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Abstract
The use of the Latin script for text en-
try of South Asian languages is common,
even though there is no standard orthogra-
phy for these languages in the script. We
explore several compact finite-state archi-
tectures that permit variable spellings of
words during mobile text entry. We find
that approaches making use of transliter-
ation transducers provide large accuracy
improvements over baselines, but that sim-
pler approaches involving a compact rep-
resentation of many attested alternatives
yields much of the accuracy gain. This is
particularly important when operating un-
der constraints on model size (e.g., on inex-
pensive mobile devices with limited storage
and memory for keyboard models), and on
speed of inference, since people typing on
mobile keyboards expect no perceptual de-
lay in keyboard responsiveness.

1 Introduction
Many of the world’s writing systems present
challenges for machine readable text entry
compared with alphabetic writing systems
(such as the Latin script used for the English
in this paper). For example, a very large char-
acter set, such as that used for Chinese, can be
impractical to represent on a keyboard requir-
ing direct selection of characters; hence spe-
cialized encoding methods are generally used
based on smaller symbol sets. For example,
the well-known pinyin system for text entry
of Chinese relies on Latin alphabetic codes to
input Chinese characters. South Asian lan-
guages, such as Tamil and Hindi, also use
writing systems that, while lacking the thou-
sands of characters as in Chinese, are nonethe-
less challenging for direct typing (particularly
on mobile devices), and hence are frequently
entered using the Latin alphabet. In those
languages, however, unlike Chinese, there is

no single system that is used for romaniza-
tion, rather individuals typically provide a
rough phonetic transcription of the words in
the Latin script.

The use of pinyin for Chinese is gener-
ally part of a system for converting the text
into the native script, and this can also be
achieved for keyboards in South Asian lan-
guages (Hellsten et al., 2017). However, for
these languages, many individuals prefer to
simply leave the text in the Latin script rather
than converting to the native script. To pro-
vide full mobile keyboard functionality in such
a scenario – including, e.g., word prediction
and completion, and automatic correction of
so-called fat finger errors in typing – language
model support must be provided. Yet in the
absence of a standard orthography, encod-
ing word-to-word dependencies becomes more
complicated, since there may be many possible
versions of any given word.

In this paper, we examine a few practical
alternatives to address the lack of a conven-
tionalized Latin script orthography for use in a
finite-state keyboard decoder. We use several
different transducers that normalize input ro-
manizations to either a native script word form
or a “canonical” Latin script form1 in order to
combine with a word-based language model.
To produce Latin script after this normaliza-
tion, we must produce text from the input
tape of these transducers. We also present an
alternative method involving a compact rep-
resentation of a large supplementary lexicon
that covers highly likely romanizations of in-
vocabulary words. All of these methods pro-
vide accuracy improvements over the baseline

1We use canonical in quotes here and elsewhere be-
cause there is no standard orthography hence no true
canonical form; rather, for each native script word in
our lexicon, we choose one romanization as “canonical”.
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(fixed vocabulary) method.
In the next section, we give some back-

ground on the problem before outlining our
new methods. We then present experimental
results of keyboard entry simulation for Hindi,
in which we demonstrate over 50% relative re-
duction in error rate2 over existing baselines.

2 Background and preliminaries

2.1 South Asian romanization
Romanized text entry is widely used in lan-
guages, such as Hindi and Arabic, for which
there is no agreed-upon adherence to any
particular conventionalized representation in
the Latin script such as is found in Chi-
nese. South Asian languages written na-
tively in a Brahmic script, including Hindi,
Bengali, Tamil and many others, are heav-
ily romanized mainly due to the complex-
ity of typing the scripts. These scripts are
abugida (or alphasyllabary) writing systems
that are based on consonant/vowel “syllables”
(akṣara) that pair consonants with a default
vowel. Alternative vowels (as well as the lack
of a vowel) are designated through the use
of various diacritic marks that can appear
above, below, or on either side of the conso-
nant (or consonant cluster). This, along with
complex multi-consonant ligatures (known as
conjuncts), makes direct use of native script
keyboards relatively uncommon. An exem-
plar word in the Devanagari script contain-
ing such complex graphemes is given in Fig-
ure 1. Romanization is also used for Perso-
Arabic scripts in South Asia, such as that used
for Urdu, but not presumbably due to com-
plexities in representing such scripts on native
keyboards, but rather due to historical rea-
sons3 and perhaps the influence of other re-
gional languages.

As a result of having no conventionalized
romanization system, text in, say, romanized
Hindi has no standardized orthography, but
rather words are usually represented via rough

2Word-error rate in this setting means recovery of
the intended form typed by the user. We take the
romanized strings in the validation set as the intended
forms, despite spelling variation throughout.

3Languages using the Cyrillic script are also fre-
quently romanized. There, and perhaps also for Perso-
Arabic scripts, the issue is with historical lack of font
and encoding support in certain scenarios.

ब ⇒ ब /ba/
ब+◌् ⇒ ब् /b/
ब्+ र ⇒ ɕ /bra/
ɕ+◌ा ⇒ ɕा /brā/

ह+◌्+ म+◌ी ⇒ ʎी /hmī/
ɕा+ʎी ⇒ɕाʎी /brāhmī/

Figure 1: Demonstration of how the Hindi word ɕाʎी
/brāhmī/, meaning Brahmic, is decomposed into its
unicode codepoints as written in Devanagari. Pronun-
ciations are shown between slashes.

phonetic transcriptions in Latin script. For
example, the Hindi words संȭकृत and संपूणȁ are
commonly romanized as sanskrit and sampu-
ran, respectively. Both words begin in De-
vanagari with the grapheme सं which is /sa/
with a diacritic indicating a nasal consonant
(such as /n/) in the coda. Note that the
nasal becomes either /n/ or /m/ depending on
the following consonant,4 demonstrating how
these romanizations are driven by pronuncia-
tion rather than from the native orthography.
Urdu has the same words, written and

respectively in the Perso-Arabic script,
and they are romanized similarly to the Hindi
words, also demonstrating the role of pronun-
ciation rather than writing system in roman-
ization for these languages.5 In general, due
to this lack of a standardized spelling in the
Latin script, romanizations may vary due to
dialectal variation, regional accent, or simply
individual idiosyncrasies.

As a concrete example, a blog entry on the
general topic of political corruption on a site
run by the India Today Group from 2011 has
comments in (1) English; (2) Hindi written in
Devanagari (its native script and that is used
in the blog post itself); and also extensively in
(3) romanized Hindi.6 One comment begins:
“Bhrashtachar aam aadmi se chalu hota hai…”,
which presumably corresponds to the De-
vanagari: ɖʊाचार आम आदमी से चालू होता है and
roughly translates to: “Corruption starts with
the common man…” Given that corruption is
the overall topic of the blog post, it is unsur-

4This is a process known as assimilation.
5Note that unlike in Devanagari, Perso-Arabic

script Urdu does in fact graphically differentiate these
phonetically differentiated onsets, spelling them re-
spectively as ⟨sn⟩ and ⟨sm⟩.

6http://blogs.intoday.in/index.php?option=
com_myblog&contentid=62323&show=Removal-of-
corruption-from-the-beginning-itself&blogs=2

http://blogs.intoday.in/index.php?option=com_myblog&contentid=62323&show=Removal-of-corruption-from-the-beginning-itself&blogs=2
http://blogs.intoday.in/index.php?option=com_myblog&contentid=62323&show=Removal-of-corruption-from-the-beginning-itself&blogs=2
http://blogs.intoday.in/index.php?option=com_myblog&contentid=62323&show=Removal-of-corruption-from-the-beginning-itself&blogs=2
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prising that the Hindi word for this shows up
in many comments. It is, however, variously
romanized. By our count: 16 times it is ro-
manized as “bhrastachar”; 7 times as “bhrash-
tachar”; and once each as “barashtachaar”,
“bharastachar”, “bharstachar”, “bhastachar”
and “bhrstachar”. Google Translate provides
both a translation and a romanization of the
word (“bhrashtaachaar”7), a form which inter-
estingly is not found in our (admittedly small)
example blog comment sample.

2.2 Transliteration and romanized text
The need to transliterate between writing sys-
tems comes up in many application scenar-
ios, but early work on the topic was largely
focused on the needs of machine translation
and information retrieval due to loanwords
and proper names (Knight and Graehl, 1998;
Chen et al., 1998; Virga and Khudanpur, 2003;
Li et al., 2004). These approaches either
explicitly modeled pronunciation in the lan-
guages (Knight and Graehl, 1998) or more di-
rectly modeled correspondences in the writ-
ing systems (Li et al., 2004). Models for ma-
chine transliteration have continued to im-
prove, through the use of improved mod-
eling methods including many-to-many sub-
string alignment-based modeling, discrimi-
native decoding, and multilingual multitask
learning (Sherif and Kondrak, 2007; Cherry
and Suzuki, 2009; Kunchukuttan et al., 2018),
or by mining likely transliterations in large
corpora (Sajjad et al., 2017). Transliteration
models are also being deployed in increasingly
challenging use scenarios, such as mixed-script
information retrieval (Gupta et al., 2014) or
for mobile text entry (Hellsten et al., 2017).

The volume of romanized text in languages
that use other writing systems is an acknowl-
edged issue, one which has grown in impor-
tance with the advent of SMS messaging and
social media, due to the prevalence of roman-
ized input method editors (IMEs) for these
languages (Ahmed et al., 2011). The lack of
standard orthography and resulting spelling
variation found in romanization is also found
in other natural language scenarios, such as
OCR of historical documents (Garrette and
Alpert-Abrams, 2016) and writing of dialectal

7translate.google.com/#en/hi/Corruption

Arabic (Habash et al., 2012).
For this study, we make use of Wikipedia

data originally written in the native script
that has been romanized, and our task is to
permit accurate text entry on mobile key-
boards, rather than transliteration to the na-
tive script or normalization for use in other
downstream tasks. In this case “accurate
text entry” means fidelity to the intended
text, even if that intended text is writ-
ten without consistent spelling. If the user
noisily types “bgrashtachsr” while intending
“bhrashtachar”, the keyboard should produce
“bhrashtachar” not another romanization such
as “bhrastachar”. Given annotator-romanized
Wikipedia text, we evaluate our ability to cor-
rectly recognize the actual romanizations used.

2.3 Mobile keyboard decoding
Virtual keyboards of the sort typically used
on mobile devices convert a temporal sequence
of interactions with the touchscreen (taps or
continuous gestures) into text. Like speech
recognition or optical character recognition,
the mapping of noisy, continuous input sig-
nals to discrete text strings involves stochastic
inference; further, given the low required la-
tency during typing, models must be compact
enough to run on the local device and inference
with them must be fast. For this reason, the
kinds of finite-state methods that have been
used for speech recognition and OCR have also
been used for this task (Ouyang et al., 2017).
The work we present here will be in the con-
text of such an FST-based keyboard decoder.

For touch typing, where the input consists of
a sequence of taps, we designate with the term
literal the string corresponding to the actual
keys touched. The intended string may dif-
fer, due to such phenomena as so-called “fat
finger” errors, i.e., hitting a neighboring key,
omitting a key or including an extra tap.

Analogous to the acoustic model in speech
recognition, which assigns probabilities to
the continuous waveform given a sequence of
phones, such a decoder makes use of a spatial
model, assigning probabilities to the sequence
of taps (or gestures) given a sequence of letters.
Taps, for example, are modeled in Ouyang
et al. (2017) with Gaussians centered on the
middle of each key. Costs are thus assigned to
alternative possible intended character strings

https://translate.google.com/#en/hi/Corruption
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which may have substitutions, deletions and
insertions relative to the literal string.

In speech recognition, phones are typically
split in the acoustic model based on the sur-
rounding context, in order to capture co-
articulation effects and other influences on
the acoustics associated with a particular in-
tended phone. Similarly, in the spatial model,
keys are typically split based on the previous
touched key, which we will term bikey repre-
sentation. So, at the start of a word, the letter
‘b’ will be represented as ‘_b’, whereas after
the letter ‘a’, it would be represented as ‘ab’.
Later we will have methods that must be aware
of the input representation.

The spatial model cost and the language
model cost are combined by the decoder to
score competing output strings. Typically
these scored string alternatives will be com-
pared to the literal string and only selected
if the difference in score is above some thresh-
old, to avoid spurious changes to what the user
typed (Ouyang et al., 2017). To accept any
string (including any possible literal string), a
loop transition for every character with some
fixed cost can be included at the unigram
state (the base of the smoothing recursion, see
Roark et al., 2012), so that every string in Σ∗

has non-zero probability.
In addition to decoding for auto-correction,

the language model may also be used for word
prediction and completion, i.e., showing sug-
gestions in a small dynamic portion of the key-
board. In this paper, we do not have much to
say about this part of the process, other than
to point out when its demands make certain
approaches more complicated than others.

Such an architecture has also been used
for transliteration from Latin script input to
native script output (Hellsten et al., 2017),
by interposing a finite-state transducer (FST)
between the spatial model (defined over the
Latin script) and the language model (defined
over native script words). Some of our meth-
ods are related to these, although the output
of the keyboard does not change script.

3 Methods

3.1 Word transliteration models
For both off-line model training and on-line
transliteration-based decoding methods, we

make use of pair n-gram (also known as
“joint multi-gram”) modeling methods (Bisani
and Ney, 2008), which Hellsten et al. (2017)
also use to train their transliteration mod-
els. Given a lexicon with words in the na-
tive script and possible romanizations of those
words (see §4.1 for specifics on our data), ex-
pectation maximization is used to derive pair-
wise symbol alignments. For example, ɖʊाचार
and “bhrashtachar” may yield a pairwise sym-
bol alignment of:

भ:b ◌्:h र:r ϵ:a ष:s ◌्:h ट:t ◌ा:a च:c ϵ:h ◌ा:a र:r
where each symbol is composed of an input
(native script) unicode codepoint (or ϵ, denot-
ing the empty string) and an output (Latin
script) unicode codepoint (or ϵ). These sym-
bol pairs then become tokens in an n-gram
language model encoded as an automaton. Fi-
nally, the automaton is converted to a trans-
ducer with native script on one side and Latin
script on the other.

This model provides a joint probability dis-
tribution over input:output sequence pairs,
e.g., for a word ɖʊाचार and a romanization
“bhrashtachar”, i.e., P (ɖʊाचार,bhrashtachar).
As Hellsten et al. (2017) note, within most de-
coding settings that combine with a language
model on the native script side, a conditional
probability is actually what is needed:
P (bhrashtachar | ɖʊाचार). We refer readers to
that paper for details on how to incorporate
the appropriate normalization into an FST-
based decoder. We use similar methods, per-
mitting the model to be used in both on-line
and off-line scenerios.

Note that it is trivial to swap the input and
output symbols for such a model, either by
changing the ordering of the pair symbols in
the training data or simply inverting the re-
sulting WFST. The same model can thus be
used for transliteration from input Latin script
to native script forms; or from input native
script to romanizations.

For example, suppose T is a transliteration
transducer (Latin script on the input side and
native script on the output side) and S is an
automaton that accepts a single native script
word w for which we wish to find likely roman-
izations. If we compose T ◦ S, this yields a
transducer encoding alternative Latin/native
script string relations with w as the output
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string. We can convert this transducer into
an automaton accepting alternative romaniza-
tions of w by projecting all transitions onto
their input labels, i.e., preserving only the in-
put label on every transition. Some transi-
tions in this acceptor of alternative romaniza-
tions might be epsilons, so we can remove ep-
silon transitions (Mohri, 2002), then select the
n most likely paths (Mohri and Riley, 2002).
All of these operations are general operations
supported by the OpenFst library (Allauzen
et al., 2007). The n unique shortest paths in
RmEpsilon(ProjectInput(T ◦S)) are the n
most likely romanizations of w.

3.2 Baseline fixed-vocabulary system
Our baseline system relies on automatic ro-
manization of native script language model
training data. Using a transliteration trans-
ducer, trained as described in §3.1, each word
in our fixed vocabulary is assigned a “canon-
ical” (i.e., best scoring) romanization as its
Latin script representation. We then replace
the native script words in our language model
training corpus with their canonical romaniza-
tions and retrain the model, yielding a lan-
guage model over strings in the Latin script.

If the distribution over romanized alterna-
tives for ɖʊाचार in the blog comments that
were mentioned in §2.1 represented the dis-
tribution provided by our model, then “bhras-
tachar” would become its canonical romaniza-
tion. Alternative spellings (e.g., bhrashtachar)
would only match that word via the character
loop method (mentioned in §2.3) permitting
the omitted letter, generally with a cost.

3.3 Compact supplemental unigram
Not every substituted, inserted or omitted tap
is created equal when it comes to likely ro-
manization variants. For example, as we have
seen in our running example, the use of ‘h’
to indicate aspiration for consonants such as
भ may or may not be used in romanizations.
Similarly long vowels and geminates are some-
times represented by doubling of Latin sym-
bols, but often not. These variants are not
random in the way that a character loop model
would score them. One method for adding
likely alternative romanizations is to simply
add them as alternative word forms to the
language model. These romanizations can be

computed using the method outlined in §3.1.
However, adding many alternative roman-

izations of the same word can become space
prohibitive, particulary for on-device methods,
where storage and active memory usage are
both at a premium. It is possible, however, to
provide a very compact encoding specifically
of the words stored exclusively in the unigram,
i.e., words that are neither prefixes nor suffixes
of any higher order n-grams in the language
model. We achieve this in two steps. First, we
build two automata that accept all and only
this set of words: a weighted automaton W ,
which weights the path for each word with the
appropriate cost for that word within the lan-
guage model; and an unweighted automaton A
which encodes the same set of words as W and
has been determinized and minimized. Next
we create a weighted automaton Wm that has
the same topology as A, but which is weighted
to minimize the KL-divergence (Kullback and
Leibler, 1951) between W and Wm, using
methods from Suresh et al. (2019). This is
an approximation of the distribution repre-
sented in W over a much more compact topol-
ogy. The methods to perform this approxi-
mation are part of the open-source OpenGrm
stochastic automata (SFst) library (available
at http://www.opengrm.org). We then inte-
grate Wm into the larger language model au-
tomaton, with the unigram state of the lan-
guage model serving as both the start and fi-
nal state for the paths corresponding to those
in Wm. This can be straightforwardly accom-
plished by using the Replace operation in the
OpenFst library (http://www.openfst.org).

3.4 Transducer to canonical form
As we noted in §3.1, we build pair n-gram
transliteration models between native script
and romanized forms. In a similar way, we
can build a transducer between canonical ro-
manized forms and alternative romanizations.
To re-use our example, if “bhrastachar” is the
canonical romanization, and “bhrashtachar” is
another attested form, we can use expectation
maximization to derive an alignment:

b:b h:h r:r a:a s:s ϵ:h t:t a:a c:c h:h a:a r:r
A pair n-gram model built from this would al-
low weighted transduction from input roman-
izations to the canonical form, which corre-
sponds to tokens in the language model. We

http://www.opengrm.org
http://www.openfst.org
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…_b:b bh:h hr:r ra:a as:s st:t

bϵ:h br:r rϵ:a rs:s sh:ϵ ht:t

(a) bikey input to canonical romanization lattice

…_b:भ bh:◌् hr:र ra:ϵ as:ष

rs:ष

sϵ:◌् st:ट

bϵ:◌् br:र sh:◌् ht:ट

(b) bikey input to native script lattice

Figure 2: Lattices illustrating how reading from the input tape rather than the output tape can provide support
for varied romanized input, for either native script or “canonical” romanized output.

can thus use a transducer much in the way
described in Hellsten et al. (2017) to translit-
erate8 between variant romanizations and the
chosen canonical romanizations.

There is, however, a complication with us-
ing this method within the keyboard, in con-
trast to the earlier described methods. If
the keyboard actually performed the transduc-
tion from input romanization to the canonical
Latin script form, then it would enforce a nor-
malization on the user’s spelling of the word.
If the user types “bhrashtachar”, this system,
as it has been described, will output “bhras-
tachar” (without the ‘h’), since that is our cho-
sen canonical form. However, there is no stan-
dard orthography in the Latin script for Hindi,
i.e., there is no correct spelling. Our canoni-
cal form is chosen for convenience to be the
highest scoring romanization from the model.
Even if we were to choose some kind of gen-
erally common version as our canonical form,
however, for any given individual we may end
up coercing the output of a form that they dis-
prefer. Instead, we would like to allow them to
maintain their preferred form, i.e., they should
be able to type their intended string.

Because the decoder is based on WFSTs, we
have a particularly straightforward solution to
this: output the string from the input tape
rather than the output tape. That is, we use
the transducer within the decoder just as is
done in Hellsten et al. (2017), however we out-
put the string on the input side corresponding
to the best scoring solution. In this way, we
derive the modeling benefit from the language

8Note this isn’t quite transliteration in the usual
sense since the strings stay in the same writing system,
but we co-opt the term since Hellsten et al. (2017) used
an identical architecture for transliteration.

model without imposing a canonical roman-
ization on the user. Note that it would be
possible to perform this large composition and
project onto input labels off-line rather than
on-the-fly, but the size of the off-line composi-
tion is prohibitively large for on-device opera-
tion, for reasons similar to those discussed in
Hellsten et al. (2017). The output labels are
thus preserved in one of the transducers used
during on-the-fly composition.

Figure 2a shows a WFST lattice represent-
ing alternative paths through the decoder,
with bikey inputs and canonical romanization
outputs.9 For convenience, bikey representa-
tions of outputs with no corresponding input
display the previous key followed by an ep-
silon, e.g., ‘bϵ’ signifies an omitted key follow-
ing a ‘b’. Note that every path through this
lattice has an output string corresponding to
“bhrast”, the prefix of the canonical romaniza-
tion of our running example. Different paths
represent different input string variations cor-
responding to this word.

To read a string off of the input side of such a
lattice, we take the last symbol of the bikey at
each transition, with ϵ representing the empty
string. In such a way, the presented lattice
encodes the alternatives bhrast, brast, bhrsht,
bhrasht, etc. Whichever path has the lowest
cost during decoding would be the version that
is produced by the keyboard.

3.5 Transducer to native script
If, as discussed in the previous section, we out-
put from the input tape of our WFSTs, then

9Note that, during decoding, partial results may
be displayed to the user to improve responsiveness, so
these figures should be taken as an illustration not a
depiction of the decoding process.
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there is no strong reason10 to have Latin script
on the output tape. Instead, we use a native
script language model and the same sort of
pair n-gram transducer as used in a translit-
erating keyboard, then simply read the result
from the input tape.

Figure 2b has a set of paths, all of which
produce the native script word prefix (ɖʊ) on
the output side. As with the other lattice, the
paths represent different input romanizations
corresponding to this string, which can be re-
covered from the transition labels.

3.6 Native script OOV modeling
One question we have only briefly touched
upon is how to deal with out-of-vocabulary
(OOV) items when using a transliteration
transducer, i.e., words not in the language
model being used for decoding. The simple
default method is to have a character loop at
the unigram state of the language model that
accepts each character. That loop then gets
an approximated language model cost from
the transliteration transducer, to the extent
that that model provides a joint probability
of input and output strings. Alternatively, we
can build a character language model, or even
more complicated data structures, to assign
probabilities to OOV words.

We opt to follow an approach that provides
flexibility to move between two extremes, the
most permissive but least accurate being the
character loop, and the most restrictive but
most accurate being a weighted character trie.
The trade-off is controlled by a single param-
eter N , which is the number of states we wish
to use to represent the OOV model. We start
with a large collection of native script words
and their unigram probabilities. We first build
a weighted character trie representing these
words. The trie is weight-pushed so that the
probability mass of a state is seen as early as
possible by the decoder. Next we rank each
state of the trie by the total probability mass
of all words reachable from that state. Fi-
nally we remove any state beyond the first N

10This is not strictly speaking true, since, as is
pointed out in §2.3, the models may also be used for
word prediction and completion. In order to seamlessly
integrate with such processes, predicted and completed
words would have to be presented in the Latin script,
hence some additional information would need to be
provided for each word in the vocabulary.

states in the ranking. All transitions from re-
tained states to removed states are redirected
to a state with the original character loop. In
this way, we provide a mechanism to smoothly
scale between a full trie representation (no
states removed) down to a single-state charac-
ter loop (all states removed), and everything
in between. This approach, like the character
loop baseline, permits arbitrary word-forms to
be typed, but it does so in a way that bet-
ter captures the distribution of word forms in
the language. The pruned trie provides an ap-
proximation to the distribution in the full trie,
which permits a graceful tradeoff between the
size of the encoding and the quality of the ap-
proximation.

4 Experiments

4.1 Data
Transliteration models were trained from a
proprietary lexicon of Hindi words and at-
tested romanizations, consisting of approxi-
mately 110,000 native script words and on
average 3.1 romanizations per word. These
aligned Devanagari–Latin word pairs were
used to build a WFST transliteration model
using methods detailed in §3.1. We built pair
3-gram models, pruned to contain just 110,000
n-grams prior to conversion to a transducer.

Language models, both in Devanagari and
canonical Latin forms, were trained on a large
and diverse set of Devanagari Hindi text col-
lected from the web, and were not trained for
any specific domain. The 150,000 most fre-
quent words in the training set were retained
in the language model, and trigram word-
based models were trained and then pruned to
retain just 750,000 n-grams, so as to fit within
on-device space limits.11 For a single exper-
iment, we additionally considered a language
model containing 1,500,000 n-grams, double
the n-gram count of the others.

For methods using a transducer to native
script within decoding, the language model
is in the native script; whereas in other con-
ditions, the language model is in the Latin
script. To train the Latin script language

11Our work as targeted South Asian languages,
where inexpensive smartphones are the norm, hence,
as mentioned in Hellsten et al. (2017) we have gener-
ally targeted total model sizes around 10MB.
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Word error Tap Avg active Model size
Method rate (%) avg ms states arcs (MB)
Literal 45.0 - - - -
Fixed vocabulary (canonical only) 22.6 0.95 164.8 417.9 4.9
Fixed vocab + supplemental unigram 12.4 1.00 122.3 404.4 10.6
Fixed vocab + transducer to canonical 12.9 1.01 75.6 225.6 9.3
Transducer to native script 13.1 0.95 66.7 184.7 11.0
Transducer to native + OOV model 10.5 1.08 67.5 181.8 11.2

(a) An operating point of approximately 1.0ms per tap

Literal 45.0 - - - -
Fixed vocabulary (canonical only) 22.5 0.59 71.8 202.5 4.9
Fixed vocab + supplemental unigram 12.1 0.53 38.1 132.0 10.6
Fixed vocab + transducer to canonical 14.1 0.54 24.4 80.9 9.3
Transducer to native script 14.0 0.60 31.8 91.6 11.0
Transducer to native + OOV model 12.3 0.54 19.7 54.9 11.2

(b) An operating point of approximately 0.55ms per tap

Table 1: The word error rate for the decoding of noisy touchpoints into Latin script strings at two operating
points along the speed–accuracy tradeoff. The average number of milliseconds required per character as well as
the average number of states and transitions active during decoding and the model size in megabytes are listed.
The best performing (lowest) word error rate method for each operating point is bolded.

model for Hindi, each word in the vocabu-
lary (each of which is in Devanagari), is re-
placed with its “canonical” romanization, i.e.,
the highest probability romanization accord-
ing to the trained transliteration model.

Devanagari script sentences from Hindi
Wikipedia were manually romanized by na-
tive speakers, and 4,000 of these (for a total
of 36,027 word tokens) were used as our de-
velopment set for validation of the methods
presented above.

4.2 Evaluation
To evaluate our methods, we simulate touch
points of a tapping keyboard as follows. For
each symbol in the (Latin script) input strings,
we sample a touch point from Gaussian distri-
butions in two dimensions, with mean value at
the center of the key. To establish how much
noise is introduced by this method, we evalu-
ate the error rate of simply emitting the literal
sequence, i.e., the symbols associated with the
keys that our noisy touch points actually fall
within. Improvements over the literal baseline
are due to decoder auto-correction.

The resulting touchpoints are then fed into
the decoder under each of our conditions, and
the strings output from the decoder are then
compared with the original text strings, which
are taken to be the intended strings. As men-
tioned elsewhere in the paper, the goal is to al-
low users to type their intended strings, with-
out normalizing away their versions of the ro-
manized words. Thus we measure word-error

rate versus the reference version in the roman-
ized string. Note that the keyboard decoder
has various meta-parameters that can impact,
e.g., the speed–accuracy trade-off. In addition
to sweeping over such parameters for a given
method, as shown in Figure 3, we compare per-
formance across the methods at comparable
operating points (in terms of average millisec-
onds per character) in Tables 1a and 1b.

Note that the absolute numerical values of
the latencies are not meaningful, just the com-
parisons between the latencies. As discussed
in Hellsten et al. (2017) and mentioned ear-
lier, latencies must be low enough that no lag
in keyboard responsiveness is perceived, and
target values on device are often around 20ms
per tap. However this must be the case also for
inexpensive devices with low processing power,
and the decision to deploy a model would de-
pend on device trials. For the purposes of this
paper, however, we just report values on a sin-
gle device that can be used for comparison pur-
poses. The operating points chosen for the Ta-
bles are two that are plausible candidates for
use on such inexpensive devices.

4.3 Results
While analyzing the entire operating curve as
shown in Figure 3 gives us an idea of the
full potential of any particular model, in a
resource-constrained scenario such as a mo-
bile keyboard, we are ultimately restricted to
working at a particular operating point on the
speed–accuracy tradeoff. At a higher operat-
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Figure 3: Word error rate versus latency for the models presented in §3 as evaluated on simulated touchpoints
for Latin Hindi text. Various decoding-time parametrizations were explored to demonstrate the word error rate–
latency tradeoff. The literal baseline shows how accurate the decoding procedure would be without a model at
all on this data set.

ing point of 1.0ms per tap (as in Table 1a),
the native script transducer with OOV model
is the best option, bringing the WER down
from 22.6% for the fixed vocabulary to 10.5%,
a substantial 54% relative decrease. This does
come at the cost of model size, with the model
taking up 2.3x as much space. For the case
where one chooses a lower operating point such
as 0.55ms per tap (as in Table 1b), the supple-
mental unigram wins out providing a 46% rel-
ative decrease in word error rate compared to
the fixed vocabulary baseline’s WER of 22.5%;
all in a relatively compact model taking up
only 2.2x more space than the baseline. Addi-
tionally, we note that at all operating points,
a doubly-sized fixed-vocabulary system (de-
scribed in §4.1) in fact achieves a slightly worse
WER compared with a commensurately sized,
otherwise identical language model. We take
this as evidence that this model’s inability to
capture the variant orthographic forms found
in this domain is not corrected by simply in-
creasing the model’s n-gram count.

Looking at Figure 3, in the limit as latency
increases, we find that while the supplemen-
tal unigram, fixed vocabulary with transducer
to canonical, and transducer to native script
converge to similar word error rates of about
12.4 ∼ 12.8%, the transducer to native with
OOV model can reach even 10.3% WER.

5 Summary

We have presented results for various ap-
proaches for handling romanized text entry for
South Asian languages within an FST-based
mobile keyboard decoder. Compared to base-
line methods that naïvely rely upon a single
canonical romanization for each word in the
vocabulary, we can achieve 54% relative error
rate reduction by making use of a translitera-
tion transducer and reading the output from
the input tape. Even at very constrained op-
erating points, our best method cuts the error
rate nearly in half.

Further, we have demonstrated that an al-
ternative of compactly encoding a large sup-
plemental lexicon in the language model, con-
sisting of alternative romanizations of words,
is competitive to the transducer-based normal-
ization, at some space savings. This method
has the further virtue of relatively straightfor-
ward support for other parts of the keyboard
application – such as word prediction and com-
pletion, as well as personalization mechanisms
– since the decoder outputs from its output
tape as in typical operation. Deploying meth-
ods presented here that read from the input
tape into a keyboard app requires additional
integration with these other modules.
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