cook and Colton (2018) discuss the
NaNoGenMo community in detail in their
paper on online communities in computational
creativity. Although they review some of the
projects from NaNoGenMo 2016, the focus of
their article was not the methods or quality of the
projects, but rather the community of NaNoGenMo
itself. Montfort (2014) developed a novel generator
called World Clock, as entry for NaNoGenMo
2013. Interestingly, most of the researchers citing
NaNoGenMo have participated themselves in the
past.

2.2 Story generation

Story generation is the procedural creation of sto-
ries. Mostafazadeh et al. (2016) define a story or
narrative as “anything which is told in the form of
a causally (logically) linked set of events involving
some shared characters.” Yao et al. (2019) split
story generation into two distinct tasks: on the one
hand generating the sequence of events, and on
the other hand generating the surface text, i.e. the
actual text that makes up the story. This is reminis-
cent of the classic NLG pipeline (see, e.g., (Reiter

3https://habr.com/en/post/313862/
4The programming language surveys can be found by

searching for issues labeled ‘admin’ in the GitHub reposi-
tories for those respective years.

and Dale, 1997), in which planning stages precede
surface realisation. Story generation is sometimes
limited to the first aspect, generating the underlying
sequence of events, or fabula, with generation of
the surface text of the story out of scope (Martin
et al., 2018; Porteous and Cavazza, 2009; Lebowitz,
1987). Some story generation systems focus on gen-
erating the surface text, given a fabula as input. For
example, Storybook (Callaway and Lester, 2002),
the Narrator (Theune et al., 2007) and Curveship
(Montfort, 2009) all generate story text from an un-
derlying fabula. Other research focused on aspects
of the telling of the story, for example stylistic vari-
ation (Montfort, 2007), affective language (Strong
et al., 2007) and personality (Lukin et al., 2014;
Walker et al., 2011).

2.3 Narrative coherence

The generation of long stories, such as the 50,000
word novels of NaNoGenMo, places strong de-
mands on coherence: the set of events in the story
need to be linked, and preferably also fit into some
overarching dramatic structure.

One way of achieving coherence in generated
stories is by imposing a specific structure on the
output text. Researchers have investigated the struc-
ture inherent in existing stories to find out how hu-
mans do this. Propp’s model of the structure of
Russian folktales has been used in various story
generation systems (Gervás, 2013). Alternative
narrative structures that have been used to guide
story generation are Booker’s seven basic plots
(Hall et al., 2017), the Hero’s journey or Mono-
myth (Garcı́a-Ortega et al., 2016) and the Fool’s
journey from tarot cards (Sullivan et al., 2018).

In neural text generation, it is less easy to impose
a narrative structure on the generated texts – unless
the task is split into two steps, like in the work of
Yao et al. (2019). An alternative way improve the
global coherence in texts generated with recurring
neural networks was proposed by Holtzman et al.
(2018), who used a set of discriminators to encode
various aspects of proper writing.

Another way of achieving coherence is through
emergent narrative (Aylett, 1999). This is a type
of narrative (at the fabula level) that emerges from
simulating simple behaviours that, when interact-
ing, create a complex whole. The simulation gives
rise to a sequence of causally linked events which
give coherence to the story. The coherence in emer-
gent narrative tends to be mostly local in nature:

66



although the events are linked through their im-
mediate causes and consequences, it is difficult to
impose a global dramatic arc on them. Examples of
generation systems that use the emergent narrative
approach are FearNot! (Aylett et al., 2005), the Vir-
tual Storyteller (Swartjes and Theune, 2008) and
the simulation framework from Talk of the Town
(Ryan et al., 2016).

Simulation-based narratives are particularly suit-
able for game-based story generation, since games
often already have a world-state, characters, objects
and a set of rules that describe valid changes to the
game state. The rule system of role-playing game
Dungeons & Dragons is the most well-known of its
kind. Various story and quest generation systems
(Martens, 2015; Tapscott et al., 2018; Kybartas and
Verbrugge, 2014) have been built upon this and
other related rule systems.

3 Data

NaNoGenMo uses GitHub’s built-in issue tracker
to keep track of all user submissions. Every issue
corresponds to one NaNoGenMo project. In the is-
sue thread, participants can post comments, interact
with other users, share their development process
and publish previews of the generated novels.

We downloaded all issues from the NaNoGenMo
2018 repository as JSON data using the GitHub
API. We took issues into account that were opened
between the start of NaNoGenMo 2018 and March
2019, that were labels as ‘completed’ and not la-
beled as ‘admin’. The label ‘completed’ means that
both the generator code and a 50,000 word output
are publicly available. All 61 issues5 were manu-
ally reviewed by the first author, by looking at the
programming code, the output, the tools and used
datasets. For practical reasons, we ignored projects
in other languages than English.

NaNoGenMo uses a loose definition of ‘novel’:
any text of more than 50,000 words qualifies as an
acceptable output. There are no rules dictating the
format, style, grammaticality, subject or content
of the text. As a result, the outputs vary greatly
from one another. See Figure 1 for a categorisation
of NaNoGenMo projects according to their output
type. Most projects generate a novel-like text, with
a form that resembles sentences, paragraphs and
chapters. One participant (project 72) created a

5Throughout this paper we will reference each project
by its issue number on GitHub. The details of each project
can be found on the corresponding issue page on GitHub, i.e.
https://github.com/NaNoGenMo/2018/issues/{issuenumber}.

list9

word art

7

game

1

poetry

6

visual art

1

text

35

Figure 1: Output type of completed NaNoGenMo 2018
projects.

Language Projects

Python 19
Javascript 8
Lua 3
Bash 3
C 2
Samovar 1
Ruby 1
Perl 1
PHP 1
ML 1
Julia 1
Java 1

Figure 2: Programming languages used in
NaNoGenMo projects that generate novel-like
text. Projects that use more than one programming
language are counted multiple times.

generator for an Interactive Fiction game. Other
projects generated word art, e.g. repetitions of one
word, ASCII art or text without meaning, poems,
graphs or lists. In the rest of this paper, we will
limit our discussion to the 35 projects that generate
novel-like text.

For an overview of the programming languages
used in the projects, see Figure 2. Some projects
used multiple languages. The availability of good
NLP and NLG resources in a particular language
has probably contributed to people choosing those
languages. Consequently, the choice for a particu-
lar programming language may have influenced the
chosen text generation and narrative generation ap-
proach, and vice versa. Both Python and Javascript,

67



the two most popular programming languages with
NaNoGenMo participants, have accessible libraries
for text processing and text generation. Participants
that programmed in Python mainly used Markovify,
SpaCy and NLTK; Javascript projects used mostly
Tracery (Compton et al., 2015), a Javascript library
for text generation with context-free grammars.
The developers of Tracery specifically mention the
NaNoGenMo community as the target audience
for Tracery, which could explain the wide adoption
of Tracery within the NaNoGenMo community, as
well as the large number of projects in Javascript,
a programming language that is not typically used
for text generation or text processing.

In addition to NLP libraries and tools, most par-
ticipants use externally sourced text data. Public do-
main books from Project Gutenberg6 and The Inter-
net Archive7 were very popular with NaNoGenMo
participants, as was Darius Kazemi’s Corpora8

repository, which is a collection of word lists orga-
nized by subject, such as games, medicine and reli-
gion. Some participants created their own corpus
from online resources, such as subtitles, marathon
reports, horror stories and reports of personal expe-
riences with psycho-active drugs.

4 Text generation methods

The 35 novel generation projects of NaNoGenMo
2018 use a variety of text generation methods to
create the surface text of their novel. In this section,
we provide a survey of the various approaches we
have seen.

4.1 Templating

More than 10 projects use some form of templating.
Libraries like Tracery offer a fast way to implement
this in Javascript and Python. Most text templates
were hard-coded in the generator, which is time-
consuming and requires manual effort. An alter-
native approach used in some projects (projects
64, 101 and 104) was to create templates automati-
cally, e.g. by running all sentences from a corpus
through a part-of-speech (POS) tagger and creating
sentence templates from the POS-tags.

The popularity of templating is not surprising,
as templates offer a strong form of control over the
surface text. However, using templates does not
guarantee a good quality output. If templates are

6www.gutenberg.org
7www.archive.org
8https://github.com/dariusk/corpora

filled with randomly chosen phrases, as was done
in some projects, the quality of the generated text
may be worse than that of a text generated with
Markov chains (discussed next).

4.2 Markov chains

At least 8 projects used Markov chains for text
generation. Markov chains are statistical language
models, which can be created fully automatically
from corpora. They can be used for text generation
by choosing a start token and using the probabili-
ties in the model to choose the next token. Using
Markov chains is an accessible approach to text
generation, as it does not require coding the con-
tent of the output. Markovify9, a Python library
for working with Markov chains, was used by the
majority of users that used Markov chains for gen-
eration. We believe that Markovify has contributed
to the popularity of the Markov chain approach
under NaNoGenMo participants.

Not your average ultra (project 89) creatively
mixes the outputs of two Markov chains. One
Markov chain was trained on a collection of
marathon reports, the other on a dataset of reports
of personal experiences with psychoactive drugs.
As the generator produced more text, the influence
of the second Markov chain on the generator grew
stronger, which resulted in output in the form of a
race journal that becomes progressively delirious
over time.

Although the outputs from a Markov chain are
often less coherent than those produced by tem-
plates, the advantage of Markov chains is that they
often yield surprising or interesting results. For
participants that value creativity over coherence,
Markov chains are a suitable technique for text gen-
eration. As we will see in Section 5, the lack of
coherence is not always a problem.

4.3 Remixing

Remixing external sources, such as text from exist-
ing novels, was also a popular approach with par-
ticipants. More than half of the projects use some
form of remixing to create their output. One ex-
ample of remixing is creating a new text by taking
a source text and substituting words from the text
according to specific rules. A hilarious example
of this is Textillating (project 96), where Dickens’
Great Expectations is ‘improved’ by increasing the
number of exclamation marks and substituting each

9https://github.com/jsvine/markovify

68



adjective in the text with its most extreme synonym.
Some participants collected external sources and

composed their novel by cutting-and-pasting sen-
tences from these. For example, Doctor, doctor!
(project 86) used the corpus of Yahoo! health ques-
tions and answers to generate a dialogue between a
doctor and a patient. Another participant scraped
sentences from GoogleBooks about a set of topic
words, and created an original text by cutting-and-
pasting snippets from Google Books preview files.
In some cases, remixing was paired with statisti-
cal modeling. The author of Angela’s claustrum
(project 28) transformed an old NaNoWriMo novel
draft into an outline and remixed this into a new
novel by using a stochastic model of Gutenberg
texts.

With this category of methods, either the output
text is very similar to the source text (and simi-
larly coherent), or the output is completely new but
loses some coherence in the process, often because
developers chose to introduce random words into
existing sentences in their word substitution.

4.4 Machine Translation

There were various generators that used machine
translation techniques for creating a novel. Project
22 created a new text by mapping every sentence
of Northanger Abbey by Jane Austen to a sentence
written by Sir Arthur Conan Doyle, using sentence
embeddings.

Project 61 used machine translation to transform
the text of one of L. Frank Baum’s Oz books. All
dialogue from the book was translated to the “lan-
guage” of The Muppets’ Swedish Chef, and all
other text was translated to Valleyspeak.10

One participant (project 33) used a public do-
main movie as the basis for their novel. They
turned the movie into a collection of screenshots
and fed this to Microsoft Cognitive services to
generate captions for the screenshots. The cap-
tions were then transformed into novel text. This
can be seen as a form of machine translation. In-
stead of translating between different languages,
this project translates between different modalities
(video to image, image to text).

Machine translation within NaNoGenMo can be
seen as a form of remixing, and the drawbacks are
indeed very similar. Either the output text shows
a strong resemblance to the original text, or it is

10Valleyspeak is an American social dialect that originates
from the San Fernando Valley in Southern California.

more creative but ends up incoherent.

4.5 Deep learning
Finally, there were three projects that used deep
learning to create their novel. Two projects, project
73 and project 76, used Torch11 to create an LSTM
architecture trained on an external dataset. Project
73 trained the LSTM on a crowdsourced collec-
tion12 of Dungeons & Dragons character biogra-
phies, and project 76 used user-written horror sto-
ries scraped from CreepyPasta13. Both projects
have output that is neither coherent nor grammati-
cal. However, the LSTM does manage to convey
the typical style of RPG biographies and horror sto-
ries. Finally, project 99 used machine learning to
see whether a neural network trained on the text of
Moby Dick could succesfully reconstruct the origi-
nal text, by predicting the sequence of sentences.

5 Methods for narrative coherence

NaNoGenMo output is at least 50,000 words, or
roughly 75 pages of text. This is a much greater
length than is usually produced by story generation
systems. In computational creativity and creative
NLG, typical outputs range from tweets (140-280
characters) to stories of one or two pages, with ex-
ceptions such as Curveship (Montfort, 2009), UNI-
VERSE (Lebowitz, 1987) and World clock (Mont-
fort, 2014).

To see how NaNoGenMo participants generate
coherent novel-length narratives, the first author
performed an informal analysis of the outputs of the
35 text generation projects, specifically focusing
on coherence and the presence of narrative struc-
ture. Out of the 61 projects of NaNoGenMo, only
14 projects had a narrative structure, that is, they
exhibited coherence as discussed in Section 2.3.
Below we give an overview of the approaches used
to achieve this. We can categorise the approaches
for generating this narrative as follows.

5.1 High-level specification
Some projects achieve coherence by hard-coding
a narrative structure in their input. The League of
Extraordinarily Dull Gentlemen (project 6) defines
that narrative structure in a specification written
in Samovar, a PROLOG-like domain-specific lan-
guage for world-modeling using propositions. The

11http://torch.ch/
12https://github.com/janelleshane/DnD_

bios
13https://www.creepypasta.com/

69



specification is a high-level description of the story,
with its representation level a mix of a fabula and
surface text: it is not just a sequence of events,
but also includes dialogue and narrative exposition.
The surface text for its output was generated by run-
ning the specification through Samovar’s assertion-
retraction engine14, taking the resulting sequence
of events and realising those into sentences with a
Python script. This approach is similar to that of
other story generation systems that use logic pro-
gramming to generate stories or fabulas, such as
(Martens, 2015), (Robertson and Young, 2015) and
(Garcı́a-Ortega et al., 2016).

Hard-coding a narrative arc in a specification can
be seen as high-level templating. It also has sim-
ilar advantages as templating: because the author
specifies the narrative arc by hand, they have tight
control over the surface text, which results in an
output that looks like it was written by a human.
However, this approach places an authorial burden
on the developer of the generator. The story of
project 6 of 50,000 words was generated in 930
lines of Samovar. We expect that the effort of writ-
ing this specification could be further reduced with
code generation. Another disadvantage is that one
story specification defines exactly one surface text.
The surface text of project 6 includes little varia-
tion. The book consists of scenes where multiple
characters perform the same action in sequence.
Repeating patterns are clearly visible in the output
text, making for a dull read – hence the title of
the project. However, the output of project 6 sets
itself apart from other generated novels by having
grammatical surface text and maintaining a clear
traditional narrative arc throughout the entire story
with a beginning, an incident, a climax and a prob-
lem resolution.

For authors that want to generate a story out
of a high-level story description, using a domain
specific language like Samovar might be a suitable
solution. The code for this NaNoGenMo project is
very readable and could serve as an introduction to
this approach. As this approach requires the user to
write part of the story, it is less suitable for projects
where the author also wants the generator to create
the contents of the fabula, or requires a lower cost
in terms of writing the code and specification.

14https://catseye.tc/article/Languages.
md#samovar

5.2 Hard-coded narrative elements

Instead of hard-coding the narrative structure of
the entire story in the generator, it can be hard-
coded only in specific places. An example of this
approach from outside NaNoGenMo is described
in Reed (2012), where the author used a gram-
mar to generate ‘satellite sentences’ that can be
inserted in a larger human-authored narrative for
an interactive fiction game. Satellite sentences are
sentences that “moderate pacing and reestablish
context within dialogue scenes” (Reed, 2012), such
as “She coughed”, “The clock was ticking” and “It
was getting late”.

There were a few NaNoGenMo projects where
the generated text itself had no structure at all, but
where the developer still created a narrative by pro-
viding a hard-coded section at the beginning and/or
ending of the book. Having a fixed beginning and
ending can tie otherwise incoherent pieces of gen-
erated text together, as it gives readers a context in
which they can interpret the generated text. Even
text generation techniques that normally do not
lead to coherent output, such as Markov chains and
random generation, can still be ‘saved’ by using
this technique.

An example is Not your average ultra (project
89), which succesfully frames the (in)coherence of
Markov chains by naming the specific setting of the
novel at the beginning and end: an ultramarathon.

Similarly, The Defeat at Procyon V (project 83)
contains 50,000 words of dialogue between a sci-
ence fiction Fleet Commander and their Super Ad-
miral. The lines of dialogue are randomly gen-
erated from a grammar of science fiction techno-
babble, occasionally interspersed with exposition
sentences, similar to the satellite sentences from
Reed (2012). Because the beginning and ending
of the novel are fixed, the reader has a context in
which to interpret the conversation: the conversa-
tion is about the various weapons and technologies
that were deployed in the defense of Procyon V.

With this approach, the problem of generating a
coherent narrative is transformed into writing narra-
tive elements that frame the generated text in such
a way that the reader perceives a narrative in the
entire text. It particularly useful in instances where
developers prefer straight-forward text generation
techniques over narrative generation techniques,
and for developers that want to write as few lines
of code as possible.

70



5.3 Simulation

There were various projects (projects 11, 18, 39,
60 and 100) that used simulation as the basis for
their narrative. The projects with simulation-based
narratives had two things in common.

Firstly, most projects used rule systems that are
similar to those of well-known role-playing games.
For example, The Longest Corridor (project 18)
uses a combat system that closely resembles that
of Dungeons & Dragons. The project generates
stories about a mythical corridor filled with mon-
sters and treasure. For each chapter of the novel,
the system generates a hero who has to fight their
way through the corridor. If the hero is defeated by
the inhabitants, the hero’s remains will stay in the
corridor for later heroes to find. If the hero reaches
the end of the corridor and finds the treasure, they
install themselves as the new master of the corridor,
waiting for new adventurers to come and challenge
them. This continuity, where characters of previous
chapters (old world state) can interact with char-
acters from current chapters (current world state),
is what moves this project from a straight-forward
simulation into the realm of narrative. Similarly,
Of Ork, Fae, Elf and Goblin (project 39) generates
a fabula of a group of creatures that fight each other
with procedurally generated weapons in different
rooms.

Another roleplaying-game inspired project is
High Fantasy with Language Generator (project
60). Instead of having one global text-level simu-
lation that tracks the world state and governs the
entire narrative, it uses multiple low-level simu-
lations that each govern one type of event. The
project follows a group of adventurers on their
quest. During their travels, the characters encounter
monsters, visit local taverns and play dice games
with strangers. For each of these scenes, the gener-
ator uses a separate simulation.

A second property of simulation-based novels
is that they often have a journal-like format. The
world state of the simulation gives rise to the sur-
face text of the story. Since the world state is up-
dated with each clock tick, it is intuitive to let the
novel’s sections (chapters, paragraphs) correspond
to one clock tick. Consequently, simulation-based
narratives are particularly suitable for generating
journals or logbooks, in which each section corre-
sponds to one unit of time. The Pilgramage (project
11) is an example of a project that follows a journal
format.

A weakness of some of the simulation-based
projects in NaNoGenMo is that they generate
events that are not linked to each other. An ex-
ample is Wheel of Fortune (project 100), which
simulates characters who slowly grow old and die,
all the while experiencing events that are generated
from randomly drawn tarot cards. The resulting
sequence of events looks like a fabula. However,
the events are not related to each other and do not
influence each other: the characters’ actions hap-
pen completely in a vacuum. This does invite the
reader to imagine their own narrative, but this re-
quires a lot of effort on part of the reader. Still,
symbolism from tarot cards can be used success-
fully to shape a narrative when combined with other
methods, such as high-level specification of narra-
tive structure (see Section 5.1). A story generator
from outside NaNoGenMo that also used the tropes
from tarot was developed by Sullivan et al. (2018).
However, Sullivan et al. (2018) used the tarot cards
to generate movie-like story synopses, with a plot
structure based on Booker’s seven basic plots and
screenwriting principles.

5.4 Evoking a narrative

Some of the project outputs evoke a narrative, even
though there is no narrative structure explicitly
present in the text. This can even be the case for
output texts that are not grammatical. Incoherent
texts that still have a recognizable novel form force
the reader to guess the meaning of the author. This
subjective interpretation might still evoke a narra-
tive in the reader.

As Veale (2016) notes in his paper on poetry gen-
eration, form can be more important than content.
Veale calls this effect ‘charity of interpretation’: if
humans see a text in a well-known form (or con-
tainer), they are disposed to attribute more meaning
to the text than it actually has. We saw two distinct
ways of achieving this.

If the text of the novel is limited to a specific
subject, readers will try to fill in the gaps in the
structure with their own knowledge and expecta-
tions. An example of a project that limits its topic
to instill a sense of coherence is Doctor, doctor!
(project 86). The output text has the form of a di-
alogue, consisting of randomly chosen questions
and answers from a dataset of Yahoo! questions
from the health domain. The questions and answers
have no logical connection whatsoever, but the vo-
cabulary and writing style will be recognizable to

71



readers who are familiar with medical discussions
on the internet. Even though the answers of the doc-
tor make no sense in the context of the respective
questions, readers will infer that this novel is about
a dialogue between a doctor and their hypochon-
driac patient.

Another technique for evoking a narrative is by
connecting unrelated random elements with each
other to improve the perceived coherence. Out of
Nowhere (project 57) simulates an interaction be-
tween its characters by connecting interactions at
the word level, which we explain below. Out of
Nowhere produces the script for a play, based on
lines of English text from public-domain phrase
books. The characters represent different nation-
alities, and their dialogue lines are based on the
text of phrase books for their respective languages.
The character dialogue is generated by choosing
lines from each character’s phrase book. Most dia-
logue lines are chosen randomly, but the generator
increases the coherence of the output with a few
tricks. Both the location and the interactions are
influenced by the words that occur in previous lines.
For example, if the previous line contains the word
‘waiter’, the generator will include a restaurant or
cafe in the scene. Similarly, if one of the previous
lines contains a question mark and an interroga-
tive word (“what”, “who”, etc.), the generator will
assign a higher probability to lines that would con-
stitute a logical answer. For example, if previous
lines contain the phrase “Where is ...?” the gen-
erator favors sentences like “In Timbuktu” or “At
my house”. This is a similar approach as is used in
Reed (2012), where the text generator takes differ-
ent types of context into account, such as dialogue
progression, location and time of day. The differ-
ence is that Reed tagged his text with locations
for the satellite sentences, whereas the generator
of project 6 generates all sentences and their con-
nections on the fly. The result of project 57 is a
script that has similar quality as the generators that
use the simulation approach, even though there is
no underlying world state for this play. All the
coherence comes from word-level choices.

Besides limiting the topic of a text, using the
right style can increase the perceived coherence of a
text as well. If a reader recognizes a particular style
from a particular type of narrative, the reader might
infer meaning where there is none. A project that
adapts this idea in an original way is Velvet black
skies (project 65), which uses statistical modeling

to find the most cliche sentences in a corpus of
science fiction writing. The developers defined
cliches as “n-grams that occur in the texts of more
than 30 authors.” The generator creates a new text
from these cliches by clustering them by topic and
by remixing them into a chapter for each topic.
Readers of science fiction classics will immediately
recognize the particular style of vintage science
fiction.

The above techniques ask something extra of the
reader during the interpretation of the text. As such,
they are suitable for situations where the writer
wants to highlight the subjective experience of the
reader in ascribing meaning to a text. Additionally,
these techniques could be used for collaborative
creation in text generation (authoring aids), i.e. ap-
plications where a computer generates a first draft
of a story and the human finishes it. In the lat-
ter case, the human author can take the concepts
created by the generator and polish them before
publication.

6 Conclusion

We discussed the most prevalent text generation
methods from NaNoGenMo 2018 and their re-
spective advantages and disadvantages. We dis-
cussed four different approaches that were used to
achieve coherence (or the semblance of it) in novel-
length texts, highlighting some of the most creative
projects.

If there is already a high-level story arc thought
out for the surface text, using a high-level specifi-
cation to define this story arc is a good approach.
Hard-coding the high-level narrative arc in a spec-
ification can reduce the authorial burden of man-
ually writing the full text significantly. However,
the approach is not suitable for projects where the
generator should generate the fabula in addition to
the surface text.

If the generator is also in charge of generating
the events that underlie the surface text, simulation-
based approaches are a good choice. It has been
applied in various story generation systems already,
most notably for the game domain, because of the
overlap in functionality between simulations for
narratives and rule systems for games. A weakness
of simulation approaches is that, if the generated
events are not interrelated, the sequence of events
generated by a simulation lacks narrative coher-
ence.

However, even text generation methods that do

72



not create coherent text can be turned into a narra-
tive, either by hardcoding narrative elements, such
as a contextualising beginning or ending, or by
evoking a narrative by exploiting readers’ charity
of interpretation.

In this paper we could only give a high-level
overview of the different approaches, and briefly
discuss a few example projects. Those who want
to see more examples and study the different ap-
proaches in detail can refer to the NaNoGenMo
repository on GitHub. We have made the data for
our analysis in this paper available online.15

7 Acknowledgments

This research is supported by the Netherlands Or-
ganisation for Scientific Research (NWO) via the
DATA2GAME project (project number 055.16.114).
We would like to thank the reviewers for their use-
ful remarks.

References
Ruth Aylett. 1999. Narrative in virtual environments-

towards emergent narrative. In Proceedings of
the AAAI fall symposium on narrative intelligence,
pages 83–86.

Ruth S Aylett, Sandy Louchart, Joao Dias, Ana Paiva,
and Marco Vala. 2005. Fearnot!–an experiment in
emergent narrative. In International Workshop on
Intelligent Virtual Agents, pages 305–316. Springer.

Charles B Callaway and James C Lester. 2002. Nar-
rative prose generation. Artificial Intelligence,
139(2):213–252.

Kate Compton, Ben Kybartas, and Michael Mateas.
2015. Tracery: an author-focused generative text
tool. In International Conference on Interactive Dig-
ital Storytelling, pages 154–161. Springer.

Michael Cook and Simon Colton. 2018. Neighbouring
communities: Interaction, lessons and opportunities.
In International Conference on Computational Cre-
ativity.

Rubén H Garcı́a-Ortega, Pablo Garcı́a-Sánchez, Juan J
Merelo, Aránzazu San-Ginés, and Ángel Fernández-
Cabezas. 2016. The story of their lives: Massive pro-
cedural generation of heroes’ journeys using evolved
agent-based models and logical reasoning. In Euro-
pean Conference on the Applications of Evolution-
ary Computation, pages 604–619. Springer.

Pablo Gervás. 2013. Propp’s morphology of the folk
tale as a grammar for generation. In Proceedings

15https://github.com/jd7h/
narrative-gen-nanogenmo18

of the 2013 Workshop on Computational Models
of Narrative, volume 32. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

Jason Andrew Hall, Benjamin Williams, and Christo-
pher J Headleand. 2017. Artificial folklore for sim-
ulated religions. In 2017 International Conference
on Cyberworlds (CW), pages 229–232. IEEE.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018.
Learning to write with cooperative discriminators.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1638–1649, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Ian D Horswill. 2016. Dear leader’s happy story time:
A party game based on automated story generation.
In Twelfth Artificial Intelligence and Interactive Dig-
ital Entertainment Conference.

Isaac Karth. 2018. Preliminary poetics of procedural
generation in games. Proc. Digital Games Research
Association.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 329–339.

Ben Kybartas and Clark Verbrugge. 2014. Analysis of
ReGEN as a graph-rewriting system for quest gener-
ation. IEEE Transactions on Computational Intelli-
gence and AI in Games, 6(2):228–242.

Michael Lebowitz. 1987. Planning stories. In Proceed-
ings of the 9th annual conference of the cognitive
science society, pages 234–242.

Stephanie M. Lukin, James O. Ryan, and Marilyn A.
Walker. 2014. Automating direct speech variations
in stories and games. In Tenth Artificial Intelligence
and Interactive Digital Entertainment Conference.

Chris Martens. 2015. Ceptre: A language for model-
ing generative interactive systems. In Eleventh Arti-
ficial Intelligence and Interactive Digital Entertain-
ment Conference.

Lara J Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark O Riedl. 2018. Event representations for au-
tomated story generation with deep neural nets. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Jeffrey D McGovern and Gavin Scott. 2016. Elo-
quentrobot: A tool for automatic poetry generation.
In Proceedings of the Seventh ACM Conference on
Bioinformatics, Computational Biology, and Health
Informatics.

Nick Montfort. 2007. Generating narrative variation
in interactive fiction. Ph.D. thesis, University of
Pennsylvania.

73



Nick Montfort. 2009. Curveship: An interactive fiction
system for interactive narrating. In Proceedings of
the Workshop on Computational Approaches to Lin-
guistic Creativity, pages 55–62, Boulder, Colorado.
Association for Computational Linguistics.

Nick Montfort. 2014. New novel machines: Nanowatt
and World clock. Trope Tank Technical Report
TROPE-13–03, July 2014.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Julie Porteous and Marc Cavazza. 2009. Controlling
narrative generation with planning trajectories: the
role of constraints. In Joint International Confer-
ence on Interactive Digital Storytelling, pages 234–
245. Springer.

Aaron A Reed. 2012. Sharing authoring with algo-
rithms: Procedural generation of satellite sentences
in text-based interactive stories. In Proceedings of
The third workshop on Procedural Content Genera-
tion in Games. ACM.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Justus Robertson and R Michael Young. 2015. Auto-
mated gameplay generation from declarative world
representations. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.

James Ryan, Michael Mateas, and Noah Wardrip-Fruin.
2016. Characters who speak their minds: Dialogue
generation in talk of the town. In Twelfth Artificial
Intelligence and Interactive Digital Entertainment
Conference.

Lauren R. Shapiro and Judith A. Hudson. 1991. Tell
me a make-believe story: Coherence and cohesion
in young children’s picture-elicited narratives. De-
velopmental Psychology, 27(6):960–974.

Christina R. Strong, Manish Mehta, Kinshuk Mishra,
Alistair Jones, and Ashwin Ram. 2007. Emotion-
ally driven natural language generation for personal-
ity rich characters in interactive games. In Proceed-
ings of the Third Artificial Intelligence and Interac-
tive Digital Entertainment (AIIDE), pages 98–100.

Anne Sullivan, Mirjam Palosaari Eladhari, and Michael
Cook. 2018. Tarot-based narrative generation. In
Proceedings of the 13th International Conference on
the Foundations of Digital Games, page 54. ACM.

Ivo Swartjes and Mariët Theune. 2008. The virtual sto-
ryteller: Story generation by simulation. In Proceed-
ings of the 20th Belgian-Netherlands Conference on
Artificial Intelligence (BNAIC), pages 257–264.

Alan Tapscott, Carlos León, and Pablo Gervás. 2018.
Generating stories using role-playing games and
simulated human-like conversations. In Proceed-
ings of the 3rd Workshop on Computational Cre-
ativity in Natural Language Generation (CC-NLG
2018), pages 34–42.

Mariet Theune, Nanda Slabbers, and Feikje Hielkema.
2007. The Narrator: NLG for digital storytelling.
In Proceedings of the Eleventh European Workshop
on Natural Language Generation, pages 109–112,
Saarbrücken, Germany.

Tony Veale. 2016. The shape of tweets to come: Au-
tomating language play in social networks. Multiple
Perspectives on Language Play, 1:73–92.

Marilyn A. Walker, Ricky Grant, Jennifer Sawyer,
Grace I. Lin, Noah Wardrip-Fruin, and Michael
Buell. 2011. Perceived or not perceived: Film
character models for expressive NLG. In Interna-
tional Conference on Interactive Digital Storytelling,
pages 109–121. Springer.

Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Thirty-Third AAAI Conference on Artificial Intelli-
gence (AAAI-19).

74



Proceedings of the Second Storytelling Workshop, pages 75–80
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Lexical concreteness in narrative

Michael Flor
Educational Testing Service

Princeton
NJ 08541, USA

mflor@ets.org

Swapna Somasundaran
Educational Testing Service

Princeton
NJ 08541, USA

ssomasundaran@ets.org

Abstract
This study explores the relation between lexi-
cal concreteness and narrative text quality. We
present a methodology to quantitatively mea-
sure lexical concreteness of a text. We ap-
ply it to a corpus of student stories, scored
according to writing evaluation rubrics. Lex-
ical concreteness is weakly-to-moderately re-
lated to story quality, depending on story-type.
The relation is mostly borne by adjectives and
nouns, but also found for adverbs and verbs.

1 Introduction

The influential writing-style guide, The Elements
of Style (1999), (a.k.a. Strunk and White), recom-
mends writers to ‘prefer the specific to the gen-
eral, the definite to the vague, the concrete to
the abstract.’ This involves two related but dis-
tinct notions, two different senses of the word
’concrete’ - tangible and specific. Tangibility, or
the concreteness/abstractness continuum relates to
objects and properties that afford sensorial per-
ception - tangible things that can be seen, heard,
smelled and touched. The specificity notion relates
to the amount and level of detail that is conveyed
in a story, to what extent things are presented in
specific rather than general terms. The two no-
tions go hand in hand, since to provide specific
details the writer often has to mention more con-
crete objects and attributes and use less abstract
terms. There are exceptions. Emotions and states
of mind are usually not concrete (i.e. tangible)
entities, though they are often specific. Numeri-
cal quantities (e.g. 6 million dollars, 30% of the
population) are quite specific but not quite senso-
rially concrete. Still, the importance of both con-
creteness and specificity for good writing is fre-
quently mentioned in writer guides (Hacker and
Sommers, 2014), in advice to college students
(Maguire, 2012) and in recommendations for busi-
ness writers (Matson, 2017).

College writing labs often suggest that students
can improve their writing by including more con-
crete details in their essays.1 Concreteness is also
noted as an important aspect of writing literacy for
K-12 education. The Common Core State Stan-
dards2 (a federally recommended standard in the
USA) specifies the following capability for stu-
dents in Grade 6: “Develop the topic with relevant
facts, definitions, concrete details, quotations, or
other information and examples.” Despite its pur-
ported importance, few studies have measured lex-
ical concreteness in stories, and no studies ex-
plored a quantitative relation between concrete-
ness and story quality.

This work explores lexical concreteness in nar-
rative essays. We use a quantitative measure, uti-
lizing per-word concreteness ratings. We investi-
gate whether better stories are more concrete and
whether the story type (e.g. hypothetical situa-
tion versus personal narratives) influences the con-
creteness trends. We also perform a fine-grained
analysis by parts-of-speech (nouns, verbs, adjec-
tives and adverbs) to explore how their concrete-
ness varies with story quality.

2 Related Work

The literature on using lexical concreteness for
analysis of writing is rather limited.3 Louis and
Nenkova (2013) used imageability of words as
a feature to model quality of science-journalism
writing. For reading, concrete language was found
to be more comprehensible and memorable than
abstract language (Sadoski et al., 2000, 1993).
Concreteness has also been related to reader en-
gagement, promoting interest for expository mate-
rials (Sadoski, 2001).

1For example, see Purdue University and Roane State
2corestandards.org
3For recent research on specificity, see (Lugini and Lit-

man, 2017; Li and Nenkova, 2015; Louis and Nenkova, 2011)

75



Researchers have also looked at developmen-
tal aspects of mastery in producing expository
and narrative texts. Proportion of abstract nouns
in language production increases with age and
schooling, although it is more pronounced in ex-
pository than in narrative writing (Ravid, 2005).
Berman and Nir-Sagiv (2007) have found that the
proportion of very concrete nouns tends to de-
crease from childhood to adulthood, whereas the
proportion of abstract nouns tends to increase,
in both expository and narrative texts. Sun and
Nippold (2012) conducted a study in which stu-
dents ages 11-17 were asked to write a personal
story. The essays were examined for the use of
abstract nouns (e.g., accomplishment, loneliness)
and metacognitive verbs (e.g., assume, discover).
The use of both types of words significantly in-
creases with age. Goth et al. (2010) analyzed fa-
bles created by sixth graders (age 12) and found
that boys use more concrete terms than girls.

How are concrete and abstract words identi-
fied and measured is an important methodological
point. Goth et al. (2010) used the Coh-Metrix tool
(Graesser et al., 2004), which measured individ-
ual word concreteness “using the hypernym depth
values retrieved from the WordNet lexical taxon-
omy, and averaged across noun and verb cate-
gories.” Berman and Nir-Sagiv (2007) rated nouns
manually, using a four-level ordinal ranking. The
most concrete (level 1) included objects and spe-
cific people; level 2 - categorial nouns, roles and
locations (teacher, city, people). Higher abstrac-
tions were: level 3 - rare nouns (e.g., rival, cult),
and abstract but common terms such as fight, war;
level 4: low frequency abstract nouns (e.g. rela-
tionship, existence). Sun and Nippold (2012) used
a dichotomous distinction (abstract/non-abstract)
while manually rating all nouns in their data set.
Abstract nouns were defined as intangible entities,
inner states and emotions.

In psycholinguistic research, the notion of
word concreteness became prominent due to the
dual-coding theory of word representation (Pavio,
2013, 1971). Experimental studies often uti-
lize the MRC database (Coltheart, 1981), which
provides lexical concreteness ratings norms for
4,292 words. Such ratings were obtained ex-
perimentally, averaging across ratings provided
by multiple participants in rating studies. Re-
cently, Brysbaert et al. (2013) provided concrete-
ness norms for 40,000 English lemmas. This new

Count Text
Prompt essays Type
A Fork in the Road 47 Fictional
At First Glance 69 Fictional
Finding Your Way Home 2 Fictional
Message in a Bottle 31 Fictional
Movie Sequel 12 Fictional
Pitch Session 6 Fictional
Special Object 37 Fictional
The Antique Trunk 8 Fictional
The Quest 6 Fictional
Different Country 47 Hypothetical
Electricity-Free 32 Hypothetical
Living Art 3 Hypothetical
Trading Places 22 Hypothetical
Weirdest Day Ever! 78 Hypothetical
You are the Teacher 121 Hypothetical
Travel 75 Personal
Memorable School Day 153 Personal
Proudest Moment 191 Personal

171 Fictional
Totals 303 Hypothetical

466 Personal

Table 1: Essay counts for 18 prompts and their text-
type classifications.

database opens the possibility for wide-coverage
automated analysis of texts for estimating con-
creteness/abstractness. We utilize this resource for
analyzing stories produced by students, and inves-
tigate the relation between concreteness and qual-
ity of narrative.

3 Data

We used a corpus of narrative essays4 provided by
Somasundaran et al. (2018). The corpus consists
of 940 narrative essays written by school students
from grade levels 7-12. Each essay was written in
response to one of 18 story-telling prompts. The
total size of the corpus is 310K words, and average
essay length is 330 words.

The writing prompts were classified according
to the type of story they are calling for, using the
three-fold schema from Longobardi et al. (2013)
- Fictional, Hypothetical and Personal. Table 1
presents the prompt titles, story types and essay
counts. Example prompts are shown in the ap-
pendix.

4i.e. stories, not expository or persuasive writing

76



3.1 Essay scores
All essays were manually scored by experienced
research assistants (Somasundaran et al., 2018),
using a rubric that was created by education ex-
perts and teachers, and presented by Smarter
Balanced assessment consortium, an assessment
aligned to U.S. State Standards for grades K-12
(Smarter Balanced, 2014b,a).

The essays were scored along three traits (di-
mensions): Organization, Development and Con-
ventions. Organization is concerned with event
coherence, whether the story has a coherent start
and ending, and whether there is a plot to hold all
the pieces of the story together. It is scored on a
scale of 0-4 integer points. Development evaluates
whether the story provides vivid descriptions, and
whether there is character development. It is also
scored on a scale of 0-4 integer points, with 4 be-
ing the highest score. The Conventions dimension
evaluates language proficiency, and is concerned
with aspects of grammar, mechanics, and punctu-
ation. Scores are on a scale of 0-3 integer points
(3 is the highest score).

Somasundaran et al. (2018) computed Narrative
and Total composite scores for each essay. The
Narrative score (range 0-8) is the sum of Organi-
zation and Development scores. Total score (range
0-11) is the sum of Organization, Development
and Conventions. Not surprisingly, the Organiza-
tion, Development, Narrative and Total scores are
highly intercorrelated (0.88 and higher, see Table
3 in Somasundaran et al. (2018)). For the present
study, we used the Narrative scores, focusing on
essay narrative quality and de-emphasizing gram-
mar and mechanics.

POS Count Missing values
nouns 64,374 2,113 (3.3%)
verbs 66,718 753 (1.1%)
adjectives 19,090 658 (3.45%)
adverbs 19,399 212 (1.1%)
all content words 169,581 3,736 (2.2%)

Table 2: Content word counts by part-of-speech, with
counts and proportion of tokens that did not have con-
creteness scores, for 940 essays.

3.2 Concreteness scores
We focus on concreteness of only the content
words in the essays and ignore all function words.
Each essay in the data set was POS-tagged with

the Apache OpenNLP 5 tagger, and further analy-
sis filtered in only nouns, verbs, adjective and ad-
verbs. Those content words were checked against
the database of concreteness scores (Brysbaert
et al., 2013). The database provides real-valued
ratings in the 1-5 range, from very abstract (score
1) to very concrete (score 5.0). For words that
were not matched in the database, we checked if
the lemma or an inflectional variant of the word
was present in the database (using an in-house
morphological toolkit). The database does not in-
clude names, but the essays often include names
of persons and places. For our scoring, any names
(identified by POS-tags NNP or NNPS), that were
not found in the database, were assigned a uniform
concreteness score of 4.0.

Concreteness scores were accumulated for each
essay as described above. Average and median
concreteness score was computed for each es-
say, separately for each of the categories (nouns,
verbs, adjective and adverbs), and also jointly for
all content-words. The total numbers of content
words are given in Table 2. The concreteness-
ratings coverage for our data is 97.8%.

4 Results

Pearson correlations of essay scores with per-
essay levels of concreteness are presented in Table
3. Overall, the correlation of average-concreteness
with essay score is r=0.222, which is consid-
ered a weak correlation (Evans, 1996). Break-
down by parts of speech shows that adjectives
have the highest correlation of concreteness with
score (0.297), followed by that for nouns (0.251),
and adverbs (0.231). The correlation is weak-
est for verbs, only 0.122. Results for median-
concreteness per essay show a similar pattern,
though nouns now overtake adjectives.

Average C. Median C.
nouns 0.251 0.284
verbs 0.122 0.113
adjectives 0.297 0.242
adverbs 0.231 0.132
all content words 0.222 0.188

Table 3: Pearson correlations of essay narrative scores
with per-essay levels of concreteness, for 940 es-
says. All correlations are significant, p < .001.
C.=concreteness score

5http://opennlp.apache.org

77



(A) Prompt N Nouns Verbs Adjectives Adverbs All CW
Travel 75 0.400∗∗ -0.017 0.401∗∗ 0.268∗ 0.371∗∗

At First Glance 69 0.404∗∗ 0.006 0.326∗∗ 0.286∗ 0.240†

Memorable School Day 153 0.080 0.040 0.212∗∗ 0.239∗∗ 0.089
Proudest Moment 191 0.207∗∗ 0.072 0.118 0.060 0.137
Weirdest Day Ever 78 0.125 0.326∗∗ 0.355∗∗ 0.330∗∗ 0.322∗∗

You are the Teacher 121 0.218∗ 0.102 0.298∗∗ 0.131 0.071
(B) Story type
Fictional 171 0.465∗∗ 0.164† 0.417∗∗ 0.384∗∗ 0.413∗∗

Hypothetical 303 0.263∗∗ 0.222∗∗ 0.287∗∗ 0.143∗ 0.217∗∗

Personal 466 0.199∗∗ 0.045 0.237∗∗ 0.209∗∗ 0.138∗∗

Table 4: Pearson correlations of essay narrative scores with per-essay average levels of concreteness; (A) for
prompts that have above 60 essays, (B) for all essays, grouped by story-type. Significance of correlation **:
p < 0.01, *: p < .03, † : p < .05. CW=content words.

Next, we present the correlations of concrete-
ness levels with essay scores for each of the six
prompts that have more than 50 essays (Table
4A). For two of the prompts, Travel and At First
Glance, average concreteness of nouns is moder-
ately correlated with essay narrative score (r =
0.4). For four prompts, adjectives show weak
correlation with essay scores (from 0.21 to 0.35),
while for the Travel prompt, average concreteness
of adjectives is moderately correlated with essay
narrative score (r=0.4). For four prompts, the av-
erage concreteness of adverbs is weakly correlated
with essay score (0.24 to 0.33). For verbs, only
one prompt, Weirdest Day Ever. shows some cor-
relation of concreteness with essay score (0.33).

Next, we grouped essays by three types of story
that their prompts were classified into. This move
allows to use data from all essays. Results are pre-
sented in Table 4B. The Fictional story type has
the highest correlation of concreteness and essay
score (r=0.413), and it also has the highest cor-
relation for nouns, for adjectives and for adverbs
(as compared to other story types). Stories of the
Hypothetical type show weak (yet significant) cor-
relation of concreteness with scores, for nouns,
verbs, adjectives and overall. Interestingly, the
Personal story type shows the least relation of con-
creteness to scores, 0.138 overall; the adjectives
there have correlation of 0.237, adverbs 0.209, and
the nouns barely reach 0.2.

The results above suggest that the relation of
concreteness to essay score varies for different
story types. We checked whether the essays from
three story types differ in concreteness or qual-
ity. An analysis of variance of narrative scores

for three groups, F(2,937)=1.427, p=0.241, re-
veals that they did not differ in the average qual-
ity of stories. We also compared the average per-
essay concreteness for the three groups. Mean
concreteness for Fiction essays is 2.91, for Hypo-
thetical essays it is 2.99, and 2.90 for Personal. An
analysis of variance, F(2,937)=19.774, p<0.0001,
shows that average concreteness is not equal in
those groups. Post hoc comparisons (Tukey HSD
test) indicated that only the Hypothetical group
differed significantly from the two other groups.
Those results indicate that the different strength of
correlation between lexical concreteness and es-
say score that we observe in the three groups is not
due to between-group differences in either narra-
tive scores or lexical concreteness.

5 Conclusions

We presented a novel methodology for computing
per-text lexical concreteness scores. For student-
written stories, lexical concreteness is weakly to
moderately positively correlated with narrative
quality. Better essays score higher on lexical con-
creteness and use relatively less abstract words.
While those results support the old adage ‘prefer
the concrete to the abstract’, we also found that
this relation varies for different story-types. It is
prominent for Fictional stories, less pronounced
for Hypothetical stories, and rather weak for Per-
sonal stories. Nouns and adjectives carry this rela-
tion most prominently, but it is also found for ad-
verbs and verbs. This study lays the groundwork
towards automatic assessment of lexical concrete-
ness. In future work we will extend its application
for text evaluation and feedback to writers.

78



References
Ruth A. Berman and Bracha Nir-Sagiv. 2007. Compar-

ing narrative and expository text construction across
adolescence: A developmental paradox. Discourse
processes, 43(2):79–120.

Marc Brysbaert, Amy Beth Warriner, and Victor Ku-
perman. 2013. Concreteness ratings for 40 thousand
generally known English word lemmas. Behavior
Research Methods, 46:904–911.

Max Coltheart. 1981. The MRC psycholinguistic
database. Journal of Experimental Psychology,
33:497–505.

James D. Evans. 1996. Straightforward Statistics for
the Behavioral Sciences. Brooks/Cole Pub. Co., Pa-
cific Grove, CA, USA.

Julius Goth, Alok Baikadi, Eun Ha, Jonathan Rowe,
Bradford Mott, and James Lester. 2010. Explor-
ing individual differences in student writing with
a narrative composition support environment. In
Proceedings of the NAACL HLT 2010 Workshop
on Computational Linguistics and Writing: Writing
processes and authoring aids, pages 56–64. Associ-
ation for Computational Linguistics.

Arthur Graesser, Danielle McNamara, and Max Louw-
erse. 2004. Coh-Metrix: Analysis of text on cohe-
sion and language. Behavior Research Methods In-
struments and Computers, 36(2):193–202.

Diana Hacker and Nancy Sommers. 2014. The Bedford
Handbook, 9 edition. Bedford/St. Martins, Boston,
MA, USA.

William Strunk Jr. and Edward A. Tenney. 1999. The
Elements of Style, 4 edition. Pearson, Harlow, UK.

Junyi Jessy Li and Ani Nenkova. 2015. Fast and Accu-
rate Prediction of Sentence Specificity. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, pages 2381–2387. Association for
the Advancement of Artificial Intelligence.

Emiddia Longobardi, Pietro Spataro, Maria-Luisa
Renna, and Clelia Rossi-Arnaud. 2013. Compar-
ing fictional, personal, and hypothetical narratives
in primary school: Story grammar and mental state
language. European Journal of Psychology of Edu-
cation, 29:257–275.

Annie Louis and Ani Nenkova. 2011. Automatic
identification of general and specific sentences by
leveraging discourse annotations. In Proceedings
of 5th International Joint Conference on Natural
Language Processing, pages 605–613, Chiang Mai,
Thailand. Asian Federation of Natural Language
Processing.

Annie Louis and Ani Nenkova. 2013. What makes
writing great? First experiments on article quality
prediction in the science journalism domain. Trans-
actions of the Association for Computational Lin-
guistics, 1:341–352.

Luca Lugini and Diane Litman. 2017. Predicting speci-
ficity in classroom discussion. In Proceedings of
the 12th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 52–61,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

John Maguire. 2012. The Secret to Good Writing: It’s
About Objects, Not Ideas. The Atlantic.

Owen Matson. 2017. Why Concrete Language is Es-
sential to Engaging Content.

Allan Pavio. 1971. Imagery and verbal processes.
Holt, Rinehart & Winston, Oxford, England.

Allan Pavio. 2013. Dual Coding Theory, Word Ab-
stractness, and Emotion: A Critical Review of
Kousta et al. (2011). Journal of Experimental Psy-
chology: General, 142(1):282–287.

Dorit Ravid. 2005. Emergence of linguistic complex-
ity in later language development: Evidence from
expository text construction. In Perspectives on lan-
guage and language development, pages 337–355.
Springer.

Mark Sadoski. 2001. Resolving the effects of con-
creteness on interest, comprehension, and learning
important ideas from text. Educational Psychology
Review, 13(3):263–281.

Mark Sadoski, Ernest T. Goetz, and Joyce B. Fritz.
1993. Impact of concreteness on comprehensibil-
ity, interest, and memory for text: Implications for
dual coding theory and text design. Journal of Edu-
cational Psychology, 85(2):291–304.

Mark Sadoski, Ernest T. Goetz, and Maximo Ro-
driguez. 2000. Engaging Texts: Effects of Concrete-
ness on Comprehensibility, Interest, and Recall in
Four Text Types. Journal of Educational Psychol-
ogy, 92(1):85–95.

Smarter Balanced. 2014a. English Language
Arts/Literacy Item Specifications - Narrative.

Smarter Balanced. 2014b. Scoring Guide For Grades
3, 6, and 11, English/Language Arts Performance
Task full-write baseline sets.

Swapna Somasundaran, Michael Flor, Martin
Chodorow, Hillary Molloy, Binod Gyawali,
and Laura McCulla. 2018. Towards evaluating
narrative quality in student writing. Transactions
of the Association for Computational Linguistics,
6:91–106.

Lei Sun and Marilyn A. Nippold. 2012. Narrative writ-
ing in children and adolescents: Examining the liter-
ate lexicon. Language, speech, and hearing services
in schools, 43(1):2–13.

79



A Appendix

Example prompts for three types of text styles:

Personal Experience: “Proudest Moment” -
There are moments in everyones lives when they
feel pride and accomplishment after completing
a challenging task. Write a story about your
proudest moment.
Hypothetical Situation: “You are the Teacher” -
Pretend that one morning you wake up and find
out that you’ve become your teacher for a day!
What happened? What do you do? Do you learn
anything? Write a story about what happens. Use
your imagination!
Fictional Story: “Message in a Bottle” -
Throughout the years, many have placed mes-
sages in sealed bottles and dropped the bottles
into the ocean where they eventually washed up
on foreign shores. Occasionally the finder has
even contacted the sender. Write a story about
finding your own message in a bottle.

80



Proceedings of the Second Storytelling Workshop, pages 81–89
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

A Simple Approach to Classify Fictional and Non-Fictional Genres

Mohammed Rameez Qureshi
IISER Bhopal

mohr@iiserb.ac.in

Sidharth Ranjan
IIT Delhi

sidharth.ranjan03@gmail.com

Rajakrishnan P. Rajkumar
IISER Bhopal

rajak@iiserb.ac.in

Kushal Shah
IISER Bhopal

kushals@iiserb.ac.in

Abstract

In this work, we deploy a logistic regression
classifier to ascertain whether a given doc-
ument belongs to the fiction or non-fiction
genre. For genre identification, previous work
had proposed three classes of features, viz.,
low-level (character-level and token counts),
high-level (lexical and syntactic information)
and derived features (type-token ratio, aver-
age word length or average sentence length).
Using the Recursive feature elimination with
cross-validation (RFECV) algorithm, we per-
form feature selection experiments on an ex-
haustive set of nineteen features (belonging
to all the classes mentioned above) extracted
from Brown corpus text. As a result, two sim-
ple features viz., the ratio of the number of ad-
verbs to adjectives and the number of adjec-
tives to pronouns turn out to be the most sig-
nificant. Subsequently, our classification ex-
periments aimed towards genre identification
of documents from the Brown and Baby BNC
corpora demonstrate that the performance of
a classifier containing just the two aforemen-
tioned features is at par with that of a classifier
containing the exhaustive feature set.

1 Introduction

Texts written in any human language can be classi-
fied in various ways, one of them being fiction and
non-fiction genres. These categories/genres can
either refer to the actual content of the write-up or
the writing style used, and in this paper, we use the
latter meaning. We associate fiction writings with
literary perspectives, i.e., an imaginative form of
writing which has its own purpose of communi-
cation, whereas non-fiction writings are written in
a matter-of-fact manner, but the contents may or
may not refer to real life incidents (Lee, 2001).
The distinction between imaginative and informa-
tive prose is very important and can have several
practical applications. For example, one could use

a software to identify news articles, which are ex-
pected to be written in a matter-of-fact manner, but
tend to use an imaginative writing style to unfairly
influence the reader. Another application for such
a software could be for publishing houses which
can use it to automatically filter out article/novel
submissions that do not meet certain expected as-
pects of fiction writing style.

The standard approach in solving such text clas-
sification problems is to identify a large enough
set of relevant features and feed it into a ma-
chine learning algorithm. In the genre identi-
fication literature, three types of linguistic fea-
tures have been discussed i.e., high-level, low-
level and derived features (Karlgren and Cutting,
1994; Kessler et al., 1997; Douglas, 1992; Biber,
1995). High-level features include lexical and syn-
tactic information whereas low-level features in-
volve character-level and various types of token
count information. The lexical features deal with
word frequency statistics such as frequency of
content words, function words or specific counts
of each pronoun, etc. Similarly, the syntactic fea-
tures incorporate statistics of parts of speech, i.e.,
noun, verb, adjectives, adverbs and grammatical
functions such as active and passives voices or
affective markers such as modal auxiliary verbs.
The character-level features involve punctuation
usage, word count, word length, sentence length.
And, lastly, the derived features involve ratio met-
rics such as type-token ratio, average word length
or average sentence length based information. Ma-
jorly, all the previous work involved a combination
of different features to represent a particular nature
of the document and developing a model that clas-
sify different genres, sentiments or opinions.

Notably, researchers have adopted the frequen-
tist approach (Sichel, 1975; Zipf, 1932, 1945) and
used lexical richness (Tweedie and Baayen, 1998)
as a prominent cue for genre classification (Bur-

81



rows, 1992; Stamatatos et al., 2000, 1999). These
studies vouch that coming out with statistical dis-
tribution from word frequencies would be the de-
facto-arbiter for document classification. In this
regard, Stamatatos and colleagues have shown that
most frequent words in the training corpus as well
as in the entire English language are one of the
good features for detecting the genre type (Sta-
matatos et al., 2000). With respect to syntac-
tic and semantics properties of the text, previous
studies have used various parts of speech counts
in terms of number of types and tokens (Rittman
et al., 2004; Rittman, 2007; Rittman and Wa-
cholder, 2008; Cao and Fang, 2009). Researchers
have tried to investigate the efficacy of counts vs.
ratio features and their impact on the classification
model performance. In general, a large number of
features often tend to overfit the machine learn-
ing model performance. Hence, concerning the
derived ratio features, Kessler et al. (1997) argues
in his genre identification study that ratio features
tend to eliminate over-fitting as well as high com-
putational cost during training.

Although these earlier approaches have made
very good progress in text classification, and are
very powerful from an algorithmic perspective,
they do not provide many insights into the linguis-
tic and cognitive aspects of these fiction and non-
fiction genres. The main objective of our work is
to be able to extract the features that are most rel-
evant to this particular classification problem and
can help us in understanding the underlying lin-
guistic properties of these genres. We begin by ex-
tracting nineteen linguistically motivated features
belonging to various types (described at the out-
set) from the Brown corpus and then perform fea-
ture selection experiments using Recursive feature
elimination with cross-validation (RFECV) algo-
rithm (Guyon et al., 2002). Interestingly, we find
that a classifier containing just two simple ratio
features viz., the ratio of the number of adverbs to
adjectives and number of adjectives to pronouns
perform as well as a classifier containing an ex-
haustive set of features from prior work described
above [96.31% and 100% classification accuracy
for Brown (Francis and Kučera, 1989) and British
National corpus (BNC Baby, 2005), respectively].
This is perhaps the best accuracy reported in the
literature so far to the best of our knowledge. Es-
sentially, we find that texts from the fiction genre
tend to have a higher ratio of adverb to adjectives,

Genre Subgenre No. of words No. of files
Government 70117 30
News 100554 44

Non-fiction Learned 181888 80
Hobbies 82345 36
Reviews 40704 17
Science Fiction 14470 6
Fiction 68488 29

Fiction Romance 70022 29
Adventure 69342 29
Mystery 57169 24

Table 1: Brown corpus subgenre details

and texts from the non-fiction genre tend to have a
higher ratio of adjectives to pronouns. We discuss
the implications of this finding for style guides for
non-fiction writing (Zinsser, 2006) as well as stan-
dard advice proffered to creative writers (King,
2001).

In Section 2, we share details about our lin-
guistic features design, data set and experimental
methodology. Section 3 presents the experiments
conducted as a part of our study and discusses their
critical findings. Finally, Section 4 summarizes
the conclusions of the study and discusses the im-
plications of our findings.

2 Data and Methods

For our experiments, we use the Brown Cor-
pus (Francis and Kučera, 1989), one of the earliest
collections of annotated texts of present-day
American English and available free of cost
with the NLTK toolkit (Loper and Bird, 2002).
The nature of the distribution of texts in the
Brown corpus helps us to conduct our studies
conveniently. The Brown corpus consists of 500
text samples with different genres distributed
among 15 categories/genres, which are further
divided into two major classes, namely, Infor-
mative prose and Imaginative prose. As per our
proposed definition in this study, we associate
informative prose with the non-fictional genre
and imaginative prose as a fictional one. We
conduct a binary classification task to separate
text samples into these two genres (i.e., fiction and
non-fiction) with our proposed linguistic features.
Out of the 15 genres, we excluded the 5 genres
of humour, editorial, lore, religion and letters
from our dataset as it is difficult to accurately
associate them with either fiction and non-fiction
genres. Finally, the fictional category consists of 5
subcategories, namely: fiction, mystery, romance,
adventure, and science fiction. Similarly, the
non-fiction category includes 5 subcategories
namely: news, hobbies, government, reviews, and

82



learned. This leads us to use 324 samples out of
500 articles in the Brown corpus; out of which
207 samples fall under fiction category and 117
under non-fiction. Despite having less number
of samples, the total word count of all texts in
the non-fiction category/genre (479,708 words) is
higher than that of fiction (284,429 words), and
the total number of sentences in the non-fiction
category/genre (21,333) is also higher than that
of fiction (18,151). Hence, we chose to divide
the data by sub-categories rather than having a
number of samples or number of words as the
base for distribution. Table 1 provides more
details regarding the documents in these genres.

To further our understanding of the model’s
classification performance for Brown corpus and
investigate its applicability to British English,
we use the British National Corpus (BNC Baby,
2005). This approach helps us to examine model
prediction more robustly. Baby BNC consists of
four categories, namely, fiction, newspaper, spo-
ken and academic. Due to the clear demarcation
between these categories, we use only fiction doc-
uments (25 samples) labeled as fiction and aca-
demic documents (30 samples) as non-fiction for
our experiments. Finally, we apply our algorithm
on the articles in the news category (97 samples) to
check whether they fall under fiction or non-fiction
genre.

Keeping in mind the binary nature of our clas-
sification task, we use logistic regression (LR) as
our numerical method (McCullagh and Nelder,
1989). Among many classification algorithms, the
result of LR is among the most informative ones.
By informative, we mean that it not only gives a
measure of the relevance of a feature (coefficient
value) but also the nature of its association with
the outcome (negative or positive). It models the
binary dependent variable using a linear combina-
tion of one or more predictor values (features) with
the help of following equations where φ is the es-
timated response probability:

g(φ) = log(φ/(1− φ)) (1)

φ = P (x) =
1

1 + e−(xiβi+β0)
(2)

where, xi is the feature vector for text i, βi is the
estimated weight vector, and β0 is intercept of the
linear regression equation.

0.0 0.5 1.0 1.5 2.0
Adverb/Adjective ratio

0

2

4

6

8

10

Ad
je

ct
iv

e/
Pr

on
ou

n 
ra

tio

news
reviews
hobbies
government
learned
fiction
mystery
science_fiction
adventure
romance

Figure 1: Scatter plot of Brown corpus samples of dif-
ferent subgenres. Fiction samples are marked with ’x’
whereas non-fiction samples are marked with ’o’ with
Y-axis limit set up to 10.

3 Experiments and Results

This section describes our experiments aimed to
classify texts into the fictional and non-fictional
genres using machine learning. The next subsec-
tion describes various linguistic features we de-
ploy in detail and the use of feature selection to
identify the most useful features. Subsequently,
Section 3.2 provides the results of our classifica-
tion experiments.

3.1 Linguistic Features and Feature Selection

We compute different low-level and high-level
features as discussed in Section 1 and after that
take their ratios as the relative representative met-
ric for the classification task. Table 2 depicts the
features used in this work. Some of the ratio fea-
tures such as average token/type (punctuation) ra-
tio, hyphen exclamation ratio, etc., have been ex-
plored in earlier work (Kessler et al., 1997). For
calculating high-level ratio features, we use tags
from two kind of POS tagsets, i.e, gold stan-
dard tags provided as part of the Brown Corpus
(87 tags) and automatic tags (based on the 36-tag
Penn Treebank tagset) predicted by Stanford tag-
ger1 (Toutanova et al., 2003). Grammatical cate-
gories like noun, verb, and adjective are inferred
from the POS tags using the schema given in Ta-

1https://nlp.stanford.edu/software/
tagger.shtml

83



Type Features
Low-level normalized Average Sentence Length

Average Word Length
Standard Deviation of Sentence Length
Standard Deviation of Word Length

Low-level ratio Average token/type
Standard Deviation of token/type
Average token/type (punctuation)
Standard Deviation of token/type
(punctuation)
Hyphen/Quote
Hyphen/Exclamation
Quote/Question

High-level ratio Adverb/Noun
Adverb/Pronoun
Adjective/Verb
Noun/Verb
Verb/Pronoun
Adverb/Adjective
Adjective/Pronoun
Noun/Pronoun

Table 2: Derived linguistic features (Features selected
after RFECV on: Brown tagset-bold; Penn tagset-
underlined)

Category POS tag Tagset
Adjective JJ, JJR, JJS
Adverb RB, RBR, RBS, WRB
Noun NN, NNS, NNP, NNPS Penn
Verb VB, VBD, VBG, VBN,VBP, VBZ Treebank

Pronoun PRP, WP
Adjective JJ, JJR, JJS, JJT
Adverb RB, RBR, WRB, RBT, RN, RP, NR
Noun NN, NNS, NN$, NNS$, NP, NP$,

NPS, NPS$ Brown
Verb VB, VBD, VBG, VBN, VBP, VBZ

Pronoun PN, PN$, PP$, PP$, PPL, PPLS
PPO, PPS, PPSS, PRP, PRP$,
WP$, WPO, WPS

Table 3: Rules to ascertain grammatical categories
from POS tags

ble 3. We consider both personal pronouns and
wh-pronouns as part of the pronoun category.

We use the recursive feature elimination with
cross-validation (RFECV) method to eliminate
non-significant features. Recursive feature elim-
ination (Guyon et al., 2002) follows the greedy
search algorithm to select the best performing fea-
tures. It forms models iteratively with different
combinations of features and removes the worst
performing features at each step, thus giving the
set of best performing set of features. The mo-
tivation behind these experiments is not only to
get a good accuracy score but also to decipher
the importance of these features and to understand
their impact on writing. After applying RFECV
on the automatically tagged Brown Corpus, we
get all features as the optimum set of features.
We attribute this result to the POS-tagging errors
introduced by the Stanford tagger. So we apply
our feature selection method to features extracted
from the Brown Corpus with gold standard tags.
Here, 13 out of 19 features are marked as non-

significant, and we obtain six most significant fea-
tures (shown in bold in Table 2). Subsequently,
we extract these six features from the automati-
cally tagged Brown Corpus, and feature selection
on this set revealed only two of these features as
being the most significant (underlined in Table 2).
The two most notable features which emerge from
our second feature selection experiment are ad-
verb/adjective ratio and adjective/pronoun ratio.
The Noun/pronoun ratio feature gets eliminated in
the process. Figure 1 illustrates how both these ra-
tios provide distinct clusters of data points belong-
ing to the fiction and non-fiction genres (and even
their subgenres). Thus, the Brown corpus tagset
encoding finer distinctions in grammatical cate-
gories (compared to the Penn Treebank tagset),
does help in isolating a set of six significant ratio
features. These features are useful for identifying
the final two POS-ratios based on automatic tags.

3.2 Classification Experiments
As described in the previous section, we apply lo-
gistic regression to individual files of two data-sets
(Brown Corpus and Baby British National Corpus)
after extracting various low-level features and fea-
tures encoding ratios of POS tags based on auto-
matic tags emitted by the Stanford tagger (see Ta-
ble 2). We use a logistic regression classifier with
ten-fold cross-validation and L1 regularization for
training to carry out our analyses and report the
accuracy achieved over the total number of files
in our test sets. We use the Scikit-learn2 (Pe-
dregosa et al., 2011) library for our classification
experiments. The individual performance by non-
significant features has not been reported in our
study. We report results for three data sets after
tagging them using the Stanford POS-tagger:

1. Brown Corpus with a 60%-40% train-test
split (194 training files; 130 test files).

2. Brown Corpus with Baby BNC combined
with a 60%-40% train-test split (227 training
files; 152 test files).

3. Testing on Baby BNC with Training on
Brown Corpus (324 training files; 55 test
files).

We calculate testing accuracy for the first two
datasets for ten different combinations of training
and testing sets, and report the mean accuracy with

2https://scikit-learn.org/stable/

84



S.No. Data Feature Sets Testing
Accuracy %

F1 score
(non-fiction)

F1 score
(fiction)

Baseline
Accuracy %

Accuracy
Gain %

(a)
Brown Corpus
with 60 % - 40 %
Train - Test data

All Low level features 94.15 ± 1.82 0.9540 ± 0.0141 0.9194 ± 0.0269

63.77 ± 2.00

83.85
19 Features 96.92 ± 1.26 0.9760 ± 0.0095 0.9569 ± 0.0186 91.50
6 Features 96.08 ± 1.51 0.9692 ± 0.0122 0.9457 ± 0.0206 89.18
2 Features 96.31 ± 0.49 0.9711 ± 0.0038 0.9486 ± 0.0081 89.82

(b)

Brown Corpus and
Baby BNC combined
with 60 % - 40 %
Train - Test data

All Low level features 95.39 ± 1.72 0.9634 ± 0.0138 0.9371 ± 0.0257

63.13 ± 3.13

87.50
19 Features 96.73 ± 1.73 0.9736 ± 0.0143 0.9565 ± 0.0233 91.13
6 Features 97.21 ± 1.42 0.9777 ± 0.0117 0.9624 ± 0.0196 92.43
2 Features 97.13 ± 1.04 0.9769 ± 0.0087 0.9617 ± 0.0138 92.22

(c)
Training on Brown Corpus
& Testing on Baby BNC

All Low level features 92.73 0.9286 0.9259

54.54

84.01
19 Features 52.73 0.2353 0.6579 -3.98
6 Features 100 1 1 100
2 Features 100 1 1 100

Table 4: Classification accuracy for Brown Corpus and Baby BNC with different feature sets (most frequent class
i.e., non-fiction baseline results reported).

standard deviation for the same as well as for the
most frequent baseline accuracy. While for the
third dataset, only one training and testing set pos-
sible exists, and therefore, we report the testing
accuracy and the most frequent class baseline ac-
curacy accordingly. The most frequent class base-
line is the percentage accuracy obtained if a model
labels all the data points as the most frequent class
in the data (non-fiction in our study). Table 4 illus-
trates our results. Here, we also use another per-
formance metric known as accuracy gain which is
considered more rigorous and interpretable mea-
sure as compared to the standard measure of accu-
racy. The accuracy gain percentage is calculated
as:

Accuracy Gain % =
(acc− baseline)
(100− baseline)×100

(3)
where ‘acc’ is the reported mean accuracy of
model, whereas ‘baseline’ is the mean of most
frequent class baseline.

We begin with the Brown Corpus and take 117
sample texts of non-fiction and 207 of fiction cat-
egories. Our training set consists of 60% of the
total sample size whereas testing set comprises of
remaining 40% of samples. We have four combi-
nations of the set of features (refer Row 1 of Table
4). It can be noted that two features model per-
formed better than the model corresponding to the
six features and low-level ratio features and is per-
forming as good as 19 features model. To make
the model more robust, we follow the same ap-
proach for the combination of Brown corpus and
Baby BNC with 147 sample texts of non-fiction
and 232 sample texts of fiction categories. Baby
BNC has been included to check the impact of
British English on the performance of the model.
One may observe that the model performed even

better when exposed to Baby BNC. Similar ob-
servations can be made about the accuracy of the
two features model (refer Row 2 of Table 4). In
our final experiment, we use the Brown corpus for
training and the Baby BNC for testing with the
available set of features. In this case, the features
obtained after feature selection on the exhaustive
set of features results in 100% classification accu-
racy (Row 3 of Table 4). This result also signifies
the universal applicability of the ratio features and
high-level POS ratios are not something which is
affected by bias due to the language variety (i.e.,
British vs. American English). However, the low
performance of the 19 features model (53% clas-
sification accuracy) shows how they are prone to
overfitting.

The two most significant features, ad-
verb/adjective ratio and adjective/pronoun
ratio have regression coefficients 2.73 and -2.90
respectively. Thus, fiction documents tend to have
higher values for the ratio of number adverbs to
adjectives and a lower value for the ratio of the
number of adjectives to pronouns. It is worth
noting that the high accuracy scores of more than
95% we obtained by using 19 features in the case
of the first two datasets are in the vicinity of the
accuracy score given by only these two features.
Also, the fact that the F1 scores are close to the
accuracy values signifies the fact that the results
obtained are robust in nature.

Finally, in order to check the dominant tenden-
cies in the behaviour of classifiers containing dif-
ferent feature sets, we examine the predictions of
various classifiers using a separate test set con-
sisting of 97 news documents in the Baby BNC
corpus. We also studied model predictions using
different training sets. Initially, we use the same
data sets mentioned in the last two rows of Ta-

85



Training data 19 6 2
features features features

Brown 100 92.78 89.69
(324 training files)
Brown 100 92.78 90.72
(w/o news category)
(280 training files)
Brown + Baby BNC 1.03 92.78 90.72
(379 training files)
Brown + Baby BNC 65.98 97.94 93.81
(w/ news category)
(476 training files)

Table 5: Percentage of documents classified as non-
fiction in a test set of 97 Baby BNC news documents

ble 4. Apart from this, to check the bias of the
model, we create a new test set after removing the
news category from the non-fiction class of brown
corpus. Similarly, in the combined Brown+Baby
BNC corpus, we later include news samples from
Baby BNC to measure the improvement in the
model’s predictions. The results are shown in Ta-
ble 5. It can be observed that most of the samples
are classified as non-fiction, as expected. Also, re-
moving news articles from the Brown corpus non-
fiction category does not impact the results indi-
cating the unbiased behavior of the model. How-
ever, an important conclusion one can draw from
Table 5 results is that both the two features as well
as the six features model are pretty stable as com-
pared to their 19-feature counterpart. Even the in-
troduction of news samples from Baby BNC in the
training data does not seem to help the predictions
of 19 features model. This shows the vulnerability
of more complex models to a slight change in the
training data.

4 Discussion and Conclusion

In this paper, we have identified two important fea-
tures that can be very helpful in classifying fic-
tion and non-fiction genres with high accuracy.
Fiction articles, i.e., those which are written with
an imaginative flavor, tend to have a higher ad-
verb/adjective ratio of POS tags, whereas non-
fiction articles, i.e., those which are written in a
matter of fact manner, tend to have a higher adjec-
tive/pronoun ratio. This not only helps in classi-
fication using machine learning but also provides
useful linguistic insights. A glance at the per-
centages of each of these grammatical categories
computed over the total number of words in the
dataset (Figure 2) reveals several aspects of the
genres themselves. In both corpora, the trends are

8.75

5.19

4.74

6.03

2.4

8.54
8.19

5.5

4.1

5.97

2.35

8.01

Baby-BNC Brown

adjective adverb pronoun adjective adverb pronoun

0.0

2.5

5.0

7.5

10.0

P
er
ce
n
ta
g
e

fiction

non-fiction

Figure 2: Adjectives, adverbs and pronouns as a per-
centage of the total number of words

roughly the same. In fiction, both adjectives and
adverbs have a roughly similar proportion, while
non-fiction displays almost double the number of
adjectives compared to adverbs. Also, the percent-
age of pronouns vary sharply across the two gen-
res in both our datasets as compared to adjectives
and adverbs. Figure 3 presents a much more nu-
anced picture of personal pronouns in the Brown
corpus. Fiction displays the greater percentage
of third person masculine and feminine pronouns
as well as the first person singular pronoun com-
pared to non-fiction, while both genres have com-
parable percentages of first-person plural we and
us. Moreover, differences in modification strate-
gies using adverbs vs. wh-pronouns requires fur-
ther exploration. Even the usage of punctuation
marks differ across genres (Figure 4).

It is worth noting that many guides to writ-
ing both fiction (King, 2001) as well as non-
fiction (Zinsser, 2006) advise writers to avoid the
overuse of both adverbs and adjectives. In a sta-
tistical study of classic works of English litera-
ture, Blatt (2017) also points to adverb-usage pat-
terns in the works of renowned authors. Nobel
prize winning writer Toni Morrison’s oft-cited dis-
preference for adverbs is analyzed quantitatively
to show that on an average she used 76 adverbs
per 10,000 words (compared to 80 by Heming-
way; much higher numbers for the likes of Stein-
beck, Rushdie, Salinger, and Wharton). The cited
work discusses Morrison’s point about eliminating
prose like She says softly by virtue of the fact that
the preceding scene would be described such that

86



0.0

0.5

1.0

1.5

2.0

he her him i it me she them they us we you

Pe
rc

en
ta

ge

fiction
non-fiction

Figure 3: Brown corpus pronouns as a percentage of
the total number of words

the emotion in the speech is conveyed to the reader
without the explicit use of the adverb softly. In
fact, Sword (2016) advocates the strategy of using
expressive verbs encoding the meaning of adverbs
as well, as exemplified below (adverbs in bold and
paraphrase verbs italicized):

1. She walked painfully (dragged) toward the car.

2. She walked happily (sauntered) toward the car.

3. She walked drunkenly (stumbled) toward the car.

4. She walked absent-mindedly (meandered) toward the
car.

A long line of research undeniably argues that
adjective and adverbs are strong indicators of af-
fective language and serve as an important fea-
ture in text classification tasks viz., automatic
genre identification (Rittman et al., 2004; Rittman,
2007; Rittman and Wacholder, 2008; Cao and
Fang, 2009).In this regard, Rittman and Wa-
cholder (2008) propound that both these gram-
matical classes have sentimental connotations and
capture human personality along with their ex-
pression of judgments. For our classifer, rather
than the number of adjectives, it is the relative
balance of adjectives and adverbs that determine
the identity of a particular genre. A large-scale
study needs to validate whether this conclusion
can be generalized to the English language as a
whole. Thus, prescriptions for both technical as
well as creative writing should be based on sys-
tematic studies involving large-scale comparisons
of fictional texts with other non-fiction genres. In

0.000

0.025

0.050

0.075

0.100

` - , ; : ! ? / . ' ( ) [ ] { } $ * & % +

Pe
rc

en
ta

ge

fiction
non-fiction

Figure 4: Brown corpus punctuation as a percentage of
the number of words

particular, the paranoia about elements of modifi-
cation like adjectives and adverbs seem unjustified
as many other mechanisms of nominal and verbal
modification like prepositional phrases and subor-
dinate clauses exist in language.3

Since our classification is based on the ratios
of these POS tags taken across the whole doc-
ument, it is difficult to identify a few sentences
which can demonstrate the role of our features
(adverb/adjective and adjective/pronoun ratio)
convincingly. Qualitatively, the importance of
adjectives can be comprehended with the help of
an excerpt taken from the sample file of Brown
corpus (fileid cp09; adjectives in bold):

“ Out of the church and into his big car, it
tooling over the road with him driving and the
headlights sweeping the pike ahead and after he
hit college, his expansiveness, the quaint little
pine board tourist courts, cabins really, with a
cute naked light bulb in the ceiling (unfrosted
and naked as a streetlight, like the one on the
corner where you used to play when you were
a kid, where you watched the bats swooping in
after the bugs, watching in between your bouts at
hopscotch), a room complete with moths pinging
the light and the few casual cockroaches cruising
the walls, an insect Highway Patrol with feelers
waving.”

3We are indebted to Mark Liberman’s blog post for this
idea: https://tinyurl.com/y59jbr64

87



After removing adjectives (identified using
Brown corpus tags), we get:

“ Out of the church and into his car, it tool-
ing over the road with him driving and the
headlights sweeping the pike ahead and after he
hit college, his expansiveness, the little pine board
tourist courts, cabins really, with a light bulb in
the ceiling (unfrosted and naked as a streetlight,
like the one on the corner where you used to play
when you were a kid, where you watched the bats
swooping in after the bugs, watching in between
your bouts at hopscotch), a room with moths
pinging the light and the few cockroaches cruising
the walls, an insect Highway Patrol with feelers
waving.”

Although the text with adjectives removed
still belongs to the fiction genre, we can clearly
see the role that these words can play in enhancing
the imaginative quotient of the text. However,
counter-intuitively, Figure 2 shows that texts in the
non-fiction genre tend to have a higher percentage
of adjectives as compared to texts in the fiction
genre, but the latter have a higher percentage
of adverbs. Hence, this example reiterates the
point that the role played by our salient features
(adverb/adjective and adjective/pronoun ratios)
in classifying fiction and non-fiction genres is
difficult to appreciate with only a few lines of text.
An interesting question could be to find out the
minimum length of a text required for accurate
classification into fiction and non-fiction genres
and also more significant features in this regard,
which we will take up in the future. We also
intend to carry out this study on a much larger
dataset in the future in order to verify the efficacy
of our features.

References
Douglas Biber. 1995. Dimensions of register variation:

A cross-linguistic comparison. Cambridge Univer-
sity Press.

Benjamin Blatt. 2017. Nabokov’s Favourite Word is
Mauve: The Literary Quirks and Oddities of Our
Most-loved Authors. Simon & Schuster.

BNC Baby. 2005. British National Corpus, Baby edi-
tion. Distributed by Oxford University Computing
Services on behalf of the BNC Consortium.

John F Burrows. 1992. Not unles you ask nicely: The
interpretative nexus between analysis and informa-

tion. Literary and Linguistic Computing, 7(2):91–
109.

Jing Cao and Alex C Fang. 2009. Investigating varia-
tions in adjective use across different text categories.
Advances in Computational Linguistics, Journal of
Research In Computing Science Vol, 41:207–216.

Douglas Douglas. 1992. The multi-dimensional ap-
proach to linguistic analyses of genre variation: An
overview of methodology and findings. Computers
and the Humanities, 26(5-6):331–345.

W.N. Francis and H. Kučera. 1989. Manual of Infor-
mation to Accompany a Standard Corpus of Present-
day Edited American English, for Use with Digital
Computers. Brown University, Department of Lin-
guistics.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and
Vladimir Vapnik. 2002. Gene selection for cancer
classification using support vector machines. Ma-
chine Learning, 46(1):389–422.

Jussi Karlgren and Douglass Cutting. 1994. Recogniz-
ing text genres with simple metrics using discrim-
inant analysis. In Proceedings of the 15th confer-
ence on Computational linguistics-Volume 2, pages
1071–1075. Association for Computational Linguis-
tics.

Brett Kessler, Geoffrey Numberg, and Hinrich Schtze.
1997. Automatic detection of text genre. Proceed-
ings of the 35th annual meeting on Association for
Computational Linguistics -.

S. King. 2001. On Writing: A Memoir of the Craft.
Hodder & Stoughton.

David YW Lee. 2001. Genres, registers, text types, do-
main, and styles: Clarifying the concepts and nav-
igating a path through the bnc jungle. Language
Learning & Technology, 5(3):37–72.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Peter McCullagh and John A. Nelder. 1989. General-
ized linear models, volume 37. CRC press, London,
New York.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

88



R.J. Rittman. 2007. Automatic Discrimination of Gen-
res: The Role of Adjectives and Adverbs as Sug-
gested by Linguistics and Psychology. Rutgers The
State University of New Jersey - New Brunswick.

Robert Rittman and Nina Wacholder. 2008. Adjectives
and adverbs as indicators of affective language for
automatic genre detection. In AISB 2008 Conven-
tion Communication, Interaction and Social Intelli-
gence, volume 1, page 65.

Robert Rittman, Nina Wacholder, Paul Kantor,
Kwong Bor Ng, Tomek Strzalkowski, and Ying Sun.
2004. Adjectives as indicators of subjectivity in doc-
uments. Proceedings of the American Society for In-
formation Science and Technology, 41(1):349–359.

Herbert S Sichel. 1975. On a distribution law for word
frequencies. Journal of the American Statistical As-
sociation, 70(351a):542–547.

E. Stamatatos, N. Fakotakis, and G. Kokkinakis. 1999.
Automatic authorship attribution. In Proceedings of
the Ninth Conference on European Chapter of the
Association for Computational Linguistics, EACL
’99, pages 158–164, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Efstathios Stamatatos, Nikos Fakotakis, and George
Kokkinakis. 2000. Text genre detection using com-
mon word frequencies. In Proceedings of the 18th
conference on Computational linguistics-Volume 2,
pages 808–814. Association for Computational Lin-
guistics.

Helen Sword. 2016. The Writer’s Diet: A Guide to
Fit Prose. Chicago Guides to Writing, Editing, and
Publishing. University of Chicago Press.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 conference of the North
American chapter of the association for computa-
tional linguistics on human language technology-
volume 1, pages 173–180. Association for compu-
tational Linguistics.

Fiona J Tweedie and R Harald Baayen. 1998. How
variable may a constant be? measures of lexical rich-
ness in perspective. Computers and the Humanities,
32(5):323–352.

W. Zinsser. 2006. On Writing Well: The Classic Guide
to Writing Nonfiction. HarperCollins.

George Kingsley Zipf. 1932. Selected studies of the
principle of relative frequency in language. Cam-
bridge, Massachusetts: Harvard University Press.

George Kingsley Zipf. 1945. The meaning-frequency
relationship of words. The Journal of General Psy-
chology, 33(2):251–256.

89



Proceedings of the Second Storytelling Workshop, pages 90–106
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Detecting Everyday Scenarios in Narrative Texts

Lilian D. A. Wanzare1 Michael Roth2 Manfred Pinkal1

Universität des Saarlandes1 Universität Stuttgart2

{wanzare,pinkal}coli.uni-saarland.de rothml@ims.uni-stuttgart.de

Abstract

Script knowledge consists of detailed informa-
tion on everyday activities. Such information
is often taken for granted in text and needs
to be inferred by readers. Therefore, script
knowledge is a central component to language
comprehension. Previous work on represent-
ing scripts is mostly based on extensive man-
ual work or limited to scenarios that can be
found with sufficient redundancy in large cor-
pora. We introduce the task of scenario detec-
tion, in which we identify references to scripts.
In this task, we address a wide range of differ-
ent scripts (200 scenarios) and we attempt to
identify all references to them in a collection
of narrative texts. We present a first bench-
mark data set and a baseline model that tackles
scenario detection using techniques from topic
segmentation and text classification.

1 Introduction

According to Grice’s (1975) theory of pragmat-
ics, people tend to omit basic information when
participating in a conversation (or writing a story)
under the assumption that left out details are al-
ready known or can be inferred from commonsense
knowledge by the hearer (or reader). Consider
the following text fragment about eating in a
restaurant from an online blog post:

Example 1.1 (. . . ) we drove to Sham Shui Po and
looked for a place to eat. (. . . ) [O]ne of the restau-
rants was fully seated [so we] chose another. We
had 4 dishes—Cow tripe stir fried with shallots,
ginger and chili. 1000-year-old-egg with water-
cress and omelet. Then another kind of tripe and
egg—all crispy on the top and soft on the inside.
Finally calamari stir fried with rock salt and chili.
Washed down with beers and tea at the end. (. . . )

The text in Example 1.1 obviously talks about a
restaurant visit, but it omits many events that are
involved while eating in a restaurant,

such as finding a table, sitting down, ordering food
etc., as well as participants such as the waiter, the
menu,the bill. A human reader of the story will nat-
urally assume that all these ingredients have their
place in the reported event, based on their common-
sense knowledge, although the text leaves them
completely implicit. For text understanding ma-
chines that lack appropriate common-sense knowl-
edge, the implicitness however poses a non-trivial
challenge.

Writing and understanding of narrative texts
makes particular use of a specific kind of common-
sense knowledge, referred to as script knowledge
(Schank and Abelson, 1977). Script knowledge is
about prototypical everyday activity, called scenar-
ios. Given a specific scenario, the associated script
knowledge enables us to infer omitted events that
happen before and after an explicitly mentioned
event, as well as its associated participants. In
other words, this knowledge can help us obtain
more complete text representations, as required for
many language comprehension tasks.

There has been some work on script parsing (Os-
termann et al., 2017, 2018c), i.e., associating texts
with script structure given a specific scenario. Un-
fortunately, only limited previous work exists on
determining which scenarios are referred to in a
text or text segment (see Section 2). To the best
of our knowledge, this is the first dataset of narra-
tive texts which have annotations at sentence level
according to the scripts they instantiate.

In this paper, we describe first steps towards
the automatic detection and labeling of scenario-
specific text segments. Our contributions are as
follows:

• We define the task of scenario detection
and introduce a benchmark dataset of
annotated narrative texts, with segments
labeled according to the scripts they in-

90



stantiate (Section 3). To the best of our
knowledge, this is the first dataset of its
kind. The corpus is publicly available for
scientific research purposes at this http:
//www.sfb1102.uni-saarland.de/
?page_id=2582.

• As a benchmark model for scenario detection,
we present a two-stage model that combines
established methods from topic segmentation
and text classification (Section 4).

• Finally, we show that the proposed model
achieves promising results but also reveals
some of the difficulties underlying the task of
scenario detection (Section 5).

2 Motivation and Background

A major line of research has focused on identifying
specific events across documents, for example, as
part of the Topic Detection and Tracking (TDT) ini-
tiative (Allan et al., 1998; Allan, 2012). The main
subject of the TDT intiative are instances of world
events such as Cuban Riots in Panama. In con-
trast, everyday scenarios and associated sequences
of event types, as dealt with in this paper, have
so far only been the subject of individual research
efforts focusing either on acquiring script knowl-
edge, constructing story corpora, or script-related
downstream tasks. Below we describe significant
previous work in these areas in more detail.

Script knowledge. Scripts are descriptions
of prototypical everyday activities such as
eating in a restaurant or riding a
bus (Schank and Abelson, 1977). Different lines
of research attempt to acquire script knowledge.
Early researchers attempted to handcraft script
knowledge (Mueller, 1999; Gordon, 2001). An-
other line of research focuses on the collection of
scenario-specific script knowledge in form of event
sequence descriptions (ESDs) via crowdsourcing,
(Singh et al., 2002; Gupta and Kochenderfer, 2004;
Li et al., 2012; Raisig et al., 2009; Regneri et al.,
2010; Wanzare et al., 2016)). ESDs are sequences
of short sentences, in bullet style, describing how
a given scenario is typically realized. The top part
of Table 1 summarizes various script knowledge-
bases (ESDs). While datasets like OMICS seem
large, they focus only on mundane indoor scenarios
(e.g. open door, switch off lights).
A third line of research tries to leverage existing
large text corpora to induce script-like knowledge

about the topics represented in these corpora. For
instance, Chambers and Jurafsky (2008, 2009); Pi-
chotta and Mooney (2014) leverage newswire texts,
Manshadi et al. (2008); Gordon (2010); Rudinger
et al. (2015); Tandon et al. (2014, 2017) leverage
web articles while Ryu et al. (2010); Abend et al.
(2015); Chu et al. (2017) leverage organized pro-
cedural knowledge (e.g. from eHow.com, wiki-
How.com).

The top part of Table 1 summarizes various script
knowledge-bases. Our work lies in between both
lines of research and may help to connect them:
we take an extended set of specific scenarios as
a starting point and attempt to identify instances
of those scenarios in a large-scale collection of
narrative texts.

Textual resources. Previous work created script-
related resources by crowdsourcing stories that in-
stantiate script knowledge of specific scenarios. For
example, Modi et al. (2016) and Ostermann et al.
(2018a, 2019) asked crowd-workers to write sto-
ries that include mundane aspects of scripts “as
if explaining to a child”. The collected datasets,
InScript and MCScript, are useful as training in-
stances of narrative texts that refer to scripts. How-
ever, the texts are kind of unnatural and atypical
because of their explicitness and the requirement
to workers to tell a story that is related to one sin-
gle scenario only. Gordon and Swanson (2009)
employed statistical text classification in order to
collect narrative texts about personal stories. The
Spinn3r1 dataset (Burton et al., 2009) contains
about 1.5 Million stories. Spinn3r has been used
to extract script information (Rahimtoroghi et al.,
2016, see below). In this paper, we use the Spinn3r
personal stories corpus as a source for our data col-
lection and annotation. The bottom part of Table 1
summarizes various script-related resources. The
large datasets come with no scenarios labels while
the crowdsourced datasets only have scenario la-
bels at story level. Our work provides a more fine
grained scenario labeling at sentence level.

Script-related tasks. Several tasks have been
proposed that require or test computational models
of script knowledge. For example, Kasch and Oates
(2010) and Rahimtoroghi et al. (2016) propose
and evaluate a method that automatically creates
event schemas, extracted from scenario-specific
texts. Ostermann et al. (2017) attempt to iden-

1http://www.icwsm.org/data/

91



Scenario ESD collections Scen
ar

ios

# ESDs

SMILE (Regneri et al., 2010) 22 386
Cooking (Regneri, 2013) 53 2500
OMICS (Singh et al., 2002) 175 9044
Raisig et al. (2009) 30 450
Li et al. (2012) 9 500
DeScript (Wanzare et al., 2016) 40 4000

Story Corpora Scen
ar

ios

# sto
rie

s

Clas
ses

Seg
s.

Modi et al. (2016) 10 1000 3 7

Ostermann et al. (2019) 200 4000 3 7

Rahimtoroghi et al. (2016) 2 660 3 7

Mostafazadeh et al. (2016) 7 ˜50000 7 7

Gordon and Swanson (2009) 7 ˜1.5M 7 7

This work 200 504 3 3

Table 1: Top part shows scenario collections and num-
ber of associated event sequence descriptions (ESDs).
Bottom part lists story corpora together with the num-
ber of stories and different scenarios covered. The last
two columns indicate whether the stories are classified
and segmented, respectively.

tify and label mentions of events from specific
scenarios in corresponding texts. Finally, Oster-
mann et al. (2018b) present an end-to-end evalu-
ation framework that assesses the performance of
machine comprehension models using script knowl-
edge. Scenario detection is a prerequisite for tack-
ling such tasks, because the application of script
knowledge requires awareness of the scenario a
text segment is about.

3 Task and Data

We define scenario detection as the task of identify-
ing segments of a text that are about a specific sce-
nario and classifying these segments accordingly.
For the purpose of this task, we view a segment
as a consecutive part of text that consists of one
or more sentences. Each segment can be assigned
none, one, or multiple labels.

Scenario labels. As a set of target labels, we col-
lected scenarios from all scenario lists available in
the literature (see Table 1). During revision, we
discarded scenarios that are too vague and gen-
eral (e.g. childhood) or atomic (e.g. switch
on/off lights), admitting only reasonably
structured activities. Based on a sample an-
notation of Spinn3r stories, we further added
58 new scenarios, e.g. attending a court
hearing, going skiing, to increase cover-

age. We deliberately included narrowly related
scenarios that stand in the relation of specialisation
(e.g. going shopping and shopping for
clothes, or in a subscript relation (flying in
an airplane and checking in at the
airport). These cases are challenging to an-
notators because segments may refer to different
scenarios at the same time.

Although our scenario list is incomplete, it is
representative for the structural problems that can
occur during annotation. We have scenarios that
have varying degrees of complexity and cover a
wide range of everyday activities. The complete
list of scenarios2 is provided in Appendix B.

Dataset. As a benchmark dataset, we annotated
504 texts from the Spinn3r corpus. To make sure
that our dataset contains a sufficient number of rele-
vant sentences, i.e., sentences that refer to scenarios
from our collection, we selected texts that have a
high affinity to at least one of these scenarios. We
approximate this affinity using a logistic regression
model fitted to texts from MCScript, based on LDA
topics (Blei et al., 2003) as features to represent a
document.

3.1 Annotation

We follow standard methodology for natural lan-
guage annotation (Pustejovsky and Stubbs, 2012).
Each text is independently annotated by two anno-
tators, student assistants, who use an agreed upon
set of guidelines that is built iteratively together
with the annotators. For each text, the students had
to identify segments referring to a scenario from
the scenario list, and assign scenario labels. If a
segment refers to more than one script, they were
allowed to assign multiple labels. We worked with
a total of four student assistants and used the We-
banno3 annotation tool (de Castilho et al., 2016).

The annotators labeled 504 documents, consist-
ing of 10,754 sentences. On average, the annotated
documents were 35.74 sentences long. A scenario
label could be either one of our 200 scenarios or
None to capture sentences that do not refer to any
of our scenarios.

Guidelines. We developed a set of more detailed
guidelines for handling different issues related to

2The scenario collection was jointly extended together
with the authors of MCScript (Ostermann et al., 2018a, 2019).
The same set was used in building MCScript 2.0 (Ostermann
et al., 2019)

3https://webanno.github.io/webanno/

92



Annotators 2 3 4

1 0.57 (0.65) 0.63 (0.72) 0.64 (0.70)
2 0.62 (0.71) 0.61 (0.70)
3 0.62 (0.71)

Table 2: Kappa (and raw) agreement between pairs of
annotators on sentence-level scenario labels

the segmentation and classification, which is de-
tailed in Appendix A. A major challenge when
annotating segments is deciding when to count a
sentence as referring to a particular scenario. For
the task addressed here, we consider a segment
only if it explicitly realizes aspects of script knowl-
edge that go beyond an evoking expression (i.e.,
more than one event and participant need to be
explicitly realized). Example 3.1 below shows a
text segment with minimal scenario information for
going grocery shopping with two events
mentioned. In Example 3.2, only the evoking ex-
pression is mentioned, hence this example is not
annotated.

Example 3.1 3going grocery shopping
...We also stopped at a small shop near the hotel
to get some sandwiches for dinner...

Example 3.2 7paying for gas
... A customer was heading for the store to pay for
gas or whatever,...

3.2 Statistics
Agreement. To measure agreement, we looked
at sentence-wise label assignments for each double-
annotated text. We counted agreement if the same
scenario label is assigned to a sentence by both
annotators. As an indication of chance-corrected
agreement, we computed Kappa scores (Cohen,
1960). A kappa of 1 means that both annotators
provided identical (sets of) scenario labels for each
sentence. When calculating raw agreements, we
counted agreement if there was at least one same
scenario label assigned by both annotators. Ta-
ble 2 shows the Kappa and raw (in italics) agree-
ments for each pair of annotators. On average, the
Kappa score was 0.61 ranging from 0.57 to 0.64.
The average raw agreement score was 0.70 rang-
ing from 0.65 to 0.72. The Kappa value indicates
relatively consistent annotations across annotators
even though the task was challenging.

We used fuzzy matching to calculate agreement
in span between segments that overlap by at least
one token. Table 3 shows pairwise % agreement

Annotators 2 3 4

1 78.8 70.6 59.3
2 66.0 64.2
3 67.0

Table 3: Relative agreement on segment spans between
annotated segments that overlap by at least one token
and are assigned the same scenario label

scores between annotators. On average, the anno-
tators achieve 67% agreement on segment spans.
This shows considerable segment overlap when
both annotators agreed that a particular scenario is
referenced.

Analysis. Figure 1 shows to what extent the an-
notators agreed in the scenario labels. The None
cases accounted for 32% of the sentences. Our
scenario list is by far not complete. Although
we selected stories with high affinity to our sce-
narios, other scenarios (not in our scenario list)
may still occur in the stories. Sentences referring
to other scenarios were annotated as None cases.
The None label was also used to label sentences
that described topics related to but not directly part
of the script being referenced. For instance, sen-
tences not part of the narration, but of a different
discourse mode (e.g. argumentation, report) or
sentences where no specific script events are men-
tioned4. About 20% of the sentences had Single
annotations where only one annotator indicated
that there was a scenario reference. 47% of the
sentences were assigned some scenario label(s) by
both annotators (Identical, At least one, Different).
Less than 10% of the sentences had Different sce-
nario labels for the case where both annotators as-
signed scenario labels to a sentence. This occurred
frequently with scenarios that are closely related
(e.g. going to the shopping center,
going shopping) or scenarios in a sub-
scenario relation (e.g. flying in a plane,
checking in at the airport) that share
script events and participants. In about 7% of the
sentences, both annotators agreed on At least one
scenario label. The remaining 30% of the sentences
were assigned Identical (sets of) scenario labels by
both annotators.

4See examples in Appendix A.

93



Identical At least one Different Single None
0

500

1000

1500

2000

2500

3000

3500
N

o.
 o

f s
en

te
nc

es

Figure 1: Absolute counts on sentence-level annota-
tions that involve the same (Identical), overlapping (At
least one) or disagreed (Different) labels; also shown
are the number of sentences that received a label by
only one annotator (Single) or no label at all (None).

3.3 Adjudication and Gold Standard

The annotation task is challenging, and so are
gold standard creation and adjudication. We com-
bined automatic merging and manual adjudication
(by the main author of the paper) as two steps of
gold-standard creation, to minimize manual post-
processing of the dataset.

We automatically merged annotated segments
that are identical or overlapping and have the same
scenario label, thus maximizing segment length.
Consider the two annotations shown in Exam-
ple 3.3. One annotator labeled the whole text
as growing vegetables, the other one iden-
tified the two bold-face sequences as growing
vegetables instances, and left the middle part
out. The result of the merger is the maximal
growing vegetables chain, i.e., the full text.
Taking the maximal chain ensures that all relevant
information is included, although the annotators
may not have agreed on what is script-relevant.

Example 3.3 growing vegetables
The tomato seedlings Mitch planted in the com-
post box have done really well and we noticed
flowers on them today . Hopefully we will get a
good It has rained and rained here for the past
month so that is doing the garden heaps of good .
We bought some organic herbs seedlings recently
and now have some thyme , parsley , oregano and
mint growing in the garden .We also planted some
lettuce and a grape vine . We harvested our first
crop of sweet potatoes a week or so ago (. . . )

The adjudication guidelines were deliberately de-
signed in a way that the adjudicator could not easily

Scenario # doc
s

# sen
ts.

# seg
s.

eat in a restaurant 21 387 22
go on vacation 16 325 17
go shopping 34 276 35
take care of children 15 190 19
review movies 8 184 8

. . .
taking a bath 3 34 6
borrow book from library 3 33 3
mow the lawn 3 33 3
drive a car 9 32 11
change a baby diaper 3 32 3

. . .
replace a garbage bag 1 3 2
unclog the toilet 1 3 1
wash a cut 1 3 1
apply band aid 2 2 2
change batteries in alarm 1 2 1

Table 4: Distribution of scenario labels over documents
(docs), sentences (sents) and segments (segs); the top
and bottom parts show the ten most and least frequent
labels, respectively. The middle part shows scenario
labels that appear at an average frequency.

overrule the double-annotations. The segmentation
could not be changed, and only the labels provided
by the annotators were available for labeling. Since
segment overlap is handled automatically, manual
adjudication must only care about label disagree-
ment: the two main cases are (1) a segment has
been labeled by only one annotator and (2) a seg-
ment has been assigned different labels by its two
annotators. In case (1), the adjudicator had to take
a binary decision to accept the labeled segment, or
to discard it. In case (2), the adjudicator had three
options: to decide for one of the labels or to accept
both of them.

Gold standard. The annotation process resulted
in 2070 single segment annotations. 69% of the
single segment annotations were automatically
merged to create gold segments. The remaining
segments were adjudicated, and relevant segments
were added to the gold standard. Our final dataset
consists of 7152 sentences (contained in 895 seg-
ments) with gold scenario labels. From the 7152
gold sentences, 1038 (15%) sentences have more
than one scenario label. 181 scenarios (out of 200)
occur as gold labels in our dataset, 179 of which are
referred to in at least 2 sentences. Table 4 shows

94



Zero one two three four five >five
0

50

100

150

200

250
N

o.
 o

f d
oc

um
en

ts
Segments
Scenarios

Figure 2: Segment and scenario distribution per text

example scenarios5 and the distribution of scenario
labels: the number of documents that refer to the
given scenario, the number of gold sentences and
segments referring to the given scenario, and the
average segment length (in sentences) per scenario.
16 scenarios are referred to in more than 100 gold
sentences, 105 scenarios in at least 20 gold sen-
tences, 60 scenarios in less than 20 gold sentences.
Figure 2 shows the distribution of segments and
scenario references per text in the gold standard.
On average, there are 1.8 segments per text and
44% of the texts refer to at least two scenarios.

4 Benchmark model

Texts typically consist of different passages that
refer to different scenarios. When human hearers
or readers come across an expression that evokes a
particular script, they try to map verbs or clauses in
the subsequent text to script events, until they face
lexical material that is clearly unrelated to the script
and may evoke a different scenario. Scenario iden-
tification, scenario segmentation, and script parsing
are subtasks of story comprehension, which ideally
work in close mutual interaction. In this section, we
present a model for scenario identification, which
is much simpler in several respects: we propose a
two-step model consisting of a segmentation and
a classification component. For segmentation, we
assume that a change in scenario focus can be mod-
eled by a shift in lexical cohesion. We identify
segments that might be related to specific scripts
or scenarios via topic segmentation, assuming that
scenarios can be approximated as distributions over
topics. After segmentation, a supervised classifier
component is used to predict the scenario label(s)

5The rest of the scenarios are listed in Appendix B

for each of the found segment. Our results show
that the script segmentation problem can be solved
in principle, and we propose our model as a bench-
mark model for future work.

Segmentation. The first component of our
benchmark model reimplements a state-of-art un-
supervised method for topic segmentation, called
TopicTiling (Riedl and Biemann, 2012). TopicTil-
ing (TT) uses latent topics inferred by a Latent De-
richlet Allocation (LDA, Blei et al. (2003)) model
to identify segments (i.e., sets of consecutive sen-
tences) referring to similar topics.6 The TT seg-
menter outputs topic boundaries between sentences
where there are topic shifts. Boundaries are com-
puted based on coherence scores. Coherence scores
close to 1 indicate significant topic similarity while
values close to 0 indicate minimal topic similarity.
A window parameter is used to determine the block
size i.e. the number of sentences to the left and
right that should be considered when calculating
coherence scores. To discover segment boundaries,
all local minima in the coherence scores are identi-
fied using a depth score (Hearst, 1994). A threshold
µ−σ/x is used to estimate the number of segments,
where µ is the mean and σ is the standard deviation
of the depth scores, and x is a weight parameter
for setting the threshold.7 Segment boundaries are
placed at positions greater than the threshold.

Classification. We view the scenario classifica-
tion subtask as a supervised multi-label classifica-
tion problem. Specifically, we implement a multi-
layer perceptron classifier in Keras (Chollet et al.,
2015) with multiple layers: an input layer with 100
neurons and ReLU activation, followed by an in-
termediate layer with dropout (0.2), and finally an
output layer with sigmoid activations. We optimize
a cross-entropy loss using adam. Because multiple
labels can be assigned to one segment, we train sev-
eral one-vs-all classifiers, resulting in one classifier
per scenario.

We also experimented with different features and
feature combinations to represent text segments:
term frequencies weighted by inverted document
frequency (tf.idf, Salton and McGill (1986))8 and
topic features derived from LDA (see above), and

6We used the Gensim (Rehurek and Sojka, 2010) imple-
mentation of LDA.

7We experimentally set x to 0.1 using our held out devel-
opment set.

8We use SciKit learn (Pedregosa et al., 2011) to build tf.idf
representations

95



we tried to work with word embeddings. We found
the performance with tf.idf features to be the best.

5 Experiments

The experiments and results presented in this sec-
tion are based on our annotated dataset for scenario
detection described in section 3.

5.1 Experimental setting
Preprocessing and model details. We represent
each input to our model as a sequence of lemma-
tized content words, in particular nouns and verbs
(including verb particles). This is achieved by
preprocessing each text using Stanford CoreNLP
(Chen and Manning, 2014).

Segmentation. Since the segmentation model is
unsupervised, we can use all data from both MC-
Script and the Spinn3r personal stories corpora to
build the LDA model. As input to the TopicTiling
segmentor, each sentence is represented by a vector
in which each component represents the (weight
of a) topic from the LDA model (i.e. the value of
the ith component is the normalized weight of the
words in the sentence whose most relevant topic
is the ith topic). For the segmentation model, we
tune the number of topics (200) and the window
size (2) based on an artificial development dataset,
created by merging segments from multiple docu-
ments from MCScript.

Classification. We train the scenario classifica-
tion model on the scenario labels provided in MC-
Script (one per text). For training and hyperpa-
rameter selection, we split MCScript dataset (see
Section 2) into a training and development set, as
indicated in Table 5. We additionally make use
of 18 documents from our scenario detection data
(Section 3) to tune a classification threshold. The
remaining 486 documents are held out exclusively
for testing (see Table 5). Since we train separate
classifiers for each scenario (one-vs-all classifiers),
we get a probability distribution of how likely a
sentence refers to a scenario. We use entropy to
measure the degree of scenario content in the sen-
tences. Sentences with entropy values higher than
the threshold are considered as not referencing any
scenario (None cases), while sentences with lower
entropy values reference some scenario.

Baselines. We experiment with three informed
baselines: As a lower bound for the classification
task, we compare our model against the baseline

Dataset # train # dev # test

MCScript 3492 408 -
Spinn3r (gold) - 18 486

Table 5: Datasets (number of documents) used in the
experiments

Model Precision Recall F1-score

sent maj 0.08 0.05 0.06
sent tf.idf 0.24 0.28 0.26
random tf.idf 0.32 0.45 0.37
TT tf.idf (F 1) 0.36 0.54 0.43

TT tf.idf (Gold) 0.54 0.54 0.54

Table 6: Results for the scenario detection task

sent maj, which assigns the majority label to all
sentences. To assess the utility of segmentation,
we compare against two baselines that use our pro-
posed classifier but not the segmentation compo-
nent: the baseline sent tf.idf treats each sentence
as a separate segment and random tf.idf splits each
document into random segments.

Evaluation. We evaluate scenario detection per-
formance at the sentence level using micro-average
precision, recall and F1-score. We consider the
top 1 predicted scenario for sentences with only
one gold label (including the None label), and top
n scenarios for sentences with n gold labels. For
sentences with multiple scenario labels, we take
into account partial matches and count each la-
bel proportionally. Assuming the gold labels are
washing ones hair and taking a bath,
and the classifier predicts taking a bath
and getting ready for bed. Taking a
bath is correctly predicted and accounts for 0.5
true positive (TP) while washing ones hair
is incorrectly missed, thus accounts for 0.5 false
negative (FN). Getting ready for bed is
incorrectly predicted and accounts for 1 false posi-
tive (FP).

We additionally provide separate results of the
segmentation component based on standard seg-
mentation evaluation metrics.

5.2 Results
We present the micro-averaged results for sce-
nario detection in Table 6. The sent maj baseline
achieves a F1-score of only 6%, as the majority
class forms only a small part of the dataset (4.7%).
Our TT model with tf.idf features surpasses both

96



True label Predicted label # sents. PMI

go vacation visit sights 92 3.96
eat restaurant food back 67 4.26
work garden grow vegetables 57 4.45
attend wedding prepare wedding 48 4.12
eat restaurant dinner reservation 39 4.26
throw party go party 36 4.09
shop online order on phone 35 3.73
work garden planting a tree 33 4.81
shop clothes check store open 33 0.00
play video games learn board game 32 0.00

Table 7: Top 10 misclassified scenario pairs (number
of misclassified sentences (# sents.)) by our approach
TT tf.idf in relation to the PMI scores for each pair.

baselines that perform segmentation only naively
(26% F1) or randomly (37% F1). This result shows
that scenario detection works best when using pre-
dicted segments that are informative and topically
consistent.

We estimated an upper bound for the classifier by
taking into account the predicted segments from the
segmentation step, but during evaluation, only con-
sidered those sentences with gold scenario labels
(TT tf.idf (Gold)), while ignoring the sentences
with None label. We see an improvement in pre-
cision (54%), showing that the classifier correctly
predicts the right scenario label for sentences with
gold labels while also including other sentences
that may be in topic but not directly referencing a
given scenario.

To estimate the performance of the TT segmen-
tor individually, we run TT on an artificial devel-
opment set, created by merging segments from dif-
ferent scenarios from MCScript. We evaluate the
performance of TT by using two standard topic seg-
mentation evaluation metrics, Pk (Beeferman et al.,
1999) and WindowDiff (WD, Pevzner and Hearst
(2002)). Both metrics express the probability of
segmentation error, thus lower values indicate bet-
ter performance. We compute the average perfor-
mance over several runs. TT attains Pk of 0.28 and
WD of 0.28. The low segmentation errors suggest
that TT segmentor does a good job in predicting
the scenario boundaries.

5.3 Discussion

Even for a purpose-built model, scenario detec-
tion is a difficult task. This is partly to be ex-
pected as the task requires the assignment of
one (or more) of 200 possible scenario labels,

Scenario # sents. P R F1

go to the dentist 47 0.90 0.96 0.93
have a barbecue 43 0.92 0.88 0.90
go to the sauna 28 0.80 0.89 0.84
make soup 60 0.81 0.87 0.84
bake a cake 69 0.71 0.97 0.82
go skiing 42 0.78 0.83 0.80
attend a court hearing 66 0.71 0.92 0.80
clean the floor 6 1.00 0.67 0.80
take a taxi 27 0.74 0.85 0.79
attend a church service 60 0.70 0.92 0.79

Table 8: Top 10 scenario-wise Precision (P), Recall (R)
and F1-score (F1) results using our approach TT tf.idf
and the number of gold sentences (# sents.) for each
scenario.

some of which are hard to distinguish. Many
errors are due to misclassifications between sce-
narios that share script events as well as partici-
pants and that are usually mentioned in the same
text: for example, sending food back in
a restaurant requires and involves partici-
pants from eating in a restaurant. Ta-
ble 7 shows the 10 most frequent misclassifications
by our best model TT tf.idf (F 1). These errors
account for 16% of all incorrect label assignments
(200 by 200 matrix). The 100 most frequent mis-
classifications account for 63% of all incorrect label
assignments. In a quantitative analysis, we calcu-
lated the commonalities between scenarios in terms
of the pointwise mutual information (PMI) between
scenario labels in the associated stories. We calcu-
lated PMI using Equation (1). The probability of a
scenario is given by the document frequency of the
scenario divided by the number of documents.

PMI(S1, S2) = log

(
P (S1 ∧ S2)
P (S1) · P (S2)

)
(1)

Scenarios that tend to co-occur in texts have higher
PMI scored. We observe that the scenario-wise
recall and F1-scores of our classifier are negatively
correlated with PMI scores (Pearson correlation
of −0.33 and −0.17, respectively). These correla-
tions confirm a greater difficulty in distinguishing
between scenarios that are highly related to other
scenarios.

On the positive side, we observe that scenario-
wise precision and F1-score are positively corre-
lated with the number of gold sentences annotated
with the respective scenario label (Pearson correla-
tion of 0.50 and 0.20, respectively). As one would

97



order pizza laundry gardening barbecue

pizza clothes tree invite
order dryer plant guest

delivery laundry hole grill
decide washer water friend
place wash grow everyone

deliver dry garden beer
tip white dig barbecue

phone detergent dirt food
number start seed serve
minute washing soil season

Table 9: Example top 10 scenario-words

expect, our approach seems to perform better on
scenarios that appear at higher frequency. Table 8
shows the 10 scenarios for which our approach
achieves the best results.

Scenario approximation using topics. We per-
formed an analyses to qualitatively examine in how
far topic distributions, as used in our segmentation
model, actually approximate scenarios. For this
analysis, we computed a LDA topic model using
only the MCScript dataset. We created scenario-
topics by looking at all the prevalent topics in doc-
uments from a given scenario. Table 9 shows the
top 10 words for each scenario extracted from the
scenario-topics. As can be seen, the topics cap-
ture some of the most relevant words for different
scenarios.

6 Summary

In this paper we introduced the task of scenario
detection and curated a benchmark dataset for auto-
matic scenario segmentation and identification. We
proposed a benchmark model that automatically
segments and identifies text fragments referring
to a given scenario. While our model achieves
promising first results, it also revealed some of the
difficulties in detecting script references. Script
detection is an important first step for large-scale
data driven script induction for tasks that require
the application of script knowledge. We are hope-
ful that our data and model will form a useful basis
for future work.

Acknowledgments

This research was funded by the German Research
Foundation (DFG) as part of SFB 1102 Information
Density and Linguistic Encoding.

References
Omri Abend, Shay B Cohen, and Mark Steedman.

2015. Lexical event ordering with an edge-factored
model. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1161–1171.

James Allan. 2012. Topic detection and tracking:
event-based information organization, volume 12.
Springer Science & Business Media.

James Allan, Jaime G Carbonell, George Doddington,
Jonathan Yamron, and Yiming Yang. 1998. Topic
detection and tracking pilot study final report.

Doug Beeferman, Adam Berger, and John Lafferty.
1999. Statistical models for text segmentation. Ma-
chine learning, 34(1-3):177–210.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Kevin Burton, Akshay Java, and Ian Soboroff. 2009.
The ICWSM 2009 Spinn3r Dataset. In Third Annual
Conference on Weblogs and Social Media (ICWSM
2009), San Jose, CA. AAAI.

Richard Eckart de Castilho, Eva Mujdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84.

Nathanael Chambers and Daniel Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In ACL
2008, Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics, June 15-
20, 2008, Columbus, Ohio, USA, pages 789–797.

Nathanael Chambers and Daniel Jurafsky. 2009. Un-
supervised learning of narrative schemas and their
participants. In Proceedings of 47th Annual Meet-
ing of the ACL and the 4th IJCNLP of the AFNLP,
pages 602–610, Suntec, Singapore.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 740–750.

François Chollet et al. 2015. Keras.
https://github.com/fchollet/keras.

Cuong Xuan Chu, Niket Tandon, and Gerhard Weikum.
2017. Distilling task knowledge from how-to com-
munities. In Proceedings of the 26th International
Conference on World Wide Web, WWW ’17, pages
805–814, Republic and Canton of Geneva, Switzer-
land. International World Wide Web Conferences
Steering Committee.

98



Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Andrew Gordon and Reid Swanson. 2009. Identifying
personal stories in millions of weblog entries. In In-
ternational Conference on Weblogs and Social Me-
dia, Data Challenge Workshop, May 20, San Jose,
CA.

Andrew S. Gordon. 2001. Browsing image collec-
tions with representations of common-sense activi-
ties. Journal of the American Society for Informa-
tion Science and Technology., 52:925.

Andrew S. Gordon. 2010. Mining commonsense
knowledge from personal stories in internet weblogs.
In Proceedings of the First Workshop on Automated
Knowledge Base Construction, Grenoble, France.

Herbert Paul Grice. 1975. Logic and conversation. In
Peter Cole and Jerry L. Morgan, editors, Syntax and
Semantics: Vol. 3: Speech Acts, pages 41–58. Aca-
demic Press, New York.

Rakesh Gupta and Mykel J. Kochenderfer. 2004. Com-
mon sense data acquisition for indoor mobile robots.
In Proceedings of the 19th National Conference
on Artifical Intelligence, AAAI’04, pages 605–610.
AAAI Press.

Marti A Hearst. 1994. Multi-paragraph segmentation
of expository text. In Proceedings of the 32nd an-
nual meeting on Association for Computational Lin-
guistics, pages 9–16. Association for Computational
Linguistics.

Niels Kasch and Tim Oates. 2010. Mining script-like
structures from the web. In Proceedings of the
NAACL HLT 2010 First International Workshop on
Formalisms and Methodology for Learning by Read-
ing, FAM-LbR ’10, pages 34–42, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Boyang Li, Stephen Lee-Urban, D. Scott Appling, and
Mark O. Riedl. 2012. Crowdsourcing narrative in-
telligence. volume vol. 2. Advances in Cognitive
Systems.

M Manshadi, R Swanson, and AS Gordon. 2008.
Learning a probabilistic model of event sequences
from internet weblog stories. FLAIRS Conference.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. Inscript: Narrative texts
annotated with script information. In Proceedings of
the 10th International Conference on Language Re-
sources and Evaluation (LREC 16), Portoroz̆, Slove-
nia.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the

Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Erik T. Mueller. 1999. A database and lexicon of
scripts for thoughttreasure. CoRR, cs.AI/0003004.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018a. MCScript:
A Novel Dataset for Assessing Machine Compre-
hension Using Script Knowledge. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018b. SemEval-
2018 Task 11: Machine Comprehension using Com-
monsense Knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

Simon Ostermann, Michael Roth, and Manfred Pinkal.
2019. MCScript2.0: A Machine Comprehension
Corpus Focused on Script Events and Participants.
Proceedings of the 8th Joint Conference on Lexical
and Computational Semantics (*SEM 2019).

Simon Ostermann, Michael Roth, Stefan Thater, and
Manfred Pinkal. 2017. Aligning script events with
narrative texts. Proceedings of *SEM 2017.

Simon Ostermann, Hannah Seitz, Stefan Thater, and
Manfred Pinkal. 2018c. Mapping Texts to Scripts:
An Entailment Study. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12(Oct):2825–2830.

Lev Pevzner and Marti A Hearst. 2002. A critique
and improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1):19–
36.

Karl Pichotta and Raymond J. Mooney. 2014. Statisti-
cal Script Learning with Multi-Argument Events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL 2014), pages 220–229, Gothenburg,
Sweden.

James Pustejovsky and Amber Stubbs. 2012. Nat-
ural Language Annotation for Machine Learning
- a Guide to Corpus-Building for Applications.
O’Reilly.

99



Elahe Rahimtoroghi, Ernesto Hernandez, and Mari-
lyn Walker. 2016. Learning fine-grained knowledge
about contingent relations between everyday events.
In Proceedings of the 17th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 350–359.

Susanne Raisig, Tinka Welke, Herbert Hagendorf, and
Elke Van der Meer. 2009. Insights into knowledge
representation: The influence of amodal and per-
ceptual variables on event knowledge retrieval from
memory. Cognitive Science, 33(7):1252–1266.

Michaela Regneri. 2013. Event Structures in Knowl-
edge, Pictures and Text. Ph.D. thesis, Saarland Uni-
versity.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988, Uppsala, Sweden.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks.

Martin Riedl and Chris Biemann. 2012. Topictiling: a
text segmentation algorithm based on lda. In Pro-
ceedings of ACL 2012 Student Research Workshop,
pages 37–42. Association for Computational Lin-
guistics.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681–1686.

Jihee Ryu, Yuchul Jung, Kyung-min Kim, and
Sung Hyon Myaeng. 2010. Automatic extraction of
human activity knowledge from method-describing
web articles. In Proceedings of the 1st Workshop on
Automated Knowledge Base Construction, page 16.
Citeseer.

Gerard Salton and Michael J McGill. 1986. Introduc-
tion to modern information retrieval.

Roger C. Schank and Robert P. Abelson. 1977. Scripts,
plans, goals and understanding, an inquiry into hu-
man knowledge structures. Hillsdale: Lawrence Erl-
baum Associates,, 3(2):211 – 217.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. In Robert Meersman and Zahir Tari,
editors, On the Move to Meaningful Internet Systems
2002: CoopIS, DOA, and ODBASE, pages 1223–
1237. Springer, Berlin / Heidelberg, Germany.

Niket Tandon, Gerard de Melo, Fabian M. Suchanek,
and Gerhard Weikum. 2014. Webchild: harvesting
and organizing commonsense knowledge from the

web. In Seventh ACM International Conference on
Web Search and Data Mining, WSDM 2014, New
York, NY, USA, February 24-28, 2014, pages 523–
532.

Niket Tandon, Gerard de Melo, and Gerhard Weikum.
2017. Webchild 2.0: Fine-grained commonsense
knowledge distillation. Proceedings of ACL 2017,
System Demonstrations, pages 115–120.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. Descript: A
crowdsourced corpus for the acquisition of high-
quality script knowledge. In The International Con-
ference on Language Resources and Evaluation.

100



Appendix

A Annotation guidelines

You are presented with several stories. Read each
story carefully. You are required to highlight seg-
ments in the text where any of our scenarios is
realized.

1. A segment can be a clause, a sentence, several
sentences or any combination of sentences
and clauses.

2. Usually segments will cover different parts of
the text and be labeled with one scenario label
each.

3. A text passage is highlighted as realizing a
given scenario only if several scenario ele-
ments are addressed or referred to in the text,
more than just the evoking expression but
some more material e.g at least one event and
a participant in that scenario is referred to in
the text. (see examples (A.1 to A.5)).

4. A text passage referring to one scenario does
not necessarily need to be contiguous i.e. the
scenario could be referred to in different parts
of the same text passage, so the scenario label
can occur several times in the text. If the text
passages are adjacent, mark the whole span as
one segment. (see examples (A.6 to A.10))

5. One passage of text can be associated with
more than one scenario label.

• A passage of text associated with two or
more related scenarios i.e. scenario that
often coincide or occur together. (see
example A.11).
• A shorter passage of text referring to

a given scenario is nested in a longer
passage of text referring to a more gen-
eral scenario. The nested text passage is
therefore associated with both the gen-
eral and specific scenarios. (see example
A.12).

6. For a given text passage, if you do not find
a full match from the scenario list, but a sce-
nario that is related and similar in structure,
you may annotate it. (see example A.13).

Rules of thumb for annotation

1. Do not annotate if no progress to events is
made i.e. the text just mentions the scenario
but no clear script events are addressed.

Example A.1 short text with event and
participants addressed
3 feeding a child
... Chloe loves to stand around babbling just
generally keeping anyone amused as long as
you bribe her with a piece of bread or cheese
first.

3 going grocery shopping
... but first stopped at a local shop to pick
up some cheaper beer . We also stopped at a
small shop near the hotel to get some sand-
wiches for dinner .

Example A.2 scenario is just mentioned
7 cooking pasta And a huge thanks to
Megan & Andrew for a fantastic dinner, espe-
cially their first ever fresh pasta making effort
of salmon filled ravioli - a big winner.

7 riding on a bus, 7 flying in
a plane
and then catch a bus down to Dublin for my
9:30AM flight the next morning.

We decide to stop at at Bob Evan’s on the way
home and feed the children.

Example A.3 scenario is implied but no
events are addressed
7 answering the phone
one of the citizens nodded and started talking
on her cell phone. Several of the others were
also on cell phones

7 taking a photograph
Here are some before and after shots of Bran-
don . The first 3 were all taken this past May .
I just took this one a few minutes ago.

Example A.4 different discourse mode that
is not narration e.g. information, argumenta-
tive, no specific events are mentioned
7 writing a letter
A long time ago, years before the Internet, I
used to write to people from other countries.
This people I met through a program called
Pen Pal. I would send them my mail address,
name, languages I could talk and preferences
about my pen pals. Then I would receive a
list of names and address and I could start
sending them letters. ...

101



2. When a segment refers to more than one sce-
nario, either related scenarios or scenarios
where one is more general than the other, if
there is only a weak reference to one of the sce-
narios, then annotate the text with the scenario
having a stronger or more plausible reference.

Example A.5 one scenario is weakly refer-
enced
3 visiting a doctor, 7 taking
medicine
taking medicine is weakly referenced
Now another week passes and I get a phone
call and am told that the tests showed i had
strep so i go in the next day and see the doc
and he says that i don ’t have strep . ugh
what the hell . This time though they actually
give me some antibiotic to help with a few
different urinary track infections and other
things while doing another blood test and
urnine test on me .

3 taking a shower, 7 washing
ones hair
washing ones hair is weakly referenced
I stand under the pressure of the shower , the
water hitting my back in fierce beats . I stand
and dip my hand back , exposing my delicate
throat and neck . My hair gets soaked and
detangles in the water as it flows through my
hair , every bead of water putting back the
moisture which day to day life rids my hair
of . I run my hands through my hair shaking
out the water as I bring my head back down
to look down towards my feet . The white
marble base of the shower shines back at me
from below . My feet covered in water , the
water working its way up to my ankles but it
never gets there . I find the soap and rub my
body all over

3. Sometimes there is a piece of text interven-
ing two instances (or the same instance) of a
scenario, that is not directly part of the sce-
nario that is currently being talked about. We
call this a separator. Leave out the separator
if it is long or talks about something not re-
lated to the scenario being addressed. The
separator can be included if it is short, argu-
mentative or a comment, or somehow relates
to the scenario being addressed. When there

are multiple adjacent instances of a scenario,
annotate them as a single unit.

Example A.6 two mentions of a scenario an-
notated as one segment
3 writing a letter
I asked him about a month ago to write a let-
ter of recommendation for me to help me get a
library gig. After bugging him on and off for
the past month, as mentioned above, he wrote
me about a paragraph. I was sort of pissed as
it was quite generic and short.

I asked for advice, put it off myself for a week
and finally wrote the letter of recommendation
myself. I had both Evan and Adj. take a look
at it- and they both liked my version.

Example A.7 a separator referring to topic
related to the current scenario is included
3 writing an exam
The Basic Science Exam (practice board
exam) that took place on Friday April 18 was
interesting to say the least. We had 4 hours
to complete 200 questions, which will be the
approximate time frame for the boards as well.
I was completing questions at a good pace for
the first 1/3 of the exam, slowed during the
second 1/3 and had to rush myself during the
last 20 or so questions to complete the exam
in time.

3 separator: Starting in May, I am going to
start timing myself when I do practice ques-
tions so I can get use to pacing. There was
a lot of information that was familiar to me
on the exam (which is definitely a good thing)
but it also showed me that I have a LOT of
reviewing to do.

Monday April 21 was the written exam for
ECM. This exam was surprisingly challenging.
For me, the most difficult part were reading
and interpreting the EKGs. I felt like once I
looked at them, everything I knew just fell out
of my brain. Fortunately, it was a pass/fail
exam and I passed.

Example A.8 a long separator is excluded
3 going to the beach
Today , on the very last day of summer vaca-
tion , we finally made it to the beach . Oh , it

’s not that we hadn ’t been to a beach before .
We were on a Lake Michigan beach just last

102



weekend . And we ’ve stuck our toes in the
water at AJ ’s and my lake a couple of times
. But today , we actually planned to go . We
wore our bathing suits and everything . We
went with AJ ’s friend D , his brother and his
mom .

7 separator: D and AJ became friends their
very first year of preschool when they were
two . They live in the next town over and we
don ’t see them as often as we would like . It
’s not so much the distance , which isn ’t far at
all , but that the school and athletic schedules
are constantly conflicting . But for the first
time , they are both going back to school on
the same day . So we decided to celebrate the
end of summer together .

3 going to the beach
It nearly looked too cold to go this morning ’
the temperature didn ’t reach 60 until after 9
:00. The lake water was chilly , too cool for
me , but the kids didn ’t mind . They splashed
and shrieked with laughter and dug in the
sand and pointed at the boat that looked like a
hot dog and climbed onto the raft and jumped
off and had races and splashed some more . D

’s mom and I sat in the sun and talked about
nothing in particular and waved off seagulls .

Example A.9 a short separator is included
3 throwing a party
... My wife planned a surprise party for me at
my place in the evening - I was told that we ’d
go out and that I was supposed to meet her at
Dhobi Ghaut exchange at 7 .

3 separator: But I was getting bored in the
office around 5 and thought I ’d go home -
when I came home , I surprised her !

She was busy blowing balloons , decorating ,
etc with her friend . I guess I ruined it for her
. But the fun part started here - She invited
my sister and my cousin ...

3 visiting sights
Before getting to the museum we swung by
Notre Dame which was very beautiful . I tried
taking some pictures inside Notre Dame but I
dont think they turned out particularly well .
After Notre Dame , Paul decided to show us
the Crypte Archeologioue .
3 separator: This is apparently French for

parking garage there are some excellent pic-
tures on Flickr of our trip there .

Also on the way to the museum we swung by
Saint Chapelle which is another church . We
didnt go inside this one because we hadnt
bought a museum pass yet but we plan to re-
turn later on in the trip

4. Similarly to intervening text (separator), there
may be text before or after that is a motivation,
pre or post condition for the applications of
the script currently being referred to. Leave
out the text if it is long. The text can be in-
cluded if it is short, or relates to the scenario
being addressed.

Example A.10 the first one or two sentences
introduce the topic
3 getting a haircut
I AM , however , upset at the woman who cut
his hair recently . He had an appointment with
my stylist (the one he normally goes to ) but
I FORGOT about it because I kept thinking
that it was a different day than it was . When
I called to reschedule , she couldn ’t get him
in until OCTOBER (?!?!?!) ...

3 baking a cake
I tried out this upside down cake from Bill
Grangers , Simply Bill . As I have mentioned
before , I love plums am always trying out
new recipes featuring them when they are in
season . I didnt read the recipe properly so
was surprised when I came to make it that it
was actually cooked much in the same way as
a tarte tartin , ie making a caramel with the
fruit in a frying pan first , then pouring over
the cake mixture baking in the frypan in the
oven before turning out onto a serving plate ,
the difference being that it was a cake mixture
not pastry ....

5. If a text passage refers to several related sce-
narios, e.g. ”renovating a room” and ”painting
a wall”, ”laying flooring in a room”, ”paper-
ing a room”; or ”working in the garden” and
”growing vegetables”, annotate all the related
scenarios.

Example A.11 segment referring to related
scenarios
3 growing vegetables, 3

103



working in the garden
The tomato seedlings Mitch planted in the
compost box have done really well and we
noticed flowers on them today. Hopefully
we will get a good crop. It has rained and
rained here for the past month so that is doing
the garden heaps of good. We bought some
organic herbs seedlings recently and now
have some thyme, parsley, oregano and mint
growing in the garden. We also planted some
lettuce and a grape vine. ...

6. If part of a longer text passage refers to a
scenario that is more specific than the sce-
nario currently being talked about, annotate
the nested text passage with all referred sce-
narios.

Example A.12 nested segment
3 preparing dinner
I can remember the recipe, it’s pretty adapt-
able and you can add or substitute the vegeta-
bles as you see fit!! One Pot Chicken Casse-
role 750g chicken thigh meat, cut into big
cubes olive oil for frying 1

3 preparing dinner, 3

chopping vegetables
large onion, chopped 3 potatoes, waxy is best
3 carrots 4 stalks of celery, chopped 2 cups of
chicken stock 2 zucchini, sliced large handful
of beans 300 ml cream 1 or 2 tablespoons of
wholegrain mustard salt and pepper parsley,
chopped

##42 The potatoes and carrots need to be cut
into chunks,. I used chat potatoes which are
smaller and cut them in half, but I would prob-
ably cut a normal potato into quarters. Heat
the oil; in a large pan and then fry the chicken
in batches until it is well browned...

7. If you do not find a full match for a text seg-
ment in the scenario list, but a scenario that
is related and similar in its structure, you may
annotate it.

Example A.13 topic similarity

• Same structure in scenario e.g. going
fishing for leisure or for work, share the
same core events in going fishing
• Baking something with flour (baking a

cake, baking Blondies, )

104



B List of Scenarios

scenario # docs # sents. scenario # docs # sents.

1 eating in a restaurant 21 387 101 receiving a letter 5 27
2 going on vacation 16 325 102 taking a shower 4 27
3 going shopping 34 276 103 taking a taxi 4 27
4 taking care of children 15 190 104 going to the playground 3 25
5 reviewing movies 8 184 105 taking a photograph 5 25
6 shopping for clothes 11 182 106 going on a date 3 24
7 working in the garden 13 179 107 making a bonfire 2 23
8 preparing dinner 14 155 108 renting a movie 3 23
9 playing a board game 8 129 109 buying a house 2 22
10 attend a wedding ceremony 9 125 110 designing t-shirts 2 22
11 playing video games 6 124 111 doing online banking 3 22
12 throwing a party 10 123 112 planting flowers 4 22
13 eat in a fast food restaurant 9 113 113 taking out the garbage 4 22
14 adopting a pet 7 111 114 brushing teeth 3 21
15 taking a child to bed 9 108 115 changing bed sheets 3 21
16 shopping online 7 102 116 going bowling 2 21
17 going on a bike tour 6 93 117 going for a walk 4 21
18 playing tennis 5 91 118 making coffee 2 21
19 renovating a room 9 87 119 serving a drink 5 20
20 growing vegetables 7 82 120 taking children to school 3 20
21 listening to music 8 81 121 taking the underground 2 20
22 sewing clothes 6 79 122 feeding a cat 4 19
23 training a dog 3 79 123 going to a party 5 19
24 moving into a new flat 8 78 124 ironing laundry 2 19
25 answering the phone 11 75 125 making tea 3 18
26 going to a concert 5 74 126 sending a fax 3 18
27 looking for a job 5 74 127 sending party invitations 3 18
28 visiting relatives 12 73 128 planting a tree 3 17
29 checking in at an airport 5 71 129 setting up presentation equipment 2 17
30 making a camping trip 5 71 130 visiting a museum 2 17
31 painting a wall 8 71 131 calling 911 2 16
32 planning a holiday trip 12 71 132 changing a light bulb 3 16
33 baking a cake 3 69 133 making toasted bread 1 16
34 going to the gym 6 69 134 playing a song 2 16
35 attending a court hearing 3 66 135 washing clothes 3 16
36 going to the theater 6 66 136 putting up a painting 2 15
37 going to a pub 4 65 137 serving a meal 5 15
38 playing football 3 65 138 washing dishes 3 15
39 going to a funeral 5 64 139 cooking pasta 2 14
40 visiting a doctor 7 64 140 moving furniture 4 14
41 paying with a credit card 6 63 141 put a poster on the wall 2 13
42 settling bank transactions 5 63 142 cleaning up toys 1 12
43 paying bills 6 62 143 preparing a picnic 2 12
44 taking a swimming class 3 62 144 repairing a bicycle 2 12
45 looking for a flat 6 61 145 cooking meat 4 11
46 attending a church service 3 60 146 drying clothes 3 11
47 making soup 3 60 147 give a medicine to someone 3 11
48 flying in a plane 5 57 148 feeding an infant 4 10
49 going grocery shopping 13 57 149 telling a story 2 10
50 walking a dog 5 57 150 unloading the dishwasher 1 10
51 going to the swimming pool 5 56 151 putting away groceries 3 9
52 preparing a wedding 3 56 152 deciding on a movie 1 7
53 writing a letter 5 54 153 going to a shopping centre 1 7
54 buy from a vending machine 3 53 154 loading the dishwasher 2 7
55 attending a job interview 3 52 155 making a bed 1 7
56 visiting sights 9 52 156 making a dinner reservation 1 7
57 attending a football match 4 51 157 making scrambled eggs 1 7
58 cleaning up a flat 6 51 158 playing piano 2 7
59 washing ones hair 6 49 159 wrapping a gift 1 7
60 writing an exam 5 49 160 chopping vegetables 3 6
61 watching a tennis match 3 48 161 cleaning the floor 1 6
62 going to the dentist 3 47 162 getting the newspaper 1 6
63 making a sandwich 4 47 163 making fresh orange juice 1 6
64 playing golf 3 47 164 checking if a store is open 2 5
65 taking a driving lesson 2 44 165 heating food on kitchen gas 1 4
66 going fishing 4 43 166 locking up the house 2 4

105



scenario # docs # sents. scenario # docs # sents.

67 having a barbecue 4 43 167 cleaning the bathroom 2 3
68 riding on a bus 6 43 168 mailing a letter 1 3
69 going on a train 4 42 169 making a hot dog 1 3
70 going skiing 2 42 170 playing a movie 1 3
71 packing a suitcase 5 42 171 remove and replace garbage bag 1 3
72 vacuuming the carpet 3 41 172 taking copies 2 3
73 order something on the phone 6 40 173 unclogging the toilet 1 3
74 ordering a pizza 3 39 174 washing a cut 1 3
75 going to work 3 38 175 applying band aid 2 2
76 doing laundry 4 37 176 change batteries in an alarm clock 1 2
77 cooking fish 3 36 177 cleaning a kitchen 1 2
78 learning a board game 1 36 178 feeding the fish 1 2
79 fueling a car 3 35 179 setting an alarm 1 2
80 going dancing 3 35 180 getting ready for bed 1 1
81 laying flooring in a room 4 35 181 setting the dining table 1 1
82 making breakfast 2 35 182 change batteries in a camera 0 0
83 paying for gas 3 34 183 buying a tree 0 0
84 taking a bath 3 34 184 papering a room 0 0
85 visiting the beach 4 34 185 cutting your own hair 0 0
86 borrow a book from the library 3 33 186 watering indoor plants 0 0
87 mowing the lawn 3 33 187 organize a board game evening 0 0
88 changing a baby diaper 3 32 188 cleaning the shower 0 0
89 driving a car 9 32 189 canceling a party 0 0
90 making omelette 3 32 190 cooking rice 0 0
91 play music in church 2 32 191 buying a DVD player 0 0
92 taking medicine 5 31 192 folding clothes 0 0
93 getting a haircut 3 30 193 buying a birthday present 0 0
94 heating food in a microwave 3 30 194 Answering the doorbell 0 0
95 making a mixed salad 3 30 195 cleaning the table 0 0
96 going jogging 2 28 196 boiling milk 0 0
97 going to the sauna 3 28 197 sewing a button 0 0
98 paying taxes 2 28 198 reading a story to a child 0 0
99 sending food back 2 28 199 making a shopping list 0 0
100 making a flight reservation 2 27 200 emptying the kitchen sink 0 0

106



Proceedings of the Second Storytelling Workshop, pages 107–111
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Personality Traits Recognition in Literary Texts

Daniele Pizzolli
University of Trento / Trento, Italy

daniele.pizzolli@studenti.unitn.it

Carlo Strapparava
FBK-irst / Trento, Italy
strappa@fbk.eu

Abstract

Interesting stories often are built around inter-
esting characters. Finding and detailing what
makes an interesting character is a real chal-
lenge, but certainly a significant cue is the
character personality traits. Our exploratory
work tests the adaptability of the current per-
sonality traits theories to literal characters, fo-
cusing on the analysis of utterances in theatre
scripts. And, at the opposite, we try to find sig-
nificant traits for interesting characters. Our
preliminary results demonstrate that our ap-
proach is reasonable. Using machine learning
for gaining insight into the personality traits of
fictional characters can make sense.

1 Introduction

The availability of texts produced by people using
the modern communication means can give an im-
portant insight in personality profiling. And com-
putational linguistic community has been quite ac-
tive in this topic. In this paper we want to explore
the use of the techniques and tools nowadays used
for user generated content, for the analysis of lit-
erary characters in books and plays. In particu-
lar we will focus on the analysis of speech utter-
ances in theatre scripts. Dialogues in theatre plays
are quite easy to collect (i.e. the characters are ex-
plicitly stated in the scripts) without the need of
lengthy and costly manual annotation.

Of course the style of the language in social me-
dia is very different. For example, usually the user
generated content is quite short in length, not al-
ways with the correct spelling and correct in syn-
tax, and nowadays full of emoticons. On the other
hand we can expect that authors of great theatre
masterpieces (e.g. Shakespeare) had exceptional
skill in rendering the personality traits of the char-
acters, just only through dialogues among them.

Computational linguistics exploits different
frameworks for the classification of psychological

traits. In particular the Five Factor Model (Big5)
is often used. Advantages and drawbacks of those
frameworks are well-known. A good reference on
this is the work by Lee and Ashton (2004). We
are interested in a broad, exploitative classifica-
tion and do not endorse a model over the others.
We choose to use the Big Five model because the
gold labeled dataset we exploited was built using
this framework.

1.1 Literature review

To our knowledge, there is little ongoing research
on personality traits recognition in literary texts.
Most of the works in literary text is focused on
other aspects such as author attribution, stylom-
etry, plagiarism detection. Regarding personality
traits recognition, the used datasets are often col-
lected from modern communication means, e.g.
messages posted in social media.

Indeed there is interest in using modern NLP
tools in literary texts, for example Grayson et al.
(2016) use word embeddings for analyzing litera-
ture, Boyd (2017) describes the current status and
tool for psychological text analysis, Flekova and
Gurevych (2015) profile fictional characters, Liu
et al. (2018) conduct a traits analysis of two fic-
tional characters in a Chinese novel.

The use of the Five Factor Model for literature
is explained in McCrae et al. (2012).

Bamman et al. (2014) consider the problem of
automatically inferring latent character types in
a collection of English novels. Bamman et al.
(2013) present a new dataset for the text-driven
analysis of film. Then they present some latent
variable models for learning character types in
movies.

Vala et al. (2015) propose a novel technique
for character detection, achieving significant im-
provements over state of the art on multiple
datasets.

107



2 Model Building and Evaluation

We approached the problem as a supervised learn-
ing problem, using a labeled dataset and then
transferring the result to our dataset.

In literary studies it is difficult to find a clas-
sification of characters according to some model
of personality. Literary critics often prefer to
go deeper into analyzing a character rather than
putting her/him in an simple categories.

At the basis of our model, and in general in the
framework we mentioned there is a lexical hypoth-
esis: we are, at least to some extent, allowed to in-
fer personality traits from the language and from
words. From a psychological point of view, a sup-
port to the lexical hypothesis is in Ashton and Lee
(2005). Our concern is also if those models can
be applied to theatrical scripts, where everything
is faked (and thus false) to be real (true). A cru-
cial role is played by author’s expertise in knowing
how to render in the scripts the psychological traits
of the characters.

2.1 Big5 Dataset with Gold Labels

As a labelled dataset, we used “essays”, originally
from Pennebaker and King (1999). “Essays” is
a large dataset of stream-of-consciousness texts
(about 2400, one for each author/user), collected
between 1997 and 2004 and labelled with person-
ality classes. Texts have been produced by stu-
dents who took the Big5 questionnaires. The la-
bels, that are self-assessments, are derived by z-
scores computed by Mairesse et al. (2007) and
converted from scores to nominal classes by Celli
et al. (2013) with a median split1.

The main reason behind the usage of this dataset
is that is the only one containing gold labels suit-
able for our task. For sure the fact that the material
does not match perfectly with literary text can pose
some issues, discussed later in Section 3.

2.2 Literary Dataset Building and Validation

The proposed task is to recognize the personality
of a character of a literary text, by the word s/he
says. Theatre play scripts is probably the easiest
type of literary text from which to extract charac-
ters’ dialogues.

The name of the character speaking, following
an old established convention, is at the start of the

1We recall the five factors in Big5 model: Extroversion
(EXT), Agreeableness (AGR), Conscientiousness (CON),
Neuroticism (NEU), and Openness to experience (OPN).

line, usually in a bold typeface, and after a colon
“:” or a dot “.” the text of the utterance follows
until another character takes the turn or the play,
act or scene ends.

An excerpt from William Shakespeare, Hamlet,
Act III, Scene 4 shows the patterns:

[. . . ]

Hamlet. Do you see nothing there?

Gertrude. Nothing at all; yet all that is
I see.

Hamlet. Nor did you nothing hear?

Gertrude. No, nothing but ourselves.

[. . . ]

Our first candidate dataset was the Shakespeare
Corpus in NLTK by Bird et al. (2009) that consist
of several tragedies and comedies of Shakespeare
well formatted in the XML format. However the
the Shakespeare Corpus in NLTK is only a fraction
of Shakespeare’s plays. To collect more data we
looked for a larger corpus. Open Source Shake-
speare (OSS) contains all the 38 works2 (some
split in parts) commonly attributed to William
Shakespeare3, in a format good enough to easily
parse dialogue structure

In our model a character is associated to all
her/his turns as a single document. This is a sim-
plified view but good enough as a starting point.
One of the main consequences of this is a sort of
flattening of the characters and the missing of the
utterances said together at the same time by two
characters. A quick check did not spot this type
of event for two or more named characters. Very
seldom, there are some references to the charac-
ter “All” that mean all the characters on the stage
together.

We know in advance that our models to be based
on common words between the corpora, so we
quickly checked the total lemma in commons that
is 6755 over the two different corpora with roughly
60000 words each.

2See: https://opensourceshakespeare.org/
views/plays/plays_alpha.php.

3We acknowledge the fact that the works of William
Shakespeare are routinely used for the classical NLP task of
authorship recognition and that some attribution are still con-
troversial. But this is not in our scope. The OSS includes the
1864 Globe Edition of Shakespeare works.

108



2.3 Modeling
We started working on our model using the Scikit-
learn toolkit to do Machine Learning in Python
(Pedregosa et al., 2011).

The initial task was to get reasonable perfor-
mance on the “essay” dataset.

The problem falls in the class of multi-output
labels. For simplicity each label (corresponding to
a personal trait) can be treated as independent, par-
titioning the problem in 5 classification problems.

Starting from a simple bag of words model, we
added to the features the output of TextPro (Pianta
et al., 2008) for the columns: pos, chunk, entity,
and tokentype4.

The possible values of those columns are cate-
gorical variables that can be counted for each char-
acter in order to build a feature for the model.

Following the suggestion from (Celli et al.,
2013, 2014), our model was built as a pipeline in-
corporating both the bag of word model and the
output of TextPro.

We acknowledge that a lot of tweaking is pos-
sible for improving the performance of a model
(such as building a different model for each trait,
or use different features or classifier). However
that was not our primary scope.

2.4 Testing the model
The OSS dataset missed some features used in the
training and testing of the original model. We
solved the issue by adding the required features
with the initial value of 0. Since the feature are re-
lated to countable occurrences or related to ratios,
this operation is safe.

We briefly discuss a couple of models. In Ta-
ble 1 are reported the results for a simple model
that uses the bag-of-word concept and with some
POS tagging extracts the lemmas.

Table 1: Model: NLTK Lemma

trait model classifier f1-score
AGR NLTK Lemma Linear SVC 0.45
CON NLTK Lemma Linear SVC 0.46
EXT NLTK Lemma Linear SVC 0.45
NEU NLTK Lemma Random Forest 0.53
OPN NLTK Lemma Multinomial NB 0.61

By adding the features obtained with TextPro as
described in subsection 2.3 we gained some score
for most of the traits, for the weighted average of

4A brief description of TextPro usage and the meaning of
the annotations is available at: http://textpro.fbk.
eu/annotation-layers.

each trait our results are comparable to the ones
reported by Celli et al. (2013).

The results shown in Table 2 report the best re-
sults.

Table 2: Model: NLTK Lemma + TextPro (both trun-
cated and weighted) for Random Forest Classifier

trait model f1-score
AGR NLTK Lemma + TextPro 0.59
CON NLTK Lemma + TextPro 0.45
EXT NLTK Lemma + TextPro 0.54
NEU NLTK Lemma + TextPro 0.54
OPN NLTK Lemma + TextPro 0.66

Going deeper into commenting the feature en-
gineering and comparing the models should give
us insight for understanding the linguistic features
related to personality. This requires further knowl-
edge beyond the scope of the current work and it
leaves the path open to future explorations.

3 Results and Discussion

As with our models on a known dataset we got
state of the art performance, we tried to apply
the classifier on the Shakespeare’s plays dataset.
Table 3 reports the results for the most verbose
speakers of a selected list of plays.

Table 3: Personality Trait Attribution Selected List

Play Name AGR CON EXT NEU OPE
Hamlet 0 1 0 0 1
Claudius 0 1 0 0 1

Hamlet Polonius 0 1 0 0 1
Horatio 0 1 0 0 1
Laertes 0 0 0 0 1
Macbeth 0 0 0 0 1
Lady Macbeth 0 1 0 1 1

Macbeth Malcolm 0 0 0 0 1
Macduff 0 0 0 0 1
Ross 0 0 0 0 1
Portia 0 1 0 0 1

Merchant Shylock 0 0 0 1 1
of Bassanio 0 1 0 0 1
Venice Launcelot Gobbo 0 0 0 0 1

Antonio 0 1 0 0 1
Iago 0 1 0 0 1
Othello 0 0 0 0 1

Othello Desdemona 0 1 0 0 1
Cassio 0 1 0 0 1
Emilia 0 0 0 0 1
Romeo 0 0 0 0 1

Romeo Juliet 0 0 0 0 1
and Friar Laurence 0 0 0 0 1
Juliet Nurse 0 1 0 1 1

Capulet 0 0 0 1 1

We do not have a gold labeled dataset to con-
front with. But a quick look at the result table for
the best known (at least to us) characters of the

109



Shakespeare’s plays reveals some traits in com-
mon for characters that are at the opposite, like
the protagonist and the antagonist. This is the case
for “Hamlet”, the most verbose characters seem
to have similar traits. We are glad that Portia and
Antonio in “Merchant of Venice” display consci-
entiousness and Shylock neuroticism, as our shal-
low knowledge of the play remind us. A vertical
look reveals low variability for the Agreeableness,
Extraversion and Openness traits. Intuitively we
acknowledge that something strange is happening
here. Those traits are for sure related to the self-
expression, something that a character is forced to
do in a play. A model with numerical scores in-
stead of boolean values would have offered some
guidance here. In general we think that there are
some reasons for the drawbacks of the model. We
detail them in the following paragraphs.

A possible explanation is that the Big Five
model, and/or our implementation does not cap-
ture the personality traits of the characters that are
at the level that is needed. In other words, the
model is too broad. Indeed, the Big Five Model
has also the sub-classification for “Facets”, but we
do not know any public available gold standard
dataset labeled at facet level.

The idea that the Big 5 is quite limited is not
new. For example Paunonen and Jackson (2000)
sustain that the following categories are to be con-
sidered outliers of the Big 5: a) Religious, de-
vout, reverent; b) Sly, deceptive, manipulative;
c) Honest, ethical, moral; d) Sexy, sensual, erotic;
e) Thrifty, frugal, miserly; f) Conservative, tra-
ditional, down-to-earth; g) Masculine-feminine;
h) Egotistical, conceited, snobbish; i) Humorous,
witty, amusing; j) Risk-taking or Thrill-seeking.

Indeed those categories seem more appropri-
ate to describe some of the characters in Shake-
speare’s scripts.

The essays dataset does not matches the OSS
dataset along a number of dimensions. The most
relevant ones that come to our mind are: purpose,
grammar and mistakes and language diacronicity.
Purpose: the essay is stream of consciousness,
written once, probably never checked, by the au-
thor, the OSS is high quality writing, mostly where
people speak with others. Grammar and mistakes:
we think that the OSS corpus contains low rate
of spelling errors, and the formulation of the sen-
tences should be almost always correct, due to the
nature of the corpus, but of course is another thing

to check. For sure also English grammar changed,
so additional caveats may apply. Language di-
acronicity: Shakespeare’s English is not today’s
English. To what extended this has an impact need
to be verified.

Usually the personality traits are considered sta-
ble. But the need of creating tension and drama in
a play may also imply some evolution in the per-
sonality of the character. A possible insight on this
could come from a dispersion plot of the charac-
ter traits all along the play, maybe with different
granularity (one for each utterance, one for each
scene). The dispersion plot should highlight such
changes.

By following the Aristotle’s Rules (Aristote-
les, 1998) the playwright may set the dramatic
tone for an entire scene, and the personality traits
coherence may be sacrificed for this. The pre-
viously mentioned dispersion plot could show if
such changes are aligned with the scenes or the
acts. Since the acts usually are situated in dis-
tant time settings is reasonable to expect a change
in personality traits due to the development of the
character.

Our assumption that the characters’ words cap-
ture the personality traits could be not always cor-
rect. Especially for plays where there are a lot
of lies, alliances and breakages. Additional anal-
ysis taking care of the persons whom the speech
is directed may discover that the personality traits
change in relation of the recipient.

For sure there are different ways to write and
perform a play. We choose Shakespeare’s scripts
because they are a classical resource and they rely
a lot on the dialogues. But discarding the actions
may have caused the loss of information, hinder-
ing the discover of the personality trait. Indeed, an
advice for newcomers in drama writing is to build
characters by showing their actions.

Two different characters (e.g., a king and a
jester) can say the same thing, with a total different
meaning. What differentiates them is the reaction
of the others on the stage. A thorough modelling
should take into account also this type of event.
Intuitively this is used in comedies. Two different
characters say the same thing to a third person in a
short span of time. The second time the audience
will anticipate the utterance in mind and will be
delighted of the effect. In general a more detailed
investigation has to be done to highlight different

110



traits characterization in comedies and tragedies.
In conclusion the present work describes a first

step towards capturing the personality traits of the
characters in literary texts, in particular in the
Shakespeare’s theatre scripts. We discussed the
results and the limitation of our approach and en-
visioned possible mitigations or solutions that re-
quire more research and dedication.

References
Aristoteles. 1998. Poetica. GLF editori Laterza,

Roma.

Michael C. Ashton and Kibeom Lee. 2005. A de-
fence of the lexical approach to the study of per-
sonality structure. European Journal of Personality,
19(1):5–24.

David Bamman, Brendan O’Connor, and Noah A.
Smith. 2013. Learning latent personas of film char-
acters. In ACL (1), pages 352–361. The Association
for Computer Linguistics.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A bayesian mixed effects model of literary
character. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 370–379, Bal-
timore, Maryland. Association for Computational
Linguistics.

S. Bird, E. Klein, and E. Loper. 2009. Natural Lan-
guage Processing with Python: Analyzing Text with
the Natural Language Toolkit. O’Reilly Media.

Ryan L Boyd. 2017. Psychological text analysis in the
digital humanities. In Data analytics in digital hu-
manities, pages 161–189. Springer.

Fabio Celli, Bruno Lepri, Joan-Isaac Biel, Daniel
Gatica-Perez, Giuseppe Riccardi, and Fabio Pianesi.
2014. The workshop on computational personality
recognition 2014. In The Workshop on Computa-
tional Personality Recognition 2014.

Fabio Celli, Fabio Pianesi, David Stillwell, and Michal
Kosinski. 2013. Workshop on computational per-
sonality recognition: Shared task. In AAAI Work-
shop - Technical Report.

Lucie Flekova and Iryna Gurevych. 2015. Personal-
ity profiling of fictional characters using sense-level
links between lexical resources.

Siobhán Grayson, Maria Mulvany, Karen Wade, Gerar-
dine Meaney, and Derek Greene. 2016. Novel2vec:
characterising 19th century fiction via word embed-
dings. In 24th Irish Conference on Artificial Intelli-
gence and Cognitive Science (AICS’16), University
College Dublin, Dublin, Ireland, 20-21 September
2016.

Kibeom Lee and Michael C Ashton. 2004. Psychome-
tric properties of the hexaco personality inventory.
Multivariate Behavioral Research, 39(2):329–358.
PMID: 26804579.

Mingming Liu, Yufeng Wu, Dongdong Jiao, Michael
Wu, and Tingshao Zhu. 2018. Literary intelligence
analysis of novel protagonists’ personality traits and
development. Digital Scholarship in the Humani-
ties.

François Mairesse, Marilyn Walker, Matthias Mehl,
and Roger Moore. 2007. Using linguistic cues for
the automatic recognition of personality in conver-
sation and text. Journal of Artificial Intelligence Re-
search (JAIR), 30:457–500.

Robert R. McCrae, James F. Gaines, and Marie A.
Wellington. 2012. The Five-Factor Model in Fact
and Fiction, chapter 4. American Cancer Society.

Sampo V. Paunonen and Douglas N. Jackson. 2000.
What is beyond the big five? plenty! Journal of
Personality, 68(5):821–835.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

James Pennebaker and Laura A. King. 1999. Lin-
guistic styles: Language use as an individual differ-
ence. Journal of Personality and Social Psychology,
77(6):1296–1312.

Emanuele Pianta, Christian Girardi, Roberto Zanoli,
and Fondazione Bruno Kessler. 2008. The textpro
tool suite. In In Proceedings of LREC, 6th edition
of the Language Resources and Evaluation Confer-
ence.

Hardik Vala, David Jurgens, Andrew Piper, and Derek
Ruths. 2015. Mr. bennet, his coachman, and the
archbishop walk into a bar but only one of them gets
recognized: On the difficulty of detecting characters
in literary texts. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 769–774, Lisbon, Portugal. Asso-
ciation for Computational Linguistics.

111



Proceedings of the Second Storytelling Workshop, pages 112–116
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

“Winter is here”: Summarizing Twitter Streams related to Pre-Scheduled
Events

Anietie Andy
andyanietie@gmail.com

University of Pennsylvania

Derry Wijaya
wijaya@bu.edu

Boston University

Chris Callison-Burch
ccb@cis.upenn.edu

University of Pennsylvania

Abstract

Pre-scheduled events, such as TV shows and
sports games, usually garner considerable at-
tention from the public. Twitter captures large
volumes of discussions and messages related
to these events, in real-time. Twitter streams
related to pre-scheduled events are charac-
terized by the following: (1) spikes in the
volume of published tweets reflect the high-
lights of the event and (2) some of the pub-
lished tweets make reference to the charac-
ters involved in the event, in the context in
which they are currently portrayed in a sub-
event. In this paper, we take advantage of
these characteristics to identify the highlights
of pre-scheduled events from tweet streams
and we demonstrate a method to summarize
these highlights. We evaluate our algorithm on
tweets collected around 2 episodes of a popu-
lar TV show, Game of Thrones, Season 7.

1 Introduction

Every week, pre-scheduled events, such as TV
shows and sports games capture the attention of
vast numbers of people. The first episode of the
seventh season of Game of Thrones (GOTS7), a
popular fantasy show on HBO, drew in about 10
million viewers during its broadcast1.

During the broadcast of a popular pre-scheduled
event, Twitter users generate a huge amount
of time-stamped tweets expressing their excite-
ments/frustrations, opinions, and commenting
about the characters involved in the event, in the
context in which they are currently portrayed in a
sub-event. For example, the following are some
tweets that were published during a three minute
time period of an episode of GOTS7:
• Bend the knee... Jon snow #gots7

1https://en.wikipedia.org/wiki/Game_
of_Thrones_(season_7)#Ratings

• finally Jon and Dany meet and i’m freaking
out #gots7
• Daenerys: have you not come to bend the

knee? Jon Snow: i have not Daenerys.
These tweets reflect a part of or the whole scene
that happened during this time period on the show
i.e. Jon Snow meeting with Daenerys.

Monitoring tweet streams - related to an event,
for information related to sub-events can be time
consuming partly because of the overwhelming
amount of data, some of which are redundant or ir-
relevant to the sub-event. In this paper, we propose
a method to summarize tweet streams related to
pre-scheduled events. We aim to identify the high-
lights of pre-scheduled events from tweet streams
related to the event and automatically summarize
these highlights. Specifically we evaluate our al-
gorithm on tweets we collected around a popular
fantasy TV show, Game of Thrones. We will make
this dataset available to the research community 2.
This paper makes the following contributions:
• Identify the highlights of pre-scheduled

events from tweets streams related to the
event and identify the character that had the
most mentions in tweets published during the
highlight.
• Identify the context in which this character

was being discussed in tweets published dur-
ing the highlight and summarize the highlight
by selecting the tweets that discuss this char-
acter in a similar context.

2 Related Work

Some approaches to summarizing tweets related
to an event adapt or modify summarization tech-
niques that perform well with documents from
news articles and apply these adaptations to
tweets. In Sharifi et al. (2010a); Shen et al.

2https://anietieandy.github.io

112



(2013) a graph-based phrase reinforcement algo-
rithm was proposed. In Sharifi et al. (2010b) a hy-
brid TF-IDF approach to extract one-or-multiple-
sentence summary for each topic was proposed.
In Liu et al. (2011) an algorithm is proposed
that explores a variety of text sources for sum-
marizing twitter topics. In Harabagiu and Hickl
(2011) an algorithm is proposed that synthesizes
content from multiple microblog posts on the
same topic and uses a generative model which
induces event structures from the text and cap-
tures how users convey relevant content. In Mar-
cus et al. (2011), a tool called ”Twitnfo” was pro-
posed. This tool used the volume of tweets re-
lated to a topic to identify peaks and summarize
these events by selecting tweets that contain a de-
sired keyword or keywords, and selects frequent
terms to provide an automated label for each peak.
In Takamura et al. (2011); Shen et al. (2013) a
summarization model based algorithm was pro-
posed based on the facility location problem. In
Chakrabarti and Punera (2011) a summarization
algorithm based on learning an underlying hid-
den state representation of an event via hidden
Markov models is proposed. Louis and New-
man (2012) proposed an algorithm that aggre-
gates tweets into subtopic clusters which are then
ranked and summarized by a few representative
tweets from each cluster (Shen et al., 2013). In
Nichols et al. (2012) an algorithm was proposed
that uses the volume of tweets to identify sub-
events, then uses various weighting schemes to
perform tweet selection. Li et al. (2017) proposed
an algorithm for abstractive text summarization
based on sequence-to-sequence oriented encoder-
decoder model equipped with a deep recurrent
generative decoder. Nallapati et al. (2016) pro-
posed a model using attentional endoder-decoder
Recurrent Neural Network.

Our algorithm is different from the previous
work in that it identifies the character that had the
most mentions in tweets published in a highlight
and identifies the context in which this character
was being discussed in this highlight; it then sum-
marizes the highlight by selecting tweets that dis-
cuss this character in a similar context.

3 Dataset

Our dataset consist of tweets collected around 7
episodes of a popular TV show, GOTS7. We al-
gorithmically identify points of elevated drama or

highlights from this dataset and summarize these
highlights.

Each episode of GOTS7 lasted approximately
an hour. We used the Twitter streaming API to col-
lect time-stamped and temporally ordered tweets
containing ”#gots7”, a popular hashtag for the
show, while each episode was going on. We note
that filtering by hashtag gives us only some of the
tweets about the show–we omit tweets that used
other GOTS7 related hashtags or no hashtags at
all. Our dataset consists of the tweet streams for
seven episodes of GOTS7; we collected the fol-
lowing number of tweets: 32,476, 9,021, 4,532,
8,521, 6,183, 8,971, and 17,360 from episodes
1,2,3,4,5,6, and 7 respectively.

3.1 Highlight Identification
To identify the highlights of each episode, we
plot the number of tweets that were published per
minute for each minute of an episode. Since data
at the minute level is quite noisy and to smooth out
short-term fluctuations, we calculated the mean of
the number of tweets published every 3 minutes
as shown by the red line in Figure 1, which forms
peaks in the tweet volume. We observed the fol-
lowing: (1) the spikes in the volume of tweets
correspond to some exciting events/scenes during
the show and (2) when there is a spike in the vol-
ume of tweets, the characters involved in the sub-
events (around that time period) spike in popu-
larity as well in the published tweets. For exam-
ple, in episode 1, when the character Arya Stark
wore Walder Freys face and poisoned all of house
Frey, there was a spike in the volume of tweets
at this time period; also Arya Stark and Walder
Frey spiked in popularity in tweets published in
this time period.
Several studies have suggested that a peak needs
to rise above a threshold to qualify it as a high-
light in a given event. Hence, similar to Shamma
et al. (2009); Gillani et al. (2017), we identify
highlights of the events by selecting the peaks us-
ing the mean and standard deviation of the peaks
in all the tweets collected around the 7 episodes of
GOTS7.

3.2 Character Identification
To identify the characters involved in GOTS7, we
select all the character names listed in the GOTS7
Wikipedia page. It is common for tweets to men-
tion nicknames or abbreviations rather that char-
acter full names. For example, in tweets col-

113



Figure 1: Histogram of number of tweets published per minute during an episode of Game of Thrones. The red
line, which forms peaks, shows the mean of the number of tweets published every 3 minutes. The names of the
character that had the most mentions during each peak in tweet volume are also shown.

lected around GOTS7 episode 1, the character
Sandor Clegane is mentioned 22 times by his full
name and 61 times by his nickname “the hound.”
Therefore, for each character, we assemble a list
of aliases consisting of their first name (which
for GOTS7 characters is unique), and the nick-
names listed in the first paragraph of the charac-
ter’s Wikipedia article. All characters end up hav-
ing at most 2 aliases i.e. their first name and/or a
nickname. For example, the nicknames for Sandor
Clegane are Sandor and the hound.
To identify the character(s) involved in a highlight
from the tweets published during the highlight, we
do the following: (1) given the highlight (section
3.1) we count the frequency of mentions of char-
acters in tweets published during the highlight.
We select the character with the most mentions.
The intuition here is that the character with the
most mentions in tweets published in each high-
light played a major role in the sub-event that oc-
curred during the highlight.

4 Our Model

We use context2vec Melamud et al. (2016) to cre-
ate a vector representation for the tweets in each
highlight. Context2vec uses an unsupervised neu-
ral model, a bidirectional LSTM, to learn sen-
tential context representations that result in com-
parable or better performances on tasks such as

sentence completion and lexical substitution than
popular context representation of averaged word
embeddings. Context2vec learns sentential con-
text representation around a target word by feed-
ing one LSTM network with the sentence words
around the target from left to right, and another
from right to left. These left-to-right and right-
to-left context word embeddings are concatenated
and fed into a multi-layer perceptron to obtain
the embedding of the entire joint sentential con-
text around the target word. Finally, similar to
word2vec, context2vec uses negative sampling to
assign similar embeddings to this sentential con-
text and its target word. This process indirectly
results in sentential contexts, which are associated
with similar target words, being assigned similar
embeddings.

Given the tweets that mention the character that
had the most mentions in tweets published dur-
ing the time period of a highlight, we want vector
representations of tweets that represent the con-
text in which this character is discussed in these
tweets. Tweets that discuss the character in a
similar context should have similar vector repre-
sentations. The sentential context representation
learned by context2vec is used to find the tweets
that best summarize the highlight.

We cluster the context2vec vectors using K-
Means. To identify the number of clusters for

114



Episode Scene Description Tweet Summary

Episode 3 Daenerys Targaryen meets
Jon Snow

(1) Jon snow telling
Daenerys about the white

walkers
(2) Davos keeping it straight

and simple for team Jon
snow, the king in the north!
(3) Daenerys Targaryen and

Jon snow... in the same.
room.

Episode 4
Arya displays superb fencing

skills as Littlefinger and
Sansa watch

(1) Arya got Sansa and
Littlefinger shook!
(2) Arya and Brienne
fighting each other,

marvellous piece of telly.
(3) so what i’m getting from
this is that Arya can beat the

hound.

Table 1: Example highlight summaries of Game of Thrones episode 3 and 4

tweets published during the time period of a high-
light, we use the elbow method (Kodinariya and
Makwana, 2013). For each cluster we choose the
five tweets closest to their respective cluster cen-
troids as the tweets that summarize the highlight;
these five tweets were concatenated together. We
varied the number of tweets we concatenated and
five gave the optimal results.

5 Experiments

We evaluate our algorithm on tweets collected
around 2 episodes of GOTS7 i.e. episodes 3 and 4.
The plot summaries of these GOTS7 episodes are
available on the IMDB website. We collected the
plot summaries for GOTS7 episodes 3 and 4 from
the IMDB website. We compared the summaries
from our model to the plot summaries of these
episodes from IMDB using the ROUGE metric
(Lin, 2004). We compared our model to 5 com-
petitive summarization algorithms and our model
performed better than all the baselines in both
episodes 3 and 4 as shown int tables 2 and 3. Table
1 shows some of the summaries from our model
for a highlight in both episodes 3 and 4.

6 Baselines

LexRank: Computes the importance of tex-
tual units using eigenvector centrality on a graph
representation based on the similarity of the
units (Erkan and Radev, 2004).
TextRank: A graph-based extractive summariza-
tion algorithm (Mihalcea and Tarau, 2004).
LSA: Constructs a terms-by-units matrix, and es-
timates the importance of the textual units based
on SVD on the matrix (Gong and Liu, 2001)

Luhn: Derives a significance factor for each tex-
tual unit based occurrences and placements of fre-
quent words within the unit (Luhn, 1958)
Most Retweeted: We select the tweet with the

most number of re-tweets in an highlight as a sum-
mary of the highlight.

Algorithms Rouge-1 Rouge-2 Rouge-L
Our Model 38 10 31.5
Luhn 14.4 5 12.3
Most Re-tweets 10 3 10
TextRank 15 2 11.7
LexRank 10 2 10
LSA 10 0 10

Table 2: ROUGE-F1 scores on tweets from highlights
in Episode 3

Algorithms Rouge-1 Rouge-2 Rouge-L
Our Model 33 19.4 25.2
Luhn 16.5 0 13
Most Re-tweets 10 4 10
TextRank 10.5 4 10
LexRank 10 5 10
LSA 11.3 5 10

Table 3: ROUGE-F1 scores on tweets from highlights
in Episode 4

7 Conclusion and Future Work

We proposed a model to summarize highlights of
events from tweet streams related to the events and
showed that our model outperformed several base-
lines. In the future, we will test our model on
tweets collected around other events such as Pres-
idential debates. There were a few cases where
our algorithm generated summaries that are some-
what similar, for example: ”Arya got Sansa and
Littlefinger shook!” and ”Littlefinger is shook by
Aryas fighting skills”. In the future, we will im-
prove the diversity of the generated summaries.

115



References

Deepayan Chakrabarti and Kunal Punera. 2011. Event
summarization using tweets. ICWSM, 11:66–73.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457–479.

Mehreen Gillani, Muhammad U Ilyas, Saad Saleh,
Jalal S Alowibdi, Naif Aljohani, and Fahad S
Alotaibi. 2017. Post summarization of microblogs
of sporting events. In Proceedings of the 26th In-
ternational Conference on World Wide Web Com-
panion, pages 59–68. International World Wide Web
Conferences Steering Committee.

Yihong Gong and Xin Liu. 2001. Generic text summa-
rization using relevance measure and latent semantic
analysis. In Proceedings of the 24th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 19–25.
ACM.

Sanda M Harabagiu and Andrew Hickl. 2011. Rele-
vance modeling for microblog summarization. In
ICWSM.

Trupti M Kodinariya and Prashant R Makwana. 2013.
Review on determining number of cluster in k-
means clustering. International Journal, 1(6):90–
95.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang.
2017. Deep recurrent generative decoder for
abstractive text summarization. arXiv preprint
arXiv:1708.00625.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Fei Liu, Yang Liu, and Fuliang Weng. 2011. Why is
sxsw trending?: exploring multiple text sources for
twitter topic summarization. In Proceedings of the
Workshop on Languages in Social Media, pages 66–
75. Association for Computational Linguistics.

Annie Louis and Todd Newman. 2012. Summariza-
tion of business-related tweets: A concept-based ap-
proach. Proceedings of COLING 2012: Posters,
pages 765–774.

Hans Peter Luhn. 1958. The automatic creation of lit-
erature abstracts. IBM Journal of research and de-
velopment, 2(2):159–165.

Adam Marcus, Michael S Bernstein, Osama Badar,
David R Karger, Samuel Madden, and Robert C
Miller. 2011. Twitinfo: aggregating and visualizing
microblogs for event exploration. In Proceedings of
the SIGCHI conference on Human factors in com-
puting systems, pages 227–236. ACM.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In CoNLL, pages
51–61.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. arXiv preprint arXiv:1602.06023.

Jeffrey Nichols, Jalal Mahmud, and Clemens Drews.
2012. Summarizing sporting events using twitter. In
Proceedings of the 2012 ACM international confer-
ence on Intelligent User Interfaces, pages 189–198.
ACM.

David A Shamma, Lyndon Kennedy, and Elizabeth F
Churchill. 2009. Tweet the debates: understanding
community annotation of uncollected sources. In
Proceedings of the first SIGMM workshop on Social
media, pages 3–10. ACM.

Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita.
2010a. Summarizing microblogs automatically. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
685–688. Association for Computational Linguis-
tics.

Beaux Sharifi, Mark-Anthony Hutton, and Jugal K
Kalita. 2010b. Experiments in microblog summa-
rization. In Social Computing (SocialCom), 2010
IEEE Second International Conference on, pages
49–56. IEEE.

Chao Shen, Fei Liu, Fuliang Weng, and Tao Li. 2013.
A participant-based approach for event summariza-
tion using twitter streams. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1162.

Hiroya Takamura, Hikaru Yokono, and Manabu Oku-
mura. 2011. Summarizing a document stream.
In European conference on information retrieval,
pages 177–188. Springer.

116



Proceedings of the Second Storytelling Workshop, pages 117–126
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

WriterForcing: Generating more interesting story endings

Prakhar Gupta∗ Vinayshekhar Bannihatti Kumar∗ Mukul Bhutani∗ Alan W Black
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA
{prakharg, vbkumar, mbhutani, awb}@cs.cmu.edu

Abstract

We study the problem of generating inter-
esting endings for stories. Neural genera-
tive models have shown promising results
for various text generation problems. Se-
quence to Sequence (Seq2Seq) models are
typically trained to generate a single output
sequence for a given input sequence. How-
ever, in the context of a story, multiple end-
ings are possible. Seq2Seq models tend to
ignore the context and generate generic and
dull responses. Very few works have stud-
ied generating diverse and interesting story
endings for a given story context. In this
paper, we propose models which generate
more diverse and interesting outputs by 1)
training models to focus attention on im-
portant keyphrases of the story, and 2) pro-
moting generation of non-generic words. We
show that the combination of the two leads
to more diverse and interesting endings.

1 Introduction

Story ending generation is the task of generating
an ending sentence of a story given a story con-
text. A story context is a sequence of sentences
connecting characters and events. This task is
challenging as it requires modelling the char-
acters, events and objects in the context, and
then generating a coherent and sensible ending
based on them. Generalizing the semantics of
the events and entities and their relationships
across stories is a non-trivial task. Even harder
challenge is to generate stories which are non-
trivial and interesting. In this work, we focus on
the story ending generation task, where given a
story context - a sequence of sentences from a
story, the model has to generate the last sentence
of the story.

∗ equal contribution

Context
My friends and I did not know what to do
for our friends birthday. We sat around the
living room trying to figure out what to do.
We finally decided to go to the movies. We all
drove to the theatre and bought tickets.

Specific response (ground truth)
The movie turned out to be terrible but our
friend had a good time.
Generic response (seq2seq output)
We were so happy to see that we had a good
time.

Table 1: For a given story context there can be mul-
tiple possible responses. The ones which are more
specific to the story are more appealing to the users.

Seq2seq models have been widely used for the
purpose of text generation. Despite the popu-
larity of the Seq2seq models, in story genera-
tion tasks, they suffer from a well known issue
of generating frequent phrases and generic out-
puts. These models when trained with Maxi-
mum Likelihood Estimate (MLE), learn to gen-
erate sequences close to the ground truth se-
quences. However, in story generation tasks,
there can be multiple possible reasonable out-
puts for a given input story context. MLE ob-
jective in these models results in outputs which
are safe (that is more likely to be present in any
output), but also bland and generic. Some ex-
amples of such generic outputs in story ending
generation task are - "He was sad", "They had a
great time", etc. Table 1 shows an example story
from the ROC stories corpus (Mostafazadeh
et al., 2017) and the corresponding specific and
generic responses.

117



There have been many attempts to solve the
issue of generation of generic responses. They
can be broadly categorized into two categories:

1. Use conditionals such as emotions, senti-
ments, keywords, etc. that work as fac-
tors to condition the output on (Li et al.,
2016b; Hu et al., 2017a). When the models
focus on these conditionals given as addi-
tional input features, they tend to generate
outputs which are more relevant and spe-
cific to the conditionals, which leads to less
generic outputs. In our models, we use the
keyphrases present in the story context as
conditionals.

2. Modify the decoding procedure (Vijayaku-
mar et al., 2018) with beam search or other
variants, or the loss of the decoder (Baheti
et al., 2018; Li et al., 2016a) to encourage the
model to generate more diverse outputs.
Our proposed model uses the ITF loss func-
tion suggested by Nakamura et al. (2018) to
encourage the decoder to produce more in-
teresting outputs.

We show that our proposed models can gen-
erate diverse and interesting outputs by condi-
tioning on the keyphrases present in the story
context and incorporating a modified training
objective. Apart from human judgement based
evaluation, we measure performance of the
models in terms of 1) Diversity using DISTINCT-
1,2,3 metrics and 2) Relevance by introducing
an automatic metric based on Story Cloze loss.
Experiments show that our models score higher
than current state of the art models in terms of
both diversity and relevance.

For reproducibility purposes we are making
our codebase open source 1.

2 Related Work

There has been a surge in recent years to tackle
the problem of story generation. One common
theme is to employ the advances in deep learn-
ing for the task. Jain et al. (2017) use Seq2Seq
models (Sutskever et al., 2014) to generate sto-
ries from descriptions of images. Huang et al.
(2018) leverage hierarchical decoding where a
high-level decoder constructs a plan by gener-
ating a topic and a low-level decoder generates

1https://github.com/witerforcing/WriterForcing

sentences based on the topic. There have been
a few works which try to incorporate real world
knowledge during the process of story genera-
tion. Guan et al. (2018) use an incremental en-
coding (IE) scheme and perform one hop rea-
soning over the ConceptNet graph ConceptNet
in order to augment the representation of words
in the sentences. Chen et al. (2018) also tackle
the problem in a similar way by including "com-
monsense knowledge" from ConceptNet as well.
Several prior work focus on generating more co-
herent stories. Clark et al. (2018) model en-
tity representations explicitly by combining it
with representations of the previous sentence
and Martin et al. (2018) model events represen-
tations and then generate natural language sen-
tences from those events (event2sentence). Li
et al. (2018) use adversarial training to help the
model generate more reasonable endings.

A common problem with such neural ap-
proaches in general is that the generated text is
very "safe and boring". There has been a lot
of recent efforts towards generating diverse out-
puts in problems such as dialogue systems, im-
age captioning, story generation, etc., in order to
alleviate the safe or boring text generation prob-
lem. Methods include using self-attention Shao
et al. (2017), Reinforcement Learning (Li et al.,
2017), GANs etc. Xu et al. (2018) proposed a
method called Diversity-Promoting Generative
Adversarial Network, which assigns low reward
for repeatedly generated text and high reward
for novel and fluent text using a language model
based discriminator. Li et al. (2016a) propose a
Maximum Mutual Information (MMI) objective
function and show that this objective function
leads to a decrease in the proportion of generic
response sequences. Nakamura et al. (2018) pro-
pose another loss function for the same objec-
tive. In our models we experiment with their loss
function and observe similar effects.

Recent works have also made advances in
controllable generation of text based on con-
straints to make the outputs more specific. Peng
et al. (2018) have a conditional embedding ma-
trix for valence to control the ending of the
story. Hu et al. (2017b) have a toggle vector
to introduce constraint on the output of text
generation models using Variational Auto En-
coders(Doersch, 2016). Generating diverse re-
sponses based on conditioning has been done

118



extensively in the field of dialogue systems. Xing
et al. (2016); Zhou et al. (2018); Zhang et al.
(2018) propose conditioning techniques by us-
ing emotion and persona while generating re-
sponses. Conditioned generation has also been
studied in the field of story generation to plan
and write (Yao et al., 2018; Huang et al., 2018)
stories.

In this work, we focus on generating more di-
verse and interesting endings for stories by in-
troducing conditioning on keyphrases present
in the story context and encouraging infrequent
words in the outputs by modifying the training
objective, thus leading to more interesting story
endings.

3 Background

3.1 Sequence-to-Sequence with Attention

We use a Seq2Seq model with attention as our
baseline model. Words (wi ) belonging to the
context of the story are fed one by one to the
encoder (uni-directional but multi-layer) which
produces the corresponding hidden representa-
tions henc

i . Finally, the hidden representation
at the final timestep (T) is passed on to the de-
coder. During training, for each step t, the de-
coder (a unidirectional GRU) receives the word
embedding of the previous word(xt−1) and the
hidden state (hdec

t−1). At training time, the word
present in the target sentence at timestep t −1 is
used and at test time, the actual word emitted by
the decoder at the time step t −1 is used as input
in the next time step.

However, to augment the hidden representa-
tion that is passed from encoder to the decoder,
one can use the mechanism of attention (Bah-
danau et al., 2014). The attention weights at time
step t during decoding, denoted as at , can be
calculated as:

e t = vT tanh
(
Wdec hdec

t +Wenc henc
1:Tsr c

)
(1)

at
i = softmax

(
e t

i

)
(2)

where Wdec , Wenc and vT are learnable pa-
rameters and at

i denotes the i th component of
the attention weights. The attention weights can
be viewed as a probability distribution over the
source words, that tells the decoder where to
look to produce the next word. Next, the atten-
tion weights are used to produce a weighted sum

of the encoder hidden states, known as the con-
text vector(ct ):

ct =
Tsr c∑

i=1
at

i henc
i (3)

This context vector is then concatenated with
the embedding of the input word. It is used by
the decoder to produce a probability distribu-
tion. P vocab

t over the whole vocabulary:

P vocab
t = Decodert ([xt−1 : ct ];ht ) (4)

During training, the loss for timestep t is the
negative log likelihood of the target word w∗

t for
that timestep.

losst =− logP
(
w∗

t

)
(5)

Thus, the overall averaged loss of the whole se-
quence becomes:

loss = 1

Tdec

Tdec∑
t=1

losst (6)

4 Model Overview

We now describe our model and its varia-
tions. We hypothesize that conditioning on the
keyphrases present in the story context leads to
more specific and interesting outputs. We ex-
periment with several variants for incorporating
keyphrases in our base model. We further adapt
the loss suggested by Nakamura et al. (2018) to
encourage the model to generate infrequent to-
kens.

4.1 Keyphrase Conditioning

In this section we briefly describe four differ-
ent variants used for incorporating keyphrases
from the story context. We first extract top
k keyphrases from the story context using the
RAKE algorithm (Rose et al., 2010). RAKE deter-
mines the keyphrases and assigns scores in the
text based on frequency and co-occurrences of
words. We then sort the list of keyphrases by
their corresponding scores and take the top-k of
those. Note, each of the keyphrases can contain
multiple words. Each of the word in a multi-
word key phrase is assigned the same score as
the keyphrase.

We use the top-k keyphrases and ignore the
rest. For that, we explicitly set the score of 0 to

119



all the keyphrases which couldn’t get to the top-
k list. Next, the scores of these top-k keyphrases
are normalized so that the total score sums to 1.
We call this set keyphrases and its correspond-
ing score vector p. p is a vector with length
equal to the length of the story context, and the
value of every element j is equal to score of the
keyphrase to which the word w j belongs.

In all the four model variants described next,
we incorporate the score vector p to encourage
the model to condition on the keyphrases.

4.1.1 Keyphrase Addition

In a Seq2Seq model with attention, for every
timestep t during decoding, the model generates
a distribution at

i which is the weight given for a
given source context word wi . In this variant, the
model is provided an additional keyphrase at-
tention score vector p along with the self-learnt
attention weight vector at . To combine the two
vectors, we simply add the values of the two vec-
tors for each encoder position i and normalize
the final vector a

′t
i .

a
′t
i =

∑

i
at

i +pi

a
′t
i =

a
′t
i

|a ′t
i |

Now at each time step t of the decoder, we
compute the new context vector as follows:

c
′
t =

Tsr c∑

i=1
a

′t
i henc

i (7)

4.1.2 Context Concatenation

This variation calculates two separate con-
text vectors - one based on attention weights
learnt by the model, and another based on the
keyphrase attention score vector. Then both
these context vector are concatenated. The intu-
ition for this method comes from multi-head at-
tention (Vaswani et al., 2017), where different at-
tention heads are used to compute attention on
different parts of the encoder states. Similarly we
also expect the model to capture salient features
from both types of context vectors.

kt =
∑

i
pi henc

i (8)

c ′t = [kt ;ct ] (9)

We use this new context vector to calculate
our probabilities over the words as described in
equation 4.

4.1.3 Coverage Loss

This is a variant which implicitly encourages the
model to pay attention to all words present in
the context. We adapt the attention coverage
based loss proposed by See et al. (2017). It also
helps in avoiding repeated attention across dif-
ferent timesteps while decoding. Due to this
constraint, the model should focus on different
words in the story and generate outputs condi-
tioned on these words. The loss function which
is presented in the paper is :

losst =− logP
(
w∗

t

)+λ
∑

i
min

(
at

i ,si
)

(10)

Here si is the sum of attention weight vectors till
i time steps and at

i is the attention weight vector
for the current time step i.

4.1.4 Keyphrase Attention Loss

In this variant, instead of explicitly forcing the
model to attend on the keyphrases, we provide
additional guidance to the model in order for it
learn to attend to keyphrases. We introduce an
attention similarity based loss. We first create a
coverage vector q , which is the sum of the atten-
tion weights across all the decoders time steps.
We then calculate Mean Squared Error loss be-
tween this vector and our keyphrase score vector
p. This loss is calculated once per story after the
whole decoding of the generated ending has fin-
ished. Unlike the first two variants, this method
only nudges the model to pay more attention to
the keyphrases instead of forcing attention on
them. While backpropagating into the network,
we use two losses. One is the original reconstruc-
tion loss which is used in Seq2Seq models and
the other is this keyphrase based attention loss.
This can be summarised by the following set of
equations.

q =
Tdec∑

t
at (11)

losskeyphrase = MSE(q, p) (12)

Where MSE is the mean squared error between
the coverage vector and the probability distribu-
tion produced by the RAKE algorithm. This loss
is weighted by a factor λ and added to the cross-
entropy loss.

120



Train Set Dev set Test Set
ROC Stories 90,000 4,081 4,081

Table 2: The number of train, dev and test stories in
each of the ROCStories corpus.

4.2 Inverse Token Frequency Loss

As mentioned earlier, Seq2Seq models tend to
generate frequent words and phrases, which
lead to very generic story endings. This hap-
pens due to the use of conditional likelihood as
the objective, especially in problems where there
can be one-to-many correspondences between
the input and outputs. MLE loss unfairly penal-
izes the model for generating rare words which
would be correct candidates, but are not present
in the ground truth. This holds for our prob-
lem setting too, where for the same story context,
there can be multiple possible story endings.
Nakamura et al. (2018) proposed an alternative
Inverse Token Frequency (ITF) loss which as-
signs smaller loss for frequent token classes and
larger loss for rare token classes during train-
ing. This encourages the model to generate
rare words more frequently compared to cross-
entropy loss and thus leads to more interesting
story ending outputs.

5 Experimental Setup

5.1 Dataset

We used the ROCStories (Mostafazadeh et al.,
2017) corpus to generate our story endings. Each
story in the dataset comprises of five sentences.
The input is the first four sentences of the story
and output is the last sentence of the story. The
number of stories which were used to train and
test the model are shown in Table 2.

5.2 Baselines and Proposed Methods

For the evaluation of story ending generation, we
compare the following baselines and proposed
models:
Seq2Seq: Seq2Seq model with attention trained
with vanilla Maximum likelihood Estimate(MLE)
loss.
IE + GA: model based on Incremental Encoding
(IE) and Graph Attention (GA) (Guan et al., 2019).
Seq2Seq + ITF: Seq2Seq model with attention
trained with ITF loss.
Keyphrase Add + ITF: Our model variant de-

scribed in section 4.1.1.
Context Concat + ITF: Our model variant de-
scribed in section 4.1.2.
Coverage Loss + ITF: Our model variant de-
scribed in section 4.1.3 based on (See et al.,
2017).
Keyphrase Loss + ITF: Our model variant de-
scribed in section 4.1.4.
Keyphrase Loss: Our model variant described in
section 4.1.4 without the ITF loss.

5.3 Experiment Settings

All our models use the same hyper-parameters.
We used a two layer encoder-decoder architec-
ture with 512 GRU hidden units. We train our
models using Adam optimizer with a learning
rate of 0.001. For the Keyphrase Attention Loss
model we assign the weight of 0.9 to Keyphrase
loss and 0.1 to reconstruction loss. We use the
best win percent from our Story-Cloze metric
(described in the next section) for model selec-
tion. For ITF loss we use the hyperparameters
mention in the original paper.

5.4 Automatic Evaluation Metrics

In this section, we briefly describe the various
metrics which were used to test our models. We
did not use perplexity or BLEU as evaluation
metric, as neither of them is likely to be an effec-
tive evaluation metric in our setting. This is since
both these metrics measure performance based
on a single reference story ending present in the
test dataset, however there can be multiple valid
possible story endings for a story. Therefore, we

DIST (Distinct): Distinct-1,2,3 calculates
numbers of distinct unigrams, bigrams and tri-
grams in the generated responses divided by
the total numbers of unigrams, bigrams and tri-
grams. We denote the metrics as DIST-1,2,3 in
the result tables. Higher Distinct scores indicate
higher diversity in generated outputs.

Story-Cloze: Since it is difficult to do human
evaluation on all the stories, we use the Story-
Cloze task (Mostafazadeh et al., 2017) to create
a metric in order to pick our best model and
also to evaluate the efficacy of our model against
Seq2Seq and its variants. This new proposed
metric measures the semantic relevance of the
generated ending with respect to the context. In
the Story-Cloze task, given two endings to a story
the task is to pick the correct ending. We can
use this task to identify the better of two endings.

121



Model DIST-1 DIST-2 DIST-3
Seq2Seq 0.039 0.165 0.335
IE + GA 0.026 0.130 0.263
Seq2Seq + ITF 0.063 0.281 0.517
Keyphrase Add + ITF 0.065 0.289 0.539
Context Concat + ITF 0.065 0.294 0.558
Coverage Loss + ITF 0.066 0.315 0.590
Keyphrase Loss 0.055 0.243 0.443
Keyphrase Loss + ITF 0.068 0.318 0.588

Table 3: Model comparison based on automatic met-
rics DIST-1, DIST-2 and DIST-3.

In order to do so, we fine-tune BERT (Devlin
et al., 2018) to identify the true ending between
two story candidates. The dataset for this task
was obtained using the Story-Cloze task. Positive
examples to BERT are obtained from the Story-
Cloze dataset while the negative examples are
obtained by randomly sampling from other story
endings to get false ending for the story. We fine
tune BERT in the two sentence setting by provid-
ing the context as the first sentence and the final
sentence as the second. We pick the ending with
a greater probability (from BERT’s output head)
of being a true ending as the winner. With this
approach we were able to get a Story-Cloze test
accuracy of 72%.

We now use this pre-trained model to com-
pare the IE + GA model with our models. We se-
lect the winner based on the probability given by
the pre-trained Bert model.

5.5 Results

We measure the performance of our models
through automatic evaluation metrics as well
as human evaluation. We use Distinct1, Dis-
tinct2 and Distinct3 to measure the diversity of
our outputs. Additionally, we have built an au-
tomatic evaluation system using BERT and the
Story-Cloze task following Fan et al. (2018) in or-
der to compare our model against the state of
the art models like the IE model. We also per-
form human evaluation on the stories generated
by our model to get a overall sense of the model’s
performance.

5.5.1 Model Comparison and Ablation Study

From the Table 3, we observe that the Seq2Seq
model and the incremental encoding + graph at-
tention (IE + GA) model have the worst perfor-
mance in diversity. Although it has been shown
that the IE + GA model achieves a good BLEU
score, we observe that the model does not do as

Model Story-cloze
Seq2Seq 49.8
Seq2Seq + ITF 54.1
Keyphrase Add + ITF 52.9
Context Concat + ITF 55.8
Coverage Loss + ITF 54.7
Keyphrase Loss 53.4
Keyphrase Loss + ITF 55.9

Table 4: We measure the performance of the mod-
els using an automated Story-Cloze classifier which
compares the outputs of model with the outputs of
IE model.

Number of
keyphrases DIST-1 DIST-2 DIST-3 Story-Cloze

1 0.069 0.309 0.569 53.3
3 0.067 0.305 0.569 55.2
5 0.066 0.315 0.590 54.7
7 0.072 0.315 0.575 53.9
All 0.072 0.307 0.558 51.8

Table 5: Results for automatic metrics with varying
number of keyphrases. Diversity is measured using
DIST-1, DIST-2 and DIST-3 metrics. Story-Cloze loss
measures relevance in comparison to IE model.

well on our automated metrics like DIST-1, 2 and
3 because the model has learnt to generate end-
ings which match the distribution as a whole in-
stead of generating story specific endings.

As expected, Seq2Seq + ITF loss model greatly
outperforms the vanilla Seq2Seq model. As does
the Keyphrase loss, showing that these models
are indeed able to focus on different context
words resulting in more diverse generations.

The Story-Cloze based performance of the
models is presented in Table 4. The Keyphrase
+ ITF loss model outperforms all models on both
the diversity and Story-Cloze metrics. Hence, we
select Keyphrase + ITF loss model as the best
model in further discussions. As an ablation
study, we run the Keyphrase loss model with the
MLE loss instead of the ITF loss. We find that
this model performs poorly than then its version
with the ITF loss but still performs quite better
than the Seq2Seq model. Also we note that the
diversity obtained in Keyphrase + ITF loss model
is greater than the Seq2Seq + ITF model and the
Keyphrase loss model without ITF. It shows that
a combination of both, Keyphrase attention loss
and ITF loss, achieves better performance than
these components by themselves.

122



Example 1

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

megan was new to the pageant world . in fact , this was her very
first one . she was really enjoying herself , but was also quite
nervous . the results were in and she and the other contestants
walked out . she was disappointed that she couldn’t have to learn
how to win . the next day , she was happy to have a new friend .
megan won the pageant competition .
they read off the names and megan had won !

Example 2

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

alicia was going on a trip to disney . she was very excited .
yet when she got there she did not like it .
she thought it was too childish .
she had to go home .
thankfully she got a call .
alicia decided to watch the movie instead .
she decided to never go back.

Example 3

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

katie found out her husband was cheating on her . she tried to
make it work , but he wasn’t interested . he took all her money
and divorced her . a few weeks later , his mistress dumped him
katie was so happy , he helped her to help her out .
he was so upset , he decided to go home .
katie was devastated by himself and dumped her boyfriend .
she is much happier for being rid of him .

Example 4

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

tom had a cat . he noticed the litter wasn’t being used .
after a while he started noticing a bad smell . he looked around
and found a corner under the sofa .
he was able to get it back .
he was able to get it out and clean it .
tom cleaned the catnip smell up and cleaned it outside .
it was full of cat poop that he had to clean up .

Table 6: Qualitative analysis of the outputs produced by our model. For each context of the story, we show
the endings generated by various models. It can be seen from the outputs that our model is able to generate
specific outputs for a context.

5.5.2 Effect of varying number of keyphrases

In order to better understand the effect of
keyphrases on the diversity and relevance of
story endings, we ran the Coverage Loss model
with varying number of keyphrases. Table 5
shows the results of the experiment. We see
that both Story-Cloze loss and DIST-1,2,3 are low
when we use 1 keyphrase and also when we use
all the keyphrases. This is expected, since in
the case of 1 keyphrase, the model has very lit-
tle keyphrase related information. In the other
extreme case, providing all keyphrases covers a
large proportion of the original context itself,
and thus does not provide any extra benefit. We
see good performance within the range of 3-5

keyphrases, where using 5 keyphrases gives the
best diversity and 3 keyphrases gives the best
Story-Cloze score. Informed by this experiment,
we use 5 keyphrases in all our other experiments.

5.6 Human Evaluation

Since automatic metrics are not able to capture
all qualitative aspects of the models, we per-
formed a human evaluation study to compare
our models. We first randomly selected 50 story
contexts from the test set, and show them to
three annotators. The annotators see the story
context, and the story endings generated by our
best model and the baseline IE+GA model in a
random order. They are asked to select a better
ending among the two based on three criteria -

123



1) Relevance - Story ending should be appropri-
ate and reasonable according to the story con-
text. 2) Interestingness - More interesting story
ending should be preferred 3) Fluency - End-
ings should be natural english and free of errors.
We found that both models were preferred 50%
of the time, that is, both model was picked for
25 stories each. From a manual analysis of hu-
man evaluation, we found that our model was
selected over the baseline in many cases for gen-
erating interesting endings, but was also equiva-
lently penalized for losing the relevance in some
of the story endings. We discuss this aspect in
more detail in section 5.7.

5.7 Qualitative Analysis

In Table 6, we show some example generations of
our model and baselines. From example 1 and 2,
it can be seen that the baseline models produce
generic responses for story endings without fo-
cusing much on the context and keyphrases in
the story. However, our model conditions on
words like "pageant" in the story context, and in-
cludes it in the output even though it is a rare
word in the corpus. Another point to note is
that our model tends to include more proper
nouns and entities in its output, like alicia and
megan instead of using generic words like "he"
and "she". However, our model is penalised a
few times for being too adventurous, because it
tends to generate more rare outputs based on the
context. For example, in example 3, it got half of
the output correct till "katie was devastated", but
the other half "dumped her boyfriend" although
is more interesting than the baseline models, is
not relevant to the story context. The model in-
correctly refers to katie with the pronoun "him-
self". In example 4, our model’s generated out-
put is quite relevant and interesting, apart from
the token "catnip", for which it is penalized in
human evaluation. Hence, although our model
generates more interesting outputs, further work
is needed to ensure that 1) The generated out-
puts entail the story context at both semantic
and token level. 2) The generated output is logi-
cally sound and consistent.

6 Conclusion

In this paper we have presented several models
to overcome the generic responses produced by
the state of the art story generation systems. We

have both quantitatively and qualitatively shown
that our model achieved meaningful improve-
ments over the baselines.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Ashutosh Baheti, Alan Ritter, Jiwei Li, and Bill Dolan.
2018. Generating more interesting responses in
neural conversation models with distributional
constraints. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 3970–3980, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

J. S. Chen, Jiaao Chen, and Zhou Yu. 2018. Incor-
porating structured commonsense knowledge in
story completion. CoRR, abs/1811.00625.

Elizabeth Clark, Yangfeng Ji, and Noah A Smith. 2018.
Neural text generation in stories using entity rep-
resentations as context. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 2250–2260.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Carl Doersch. 2016. Tutorial on variational autoen-
coders. arXiv preprint arXiv:1606.05908.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833.

Jian Guan, Yansen Wang, and Minlie Huang. 2018.
Story ending generation with incremental encod-
ing and commonsense knowledge. arXiv preprint
arXiv:1808.10113.

Jian Guan, Yansen Wang, and Minlie Huang. 2019.
Story ending generation with incremental en-
coding and commonsense knowledge. CoRR,
abs/1808.10113.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017a. Toward
controlled generation of text. In Proceedings of the
34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 1587–1596, International Conven-
tion Centre, Sydney, Australia. PMLR.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017b. Toward
controlled generation of text. In Proceedings

124



of the 34th International Conference on Machine
Learning-Volume 70, pages 1587–1596. JMLR. org.

Qiuyuan Huang, Zhe Gan, Asli Celikyilmaz, Dapeng
Wu, Jianfeng Wang, and Xiaodong He. 2018. Hi-
erarchically structured reinforcement learning for
topically coherent visual story generation. arXiv
preprint arXiv:1805.08191.

Parag Jain, Priyanka Agrawal, Abhijit Mishra, Mohak
Sukhwani, Anirban Laha, and Karthik Sankara-
narayanan. 2017. Story generation from sequence
of independent short descriptions. arXiv preprint
arXiv:1707.05501.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers), pages 994–1003, Berlin, Germany.
Association for Computational Linguistics.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversar-
ial learning for neural dialogue generation. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
2157–2169, Copenhagen, Denmark. Association
for Computational Linguistics.

Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Gener-
ating reasonable and diversified story ending us-
ing sequence to sequence model with adversarial
training. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1033–1043, Santa Fe, New Mexico, USA. Associa-
tion for Computational Linguistics.

Lara J Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison,
and Mark O Riedl. 2018. Event representations for
automated story generation with deep neural nets.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,
Nathanael Chambers, and James Allen. 2017. Lsd-
sem 2017 shared task: The story cloze test. In Pro-
ceedings of the 2nd Workshop on Linking Models of
Lexical, Sentential and Discourse-level Semantics,
pages 46–51.

Ryo Nakamura, Katsuhito Sudoh, Koichiro Yoshino,
and Satoshi Nakamura. 2018. Another diversity-
promoting objective function for neural dialogue
generation. arXiv preprint arXiv:1811.08100.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable
story generation. In Proceedings of the First Work-
shop on Storytelling, pages 43–49.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic Keyword Extraction from
Individual Documents, pages 1 – 20.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1073–1083, Vancouver, Canada. Association
for Computational Linguistics.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017. Gen-
erating high-quality and informative conversation
responses with sequence-to-sequence models. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
2210–2219, Copenhagen, Denmark. Association
for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee,
David J. Crandall, and Dhruv Batra. 2018. Diverse
beam search for improved description of com-
plex scenes. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Sympo-
sium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 7371–7379.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2016. Topic
augmented neural response generation with a
joint attention mechanism. arXiv preprint
arXiv:1606.08340, 2(2).

Jingjing Xu, Xuancheng Ren, Junyang Lin, and
Xu Sun. 2018. Diversity-promoting gan: A cross-
entropy based generative adversarial network for
diversified text generation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3940–3949.

Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2018. Plan-
and-write: Towards better automatic storytelling.
arXiv preprint arXiv:1811.05701.

125



Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? arXiv preprint arXiv:1801.07243.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with
internal and external memory. In Thirty-Second
AAAI Conference on Artificial Intelligence.

126



Proceedings of the Second Storytelling Workshop, pages 127–135
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Prediction of a Movie’s Success From Plot Summaries Using Deep
Learning Models

You-Jin Kim
Department of Applied Data Science

Sungkyunkwan University
Suwon-si, South Korea

k01077679687@gmail.com

Jung-Hoon Lee
College of Computing

Sungkyunkwan University
Suwon-si, South Korea

vhrehfdl@gmail.com

Yun-Gyung Cheong
College of Computing

Sungkyunkwan University
Suwon-si, South Korea
aimecca@skku.edu

Abstract

As the size of investment for movie produc-
tion grows bigger, the need for predicting a
movie’s success in early stages has increased.
To address this need, various approaches have
been proposed, mostly relying on movie re-
views, trailer movie clips, and SNS postings.
However, all of these are available only after
a movie is produced and released. To enable
a more earlier prediction of a movie’s perfor-
mance, we propose a deep-learning based ap-
proach to predict the success of a movie using
only its plot summary text. This paper reports
the results evaluating the efficacy of the pro-
posed method and concludes with discussions
and future work.

1 Introduction

Movie industry is a huge sector within the en-
tertainment industry. The global movie box of-
fice revenue is predicted to reach nearly 50 bil-
lion U.S dollars in 2020 (Sachdev et al., 2018).
With huge capital investments, the movie business
is a high-risk venture (De Vany and Walls, 1999).
Therefore, an early prediction of a movie’s success
can make a great contribution to the film industry,
when post-production factors are unknown before
the film’s release. This task is extremely challeng-
ing, as the success of the movie should be deter-
mined based on the scenario or plot of the movie
without using the post-production drivers such as
actor, actress, director, MPAA rating and etc.

To address this issue, our work attempts to
predict a movie’s success from its textual sum-
mary. We used the CMU Movie Summary Cor-
pus 1, which contains crowd-sourced summaries
from the real users. The success of a movie is
assessed with the review scores of Rotten Toma-
toes 2, an American review-aggregation website

1http://www.cs.cmu.edu/˜ark/personas/
2https://www.rottentomatoes.com/

for film and television. The scoring system uti-
lizes two scores: the tomato-meter and the audi-
ence score. The tomato-meter score is estimated
by hundreds of film and television critics, apprais-
ing the artistic quality of a movie. The audience
score is computed by the collective scores from
regular movie viewers.

In this paper we present a deep-learning based
approach to classify a movie popularity and qual-
ity labels using the movie textual summary data.
The primary hypothesis that we attempted to an-
swer is to predict a movie’s success in terms of
popularity and artistic quality by analyzing only
the textual plot summary.
The contributions of our research are as follows:

• To prepare a data set to define a movie’s suc-
cess

• To incorporate sentiment score in predicting
a movie’s success

• To evaluate the efficacy of ELMO embedding
in predicting a movie’s success

• To evaluate merged deep learning models
(CNN and residual LSTM) in predicting a
movie’s success

2 Our Approach

Figure 1 illustrates the system architecture that
classifies an input text as successful or non-
successful based on the critics score and the au-
dience score.

The pre-processing step tokenizes the summary
text into sentences. Then, the list of sentences are
given to the ELMO embedding and the sentiment
score extraction modules. The ELMO embedding
module converts the sentences into word vectors.
The sentiment score extractor generates a senti-
ment score that combines the positive and negative
sentiment score of each sentence. Lastly, the two

127



Train Test
TotalGenre/Audience Not popular(0) Popular(1) Not popular(0) Popular(1)

All genre 11,635 (62%) 7,122 (38%) 1,292 (62%) 793 (38%) 20,842
Drama 4,506 ( 51% ) 4,375 ( 49% ) 502 ( 50% ) 485 ( 50% ) 9,868
Thriller 2,639 ( 70% ) 1,123 ( 30% ) 295 ( 70% ) 124 ( 30% ) 4,181
Comedy 3,254 ( 65% ) 1,746 ( 35% ) 358 ( 64% ) 198 ( 36% ) 5,556
Romance 1,811 ( 57% ) 1,336 ( 43% ) 196 ( 56% ) 154 ( 44% ) 3,497

Genre/Critics Not Well-made(0) Well-made(1) Not Well-made(0) Well-made(1) Total
All genre 5,493 ( 50% ) 5,324 ( 50% ) 590 ( 49% ) 612 ( 51% ) 12,019

Drama 2,416 ( 42% ) 3,306 ( 58% ) 273 ( 42% ) 363 ( 58% ) 6,358
Thriller 1,349 ( 55% ) 1,078 ( 45% ) 142 ( 52% ) 128 ( 48% ) 2,697
Comedy 1,898 ( 57% ) 1,389 ( 43% ) 222 ( 60% ) 144 ( 40% ) 3,653
Romance 1,103 ( 52% ) 1,015 ( 48% ) 107 ( 45% ) 129 ( 55% ) 2,354

Genre/Compound Not Successful (0) Successful(1) Not Successful(0) Successful(1) Total
All genre 3,812 (51%) 3,586 (49%) 440 (53%) 383 (47%) 8,221

Table 1: Training and test data set proportion. Class 1 denotes movies with scores greater than 75. Class 0 denotes
movies with scores less than 65.

Figure 1: The overall classification procedure

outputs are merged to classify a movie summary
into the success or non-success classes.

2.1 Data

To evaluate our approach, we used the CMU
Movie Summary Corpus (Bamman et al., 2013),
which contains crowd-sourced summaries from
the real users.

The corpus contains 42,306 movie plot sum-
maries and their metadata such as genre, release
date, cast, character traits, etc. However, we use
only the plot summary text feature and the genre.
The following example summary which consists
of 36 sentences and 660 words, shows a part of
the plot summary of ‘The Avengers’ (released in
2012) directed by Joss Whedo.

The Asgardian Loki encounters the
Other,the leader of an extraterrestrial
race known as the Chitauri. In exchange
for retrieving the Tesseract, a powerful
energy source of unknown potential,
...
In the first of two post-credits scenes,
the Other confers with his master about
the attack on Earth and humanity’s re-
sistance; in the second, the Avengers eat

in silence at a shawarma restaurant.

We created the classification labels based on the
Rotten tomato scores that we crawled from Rotten
Tomatoes’ website with the Selenium 3 and Beau-
tiful Soup python packages (Richardson, 2013).
These scores serve as a credible indicator of a
movie’s success (Doshi et al., 2010). We classify
movies following the Rotten Tomato rule; if the
review score is greater than 75, the corresponding
movie is classified fresh (1); if its score is less than
60, the movie is classified not fresh (0).

As some movies do not have both the audi-
ence and the critics score, we collected 20,842
and 12,019 movie plot summary data for the
audience score and for the critic score respec-
tively. The audience score is assessed by ordi-
nary people, we regard the class 1 as representing
‘popular’ movies and the class 0 as representing
‘not popular’ movies. Likewise, since the crit-
ics score is assessed by professionals in the in-
dustry, we consider class 1 as representing ‘well-
made’ movies and class 0 as representing ‘not
well-made’ movies. Since these scores indicate
the popularity and quality of a movie, we define
a successful movie as having the combination of

3https://www.seleniumhq.org/

128



Figure 2: The sentiment vector representation of the movie ‘The Avengers’.

these score greater than 75. Finally, we prepared
the third data set considering both of the audience
and the critics scores. We define movies with each
audience and critics score greater than 75 as ‘suc-
cessful’ and less than 60 as ‘not successful’.

There are two reasons that the number of in-
stances in the prepared data is less than the number
of summaries in the CMU Movie summary cor-
pus. First, movies that have received review scores
above 60 and below 75 are filtered out. Second,
some movies in the CMU Movie summary corpus
have no scores at the Rotten Tomato site.

Table 1 shows the statistics of the data set. The
ratio between class 1 and 0 is approximately 6:4
for the audience score and 5:5 for the critics score
and the combination of both scores.

The data sets were also divided into different
genres, to test whether the genre of a movie has
an impact on the prediction of a performance. The
table shows the ratios between class 1 and 0 are
balanced except for the thriller and comedy genres
in the audience score. Since each movie is tagged
with multiple genres, the sum of all the number of
summaries of each genre is greater than the total
number of summaries.

A simple statistical analysis shows that the max-
imum number of sentences in the longest sum-
mary in the train set is 198, the minimum is 1, and
the average is 18.3. The number of words in the
largest summary is 4,264, while that of the short-
est summary is 10. The average is 361.2 words.

2.2 ELMO embedding

When the list of sentences representing a movie
summary is given as input, the module cre-
ates its corresponding word embedding vectors.
Traditional word embedding schemes such as
Word2vec (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014) produce a fixed vector for
each word. While those embedding methods

have been shown effective in many NLP applica-
tions, they do not deal with words which mean
differently as their contexts vary such as homo-
phones. Thus, We applied a contextualized em-
bedding method that can generate different word
vectors depending on the context. ELMO (Peters
et al., 2018) is a popular contextualized embed-
ding method, which uses two bidirectional LSTM
networks for constructing the vector.

In this work, we utilized the TensorFlow Hub
implementation4 to represent the word vector. We
then fine-tuned the weight for ELMO embedding
to gain better performance for the classification
task (Perone et al., 2018).

Since the length of the summary varies, we need
to set a maximum number of sentences in a sum-
mary. We set the maximum number at 198, as it
is the number of sentences in the longest summary
found in the train set.

2.3 Sentiment score extraction
To extract the sentiment score of each sentence,
we applied the NLTK’s Vader sentiment analyzer
(Hutto and Gilbert, 2014) to each sentence. Figure
2 illustrates a part of the sentiment vector repre-
sentation of the movie ‘The Avengers’. A sum-
mary is represented as a 198 dimensional vector,
where each denotes the sentiment score of a single
sentence. A summary shorter than 198 sentences
is zero-padded. The highlight of the story (i.e., the
conflict and resolution stages) is usually located
towards the end of the story. So, we reversed the
order as the vector is given as input to the LSTM
deep learning model in the next stage which better
remember the recent input.

The VADER(Valence Aware Dictionary for sen-
timent Reasoning) module computes four scores
for each sentence: negative, positive, neutral, and
compound scores. In this research, we use the

4https://tfhub.dev/google/elmo/2

129



compound score ranging from -1 (most negative)
to 1 (most positive).

Figure 3: Sentiment flow graphs of successful movies.
X axis denotes the sentence index, and the Y axis de-
notes the sentiment score of a sentence normalized be-
tween -1 and 1.

Figure 4: Sentiment flow graphs of unsuccessful
movies. X axis denotes the sentence index, and the Y
axis denotes the sentiment score of a sentence normal-
ized between -1 and 1.

Figure 3 and Figure 4 depict the sentiment plots
of successful movies and unsuccessful movies re-
spectively. The 4 graphs shown in Figure 3 exhibit
various patterns of successful movies’ sentiment
flows. The movie Alice in Wonderland begins and
ends positively. On the other hand, the movies
Das Boot and A Man for All Seasons begin and
end with negatively. The movie Gettysburg shows
the reversal of fortune pattern which begins neg-
atively and ends positively. It is commonly noted
that these successful movies have frequence senti-
ment fluctuations. On the other hand, the graphs
in Figure 4 illustrate unsuccessful movies’ senti-
ment flows, which exhibit less frequent sentiment
fluctuations. Both the movie The Limits of Control
and The Lost Bladesman have negative beginning
and ending. The movie Tai-Pan begins negatively

and ends positively. The movie Bluetproof Monk
begins and ends positively, however, its majority
sentiment scores are negative while the story is be-
ing developed. Therefore, it suggests that the fre-
quency of sentiment changes may signal the suc-
cess of films. Yet, the polarity of sentiment have a
little impact on predicting a movie’s success.

2.4 Classification Models

We built an ELMO, a merged 1D CNN (Figure 5),
and a merged residual LSTM (Figure 6) networks.
We establish our baseline by calculating a majority
class baseline for comparison.

First, we use deep contextualized word repre-
sentations created by the ELMO embedding. This
network consists of a character embedding layer,
a convolutional layer, two highway networks, and
two LSTM layers. Each token is converted to a
character embedding representation, which is fed
to a convolutional layer. Then, it goes through
two highway networks to help the deep learning
network training. Then, the output is fed to the
LSTM layer as input data. The weights of each
LSTM hidden layer are combined to generate the
ELMO embedding. Finally, a 1024 dimensional
ELMO embedding vector is constructed for each
sentence, which is put into the 256 dimensional
dense network. RELU (Nair and Hinton, 2010) is
used as its activation function.

Figure 5 shows the 1D CNN merged network,
where the sentiment score vector is given as input
to the CNN network. The model consists of two
1D convolutional layers, with 64-size filters and
3-size kernels. The second CNN layer includes a
dropout layer. The next max-pooling layer reduces
the learned features to 1/4 of their size. The final
flatten layer constructs a single 100-dimensional
vector. Then, the output from the ELMO embed-
ding and the output from the CNN model is con-
catenated and given to the last 1-dense classifica-
tion layer.

Figure 6 employs two bidirectional LSTM lay-
ers which have 128 memory units. The outputs
of these layers are added and flattened to create a
50,688 dimensional vector. 50,688 was obtained
as the length of the sentences (198) times the size
of the vector (256). Then, the next 128 dense layer
reduces the vector for the final binary classifica-
tion. We employed the binary cross-entropy as the
loss function and the Adam optimizer.

130



Score Genre Model Recall Precision F1
1 0 1 0 1 0

Audience

All

ELMO 0.54 0.81 0.64 0.74 0.58 0.78
CNN 0.38 0.90 0.70 0.70 0.49 0.79

LSTM 0.56 0.67 0.51 0.71 0.53 0.69

Drama

ELMO 0.62 0.73 0.69 0.67 0.66 0.70
LSTM 0.79 0.39 0.56 0.66 0.65 0.49
CNN 0.77 0.48 0.59 0.68 0.67 0.56

Thriller

ELMO 0.39 0.91 0.65 0.78 0.48 0.84
CNN 0.41 0.79 0.45 0.76 0.43 0.77

LSTM 0.60 0.70 0.45 0.80 0.52 0.75

Comedy

ELMO 0.31 0.94 0.73 0.71 0.43 0.81
CNN 0.41 0.83 0.57 0.72 0.48 0.77

LSTM 0.62 0.63 0.48 0.75 0.54 0.68

Romance

ELMO 0.63 0.68 0.61 0.70 0.62 0.69
CNN 0.57 0.67 0.58 0.67 0.58 0.67

LSTM 0.55 0.71 0.60 0.67 0.57 0.69

Table 2: The evaluation results for the audience score. The best performances in F1 score are in bold.

Score Genre Model Recall Precision F1
1 0 1 0 1 0

Critics

All

ELMO 0.72 0.60 0.65 0.68 0.69 0.63
CNN 0.76 0.56 0.64 0.69 0.70 0.62

LSTM 0.71 0.63 0.66 0.68 0.69 0.65

Drama

ELMO 0.79 0.47 0.66 0.63 0.72 0.53
CNN 0.79 0.46 0.66 0.62 0.72 0.53

LSTM 0.71 0.50 0.65 0.57 0.68 0.53

Thriller

ELMO 0.65 0.72 0.67 0.69 0.66 0.71
CNN 0.68 0.77 0.73 0.73 0.70 0.75

LSTM 0.64 0.76 0.71 0.70 0.67 0.73

Comedy

ELMO 0.61 0.77 0.63 0.75 0.62 0.76
CNN 0.52 0.82 0.65 0.73 0.58 0.77

LSTM 0.49 0.80 0.62 0.71 0.55 0.75

Romance

ELMO 0.64 0.62 0.67 0.58 0.65 0.60
CNN 0.64 0.61 0.66 0.59 0.65 0.60

LSTM 0.71 0.50 0.63 0.59 0.67 0.54

Table 3: The evaluation results for the critics score. The best performances in F1 score are in bold.

Score Genre Model Recall Precision F1
1 0 1 0 1 0

Audience&Critics All genre
ELMO 0.67 0.74 0.69 0.72 0.68 0.73
CNN 0.68 0.70 0.64 0.67 0.66 0.69

LSTM 0.68 0.67 0.64 0.71 0.66 0.69

Table 4: The evaluation results for the audience & critics score. The best performances in F1 score are in bold.

131



Figure 5: A merged 1D CNN

Figure 6: A merged bidirectional residual LSTM

3 Evaluation Results

We evaluated the classification performance of our
approach for the audience score and for the critics
score. We also inspected the performance based
on the movie genre. We report the performance in
terms of recall, precision, and F1 scores.

3.1 The Results

Table 2 shows the performance result for the au-
dience score. We use the F1 score as the primary
metric for comparison as it is the harmonic means

of recall and precision. Overall, the classifica-
tion performance of ‘not popular ’ movies better
than that of ‘popular ’ ones. The CNN model per-
formed best in ‘all genre ’ with F1 of 0.79, which
is 0.17 higher than the majority class baseline (F1
of 0.62). The ELMO model outperformed best
in the genres of drama, thriller, comedy, and ro-
mance. On the contrary, the ELMO model had the
highest performance for ‘popular’ at 0.58 and 0.62
in overall and romance genre respectively, while
LSTM and CNN had the highest performance in
the rest of the genre

Table 3 summarizes the evaluation results for
the critics score.

For all the genres, the deep learning mod-
els outperform the majority class baseline (F1
score=0.51) for predicting ‘well-made ’ movies
producing its highest F1 of 0.70. The CNN model
achieved the highest F1 score of 0.72 in predict-
ing ‘well-made’ drama movies when its majority
class baseline performance is 0.58. In the thriller,
the CNN model also outperformed the baseline
(F1 score=0.52) producing an F1 score of 0.75.
The LSTM model achieved the best performance
in predicting ‘not well-made’ movies, and yet the
score is low–0.65.

Inspection of the genre-specific F1 score shows
that the best performance was obtained from CNN
model when predicting ‘not well-made’ movies
for the comedy genre (F1 score of 0.77).

Finally, Table 4 shows the results when our ap-
proach is applied to the combined score. The
ELMO embedding model outperforms the major-
ity class baseline and the other models, achieving
F1 scores of 0.68 and 0.73 when predicting ‘suc-
cessful’ and ‘not successful’ movies respectively.

3.2 Discussions

Overall, the results suggest that the merged deep
learning models proposed in this paper outperform
the majority class baseline.

For the audience score, the performance results
of predicting ‘not popular’ movies outperform that
of predicting ‘popular’ movies. This may sug-
gest that using the textual summary only is lim-
ited in predicting ‘popular’ movies. When inspect-
ing the results genre-wise, the precision of predict-
ing ‘not popular’ movies for the thriller and the
comedy genres yields the best performance when
the LSTM model is used along with the sentiment
score. On the other hand, the ELMO model out-

132



performs the merged deep learning models that
employ the sentiment score in predicting ‘popular’
movies with significant difference.

The CNN model produces a F1 score higher
than ELMo does in the thrillers and comedy gen-
res and in the drama genre for ‘popular’ movies.

In case of the critics score, the overall perfor-
mance was inferior to that of the audience score.
Inspection of the F1 score of each genre shows that
predicting ‘not well-made’ movies in the thriller
and the comedy genre achieved the best perfor-
mance (0.75 and 0.77 respectively) when the CNN
model was used along with the sentiment score.
Generally, the CNN or LSTM models have shown
F1 scores higher than the ELMO models at pre-
dicting well-made movies using the critics score
except the drama genre.

Then, employing the ELMO model outperforms
other models that used the sentiment score as well.
This may suggest that words are the primary deter-
miner of predicting a movie’ success.

The research work by Eliashberg et al. Eliash-
berg et al. (2007) is most similar to our work.
Their evaluation achieved the F1 score of 0.5 (re-
computed from the evaluation metrics reported)
in predicting a movie’s success using the CART
(Bootstrap Aggregated Classification and Regres-
sion Tree) model and the movie spoiler text which
is 4-20 pages long. Although our result appear
to be superior to their work in terms of yielding
higher F1 score, it is not directly comparable since
the data sets and the evaluation metrics are differ-
ent.

4 Related work

The prediction of movie box office results has
been actively researched (Rhee and Zulkernine,
2016; Eliashberg et al., 2007, 2010, 2014; Sharda
and Delen, 2006; Zhang et al., 2009; Du et al.,
2014).

Most researches predict a movie’s success us-
ing various factors such as SNS data, cost, crit-
ics ratings, genre, distributor, release season, and
the main actors award history, etc (Mestyán et al.,
2013; Rhee and Zulkernine, 2016; Jaiswal and
Sharma, 2017). This means that the prediction is
made in the later stages of movie production, when
the movie has already been produced and released.

The evaluation carried out in (Jaiswal and
Sharma, 2017) achieved the highest performance
with F1 score of 0.79, which is recomputed from

the evaluation metrics reported. However, this per-
formance is not directly comparable to our result,
since their work employed a small data set which
consists of 557 movies and was based on a dif-
ferent genre (i.e., Bollywood movie). Their work
employs rich feature such as YouTube statistics,
lead actor, actress and director ratings, critics re-
views, which are mostly available only after the
movie is produced. Therefore, movie distributors
and investors cannot rely on this approach when
they need to make an investment decision.

To overcome this problem, our approach relies
on only the plot summary, which can assist the in-
vestors in making their invest decisions in the very
early stages when they only have the written movie
script.

5 Conclusions

In this paper, we propose a deep learning based ap-
proach utilizing the ELMO embedding and senti-
ment scores of sentences for predicting the success
of a movie, based only on a textual summary of the
movie plot. To test the efficacy of our approach,
we prepared our evaluation data sets: movie plot
summaries gathered from the CMU Movie Sum-
mary Corpus and their review scores from a movie
review website.

Since these plot summaries were obtained from
Wikipedia, where the data are crowd sourced vol-
untarily. Hence, some movie summaries may
have been written by people who like or value the
movie. This may complicate our task to predict
the movie’s success only from the summary. We
built three deep learning models: an ELMO em-
bedding and two merged deep learning models (a
merged 1D CNN network and a merged residual
bidirectional LSTM network).

The evaluation results show that our deep learn-
ing models outperform the majority class baseline.

For the combination of the audience and the
critics scores, the majority class baseline is F1 of
0.53 for ‘not successful’ , and 0 for ‘successful ’.
Our best model obtained the highest F1 score of
0.68 for predicting ‘successful’ movies and that of
0.70 for predicting ‘not successful’ movies were
obtained.

Considering that only textual summaries of the
movie plot are used for the predictions, the study
results are promising. Forecasting the popularity
and success of movies only with their textual de-
scriptions of the plot, will aid the decision-making

133



in funding movie productions.
It seems that predicting ‘not popular’ or ‘not

successful’ movies performs better than that of
predicting ‘popular’ or ‘successful’ movies. Pre-
dicting unsuccessful movies can be useful for
the Internet Protocol television (IPTV) content
providers such as Netflix. Whereas tens of thou-
sands of TV contents are made available, only a
small portion of them are actually consumed (Re-
format and Yager, 2014). Therefore, our approach
can be used to filter out such contents that are not
appealing to the content viewers.

For future work, we will further investigate the
efficacy of our approach in the thriller and the
comedy genes, which presented the best perfor-
mances. In addition, we will extend our model
to deal with the magnitude of a movie’s success.
For this, linear regression models can be applied
to predict different levels of success.

Acknowledgement

This work was supported by the National
Research Foundation of Korea(NRF) grant
funded by the Korea government(MEST) (No.
2019R1A2C1006316). This research was sup-
ported by Basic Science Research Program
through the National Research Foundation of
Korea(NRF) funded by the Ministry of Educa-
tion(No. 2016R1D1A1B03933002).

References
David Bamman, Brendan OConnor, and Noah A

Smith. 2013. Learning latent personas of film char-
acters. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 352–361.

Arthur De Vany and W David Walls. 1999. Uncertainty
in the movie industry: Does star power reduce the
terror of the box office? Journal of cultural eco-
nomics, 23(4):285–318.

Lyric Doshi, Jonas Krauss, Stefan Nann, and Peter
Gloor. 2010. Predicting movie prices through dy-
namic social network analysis. Procedia-Social and
Behavioral Sciences, 2(4):6423–6433.

Jingfei Du, Hua Xu, and Xiaoqiu Huang. 2014. Box
office prediction based on microblog. Expert Sys-
tems with Applications, 41(4):1680–1689.

Jehoshua Eliashberg, Sam K Hui, and Z John Zhang.
2007. From story line to box office: A new approach
for green-lighting movie scripts. Management Sci-
ence, 53(6):881–893.

Jehoshua Eliashberg, Sam K Hui, and Z John Zhang.
2014. Assessing box office performance using
movie scripts: A kernel-based approach. IEEE
Transactions on Knowledge and Data Engineering,
26(11):2639–2648.

Jehoshua Eliashberg, SK Hui, and SJ Zhang. 2010.
Green-lighting Movie Scripts: Revenue Forecasting
and Risk Management. Ph.D. thesis, Ph. D. thesis,
University of Pennsylvania.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth international AAAI
conference on weblogs and social media.

Sameer Ranjan Jaiswal and Divyansh Sharma. 2017.
Predicting success of bollywood movies using ma-
chine learning techniques. In Proceedings of the
10th Annual ACM India Compute Conference on
ZZZ, pages 121–124. ACM.

Márton Mestyán, Taha Yasseri, and János Kertész.
2013. Early prediction of movie box office suc-
cess based on wikipedia activity big data. PloS one,
8(8):e71226.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Christian S Perone, Roberto Silveira, and Thomas S
Paula. 2018. Evaluation of sentence embeddings
in downstream and linguistic probing tasks. arXiv
preprint arXiv:1806.06259.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Marek Z Reformat and Ronald R Yager. 2014. Sug-
gesting recommendations using pythagorean fuzzy
sets illustrated using netflix movie data. In Inter-
national Conference on Information Processing and
Management of Uncertainty in Knowledge-Based
Systems, pages 546–556. Springer.

Travis Ginmu Rhee and Farhana Zulkernine. 2016.
Predicting movie box office profitability: a neural
network approach. In 2016 15th IEEE International
Conference on Machine Learning and Applications
(ICMLA), pages 665–670. IEEE.

134



Leonard Richardson. 2013. Beautiful soup. Crummy:
The Site.

Shaiwal Sachdev, Abhishek Agrawal, Shubham Bhen-
darkar, Bakshi Rohit Prasad, and Sonali Agarwal.
2018. Movie box-office gross revenue estimation.
In Recent Findings in Intelligent Computing Tech-
niques, pages 9–17. Springer.

Ramesh Sharda and Dursun Delen. 2006. Predict-
ing box-office success of motion pictures with neu-
ral networks. Expert Systems with Applications,
30(2):243–254.

Li Zhang, Jianhua Luo, and Suying Yang. 2009. Fore-
casting box office revenue of movies with bp neu-
ral network. Expert Systems with Applications,
36(3):6580–6587.

135





Author Index

Ammanabrolu, Prithviraj, 46
Andy, Anietie, 112

Bannihatti Kumar, Vinayshekhar, 117
Bhutani, Mukul, 117
Black, Alan W, 11, 117

Callison-Burch, Chris, 112
Chandu, Khyathi, 11
Cheong, Yun Gyung, 127
Cheung, Wesley, 46

Demberg, Vera, 34

Flor, Michael, 75

Gupta, Prakhar, 117

Jo, Yohan, 22

Kim, Evgeny, 56
Kim, You Jin, 127
Klinger, Roman, 56

Lee, Jung Hoon, 127
Luo, Zhaochen, 46

Ma, William, 46
Martin, Lara, 46

Naik, Aakanksha, 22

Pinkal, Manfred, 90
Pizzolli, Daniele, 107
Prabhumoye, Shrimai, 11

Qi, Xiaoyu, 1
Qureshi, Mohammed Rameez, 81

Rajkumar, Rajakrishnan, 81
Ranjan, Sidharth, 81
Riedl, Mark, 46
Rose, Carolyn, 22
Roth, Michael, 90

Sakai, Tetsuya, 1
Salakhutdinov, Ruslan, 11
Sayeed, Asad, 34

Shah, Kushal, 81
Shi, Wei, 34
Shkadzko, Pavel, 34
Somasundaran, Swapna, 75
Song, Ruihua, 1
Strapparava, Carlo, 107

Theune, Mariët, 65
Tien, Ethan, 46

van Stegeren, Judith, 65

Wang, Chunting, 1
Wanzare, Lilian Diana Awuor, 90
Wijaya, Derry Tanti, 112

Yan, Xinru, 22

Zhai, Fangzhou, 34
Zhou, Jin, 1

137


	Program
	Composing a Picture Book by Automatic Story Understanding and Visualization
	"My Way of Telling a Story": Persona based Grounded Story Generation
	Using Functional Schemas to Understand Social Media Narratives
	A Hybrid Model for Globally Coherent Story Generation
	Guided Neural Language Generation for Automated Storytelling
	An Analysis of Emotion Communication Channels in Fan-Fiction: Towards Emotional Storytelling
	Narrative Generation in the Wild: Methods from NaNoGenMo
	Lexical concreteness in narrative
	A Simple Approach to Classify Fictional and Non-Fictional Genres
	Detecting Everyday Scenarios in Narrative Texts
	Personality Traits Recognition in Literary Texts
	Winter is here: Summarizing Twitter Streams related to Pre-Scheduled Events
	WriterForcing: Generating more interesting story endings
	Prediction of a Movie’s Success From Plot Summaries Using Deep Learning Models

