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Abstract

The number of users of social media contin-
ues to grow, with nearly half of adults world-
wide and two-thirds of all American adults
using social networking on a regular basis1.
Advances in automated data processing and
NLP present the possibility of utilizing this
massive data source for biomedical and pub-
lic health applications, if researchers address
the methodological challenges unique to this
media. We present the Social Media Mining
for Health Shared Tasks collocated with the
ACL at Florence in 2019, which address these
challenges for health monitoring and surveil-
lance, utilizing state of the art techniques for
processing noisy, real-world, and substantially
creative language expressions from social me-
dia users. For the fourth execution of this chal-
lenge, we proposed four different tasks. Task
1 asked participants to distinguish tweets re-
porting an adverse drug reaction (ADR) from
those that do not. Task 2, a follow-up to Task
1, asked participants to identify the span of
text in tweets reporting ADRs. Task 3 is an
end-to-end task where the goal was to first de-
tect tweets mentioning an ADR and then map
the extracted colloquial mentions of ADRs in
the tweets to their corresponding standard con-
cept IDs in the MedDRA vocabulary. Finally,
Task 4 asked participants to classify whether
a tweet contains a personal mention of one’s
health, a more general discussion of the health
issue, or is an unrelated mention. A total of
34 teams from around the world registered
and 19 teams from 12 countries submitted a
system run. We summarize here the corpora
for this challenge which are freely available
at https://competitions.codalab.
org/competitions/22521, and present
an overview of the methods and the results of
the competing systems.

1Pew Research Center. Social Media Fact Sheet.
2017. [Online]. Available: http://www.pewinternet.org/fact-
sheet/social-media/

1 Introduction

The intent of the #SMM4H shared tasks se-
ries is to challenge the community with Natu-
ral Language Processing tasks for mining rele-
vant data for health monitoring and surveillance
in social media. Such challenges require pro-
cessing imbalanced, noisy, real-world, and sub-
stantially creative language expressions from so-
cial media. The competing systems should be
able to deal with many linguistic variations and
semantic complexities in the various ways peo-
ple express medication-related concepts and out-
comes. It has been shown in past research (Liu
et al., 2011; Giuseppe et al., 2017) that automated
systems frequently under-perform when exposed
to social media text because of the presence of
novel/creative phrases, misspellings and frequent
use of idiomatic, ambiguous and sarcastic expres-
sions. The tasks act as a discovery and verification
process of what approaches work best for social
media data.

As in previous years, our tasks focused on min-
ing health information from Twitter. This year
we challenged the community with two different
problems. The first problem focuses on perform-
ing pharmacovigilance from social media data. It
is now well understood that social media data may
contain reports of adverse drug reactions (ADRs)
and these reports may complement traditional ad-
verse event reporting systems, such as the FDA
adverse event reporting system (FAERS). How-
ever, automatically curating reports from adverse
reactions from Twitter requires the application of
a series of NLP methods in an end-to-end pipeline
(Sarker et al., 2015). The first three tasks of this
year’s challenge represent three key NLP prob-
lems in a social media based pharmacovigilance
pipeline — (i) automatic classification of ADRs,
(ii) extraction of spans of ADRs and (iii) normal-

https://competitions.codalab.org/competitions/22521
https://competitions.codalab.org/competitions/22521
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ization of the extracted ADRs to standardized IDs.
The second problem explores the generalizabil-

ity of predictive models. In health research us-
ing social media, it is often necessary for re-
searchers to build individual classifiers to iden-
tify health mentions of a particular disease in a
particular context. Classification models that can
generalize to different health contexts would be
greatly beneficial to researchers in these fields
(e.g., (Payam and Eugene, 2018)), as this would
allow researchers to more easily apply existing
tools and resources to new problems. Motivated
by these ideas, Task 4 was testing tweet classifi-
cation methods across diverse health contexts, so
the test data included a very different health con-
text than the training data. This setting measures
the ability of tweet classifiers to generalize across
health contexts.

The fourth iteration of our series follows the
same organization as previous iterations. We col-
lected posts from Twitter, annotated the data for
the four tasks proposed and released the posts to
the registered teams. This year, we conducted the
evaluation of all participating systems using Co-
dalab, an open source platform facilitating data
science competitions. The performances of the
systems were compared on a blind evaluations sets
for each task.

All teams registered were allowed to participate
to one or multiple tasks. We provided the partic-
ipants with two sets of data for each task, a train-
ing and a test set. Participants had a period of six
weeks, from March 5th to April 15th, for train-
ing their systems on our training sets, and 4 days,
from the 16th to 20th of April, for calibrating their
systems on our test sets and submitting their pre-
dictions. In total 34 teams registered and 19 teams
submitted at least one run (each team was allowed
to submit, at most, three runs per task). In detail,
we received 43 runs for task 1, 24 for task 2, 10 for
task 3 and 15 for task 4. We briefly describe each
task and their data in section 2, before discussing
the results obtained in section 3.

2 Task Descriptions

2.1 Tasks

Task 1: Automatic classification of tweets men-
tioning an ADR. This is a binary classification
task for which systems are required to predict if a
tweet mentions an ADR or not. In an end-to-end
social media based pharmacovigilance pipeline,

such a system is needed after data collection to
filter out the large volume of medication-related
chatter that is not a mention of an ADR. This task
is a rerun of the popular classification task orga-
nized in past years.

Task 2: Automatic extraction of ADR mentions
from tweets. This is a named entity recogni-
tion (NER) task that typically follows the ADR
classification step (Task 1) in an ADR extraction
pipeline. Given a set of tweets containing drug
mentions and potentially containing ADRs, the
objective was to determine the span of the ADR
mention, if any. ADRs are rare events making
ADR classification a challenging task with an F1-
score in the vicinity of 0.5 (based on previous
shared task results (Weissenbacher et al., 2018))
for the ADR class. The dataset for the ADR ex-
traction task contains tweets that are both positive
and negative for the presence of ADRs. This al-
lowed participants to choose to train their systems
on either the set of tweets containing ADRs or in-
clude tweets that were negative for the presence of
ADRs.

Task 3: Automatic extraction of ADR mentions
and normalization of extracted ADRs to Med-
DRA preferred term identifiers. This is an ex-
tension of Task 2 consisting of the combination of
NER and entity normalization tasks: a named en-
tity resolution task. In this task, given the same
set of tweets as in Task 2, the objective was to ex-
tract the span of an ADR mention and to normal-
ize it to MedDRA identifiers 2. MedDRA (Med-
ical Dictionary for Regulatory Activities), which
is the standard nomenclature for monitoring med-
ical products, and includes diseases, disorders,
signs, symptoms, adverse events or adverse drug
reactions. For the normalization task, MedDRA
version 21.1 was used, containing 79,507 lower
level terms (LLTs) and 23,389 respective preferred
terms (PTs).

Task 4: Automatic classification of personal
mentions of health. In this binary classifica-
tion task, the systems were required to distinguish
tweets of personal health status or opinions across
different health domains. The proposed task was
intended to provide a baseline understanding of
the ability to identify personal health mentions in
a generalized context.

2https://www.meddra.org/ Accessed:
05/13/2019.

https://www.meddra.org/
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2.2 Data
All corpora were composed of public tweets
downloaded using the official streaming API pro-
vided by Twitter and made available to the partici-
pants in accordance with Twitter’s data use policy.
This study received an exempt determination by
the Institutional Review Board of the University
of Pennsylvania.

Task 1. For training, participants were provided
with all the tweets from the #SMM4H 2017 shared
tasks (Sarker et al., 2018), which are publicly
available at: https://data.mendeley.
com/datasets/rxwfb3tysd/2. A total of
25,678 tweets were made available for training.
The test set consisted of 4575 tweets with 626
(13.7%) tweets representing ADRs. The evalua-
tion metric for this task was micro-averaged F1-
score for the ADR class.

Task 2. Participants of Task 2 were provided
with a training set containing 2276 tweets which
mentioned at least one drug name. The dataset
contained 1300 tweets that were positive for the
presence of ADRs and 976 tweets that were neg-
ative. Participants were allowed to include addi-
tional negative instances from Task 1 for training
purposes. Positive tweets were annotated with the
start and end indices of the ADRs and the corre-
sponding span text in the tweets. The evaluation
set contained 1573 tweets, 785 and 788 tweets
were positive and negative for the presence of
ADRs respectively. The participants were asked
to submit outputs from their systems that con-
tained the predicted start and end indices of ADRs.
The participants’ submissions were evaluated us-
ing standard strict and overlapping F1-scores for
extracted ADRs. Under strict mode of evaluation,
ADR spans were considered correct only if both
start and end indices matched with the indices in
our gold standard annotations. Under overlapping
mode of evaluation, ADR spans were considered
correct only if spans in predicted annotations over-
lapped with our gold standard annotations.

Task 3. Participants were provided with the
same training and evaluation datasets as in Task
2. However, the datasets contained additional
columns for the MedDRA annotated LLT and PT
identifiers for each ADR mention. In total, of the
79,507 LLT and 23,389 PT identifiers available in
MedDRA, the training set of 2276 tweets and 1832
annotated ADRs contained 490 unique LLT iden-

tifiers and 327 unique PT identifiers. The evalua-
tion set contained 112 PT identifiers that were not
present as part of the training set. The participants
were asked to submit outputs containing the pre-
dicted start and end indices of ADRs and respec-
tive PT identifiers. Although the training dataset
contained annotations at the LLT level, the perfor-
mance was only evaluated at the higher PT level.
The participants’ submissions were evaluated us-
ing standard strict and overlapping F-scores for ex-
tracted ADRs and respective MedDRA identifiers.
Under strict mode of evaluation, ADR spans were
considered correct only if both start and end in-
dices matched along with matching MedDRA PT
identifiers. Under overlapping mode of evaluation,
ADR spans were considered correct only if spans
in predicted ADRs overlapped with gold standard
ADR spans in addition to matching MedDRA PT
identifiers.

Task 4 Data. Participants were provided train-
ing data from one disease domain, influenza,
across two contexts, being sick and getting vac-
cinated, both annotated for personal mentions: the
user is personally sick or the user has been per-
sonally vaccinated. Test data included new tweets
of personal health mentions about influenza and
tweets from an additional disease domain, Zika
virus, with two different contexts, the user is
changing their travel plans in response to Zika
concerns, or the user is minimizing potential
mosquito exposure due to Zika concerns.

2.3 Annotation and Inter-Annotator
Agreements

Two annotators with biomedical education and
both experienced in Social Media research tasks
manually annotated the corpora for tasks 1, 2 and
3. Our annotators independently dual-annotated
each test sets to insure the quality of our annota-
tions. Disagreement were resolved after an adju-
dication phase between our two annotators. On
task 1, the classification task, the inter annotator-
agreement (IAA) was high with a Cohens Kappa
= 0.82. On task 2, the information extraction task,
IAAs were good with and an F1-score of 0.73 for
strict agreement, and 0.85 for overlapping agree-
ment3. On task 3, our annotators double annotated

3Since task 2 is a named-entity recognition task, we fol-
lowed the recommendations of (Hripcsak and Rothschild,
2005) and used precision and recall metrics to estimate the
inter-annotator rate.

https://data.mendeley.com/datasets/rxwfb3tysd/2
https://data.mendeley.com/datasets/rxwfb3tysd/2
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535 of the extracted ADR terms and normalized
them to MedDRA lower lever terms (LLT). They
achieved an agreement accuracy of 82.6%. Af-
ter converting the LLT to their corresponding pre-
ferred term (PT) in MedDRA, which is the coding
the task was scored against, accuracy improved to
87.7%4.

The annotation process followed for task 4 was
slightly different due to the nature of the task. We
obtained the two datasets of our training set, fo-
cusing on flu vaccination and flu infection, from
(Huang et al., 2017) and (Lamb et al., 2013) re-
spectively. Huang et al. (Huang et al., 2017) used
mechanical turk to crowdsource labels (Fleiss’
kappa = 0.793). Lamb et al. (Lamb et al., 2013)
did not report their labeling procedure or annotator
agreement metrics, but do report annotation guide-
lines5. A few of the tweets released by Lamb et
al. appeared to be mislabeled and were corrected
in accordance with the annotation guidelines de-
fined by the authors. We obtained the test data
for task 4 by compiling three datasets. For the
dataset related to travel changes due to Zika con-
cerns, we selected a subset of data already avail-
able from (Daughton and Paul, 2019). Initial la-
beling of these tweets was performed by two an-
notators with a public health background (Cohen’s
kappa = 0.66). We reuse the original annotations
for this dataset without changes. For the mosquito
exposure dataset, tweets were labeled by one an-
notator with public health knowledge and expe-
rienced with social media, and then verified by
a second annotator with similar experience. The
additional set of data on personal exposure to In-
fluenza were obtained from a separate group, who
used an independent labeling procedure.

3 Results

The challenge received a solid response with 19
teams from 12 countries (7 from North America,
1 from South America, 6 from Asia and 5 from
Europe) submitting 92 runs in total in one or more
tasks. We present an overview of all architec-
tures competing in the different tasks in Table 1,
2, 3, 4. We also list in these tables the exter-
nal resources competitors integrated for improving

4We measured agreement using accuracy instead of Co-
hens Kappa because, with greater than 70,000 LLTs for the
annotators to choose from, agreement due to chance is ex-
pected to be small.

5We used the awareness vs. infection labels as defined in
(Lamb et al., 2013).

the pre-training of their systems or for embedding
high-level features to help decision-making.

The overview of all architectures is interest-
ing in two ways. First, this challenge confirms
the tendency of the community to abandon tradi-
tional Machine Learning systems based on hand-
crafted features for deep learning architectures ca-
pable of discovering the features relevant for the
task at hand from pre-trained embeddings. Dur-
ing the challenge, when participants implemented
traditional systems, such as SVM or CRF, they
used such systems as baselines and, observing sig-
nificant differences of performances with systems
based on deep learning on their validation sets,
most of them did not submit their predictions as
official runs. Second, while last year convolu-
tional or recurrent neural networks “fed” with pre-
trained word embeddings learned on local win-
dows of words (e.g. word2vec, GloVe) were the
most popular architectures, this year we can see
a clear dominance of neural architectures using
word embeddings pre-trained with the Bidirec-
tional Encoder Representations from Transform-
ers (BERT) proposed by (Devlin et al., 2018), or
fine-tuning these words embeddings on our train-
ing corpora. BERT allows to compute words em-
beddings based on the full context of sentences
and not only on local windows.

A notable result from task 1-3 is that, despite
an improvement in performances for the detec-
tion of ADRs, their resolution remains challenging
and will require further research. The participants
largely adopted contextual word-embeddings dur-
ing this challenge, a choice rewarded by new
records in performances during the task 1, the only
task reran from last years. The performances in-
creased from .522 F1-score (.442 P, .636 R) (Weis-
senbacher et al., 2018) to .646 F1-score (0.608 P,
0.689 R) for the best systems of each years. How-
ever, with a strict matching F1-score of .432 (.362
P, .535 R) for the best system, the performances
obtained in task 3 for ADRs resolution are still
low and human inspection is still required to make
use of the data extracted automatically. As shown
by the best score of .887 Accuracy obtained on the
ADR normalization in task 3 ran during #SMM4H
in 2017 (Sarker et al., 2018)6, once ADRs are ex-
tracted, the normalization of the ADRs can be per-

6Organizers of the task 3 ran during #SMM4H 2017 pro-
vided participants with manually curated expressions refer-
ring to ADRs and participants had to map them to their cor-
responding preferred terms in MeDRA.
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formed with a good reliability. However errors are
made during all steps of the resolution — detec-
tion, extraction, normalization — and their over-
all accumulation render current automatic systems
inefficient. Note that bulk of the errors are made
during the extraction of the ADRs, as shown by
the low strict F1-score of the best system in task 2,
.464 F1-score (.389P, .576 R).

For task 4, we were especially interested in the
generalizability of first person health classifiers to
a domain separate from that of the training data.
We find that, on average, teams do reasonably
well across the full test dataset (average F1-score:
0.70, range: 0.41-0.87). Unsurprisingly, classi-
fiers tended to do better on a test set in the same
domain as the training dataset (context 1, average
F1-score: 0.82) and more modestly on the Zika
travel and mosquito datasets (average F1-score:
0.40 and 0.52, respectively). Interestingly, in all
contexts, precision was higher than recall. We note
that both the training and the testing data were lim-
ited in quantity, and that classifiers would likely
improve with more data. However, in general, it is
encouraging that classifiers trained in one health
domain can be applied to separate health domains.

4 Conclusion

In this paper we presented an overview of the re-
sults of #SMM4H 2019 which focuses on a) the
resolution of adverse drug reaction (ADR) men-
tioned in Twitter and b) the distinction between
tweets reporting personal health status form opin-
ions across different health domains. With a total
of 92 runs submitted by 19 teams, the challenge
was well attended. The participants, in large part,
opted for neural architectures and integrated pre-
trained word-embedding sensitive to their contexts
based on the recent Bidirectional Encoder Repre-
sentations from Transformers. Such architectures
were the most efficient on our four tasks. Re-
sults on tasks 1-3 show that, despite a continuous
improvement of performances in the detection of
tweets mentioning ADRs over the past years, their
end-to-end resolution still remain a major chal-
lenge for the community and an opportunity for
further research. Results of task 4 were more en-
couraging, with systems able to generalized their
predictions over domains not present in their train-
ing data.
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Rank Team System details
1 ICRC Architecture: BERT + FF + Softmax

Details: lexicon features (pairs of drug-ADR)
Resources: SIDER

2 UZH Architecture: ensemble of BERT & C CNN + W BiLSTM (+ CRF)
Details: multi-task-learning
Resources: CADEC corpus

3 MIDAS@IIITD Architecture: 1. BERT 2. ULMFit 3. W BiLSTM
Details: BERT + GloVe + Flair
Resources: additional corpus (Sarker and Gonzalez-Hernandez, 2015)

4 KFU NLP Architecture: BERT + logistic regression
Details: BioBERT

5 CLaC Architecture: Bert + W BiLSTM + attention + softmax + SVM
Details: BERT, Word2Vec, Glove, embedded features
Resources: POS, modality, ADR list

6 THU NGN Architecture: C CNN + W BiLSTM + features + Multi-Head attention + Softmax
Details: Word2Vec, POS, ELMo
Resources: sentiment Lexicon, SIDER, CADEC

7 BigODM Architecture: ensemble of SVMs
Resources: Word Embeddings

8 UMich-NLP4Health Architecture: 1. W BiLSTM + attention + softmax; 2. W CNN + BiLSTM + softmax; 3. SVM
Details: GloVe, POS, case
Resources: Metamap, cTAKES, CIDER

9 TMRLeiden Architecture: ULMfit
Details: Flair + Glove + Bert; transfer learning
Resources: external corpus (Sarker and Gonzalez, 2017)

10 CIC-NLP Architecture: C BiLSTM + W FF + LSTM + FF
Details: GloVe + BERT

12 SINAI Architecture: 1. SVM 2. CNN + Softmax
Details: GloVe
Resources: MetaMap

13 nlp-uned Architecture: W BiLSTM + Sigmoid
Details: GloVe

14 ASU BioNLP Architecture: 1. Lexicon; 2. BioBert
Details: Lexicon learned with Logistic regression model

15 Klick Health Architecture: ELMo + FF + Softmax
Details: Lexicons
Resources: MedDRA, Consumer Health Vocabulary, (Nikfarjam et al., 2015)

16 GMU Architecture: encoder-decoder (W biLSTM + attention)
Details: Glove
Resources: #SMM4H 2017-2018, UMLS

Table 1: Task 1. System and resource descriptions for ADR mentions detection in tweets7.
8 We use C BiLSMT and C CNN to denote bidirectonal LSTMs or CNNs encoding sequences of characters, W BiLSTM and

W FF to denote bidirectional LSTMs or Feed Forward encoders of word embeddings.
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Rank Team System details
1 KFU NLP Architecture: ensemble of BioBERT + CRF

Details: BioBERT
Resources: external dictionaries (Miftahutdinov et al., 2017);

CADEC, PsyTAR, TwADR-L corpora; #SMM4H 2017
2 THU NGN Architecture: C CNN + W BiLSTM + features + Multi-Head self-attention + CRF

Details: Word2Vec, POS, ELMo
Resources: sentiment Lexicon, SIDER, CADEC

3 MIDAS@IIITD Architecture: W BiLSTM + CRF
Details: BERT + GloVe + Flair

4 TMRLeiden Architecture: BERT + Flair
Details: Flair + Glove + Bert; transfer learning

5 ICRC Architecture: BERT + CRF
Resources: SIDER

6 GMU Architecture: C biLSTM + W biLSTM + CRF
Details: Glove
Resources: #SMM4H 2017-2018, UMLS

7 HealthNLP Architecture: W BiLSTM + CRF
Details: Word2vec, BERT, ELMo, POS
Resources: external dictionaries

8 SINAI Architecture: CRF
Details: GloVe
Resources: MetaMap

9 Architecture: BiLSTM + CRF
Details: Word2Vec
Resources: MIMIC-III

10 Klick Health Architecture: Similarity
Details: Lexicons
Resources: MedDRA, Consumer Health Vocabulary, (Nikfarjam et al., 2015)

Table 2: Task 2. System and resource descriptions for ADR mentions extraction in tweets

Rank Team System details
1 KFU NLP Architecture: BioBERT + softmax
2 myTomorrows-TUDelft Architecture: ensemble RNN & Few-Shot Learning

Details: Word2Vec
Resources: MedDRA, Consumer Health Vocabulary, UMLS

3 TMRLeiden Architecture: BERT + Flair + RNN
Details: Flair + Glove + Bert; transfer learning
Resources: Consumer Health Vocabulary

4 GMU Architecture: encoder-decoder (W biLSTM + attention)
Details: Glove
Resources: #SMM4H 2017-2018, UMLS

Table 3: Task 3. System and resource descriptions for ADR mentions resolution in tweets.

Rank Team System details
1 UZH Architecture: ensemble BERT

Resources: CADEC corpus
2 ASU1 Architecture: BioBERT + FF

Resources: Word2vec, manually compiled list, ConceptNet
4 MIDAS@IIITD Architecture: BERT; W BiLSTM

Details: BERT + GloVe + Flair
5 TMRLeiden Architecture: ULMfit

Details: Flair + Glove + Bert; transfer learning
Resources: external corpus (Payam and Eugene, 2018)

6 CLaC Architecture: Bert + W BiLSTM + attention + softmax + SVM
Details: BERT, Word2Vec, Glove, embedded features
Resources: POS, modality, ADR list

Table 4: Task 4. System and resource descriptions for detection of personal mentions of health in tweets.
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Team F1 P R
ICRC 0.6457 0.6079 0.6885
UZH 0.6048 0.6478 0.5671
MIDAS@IIITD 0.5988 0.6647 0.5447
KFU NLP 0.5738 0.6914 0.4904
CLaC 0.5738 0.5427 0.6086
THU NGN 0.5718 0.4667 0.738
BigODM 0.5514 0.4762 0.655
UMich-NLP4Health 0.5369 0.5654 0.5112
TMRLeiden 0.5327 0.6419 0.4553
CIC-NLP 0.5209 0.6203 0.4489
UChicagoCompLx 0.4993 0.4574 0.5495
SINAI 0.4969 0.5517 0.4521
nlp-uned 0.4723 0.5244 0.4297
ASU BioNLP 0.4317 0.3223 0.6534
Klick Health 0.4099 0.5824 0.3163
GMU 0.3587 0.4526 0.2971

Table 5: System performances for each team for task 1 of the shared task. F1-score, Precision and Recall over the
ADR class are shown. Top scores in each column are shown in bold.

Relaxed Strict
Team F1 P R F1 P R
KFU NLP 0.658 0.554 0.81 0.464 0.389 0.576
THU NGN 0.653 0.614 0.697 0.356 0.328 0.388
MIDAS@IIITD 0.641 0.537 0.793 0.328 0.274 0.409
TMRLeiden 0.625 0.555 0.715 0.431 0.381 0.495
ICRC 0.614 0.538 0.716 0.407 0.357 0.474
GMU 0.597 0.596 0.599 0.407 0.406 0.407
HealthNLP 0.574 0.632 0.527 0.336 0.37 0.307
SINAI 0.542 0.612 0.486 0.36 0.408 0.322
ASU BioNLP 0.535 0.415 0.753 0.269 0.206 0.39
Klick Health 0.396 0.416 0.378 0.194 0.206 0.184

Table 6: System performances for each team for task 2 of the shared task. (Strict/Relaxed) F1-score, Precision
and Recall over the ADR mentions are shown. Top scores in each column are shown in bold.

Relaxed Strict
Team F1 P R F1 P R
KFU NLP 0.432 0.362 0.535 0.344 0.288 0.427
myTomorrows-TUDelft 0.345 0.336 0.355 0.244 0.237 0.252
TMRLeiden 0.312 0.37 0.27 0.25 0.296 0.216
GMU 0.208 0.221 0.196 0.109 0.116 0.102

Table 7: System performances for each team for task 3 of the shared task. (Strict/Relaxed) F1-score, Precision
and Recall over the ADR resolution are shown. Top scores in each column are shown in bold.
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Team Acc F1 P R
Health concerns in all contexts

UZH 0.8772 0.8727 0.8392 0.9091
ASU1 0.8456 0.8036 0.9783 0.6818
UChicagoCompLx 0.8316 0.7913 0.9286 0.6894
MIDAS@IIITD 0.8211 0.783 0.8932 0.697
TMRLeiden 0.793 0.7256 0.9398 0.5909
CLaC 0.6386 0.4607 0.7458 0.3333

Health concerns in Context 1: Flu virus (infection/vaccination)
UZH 0.9438 0.9474 0.9101 0.9878
UChicagoCompLx 0.925 0.9231 0.973 0.878
ASU1 0.925 0.9221 0.9861 0.8659
MIDAS@IIITD 0.8875 0.88 0.9706 0.8049
TMRLeiden 0.8625 0.8493 0.9688 0.7561
CLaC 0.6625 0.5645 0.8333 0.4268

Health concerns in Context 2: Zika virus, travel plans changes
UZH 0.7536 0.7385 0.7059 0.7742
MIDAS@IIITD 0.6667 0.5818 0.6667 0.5161
ASU1 0.6957 0.5116 0.9167 0.3548
UChicagoCompLx 0.6377 0.4681 0.6875 0.3548
TMRLeiden 0.6377 0.4186 0.75 0.2903
CLaC 0.5362 0.2 0.4444 0.129
Health concerns in Context 3: Zika virus, reducing mosquito exposure
UZH 0.8393 0.7692 0.75 0.7895
MIDAS@IIITD 0.8214 0.6667 0.9091 0.5263
ASU1 0.8036 0.5926 1.0 0.4211
UChicagoCompLx 0.8036 0.5926 1.0 0.4211
TMRLeiden 0.7857 0.5385 1.0 0.3684
CLaC 0.6964 0.3704 0.625 0.2632

Table 8: System performances for each team for task 4 of the shared task. Accuracy, F1-score, Precision and
Recall over the personal mentions are shown. Top scores in each column are shown in bold.


