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Abstract 

This is the system description of the Harbin 

Institute of Technology Shenzhen (HITSZ) 

team for the first and second subtasks of the 

fourth Social Media Mining for Health 

Applications (SMM4H) shared task in 

2019. The two subtasks are automatic 

classification and extraction of adverse 

effect mentions in tweets. The systems for 

the two subtasks are based on bidirectional 

encoder representations from transformers 

(BERT), and achieves promising results. 

Among the systems we developed for 

subtask1, the best F1-score was 0.6457, for 

subtask2, the best relaxed F1-score and the 

best strict F1-score were 0.614 and 0.407 

respectively. Our system ranks first among 

all systems on subtask1. 

1 Introduction 

Adverse drug reaction (ADR), namely adverse 

drug effect, is one of the leading causes of post-

therapeutic deaths (Saha, Naskar, Dasgupta, & Dey, 

2018). Nowadays, more and more people share 

information in social platform, including health 

information such as drugs and their ADRs. Twitter, 

as one of the most popular social platforms, has 

attracted a great deal of attention from researchers 

in the medical domain. Some methods, such as 

HTR_MSA (Wu et al., 2018) and Neural DrugNet 

(Nikhil & Mundra, 2018), have been proposed to 

detect tweets mentioning ADRs and medicine 

intake. In order to facilitate the use of social media 

for health monitoring and surveillance, the health 

language processing lab at University of 

Pennsylvania organized Social Media Mining for 

Health Applications (SMM4H) shared task four 

times. In 2019, the fourth SMM4H shared task was 

comprised of four subtasks: (1) Automatic 

classifications of adverse effect mentions in tweets, 

(2) Extraction of Adverse Effect mentions, (3) 

Normalization of adverse drug reaction mentions 

(ADR), and (4) Generalizable identification of 

personal health experience mentions 

(Weissenbacher et al., 2019). 

We participated in subtask 1 and subtask2, and 

developed two systems based on bidirectional 

encoder representations from transformers (BERT) 

(Devlin, Chang, Lee, & Toutanova, 2018) for the 

two subtasks respectively. The system for subtask 

1 achieved the best F1-score of 0.6457, ranking 

first. Among the systems we developed for 

subtask2, the best relaxed F1-score and the best 

strict F1-score were 0.614 and 0.407 respectively. 

2 Task and Data Description 

2.1 Task 1: Automatic Classifications of 

Adverse Effect Mentions in Tweets 

Task 1 was formulated as follows: given a tweet, 

determine whether it mentions drug adverse effect 

mentions, denoted by 1 and 0, indicating a tweet 

mentions drug adverse effects and not, respectively. 

The organizers provided a train dataset consisting 

of 25,678 tweets for all participants to develop 

their system, and a test dataset consisting of 4,575 

tweets to evaluate the performance of all systems. 

Table 1 shows the distribution of 0 and 1 labels 

over the training and test datasets, where #* 

denotes the number of tweets labeled with *, and 

NA denotes that the corresponding number is 

currently unknown. 

Dataset #1 #0 #all 

Training set 2,377 23,301 25,678 

Test set NA NA 4,575 

Table 1: Distribution of labels over the training and 

test datasets of task1. 
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2.2 Task 2: Extraction of Adverse Effect 

Mentions 

Task 2 as a follow-step of Task 1 was formulated 

as follows: given a tweet, identify the text span of 

adverse effect mentions. The challenge of task 2 is 

to distinguish adverse effect mentions from similar 

non-ADR expressions. A training set of 3,225 

tweets annotated with 1830 adverse effect 

mentions was provided for system development, 

and a test set of 1,573 tweets was provided for 

system evaluation. The statistics of the training and 

test datasets are listed in Table 2. 

Dataset #tweets #ADRs 

Training set 3,225 1,830 

Test set 1,573 NA 

Table 2: Statistics of the training and test datasets of 

task 2 

3 Methods 

Our systems for both task 1 and task 2 were based 

on BERT, an unsupervised language representation 

method to obtain deep bidirectional representations 

of sentences by jointly conditioning on both left 

and right context in all layers from free text. Below 

we described in detail the methods for the two tasks: 

task 1 and task 2, respectively. 

3.1 Task 1: BERT and BERT+Knowledge 

Base 

In this task, we designed two methods, BERT and 

BERT +Knowledge Base. The model architecture 

is shown in Fig. 1. 

BERT: Like what BERT did, we took the final 

hidden state of the first input token [CLS] as the 

representation of a tweet. Then we applied a 

softmax layer over the output to classify a tweet. 

We denote the representation vector as 𝐻, then the 

predicted label �̂� is computed as: 

 �̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐻 + 𝑏)  (1) 

where 𝑊 , 𝑏  is the parameters of the fully 

connected layer. 

BERT+Knowledge Base: Inspired by Li et al. 

(2018), we tried to combine the BERT output with 

features from knowledge bases to improve the 

performance of systems. We firstly extracted drugs 

which appear in the SIDER 4.1 (a side effect 

resource which contains information on marketed 

medicines and their recorded adverse drug 

reactions) from the train dataset, and obtained a 

drug lexicon of 538 drugs. Then we extracted 

corresponding adverse effects in SIDER according 

to the drug lexicon, and obtained 4,411 <drug, 

ADR> pairs. For each tweet, according to the 

presence of <drug ADR> pairs, we could build a 

binary feature. We incorporated the binary feature 

into representation vectors of a tweet. The final 

representation of a tweet is a concatenation of its   

BERT output and lexicon feature. Then we used a 

fully connected layer to fuse information from 

different feature spaces, and applied a softmax 

layer on it to classify tweets. We denote the output 

of BERT as 𝐻1, the lexicon feature as 𝐻2, then the 

predicted label �̂� of a tweet is computed as : 

 �̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊[𝐻1, 𝐻2] + 𝑏)  (2) 

where 𝑊 , 𝑏  is the parameters of the fully 

connected layer. The loss function for two models 

training is crossentropy: 

 𝐿 = − ∑ ∑ 𝑦𝑖𝑗 . 𝑙𝑜𝑔(�̂�𝑖𝑗)𝐶
𝑗=1

𝑁
𝑖=1     (3) 

Where 𝑦𝑖𝑗  and �̂�𝑖𝑗  are gold label and predicted 

label for the 𝑖𝑡ℎ sample in the 𝑗𝑡ℎ label category. 𝑁 

is the number of samples in a batch, 𝐶  is the 

number of label categories. 

 

Figure 1: The model architecture in Task 1 

3.2 Task 2: BERT and BERT+CRF 

In task2, we still took BERT as the basic 

architecture, and designed two methods. The 

model architecture is shown in Fig. 2. 

BERT: This method is very similar to the first 

method in Task 1. The difference is that we feed the 
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final hidden representation for to each token into a 

classification layer over the NER tags set, because 

we need to obtain predicted tag of each input token. 

BERT +CRF: This method is a follow step of 

the first method. For BERT method, the predictions 

are not conditioned on the surrounding predictions. 

A CRF layer has a state transition matrix as 

parameters (Huang, Xu, & Yu, 2015). With such a 

layer, the system can efficiently use past and future 

tags to predict the current tag. Therefore, we 

applied a CRF layer on the classification layer. We 

denote the output sequence after softmax layer as 

𝐻 = [ℎ1, ℎ2, … ℎ𝑛], then the predicted tag 

sequence 𝑍 = [𝑧1, 𝑧2, … 𝑧𝑛] is as follows: 

 𝑍 = argmax
𝑦

𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝐻,𝑦))

∑ 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝐻,𝑦′))𝑦′
    (4) 

where 𝑠𝑐𝑜𝑟𝑒(𝐻, 𝑦) = ∑ 𝐸𝑡, 𝑦𝑡

𝑛
𝑡=1 + ∑ 𝑇 𝑦𝑡𝑦𝑡+1

𝑛−1
𝑡=0 , 

𝐸𝑡, 𝑦𝑡
= 𝑤𝑦𝑡

T ℎ𝑡 is the score of predicting tag  𝑦𝑡 at 

the 𝑡𝑡ℎ   time, and 𝑇 𝑦𝑡𝑦𝑡+1
  is the score of 

transitioning from  𝑦𝑡 to  𝑦𝑡+1. 

 

Figure 2: The model architecture in Task 2 

3.3 Experiments 

For task1, we compared BERT and 

BERT+knowledge base with two classic deep 

learning methods, TextCNN (Kim, 2014) and 

LSTM (Hochreiter & Schmidhuber, 1997), and 

also investigated the effect of different BERT 

models, including the BERT model (Devlin et al., 

2018) publicly released by 

(https://github.com/google-research/bert) (denoted 

by BERT_noRetrained) and the BERT model 

retrained on a large-scale tweet unlabeled corpus 

based on the previous BERT model (denoted by 

BERT_Retrained). The unlabeled corpus consisted 

of 1,500,000 tweets crawled from Twitter 

according to 150 drug names collected from the 

training set. For task2, we only used the retrained 

BERT model. 

In our experiments, we set batch size to 32, 

learning rate to 5e-5 when training all models. The 

epoch number was set to 8 for BERT retraining, 

and 20 for other models. The dimension of word 

embeddings used in TextCNN and LSTM was set 

to 200. We split out about 10% from the training 

set as a validation set for parameter optimization. 

The performance of all methods for the two tasks 

were measured by precision, recall and F1-score, 

which can be calculated by the official tools 

provided by the organizers. For task2, there were 

two criteria for system performance evaluation: 

relaxed and strict. 

4 Results 

Table 3 and Table 4 show the performance of our 

systems for task 1 and task 2 on the test set, 

respectively.  

For task 1, among the systems we developed, 

“BERT_Retrained” achieved the best F1-score of 

0.6457 and recall of 0.6885 on the test set, 

“BERT_Retrained+Knowledge Base” achieved 

the best precision of 0.6916 on the test set. 

Compared with TextCNN and LSTM on the 

validation set, methods based on BERT showed 

much better performance. As officially reported, 

“BERT_Retrained” ranked first among all systems. 

For task 2, among the systems we developed, 

“BERT_Retrained+CRF” achieved the best 

relaxed F1-score of 0.614 and the best strict F1-

score of 0.407, outperforming “BERT_Retrained” 

by 0.024 in relaxed F1-score and 0.060 in strict F1-

score. 

5 Discussion 

For Task 1, the distribution of 0 and 1 is highly 

imbalanced, 90% of samples are negative, 10% of 

samples are positive. When we used CNN and 

LSTM, if we did not deal with the data imbalance 

problem, the performance of them was quite poor, 

most tweets were classified to 0. In order to balance 

the number of positive and negative samples, we 

randomly divided into the negative 



50

System 
Validation Test 

F1 P R F1 P R 

TextCNN 0.491 0.464 0.522 \ 

LSTM 0.483 0.516 0.453 \ 

BERT_noRretrained 0.618 0.646 0.593 \ 

BERT_Retrained 0.665 0.611 0.728 0.6457 0.6079 0.6885 

BERT_Retrained+Knowledge Base 0.642 0.720 0.579 0.6289 0.6916 0.5767 

Average of participants' systems \ \ \ 0.5019 0.5351 0.5054 

Table 3: Results on validation and test data for Task 1 

System 
Relaxed Strict 

F1 P R F1 P R 

BERT_Retrained+CRF 0.614 0.538 0.716 0.407 0.357 0.474 

BERT_Retrained 0.59 0.529 0.666 0.347 0.311 0.392 

Average of participants' systems 0.5383 0.5129 0.6174 0.3169 0.3026 0.3581 

Table 4: Results on test data for Task 2 

 

samples into five equal parts, and combined each 

part with the positive samples to form a new 

training dataset. After this operation, we obtained 

five new balanced training datasets. Then we 

trained five models on them, and ensembled the 

five models. The ensembled model brought an 

increase of about 8% in F1-score. However, when 

applying this operation to BERT and 

“BERT+Retrained”, we obtained little increase on 

F1-score.  

By analyzing results of “BERT_Retrained”, we 

found that the main errors are: 

 ADR mentions cannot be compeletely 

distinguished from the reason mentions of 

taking drugs. For example, in “oxycodone 

just took my headache away so fast”, 

“headache” is the reason of taking 

oxycodone, not an adverse effect mention of 

oxycodone. The tweet was wrongly 

classified to 1. 

 Implicit adverse effect mentions are difficult 

to identified. For example, “pristiq and im 

livin in a cold world” and “uhh my 

gabapentin does went up today and I don't 

even know what planet i'm on. i hope i adjust 

to this quickly ... #endometriosis”. 

For task 2, because the CRF layer takes full 

advantages of relations between neighbor labels, 

“BERT_Retrained+CRF” could avoid some 

terrible tag sequences such as “I-B-B-O-O”. The 

main errors appearing in task 2 are the same as task 

1. 

For further improvement, a possible direction is 

dealing with task 1 and task 2 at the same time 

using joint learning methods. 

6 Conclusion 

In this paper, we developed systems for task 1 and 

task 2 of the SMM4H shared task in 2019. Our 

systems were based on BERT and achieved 

promising results, especially ranking first on task 1.   
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